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Abstract: Network Intrusion Detection Systems (NIDSs) are indispensable defensive tools against
various cyberattacks. Lightweight, multipurpose, and anomaly-based detection NIDSs employ
several methods to build profiles for normal and malicious behaviors. In this paper, we design,
implement, and evaluate the performance of machine-learning-based NIDS in IoT networks. Specifi-
cally, we study six supervised learning methods that belong to three different classes: (1) ensemble
methods, (2) neural network methods, and (3) kernel methods. To evaluate the developed NIDSs,
we use the distilled-Kitsune-2018 and NSL-KDD datasets, both consisting of a contemporary real-
world IoT network traffic subjected to different network attacks. Standard performance evaluation
metrics from the machine-learning literature are used to evaluate the identification accuracy, error
rates, and inference speed. Our empirical analysis indicates that ensemble methods provide better
accuracy and lower error rates compared with neural network and kernel methods. On the other
hand, neural network methods provide the highest inference speed which proves their suitability for
high-bandwidth networks. We also provide a comparison with state-of-the-art solutions and show
that our best results are better than any prior art by 1~20%.

Keywords: cybersecurity; Internet of Things; network layer; intrusion detection; intrusion classification;
ensemble learning

1. Introduction

It can be argued that the world entered the digital age in the 1970s due to the advent
of personal computers and computer networks, both facilitating the ability to create, store,
and transfer information freely and swiftly. Since then, more computing devices and
interconnection technologies have emerged to facilitate large computer networks such as
the Internet. And over the last decade, driven by advancements in cheap electronic sensory
devices, larger computing capacity per area, ultrafast computer networks, and practical
artificial intelligence, the world is entering into another era where both people and things
are getting interconnected, what is usually referred to nowadays as the Internet of Things
(IoTs) [1,2].

Due to the significant benefits such technologies bring into its adopters, they have
been deployed in several domain areas such as healthcare [3], finance and banking [4],
national security [5], military [6], disease control [7], and many more [8,9]. Some of these
deployments are highly critical when service disruption might be intolerable. As such,
defending these networks against malicious attacks cannot be overstated. A very important
and indispensable defense tool is the Network Intrusion Detection System (NIDS), which
monitors network traffic for anomalous behaviors [10,11] (See Figure 1: NIDS typical
deployment in computer networks.). Upon the detection of intrusion or anomalous activity,
NIDS reports the incident to the network administrator for immediate action or further
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investigation. NIDSs are usually deployed in two operation modes: (1) online wherein the
NIDS is deployed at the network gateway and monitors the flowing traffic as it enters the
network and (2) offline wherein the NIDS analyzes archived network traffic [12].

Figure 1. NIDS typical deployment in computer networks.

The most widely used and performant NIDSs are those that employ pattern recog-
nition capabilities [13–15]. In these NIDSs, the communication network is monitored to
build profiles for normal and abnormal activities. Several methods can be used to construct
these profiles such as statistical analysis (also known as discriminant analysis) [16], correla-
tions [17], and similarity measures [18]. Modern techniques for pattern recognition include
machine and deep learning [19], which proved to provide high performant accuracy, lower
false positive and negative rates, and relative ease of usage. In this work, we analyze the
performance of several machine-learning techniques for constructing NIDSs. Specifically,
we use six different algorithms: Ensemble Boosted Trees (EBT) [20], Ensemble RUSBoosted
Trees (ERT) [21], Ensemble Subspace KNN (ESK), Shallow Neural Network (SNN), Bi-
layered Neural Network (BNN), and Logistic Regression Kernel (LRK) to construct an
NIDS. To the best of our knowledge, this is the first work that employs the aforementioned
ensemble learning methods in IoT NIDS. We model the intrusion detection problem as a
multilabel, supervised-learning problem in which a set of data points and associated labels
are given. Each machine-learning method is used to build a classification function that
assigns a label for each input data point.

The choice of the aforementioned machine-learning techniques was driven by the
maturity and ubiquity of the techniques, high accuracy rates, and efficient inference speed.
Our choice was also driven by a less significant factor, that is, the consideration of more
diversified methods in terms of operation mode and underlying assumptions about the
dataset to provide more insights about this particular NIDS problem. Of particular interest
are ensemble learning methods which proved to be more performant than single-model
techniques in several machine-learning problems [22–27]. Conforming with the literature,
our experimental analysis shows the superiority of these methods over other single-model
techniques. It should be remarked that the aforementioned criteria for algorithm selection
are not standard, but rather, are our recommendations based on experience. It is well
known that the choice of machine-learning algorithms for a given problem statement is
governed by the no-free-lunch law; therefore, a trial-and-error approach is usually the
safest approach to follow in algorithm selection. We believe that a diversified space of
algorithms in terms of assumptions (parametric vs. non-parametric), explainability (white
box vs. black box), execution overhead, and data engineering efforts are key factors that



Sensors 2022, 22, 241 3 of 16

should be considered for algorithm selection. In Table 1 below, we provide the main factors
affecting our choice of the aforementioned algorithms.

Table 1. Machine-learning algorithms selection criteria.

Method Assumptions Explainability Execution Time Data Engineering

Train Test

EBT, ERT
No assumptions about

predictors or
response variable

Intuitively explainable
as rule-based

knowledge system
Slow Fast Minimal effort

ESK No assumptions Intuitively explainable
via similarity measures Slow Very slow Minimal effort

SNN, BNN No assumptions Black box Depends on
network architecture Fast Medium effort

LRK
Linearity between

predictors and
response variable

Relatively explainable Fast Slow Essential

We use two datasets, the celebrated NSL-KDD [28] and a distilled version [22] of the
Kitsune dataset [12] (hereafter referred to as distilled-Kitsune-2018). In distilled-Kitsune-
2018, two network deployments were studied in [12]: (1) a surveillance network with
four IP cameras (SNC-EM602RC, SNC-EM600, SNC-EB600, and SNC-EB602R) was put
under eight attacks that affected data confidentiality, data integrity, and the availability
of the network, and (2) an IoT wi-fi network that included three personal computers and
nine IoT devices (a thermostat, baby monitor, webcam, two doorbells, and four security
cameras with one of the latter infected by the Mirai botnet malware [23]). Collectively,
the distilled-Kitsune-2018 dataset is, therefore, a 10-class labeled dataset (nine attacks and
one normal) with 115,391 data points. Each data point includes 115 numerical features
(excluding the label). The features include 23 different statistics of the bandwidth of
inbound/outbound traffic, packet rates, interpacket delays, channel and TCP/UDP socket
information captured over 5-time windows (hence 115 features overall). We remark that the
distilled-Kitsune-2018 dataset bundles the aforementioned attacks independently. In our
analysis, we combine all the attacks in one dataset that is used as input for each of the six
supervised machine-learning methods used in our study.

Our evaluation methodology employs standard machine-learning evaluation metrics,
such as classification accuracy, precision, recall, error rates (type-1 and type-2 errors) and
inference speed. To preview, it was found that ensemble methods (EBT, ESK, and ERT)
provide the highest accuracy rates (more than 98%) and, accordingly, the lowest error rates.
In terms of inference speed, the neural network methods (SNN and BNN) provide the
lowest inference overhead. On the other hand, the kernel method (LRK) showed the worst
performance, both in terms of accuracy and inference speed.

This work provides a detailed comparative analysis of various intrusion detection
schemes for detecting and classifying several IoT network intrusions. Our main contribu-
tions can be summarized as follows:

1. We design and implement a multipurpose, lightweight, and highly accurate anomaly-
based IoT NIDS using various machine-learning methods.

2. We characterize and evaluate the performance of three ensemble learning tech-
niques (EBT, ESK, and ERT) for IoT NIDSs using the NSL-KDD and distilled-Kitsune-
2018 datasets.

3. We provide a thorough empirical analysis of six different supervised machine-learning
methods using eight standard performance evaluation metrics.

4. We also compare our results with state-of-the-art NIDS solutions and show that our
ensemble-based NIDS is better than any prior art by 1–20%.

The rest of the paper is organized as follows. In Section 2, we briefly review the state-
of-the-art of machine-learning-based NIDSs. The system model is presented in Section 3.
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Evaluation methodology, experiments, and results are provided in Section 4. Finally,
Section 5 concludes the work by providing the key takeaways of our study and lays out
future works.

2. Related Work

The employment of machine learning in developing NIDSs dates to the 1990s [29–31].
In this section, we limit our review to contemporary studies in the past five years. Some
older studies are included for their importance and monumental results.

In [32], the authors surveyed statistical, machine learning, and data mining methods
for constructing NIDSs in Software Defined Networks (SDNs). Based on their study,
the authors recommend the suitability of machine-learning methods over other methods
due to their flexibility, lightweight inference overhead, and high accuracy rates. In [33],
the authors presented a two-stage deep and machine-learning approach to tackle the
network intrusion detection problem. In the first phase, they use a dimensionality reduction
framework to strip down more than 88% of the input feature space without affecting the
accuracy rate significantly. The main reason for doing that is to reduce the training time
and inference overhead. They reported that Random Forests (RF) achieved 0.996 F-measure
(which is a performance criterion that relates precision and recall) on the CICIDS2017
dataset. A similar approach was also followed in [34]. The authors found that ANN
with wrapper feature selection outperformed Support Vector Machines (SVMs) on the
NSL-KDD dataset. As will be shown later, our analysis conforms with this result for the
distilled-Kitsune-2018 dataset.

In a recent work, the authors in [35] tried to provide a standard feature set for NIDSs.
The authors collected two NetFlow-based feature sets and converted four commonly used
NIDS datasets (See Table 2) to conform with the collected datasets. Their main goal was a
trial towards standardizing NIDS evaluation datasets. The Extra Trees ensemble learning
was used to evaluate the performance of the compiled datasets and proposed feature set.
Their best result for the multiclass classification problem was 98% of classification accuracy.
Later we show that our best result outperforms their results using EBT, ESK, and ERT
ensemble classifiers.

A recent and relevant study to our work was proposed in [36]. The authors presented
a statistical-analysis-based NIDS that employs Beta Mixture Model (BMM) and a Corrs
entropy model. Their proposed solution was evaluated on the same dataset used in this
research, that is, the Kitsune dataset among the other two datasets. The best accuracy result
reported in their study was 99.2%, lower than our best result by 0.60%.

In [37], the authors proposed a more sophisticated approach that combined blockchain
technology and machine learning. The blockchain technology is used to add a privacy-
preserving capability to the NIDS. They also used PCA for dimensionality reduction of data
points extracted from the ToN-IoT and BoT-IoT. Their model recorded 97.7% of classification
accuracy. In [38], the authors provided another ensemble-learning, voting classifier-based
NIDS that adopted the Decision Trees (DT), Naïve Bayes (NB), Random Forest (RF), and k-
Nearest Neighbors (k-NN). They test their NIDS on the Ton-IoT datasets, achieving accuracy
results with high variance, ranging from 58% to 100% on each dataset individually. Their
system did not seem to perform well when they evaluated it on the combined dataset and
reported accuracy results ranging from 75% to 76% in the multiclass setting.

In [39], the authors developed an IoT cyberattack detection and classification system,
making use of a shallow convolutional neural network. They evaluated their model on the
NSL-KDD dataset, recording maximum accuracy of 99.3% and 98.2% for the two-class (nor-
mal vs. attack) and multi-class (normal, Probe, R2L, U2R, and DDos) classifiers, respectively.
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Table 2. Comparison among some state-of-the-art NIDS solutions. ANN stands for Artificial Neural
Networks, NB for Naïve Bayes, RF for Random Forests, SOM for Self-Organizing Maps, LDA
for Linear Discriminant Analysis, QDA for Quadratic Discriminant Analysis, PCA for Principal
Component Analysis, RT for Regression Trees, LR for Logistic Regression, U2R for User to Root, R2L
for Remote to Local.

Ref. Methods Datasets Attacks

[29] ANN, SVM, NB, RF, SOM
NSL-KDD, KDD Cup 1999,

CIC DOS, ADFA-LD12,
UNSWNB15, WSN-DS

DDoS, flooding,
U2R, Jamming

[33] Auto-Encoder, RF, NB,
LDA, QDA CICIDS2017 DDoS, Heartbleed, SQL

Injection, Botnet.
[34] ANN, SVM NSL-KDD DDoS, R2L, U2R

[35] Ensemble Learning
(Extra Trees)

UNSW-NB15, BoT-IoT,
ToN-IoT, CSE-CIC-IDS2018

DDoS, Botnet,
Infiltration.

[36] Statistical Analysis Kitsune, ISCX, IoT
network intrusion Botnet, DDoS, MITM

[37] XGBoost, PCA ToN-IoT and
BoT-IoT.

DDoS, Botnet,
ransomware

[38] Ensemble-based voting
classifier Ton-IoT DDoS, Botnet,

ransomware

[39] Shallow CNN NSL-KDD Normal, DoS, Probe,
R2L, U2R

[40] XGBoost NSL-KDD SynFlood, UDP Flood,
Smurf, and others

[41] LR, LDA, RT, RF, and NB TON-IoT DDoS, Password,
Backdoor, Ransomware

[42] RF, KNN, NB Simulated dataset Satori, Reaper, Amnesia,
Masuta, Mirai, others

[43] Fuzzy C-means clustering
and fuzzy interpolation Kitsune Botnet, MitM, DoS

[44] Generative adversarial
networks (GAN) Kitsune, CICIDS Artificially generated

attacks
[45] Extreme Value Analysis Kitsune Botnet, MitM, DoS

The author in [40] used tree-based and ensemble methods to build a NIDS using the
NSL-KDD dataset, achieving classification accuracy of 97% using the XGBoost algorithm.
They also evaluated the performance of some unsupervised learning algorithms, such
as the Expectation-Maximization, reporting less than 67% classification accuracy, which
showed superiority among the supervised methods in comparison to the unsupervised
methods in their particular settings. In [41], the authors introduced the Ton-IoT dataset,
a contemporary dataset for developing and testing IDSs. Several machine-learning methods
were used such as LR, LDA, RT, RF, and NB. Their best classification accuracy result was
reported on the weather dataset using CART and achieving 87%.

The authors in [42] presented a distributed modular solution (EDIMA) that employs
machine-learning algorithms for edge devices’ traffic classification. EDIMA can be used
towards the detection of IoT malware network activity in large-scale networks. They
evaluated the performance of their model using several evaluation metrics including
classification accuracy, classification precision, and classification sensitivity, recording
94.44%, 92.00%, and 100.0%, respectively.

We provide a comparative summary of state-of-the-art NIDS solutions for IoT commu-
nication networks employing diverse machine-learning techniques in Table 2. The table
recaps the reference number, the machine-learning methods, the employed datasets, and the
target attacks (classes) for every state-of-the-art NIDS.
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3. System Modeling

Cyberattacks are meant to deliberate an exploitation of system resources to compro-
mise necessary data and utilize the system in illegal usage [46]. Cyberattacks usually
are launched against the victim system to violate the major security services, such as
confidentiality, integrity, and availability. Currently, cyberattacks are available in differ-
ent forms such as ransomware, malware, adware, reconnaissance, denial of service, and
others [47,48]. In this paper, we develop a cyberattacks detection system making use of effi-
cient machine-learning techniques to provide an accurate, precise, and sensitive prediction
process. To develop and evaluate the proposed system, a high-performance computing
platform (hardware and software) has been used and it is described in Table 3, which states
the simulation environment for system development and validation.

Table 3. Simulation Environment Specifications (Hardware and Software).

Item Descriptions

Operation System Windows 11, Edition 21H2, 64-bit operating system,
x64-based processor

Processing Component 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30 GHz· · · 30 GHz
Computing Component NVIDIA GeForce RTX 3050 Ti Laptop GPU@ 4 GBye
Memory Component 16.0 GB, DDR4 1.2v @ Memory Speed: 2933 MHz (PC4-23400)
Storage Component 500 GB Kingston NV1 M.2 (2280) PCIe NVMe Gen 3.0 (×4) SSD
Development Platform MATLAB 2021b + Parallel Computing + Machine Learning Packages.

We have decomposed the proposed system to be developed into seven consecutive
subsystems (modules). Figure 2 illustrates the workflow diagram for the proposed attack
aware IoT network traffic routing via ML techniques. The diagram provides the compu-
tational process, starting from obtaining the IoT network traffic routing packets, passing
through the traffic data preparation, distribution, and learning, before it provides the proper
predictive output for every data packet.

Figure 2. Workflow Diagram for attack-aware IoT network traffic routing via ML techniques.

Specifically, the proposed system is composed of the following consecutive subsys-
tems/modules:

• Data Selection Subsystem: This subsystem involves obtaining a representative dataset
that can be applied to the proposed NIDS to express the IoT network traffic routing.
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To build a comparative study and gain more insight into the solution approach,
Distilled-Kitsune-2018 dataset [12] and NSL-KDD dataset [28] have been employed
at this stage. These two datasets were selected since they are both comprehensive,
publicly available, well-established as they are used in several reputable research
studies, have a fairly large number of samples (~150,000 network traffic records for
each of them), and they cover wide spectrum attack vectors for IoT in specific and
general computer networks. The distilled-Kitsune-2018 dataset, which was collected
by Mirsky et al. (2018), recorded a total of ~150,000 network traffic records of normal
traffic and nine different attacks targeting the violation of the three main security
services known as CIA triad (confidentiality, integrity, availability) including: two
reconnaissance attacks (OS Scan attack and Fuzzing attack), three man-in-the-middle
(MitM) attacks (video injection attack, ARP attack, and active wiretap attack), three
denial-of-service (DoS) attacks (SSDP Flood attack, SYN DoS attack, and SSL renegoti-
ation attack), and one botnet malware attack (Mirai attack) [12]. On the other hand,
NSL-KDD [28], which is a newer and reduced version of the original KDD’99 dataset,
was developed by the Defense Advanced Research Projects Agency (DARPA) and has
been revised to include more up-to-date and nonredundant attack records with differ-
ent levels of difficulty. The NSL-KDD dataset is available as a two-class traffic dataset
(normal vs. anomaly) and as a multiclass traffic dataset that includes attack-type labels
and a difficulty level (normal, DoS attacks, Probe attacks, Root-to-Local (R2L) attacks,
and User-to-Root (U2R) attacks). In both cases, it comprises a total of ~150,000 samples,
each with 43 attributes, such as duration, protocol, and service. The summary of the
distilled-Kitsune-2018 and NSL-KDD dataset distribution is provided in Table 4 below.

• Data Preprocessing Subsystem: This subsystem involves the preparation of the
dataset to be fed through the machine-learning processes, which is initiated when
the data is imported from the CSV files though MATLAB containers to be stored and
processed via MATLAB tables. The data then passes through a cleaning process by
excluding the untrainable features, filling the unimportable data cells with zero values,
filling the empty data cells with zero values, and unifying the number of extracted
features for all traffic datasets. Then, all datasets are labeled using categorical labeling
and then encoded into integer encoding (0–9). Thereafter, the data records from all
attacks’ datasets are combined to form one large and comprehensive dataset contain-
ing all types of traffic (normal, OS Scan, Fuzzing, Video Inj, ARP, Wiretap, SSDP F,
SYN DoS, SSL R, and Mirai). After that, all numerical data values are standardized to
enhance the classifier task, and finally, all records are randomly shuffled to eliminate
any biasing in the classifier process.

• Data Distribution Subsystem: This subsystem involves the random division (using
the DivideRand Algorithm [49]) of the preprocessed dataset into the training dataset
and the validation (testing) dataset. We have used the policy of 70%:30% distribution
for training dataset:testing dataset, respectively. Also, the data has been randomly
distributed into five different 70%:30% distributions to accommodate the 5-fold cross
validation process [49] performed at the learning stage.

• Learning Process Subsystem: This subsystem involves the development and employ-
ment of the different machine-learning models to train and test/validate the considered
datasets. Supervised machine-learning methods are usually employed to develop solu-
tions for regression [50], prediction [51], and classification [52]. We have employed six
different supervised ML schemes including Ensemble Boosted Trees (EBT) [53], Ensem-
ble Subspace kNN (ESK) [54], Ensemble RUSBoosted Trees (ERT) [55], Shallow Neural
Network (SNN) [56], Bilayered Neural Network (BNN) [57], and Logistic Regression
Kernel (LRK) [58]. The exploited ML models are summarized in Table 5 below.

• System Evaluation Subsystem: This subsystem involves the evaluation of the perfor-
mance of the proposed NIDS using several quality indication factors [59], including
validation accuracy (CA), validation precision (PR), validation recall (RC), misclassifi-
cation rate (MCR), false discovery rate (FDR), false negative rate (FNR), total validation
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cost (TC) in terms of the number of misclassified samples, and classification speed (CS)
in terms of the number of observations per second. Such quality indication factors are
also used to opt the most advantageous model to employ for attack-aware IoT network
traffic routing detection/classification. Moreover, they are also used to contrast the
results of our best NIDS with other state-of-the-art models in the same area of study.
A summary of the evaluation metrics are depicted in Figure 3 below.

• Classification Process Subsystem: This subsystem involves the categorization of the
traffic records into a binary-classification process to either normal vs. anomaly (attack)
or to a multiclassification process to a dedicated traffic category in the Kitsune dataset
{normal, OS Scan attack, Fuzzing attack, Video Inj attack, ARP attack, Wiretap attack,
SSDP F attack, SYN DoS attack, SSL R attack, and Mirai attack}, and in the NSL-KDD
dataset {normal, DoS attacks, probe attacks, R2L attacks, and U2R attacks}.

Figure 3. Confusion matrix with other performance evaluation measures.

Table 4. Summary of Dataset Distribution: distilled-Kitsune-2018 and NSL-KDD.

Samples Distribution for Distilled-Kitsune-2018

Attack No. Training
Packets

No. Normal
Test Packets

No. Malicious
Test Packets

OS Scan 6000 13,500 1499
Fuzzing 1200 9000 999

Video Inj. 4000 9000 999
ARP 6000 13,500 1499

Wiretap 4000 9000 999
SSDP F. 6000 13,500 1499

SYN DoS 1200 9000 999
SSL R. 6000 13,500 1499
Mirai 6000 9000 999

Samples Distribution for NSL-KDD dataset

Normal DoS Probe R2L

Training 67,343 45,927 11,656 995
Testing 9711 7458 2754 2421
Total 77,054 53,385 14,410 3416
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Table 5. Summary of System Development Parameters.

ML Model Models Parameters

Ensemble Boosted Trees (EBT)
Ensemble method: AdaBoost, Learner type: Decision tree,

Maximum number of splits: 20, Number of learners:
30, Learning rate: 0.1, 5-Fold Cross Validation.

Ensemble Subspace kNN (ESK)
Ensemble method: Subspace, Learner type: Nearest

Neighbors, number of learners: 30, Subspace Dimension:
58, 5-Fold Cross Validation

Ensemble RUS_Boosted
Trees (ERT)

Ensemble method: RUSBoost, Learner type: Decision tree,
Maximum number of splits: 20, Number of learners: 30,

Learning rate: 0.1, 5-Fold Cross Validation

Shallow Neural Network (SNN)

Number of fully connected layers = one hidden layer with
size = 30, Activation: Sigmoid, Iteration limit: 1000,

Standardize data: Yes, Regularization strength (Lambda):
0, 5-Fold Cross Validation

Bilayered Neural Network (BNN)

Number of fully connected layers: 2, First layer size: 10
Second layer size: 10, Activation: ReLU, Iteration limit:
1000, Regularization strength (Lambda): 0, Standardize

data: Yes, 5-Fold Cross Validation

Logistic Regression Kernel (LRK)

Learner: Logistic Regression, Number of expansion
dimensions: Auto, Regularization strength (Lambda):

Auto, Kernel scale: Auto, Multiclass method: One-vs-One,
Iteration limit: 1000, 5-Fold Cross Validation

4. Results and Discussion

In this section, we provide the experimental results obtained during the simulation
and system evaluation stage. Table 6 provides a summary of the system evaluation re-
sults of the six ML based models (EBT, ESK, ERT, BNN, SNN, and LRK) in terms of four
quality indication-factors (CA, MCR, TC, and CS) for the multiclass classification. Accord-
ing to the table, it can be clearly observed that the EBT model is the optimal predictive
model to be used as an attack-aware for IoT network traffic routing, scoring 99.8% of
classification accuracy with the least number of misclassified records (TC) and with a very
satisfiable prediction speed (requiring 11.11 µsec/single-prediction). Another noticeable
predictive model is the BNN model which is featured as the fastest predictive model scoring
290,000 observations/sec (requiring 3.44 µsec/single prediction) and with a very satisfiable
prediction accuracy of 97.5%. Moreover, though ESK recorded a superior prediction accu-
racy (99.4%), it has a high prediction overhead requiring a long time to provide prediction
for traffic records, recording 41 observations/sec (requires 24.4 milliseconds for each single
prediction). These results exhibit the improved overall prediction performance evaluation
for the models employing the Kitsune dataset over the models employing NSL-KDD. This
seems to be rational as the Kitsune datasets have better dataset sample balancing and have
much more features (116 features ≈ three times greater than the number of features in
NSL-KDD), which provide better distinction of traffic records and improve classification
accuracy and precision.

In addition, Figure 4 compares the prediction time complexity computed in micro-
seconds of both the Kitsune and NSL-KDD datasets using the six employed machine-
learning schemes. As can be clearly seen, the prediction time for NSL-KDD seems to be
faster than the prediction time for the Kitsune dataset in four models (i.e., ESK-based model,
BNN-based model, SNN-based model, and LRK-based model) and slower in one predictive
model (i.e., EBT-based model) and has equal prediction time in one model (i.e., ERK-based
model) and slower in one predictive model (i.e., EBT-based model). Overall, the BNN-
based predictive model seems to be the fastest predictive model with only 2.5–3.5 µseconds,
whereas the ESK-based predictive model seems to be the slowest predictive model with
12–24 milliseconds. However, to obtain the optimum predictive model considering all
the aforementioned performance metrics, one will absolutely select the EBT-based model,
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which provides the traffic prediction with only 11–11.8 µseconds, scoring the maximum
prediction accuracy and the minimum misclassification rate.

Table 6. Summary of system evaluation results comparing performance of Kitsune and NSL-
KDD datasets.

ML Models CA% MCR% TC (#) CS (Obs/Sec)

Kitsune NSL-KDD Kitsune NSL-KDD Kitsune NSL-KDD Kitsune NSL-KDD

EBT 99.8 99.1 0.2 0.9 249 1332 90,000 84,000

ESK 99.4 98.4 0.6 1.6 780 2346 41 84

ERT 98.1 97.2 1.9 2.8 2495 4211 90,000 90,000

BNN 97.5 96.1 2.5 3.9 3250 5702 290,000 420,000

SNN 96.7 94.6 3.3 5.4 4290 8014 240,000 390,000

LRK 94.5 93.7 5.5 6.3 7215 9198 440 1900

Figure 4. Timing complexity of both datasets using the six above mentioned ML models.

Based on the results reported in Table 6 and the timing complexity figure (Figure 4)
as well as their corresponding discussion/analysis, EBT has been selected to detect and
classify the IoT network traffic records of distilled-Kitsune-2018 dataset. Therefore, the rest
of the discussion of this paper will focus on the EBT-based model for the distilled-Kitsune-
2018 dataset. Indeed, EBT was able to perform the detection stage of the two-class classifier
(normal vs. attack) with 100% accuracy. EBT has also been exploited to provide detection
(normal vs. attack) for every individual attack dataset with 99.9–100% accuracy. There-
fore, we have focused our reported results in the tables and figures for the multiclass
classification. Thus, EBT is elected with confident. Therefore, the next results, discussions,
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and comparisons will focus on the EBT-based model. For instance, Figure 5 depicts the mul-
ticlass confusion matrix results for the EBT model. Accordingly, most of the traffic records
were truly predicted as true positives (TP) and true negatives (TN) with minor numbers
recorded for Type I errors (Fales positives-FP) and Type II errors (False negatives-FN).

Figure 5. Confusion matrix for Ensemble Boosted Trees (EBT) classifier.

Moreover, Figure 6 investigates the matrix of the positive predictive values (PPV)—also
known a predictive precision—and false discovery rates (FDR)—also known as predictive
imprecision—for each individual class using the EBT classifier. As observed from the
figure, all attack classes are precisely predicted with the maximum PPV proportion of 100%
recorded for the SSDPF attack-type class and the least PPV proportion of 98.7% recorded
for the fuzzing reconnaissance attack-type class. Overall, the average precision (PPV or PR)
involving all classes of the dataset records is 99.69%, which shows that in addition to being
very accurate, the EBT ensemble model is also considered very precise in providing both
attack detection and classification for the IoT network traffic routing packets.

Additionally, Figure 7 investigates the matrix of true negative values (TPR)—also
known as predictive recall/sensitivity—and falls negative rates (FNR)—also known as
predictive insensitivity—for each individual class using the EBT classifier. As observed
from the figure, all attack classes are sensitively predicted with maximum TPR proportion
of 100% recorded for the SYN-DoS attack-type class and the least TPR proportion of 88.8%
recorded for the active wiretap MitM attack-type class. Overall, the average sensitivity
(TPR or RC) involving all classes of the dataset records is 98.1%, which shows that in
addition of being very accurate and precise, the ETB ensemble model is also considered
very sensitive in providing both attack detection and classification for the IoT network
traffic routing packets.



Sensors 2022, 22, 241 12 of 16

Figure 6. Matrix of PPV vs. FDR for each individual class using EBT classifier.

Figure 7. Matrix of TPR vs. FNR for each individual class using EBT classifier.

Table 7 provide a summary of quality indication factors for the EBT-based model
in terms of accuracy (CA), precision (PR), recall (RC) misclassification rate (MCR), false
discovery rate (FDR), false negative rate (FNR), and classification speed (CS).

Table 7. Summary of System Evaluation Results for EBT.

CA% PR% RC% MCR% FDR% FNR% TC (#) CS (Obs/Sec)

99.8 99.7 98.1 0.2 0.9 1.7 249 90,000
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Lastly, Table 8 contrasts the performance outcomes obtained for the best of our
ensemble-based attack-aware IoT network traffic routing systems (specifically, the EBT-
based model) with the existing ML-based IoT attack-aware detection systems stated in
the literature. The comparison considers five factors including the utilized supervised
machine-learning technique (ML Model), the number of output classes of the classification
or detection system (No. of Classes), the proportion of classification or detection accuracy
(ACC%), the proportion of positive predictive value (PPV%), and the proportion of true pos-
itive rate (TPR%). Also, nine intelligent IoT-IDS-systems are deemed in this assessment as
engaging diverse supervised ML systems containing: Extremely Randomized Trees (XRT)
Classifier [35], Statistical Learning (STL) Classifier [36], eXtreme Gradient Boosting (XGB)
Classifier [37,40], Hybrid ML Scheme combining decision trees, random forests, and Naïve
bays algorithms (HYB) Classifier [38], shallow convolutional neural networks (S-CNN)
Classifier [39,60], Classification And Regression Trees (CART) Classifier [41], k-nearest
neighbor (kNN) Classifier, and our best system employing ensemble boosted trees (EBT)
Classifier. According to the information provided in the table, it can be clearly inferred that
our model is prominent as it recorded the best performance results among all other schemes.
However, some other systems seem to be proficient, such as the Ashraf et al. model [36],
Kumar et al. [42], and Al-Haija et al. [39], employing STL classifier, XGB Classifier, and S-
CNN classifier, respectively, as well as registering classification accuracy proportions of
99.20%, 97.81%, and 98.20% for three classes, ten classes, and five classes, respectively.

Table 8. Comparison with other existing ML-based IoT-IDS systems.

Research Year ML Model No. Classes ACC% PPV% TPR%

Sarhan et al. [35] 2021 XRT Classifier 2–10 98.05 84.61 -
Ashraf et al. [36] 2021 STL Classifier 3 99.20 - -
Kumar et al. [37] 2021 XGB Classifier 10 97.81 87.55 85.43
Khan et al. [38] 2021 HYB Classifier 7 76.00 75.00 75.00
Al-Haija et al. [39] 2020 S-CNN Classifier 5 98.20 98.27 98.20
Jinxin et al. [40] 2020 XGB Classifier 5 97.0 - -
Alsaedi et al. [41] 2020 CART Classifier 9 77.00 77.00 77.00
Al-Haija et al. [60] 2020 S-CNN Classifier 2 99.30 99.33 99.18
Kumar et al. [42] 2019 kNN Classifier 3 94.44 92.00 100.0
Proposed model 2021 EDT Classifier 10 99.80 99.69 98.10

5. Conclusions

This paper provided the design, implementation, and evaluation of an anomaly-based
IoT NIDS using machine-learning techniques. The intrusion detection problem was mod-
eled as a supervised multiclass learning problem in which a classification function is learnt
to map a set of labeled data points to 10 different classes. We used six different machine-
learning methods that belong to ensemble learning, neural networks, and kernel methods
to develop the NIDS models. Two real-world IoT datasets (distilled-Kitsune-2018 and
NSL-KDD) were used to evaluate the performance of the proposed NIDSs using standard
classification performance criteria. Our analysis showed that ensemble methods provide
higher accuracy percentages and lower error rates. On the other hand, neural network
methods showed satisfactory accuracy with superior inference speed, making them very
suitable for lightweight NIDSs. We also compared the performance of our best results
with state-of-the-art solutions and demonstrated higher accuracy rates. We believe that
this work provides different flavors of IoT NIDSs that suit different application require-
ments. In highly sensitive networks, we suggest using ensemble methods which exhibit
high-accuracy profiles. On the other hand, neural networks might be more suitable for de-
ployments in power-constrained environments. For future work, we believe that real-world
deployment of the proposed NIDSs in different IoT networks (such as Internet of Drones
and Vehicular Ad-hoc Network) is crucial for more accurate performance characterization
and feasibility studies.
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