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Abstract: Hyperspectral imaging is an indispensable technology for many remote sensing appli-
cations, yet expensive in terms of computing resources. It requires significant processing power
and large storage due to the immense size of hyperspectral data, especially in the aftermath of the
recent advancements in sensor technology. Issues pertaining to bandwidth limitation also arise when
seeking to transfer such data from airborne satellites to ground stations for postprocessing. This is
particularly crucial for small satellite applications where the platform is confined to limited power,
weight, and storage capacity. The availability of onboard data compression would help alleviate the
impact of these issues while preserving the information contained in the hyperspectral image. We
present herein a systematic review of hardware-accelerated compression of hyperspectral images
targeting remote sensing applications. We reviewed a total of 101 papers published from 2000 to
2021. We present a comparative performance analysis of the synthesized results with an emphasis
on metrics like power requirement, throughput, and compression ratio. Furthermore, we rank the
best algorithms based on efficiency and elaborate on the major factors impacting the performance of
hardware-accelerated compression. We conclude by highlighting some of the research gaps in the
literature and recommend potential areas of future research.

Keywords: hyperspectral image compression; hardware accelerators; remote sensing; power requirement;
throughput; compression ratio; systematic review

1. Introduction

Hyperspectral Imaging (HSI) is an enabling technology for a variety of remote sensing
applications related to intelligence, commerce, agriculture, military, and even humanitarian
purposes. Such applications include environmental monitoring [1], agricultural field
observation [2], geological mapping [3], and mineral exploration [4], to name just a few. It
has been steadily growing over the last few years. According to the research conducted by
BCC (Business Communications Company, Wellesley, MA, USA), the growth of the global
market for HSI is expected to increase at a Compound Annual Growth Rate (CAGR) of
14.7% for the period 2018–2023, from $104.0 million in 2018 to $206.2 million in 2023 [5].

The richness of information in hyperspectral images and the enhancements in sensor
performance present an ever-increasing challenge due to the large size of hyperspectral data.
For instance, the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) produces data
as large as 16 Gigabytes per day [6]. The Atmospheric InfraRed Sounder (AIRS) is not far
from the latter and can yield about 12 Gigabytes of data per day [6]. Typically, hyperspectral
images consist of hundreds of contiguous bands, and the number of these bands depends
on the detector resolution (see Figure 1). As illustrated in this figure, the y dimension
represents the number of bands, and the x dimension corresponds to the swath width of
the scene. The spatial dimensions (x and z) of the hyperspectral image are constructed one
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scan line at a time during flight time. According to [7], the number of bands of recognized
hyperspectral imagers is as follows: (1) as many as 316 bands are acquired by the two
payloads carried in the Indian Hyperspectral Imaging Satellite (HySIS); (2) 240 bands are
collected by the Italian space agency’s satellite called no other than PRISMA, for PRecursore
IperSpettrale della Missione Applicativa; (3) 220 bands are collected by the Hyperion imager
onboard NASA’s Earth Observation satellite (EO-1); and (4) 232 bands are acquired by the
German mission, known as the Environmental Mapping and Analysis Program (EnMAP).
These significant band acquisitions result in large three-dimensional hyperspectral images,
which make their onboard compression mandatory, especially for small satellites where the
platforms are confined to limited storage capacity, weight, and power budget.

Figure 1. Conceptual view of the construction of hyperspectral images by a pushbroom scanner (not
shown) during airborne flights.

The adoption of small satellites began in the year 2000 with the emerging era of “new
space” as Stanford University launched its microsatellite, called the Orbiting Picosat Auto-
mated Launcher (OPAL), containing six picosatellites [8]. Picosatellites such as CubeSats
are excellent platforms for education as well as technology demonstration and are thus
extremely valuable for countries without fully funded space programs. They offer benefits
over larger satellites in terms of cost, development time, and payload modularity [9]. Small
satellites also require smaller and lower-cost launch vehicles. Their onboard computers
generally perform other tasks in addition to data acquisition and manipulation. These
tasks include attitude determination and control, telecommand execution or dispatching,
onboard time synchronization and distribution, and failure detection. Such tasks need
to be prominently considered when designing the onboard computers for performance
and power [10]. The latter two factors constitute the key drivers for the ever-increasing
number of research studies on efficient compression utilizing parallel processing archi-
tectures suitable for onboard installation such as Graphics Processing Units (GPUs) and
Field-Programmable Gate Arrays (FPGAs). GPUs and FPGAs have attracted much at-
tention in High-Performance Computing (HPC) research seeing that the single-precision
floating-point performance has reached more than ten Tera Floating-Point Operations Per
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Second (TFLOPS), far exceeding the computational performance of a Central Processing
Unit (CPU) [11]. Digital Signal Processors (DSPs) also have a higher performance to cost
ratio when compared to CPUs while requiring less power [12]. However, their level of
performance is still far from what we can obtain using FPGAs and GPUs. The latter two
hardware platforms are commonly used in the acceleration of image and signal processing
applications, HPC-based simulations, and machine learning models. For instance, Mi-
crosoft has been using FPGAs to speed up search engines and deep learning models for
cloud services [13]. Amazon’s cloud service provides HPC platforms in which GPUs and
FPGAs are utilized as accelerators [11]. Google has also been using GPUs to speed-up
machine learning for their systems [11].

In this paper, we present a systematic review of hardware-accelerated compression
algorithms of remotely sensed hyperspectral images over a period spanning slightly over
two decades. By hardware-accelerated, we mean the use of hardware accelerators such as
FPGAs, GPUs, System-On-Chips (SoCs), and DSPs in the implementation and speeding up
of compression algorithms for HSI. The main objectives of this work are to use the results
of the review to answer the following four research questions (RQs):

• RQ1: What are the main hardware platforms and HSI datasets used to accelerate and
evaluate HSI compression algorithms in remote sensing applications?

• RQ2: What are the different HSI compression algorithms and their classes that are
accelerated in hardware?

• RQ3: What are the comparative performance results, obtained thus far, of the hardware-
accelerated HSI compression algorithms?

• RQ4: What are some of the other pertinent factors that can impact the onboard
implementation and utilization of hardware-accelerated HSI compression algorithms?

As a result of addressing these research questions, the contributions of this paper are
as follows:

1. To describe the available hardware-accelerated compression algorithms of remotely
sensed hyperspectral images, their implementation platforms, and their datasets;

2. To provide a comparative analysis of the collected studies against multiple metrics
such as throughput, power requirement, compression ratio, and efficiency;

3. To discuss the major factors impacting the efficient development and continued
progress in this important area;

4. To identify the related research gaps and present recommendations for future research work.

The rest of the paper is organized as follows. In the remaining two subsections, we
describe some of the related works in this area and provide a brief overview of compression
techniques. This is followed by a description of the materials and methods employed to
perform this review as they pertain to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) framework. We then proceed to disclose the results of the
review by presenting our findings related to HSI compression algorithms, their classes, and
their hardware platforms. Next, we discuss the comparative performance results of these
algorithms and other aspects related to their hardware implementation and utilization.
Before concluding this paper, we uncover the current research gaps in this area of study
and provide a set of recommendations for future research. Figure 2 depicts a graphical
organization of the paper to assist readers in accessing its different parts.
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Figure 2. Organization of this article as a tree structure to help readers navigate through its different sections.

1.1. Related Work

Recent related works include a review of hyperspectral image compression algorithms
published in [14]. It provides a detailed categorization of the HSI compression algorithms
according to selected parameters. Another review, conducted in 2009, discusses image
compression systems onboard space missions in general [15]. It covers more than 40 of these
space missions planned from 1986 and up to 2010. A third study reviewing spaceborne hy-
perspectral missions was undertaken in 2013 with a primary focus on lossless compression
type [16]. Another survey was published in 1999, dealing with lossy compression algo-
rithms used onboard space flights by France’s space agency, known as the Centre National
d’Etudes Spatiales (CNES) [17]. A review presented in [18] discusses selected topics of
HSI compression for each of the three types: lossless, lossy and near-lossless compression.
Babu et al. in [19] presented a review on statistical and wavelet-based compression algo-
rithms with a focus on encoding schemes to reduce the transmission overhead. Moreover,
the review by Dusselaar and Paul presents a categorization of intra-band and inter-band
compression techniques of HSI [20]. It also provides an experiment to study the PSNR
of selected compression algorithms. A literature survey of satellite image compression
in [21] provides a comparison at the algorithm level of lossless and lossy compression types.
Lossless algorithms are compared against the obtained bit rate, while the selected lossy
algorithms are compared against both bit rate and signal quality.

With a focus on medical images, a survey in lossless and lossy compression algo-
rithms is disclosed in [22]. It discusses their techniques, limitations, and compression
rates. Further, a short review of some lossless image compression techniques in remote
sensing applications and their implementations on FPGAs is provided in [23]. The paper
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includes recommendations for the development of onboard hardware-accelerated image
compression and lists the advantages and disadvantages of the covered methods. Another
survey on the use of FPGAs in hyperspectral remote sensing presented coverage on both
technological issues and implementation aspects of HSI compression and linear unmixing
techniques [24]. In this regard, the authors provide two case studies to illustrate the role
of FPGAs in future spaceborne missions for Earth Observation. We present a summary of
these reviews in Table 1. What distinguishes our paper is its scope and focus. We provide a
systematic review of hardware-accelerated compression of hyperspectral images covering
all compression types. We also emphasize multiple hardware-specific performance metrics
while presenting a comparative analysis of related literature sources spanning a longer
period of time.

Table 1. The areas of interest covered by related reviews on HSI image compression algorithms.

Authors, Year Area of Interest

(Lambert-Nebout and Moury, 1999) Lossy compression algorithms used onboard CNES missions.

(Yu, Vladimirova et al., 2009) Lossless and lossy image compression systems onboard space missions with a focus on
multispectral images.

(Mat Noor and Vladimirova, 2013) Lossless compression techniques of HSI onboard spaceborne hyperspectral missions.

(Lopez, Vladimirova et al., 2013) FPGA-based HSI compression and linear unmixing techniques in remote
sensing applications.

(Sanjith and Ganesan, 2014) A short review on HSI compression algorithms covering lossless, lossy,
and near-lossless algorithms.

(Babu, Ramachandran et al., 2015) Statistical and wavelet-based compression algorithms of hyperspectral images.
(Rusyn, Lutsyk et al., 2016) FPGA-based lossless image compression techniques in remote sensing applications.
(Dusselaar and Paul, 2017) Intra-band and inter-band compression of hyperspectral images at the algorithm level.
(Gunasheela and Prasantha, 2018) Multispectral and hyperspectral image compression algorithms onboard satellites.
(Hussain, Al-Fayadh et al., 2018) Lossless and lossy compression algorithms with the focus on medical images.
(Dua, Kumar et al., 2020) Classification of HSI compression algorithms according to multiple parameters.

1.2. Platforms for Hyperspectral Instruments

Hyperspectral instruments are integrated with different types of platforms, includ-
ing spaceborne, airborne, Unmanned Aerial Vehicles (UAVs), on the ground as handheld
devices or in the laboratory, and even underwater. These platforms support different
spatial scales. For instance, spaceborne sensors offer a spatial resolution of 20–50 m [25].
On the other hand, airborne sensors provide less spatial resolution ranging from 0.5 m
to 20 m, while miniaturized sensors can provide a corresponding resolution in the range
of 1–10 cm [25]. Spaceborne sensors allow for frequent observations and wide cover-
age [26]. The most widely used spaceborne sensor was Hyperion, even after its shut-
down in 2017 [27]. Multiple studies summarize spaceborne hyperspectral sensors and
their characteristics [16,27,28].

Compared to spaceborne sensors, the airborne variety can provide higher spatial and
spectral resolutions [28]. AVIRIS was the first sensor to acquire continuous narrow bands
simultaneously. These spectral bands range from the visible to the Short Wave Infrared
(SWIR) region of the spectrum [26]. Aircrafts follow a flight path at medium to high
altitudes (20 km for AVIRIS), with high to medium spatial resolutions (20 m for AVIRIS) [27].
Hence, airborne sensors are commonly preferred when studying regional characteristics.
Such platforms also offer flexibility in the acquisition process when considering the weather
and solar illumination conditions [28]. In addition, sensor maintenance and adjustments
can be easily conducted for such airborne sensors when compared to spaceborne ones [28].
We refer the reader to studies [27,28] for more details about airborne hyperspectral sensors.
UAVs can be remotely controlled to perform autonomous flight maneuvers using an
embedded autopilot. UAVs fly closer to the ground where the influence of atmospheric
conditions is insignificant [29]. In addition, they have the advantage of fast deployment
due to the compact sensors employed [27]. However, the low acquisition height, unstable
movement, and varying illumination conditions may create challenges for geometric and
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radiometric corrections [25]. Details about hyperspectral sensors aboard UAVs and their
respective characteristics are presented in [29].

Ground hyperspectral sensors, such as handheld or laboratory sensors, obtain nu-
merical measurements almost in contact with the target. Therefore, they allow for more
accurate readings of a given target in isolation of variable conditions. Samples can be
scanned on-site or taken to a laboratory for data acquisition [27]. These samples are rela-
tively free of “noise” and can be utilized to build spectral libraries for subsequent spectral
unmixing of hyperspectral data [26]. Further details about ground hyperspectral sensors
are presented in [26,27]. Another type of instrument with limited research literature is
underwater hyperspectral imaging. Application domains of the underwater environment
include monitoring and identification of deep-sea creatures, marine mining applications,
and underwater pipeline inspection [30]. Many of the over-surface techniques do not
work underwater, as the latter is more complex and dynamic. Besides, deep-sea areas
cannot be imaged using passive hyperspectral imaging, and a light source is required for
illumination. The study in [30] presented a survey of the major underwater hyperspectral
imagers and listed a variety of underwater vehicles that may be used with those imagers.
For instance, the Underwater Hyperspectral Imager (UHI) is positioned into a Remotely
Operated Vehicles (ROV) for seafloor exploration [30].

1.3. Overview of Compression Techniques

The size of hyperspectral images can be reduced by either compression or Dimensionality
Reduction (DR). Compression is concerned with preserving all captured data encoded with
a reduced number of bits than the original data representation. However, DR opts for only a
subset of these data according to one or more specific criteria. The main criteria for which the
data subsets are selected as well as the DR main techniques, are presented in [31]. This review
focuses only on compression techniques and their hardware acceleration on different computing
platforms. Generally, there are two main classes of compression algorithms: lossless and lossy
algorithms. Lossless compression is traditionally preferable since it preserves all information
contained in the image. However, the compression ratio obtained with this compression type is
limited. In contrast, lossy compression produces significantly higher compression ratios with
a degradation in the image quality. A third class termed near-lossless is defined to constrain
the amount of loss due to compression. An algorithm is categorized as near-lossless when the
compression error is controlled below the intrinsic error of the original image, i.e., errors due to
sensor calibration or atmospheric correction [32].

Typically, the compression algorithms are categorized into three main implementa-
tion methods: prediction-based, transform-based, and Vector Quantization (VQ)-based
methods. The prediction-based methods depend on the correlation between adjacent pixels
in hyperspectral data. The basic idea is that the difference between correlated values is
encoded with fewer bits than actual values. The most basic prediction-based method is
Differential Pulse Code Modulation (DPCM). The prediction-based methods have a long
history and are usually recommended by the Consultative Committee for Space Data
Systems (CCSDS) [33]. The transform-based methods map the spatial domain of an im-
age into its transformation domain to decorrelate the data. Then, the coefficients with
larger amplitude, or energy, are encoded with fewer codewords than coefficients with low
amplitude to obtain a higher compression ratio. The conventional methods employed in
transform-based compression are Principal Component Analysis (PCA), Karhunen-Loéve
Transform (KLT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT).
The complexity of these methods is relatively moderate and they are mainly applied for
lossy compression [31]. The integer version of the transform is applied for lossless com-
pression with limited compression ratios. Finally, the VQ-based methods quantize the
data directly without decorrelation. They exploit the fact that pixels representing the same
material have the same spectral information vector. VQ-based compression consists of a
training step for codebook generation and a coding step where each vector is assigned to a
codeword. The Generalized Lloyd Algorithm (GLA) is a common method of this type [34].
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Another technique, called Self-Organizing Feature Map (SOFM), uses a neural network
for codebook generation and is based on unsupervised learning. VQ-based compression
can obtain higher compression ratios. However, the high number of computations needed
restricts its application for real-time processing [31].

2. Materials and Methods

We performed a systematic search for papers covering a time span of nearly 22 years,
starting from the year 2000 to part of 2021, following the guidelines presented in
PRISMA framework [35].

2.1. Search Methodology

Journal articles and conference papers published until 15 May 2021, are collected from
the following digital databases:

• IEEE Xplore,
• SpringerLink,
• Elsevier ScienceDirect,
• ACM Digital Library,
• Wiley Online Library,
• Scopus, and
• Web of Science.

The search is conducted using the query string “Hyperspectral AND Compression
AND (FPGA OR GPU OR ASIC)”. To include as many papers as possible, we then searched
Google Scholar for the relevant papers using the same keywords with the additional terms:
“AND (satellite OR “remot* sens*” OR onboard OR spaceborne) -book -review -survey”.
We limited these search results to anywhere between 45 and 46 online pages. This range
appears to fulfill how far our search can go back in time. All references are then imported
to Endnote and automatically scanned for duplicates. After eliminating any duplicates or
multiple versions of the same paper(s) as well as removing all review papers, the remaining
sources are shortlisted by screening the title, abstract, introduction, and conclusion sections
of each paper.

2.2. Inclusion and Exclusion Criteria

To be included in the review, studies must:

1. Discuss hardware-accelerated compression algorithm(s) of remotely sensed hyper-
spectral images; and

2. Be journal articles or conference papers that are dated from the year 2000 to 15 May 2021.

A paper is excluded if it satisfies at least one of the following criteria:

1. The paper does not contain a hardware acceleration;
2. The paper addresses data types other than hyperspectral data;
3. The paper discusses image processing technique(s) other than compression; or
4. The paper is intended for applications other than remote sensing.

Moreover, if a relevant study is found in the reference section of any of the collected
papers, it is considered for this review after fulfilling the inclusion criteria and not satisfying
any of the exclusion criteria stated above.

2.3. Data Compilation

In addition to general information such as author name(s) and year of publication,
data are extracted manually by full-text reading to perform a comparative meta-analysis,
including compression type, compression algorithm, hardware architecture, programming
language, hyperspectral imager, HSI dataset, scanning orders, bit depth, compression
ratio, throughput, and power requirement. Bit depth is determined by “the number of
bits used to define each pixel in a digital image” [36] (p. 58). Throughput is defined as the
rate at which data is processed, while power is defined as the amount of electrical energy
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consumed per unit of time to operate a device, measured in Watts. For GPUs, if a study does
not include the value of the required power, it is replaced by the manufacturer’s Thermal
Design Power (TDP). TDP is related to the maximum energy generated by a hardware
component or chip. For FPGAs, the required power depends on the logic configuration
and the clock speed. Therefore, if it is not provided by the author(s), it is left unspecified.
Further, the compression ratio is defined to be equal to the number of bits per sample
before compression divided by the average number of bits after compression. Studies
either provide a direct compression ratio, or alternatively, the compression rate. The unit of
compression rate is bits per pixel (bpp) or bits per pixel per band (bpppb). Other missing
data, such as the device specifications or information on the used hyperspectral sensors, are
collected by online searching of the manufacturers’ or space agencies’ websites, respectively.
Since the extracted data in various papers may be presented in different formats, conversion
is carried out to standardize the results for data synthesis.

The selected papers are classified according to the compression type, compression
algorithm family, computing platform, programming method, and imager by which the
dataset is acquired. For the performance analysis to be meaningful, results are grouped
according to the HSI datasets used in the studies. The extracted metrics are prepared for
comparison using the following procedure:

• When the compression rate is given in bpp or bpppb, the compression ratio is simply
calculated by dividing the bit depth of the test image by the compression rate.

• Throughput is converted to Mega Samples per second (MSps) after ascertaining the
bit depth of the test image.

• Power requirement is obtained in either Watts (W) or milliWatts (mW). All power
values are presented in Watts for comparative analysis.

By following the PRISMA framework and setting the inclusion and exclusion criteria
a priori of the search process, we estimate that bias has been minimized in this review.
However, multiple studies focus on some performance measures and neglect others, which
could introduce challenges in the comparative performance analysis phase. To further
reduce potential bias, extra effort is made to find the missing data when possible. For
instance, to obtain the missing power requirement of a device, we resorted to consulting the
information available from the device manufacturer, either from online or analog sources.

We used throughput, required power, compression ratio, and efficiency as the metrics
of choice in our review because our emphasis is not on evaluating the quality of the
compressed hyperspectral image per se, but more on assessing the hardware acceleration
of identified compression algorithms. In addition, the use of other quality metrics for lossy
compression varies across many of the collected studies. For instance, some studies use the
misclassification rate, from which the classification accuracy can be obtained, as in [37–39].
Other studies [40–47] use the Spectral Angle Difference (SAD) while the Signal-to-Noise
Ratio (SNR) is omnipresent in [44,48–51]. Further, the Peak Signal-to-Noise Ratio (PSNR) is
adopted in [49,50,52–61]. PSNR is the most frequently used quality metric, yet it is more
content specific. This means that when two images with different bit depth values are
corrupted with the same amount of noise, the resulting PSNR values will also be different.
This is a drawback since the degradation of the image quality is not caused by an external
factor but by the model itself [62]. Also, the Mean Square Error (MSE) and Root MSE (RMSE)
metrics are employed in [46,49,51,55,63–66] while the Normalized MSE (NMSE) is used
in [56,67–69]. The use of normalization facilitates comparison between different datasets.
However, it usually involves division by the range, which can hamper comparisons when
extreme samples exist, especially for small-sized datasets. The Mean Absolute Error (MAE)
metric, or Mean Absolute Deviation (MAD), is used in [46,49,51,55,65]. Finally, the work
in [70] uses the percentage of retained information as an indication of signal quality.

3. Descriptive Analysis

A total of 699 records are collected by searching across the previously identified
databases. After applying the PRISMA framework, shown in Figure 3, a total of 101 records
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are eventually selected for meta-analysis. Out of the 101 records, 55 are conference papers
(accounting for ≈55%), and 46 are journal articles (amounting to ≈45%). The first rele-
vant record [37] was published in 2000 and discussed an FPGA-based lossy compression
algorithm for hyperspectral images by means of k-means clustering. A number of records
appear to meet the inclusion criteria [71–74]. Other interesting papers worth mentioning
include the works in [75–77]. However, each one of the latter three works did not satisfy
one of the inclusion criteria. We explain in Table 2 the reasons for excluding all of these
seven studies. Only one study [32] falls under the near-lossless category, and the rest
are almost equally divided between lossy and lossless compression (see Figure 4a). The
work in [47,78] present two types of compression and are tallied twice, one for each type.
We observe that, till 2008, the early studies on hardware-accelerated compression were
solely focused on lossy compression. Interest in hardware-accelerated lossless compression
started to gain the attention of the research community in 2009. Then, it increased thereafter,
perhaps due to the growing demand for loss-free hyperspectral images by a myriad of
research and development projects for various analysis tasks. These results are displayed
in Figure 4b.

Figure 3. The records selection process using the PRISMA framework as applied in this review.
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Table 2. List of studies excluded in this review using our search criteria.

Excluded Studies Reason for Exclusion

[71] The paper addresses only the image reconstruction phase of compressive sensing.
[72] The described application is not related to remote sensing (medical imaging).

[73] The algorithm is intended for large video data, e.g., high-definition television (HDTV), and is
not validated using hyperspectral data.

[74] The compression technique is validated using a gray-scale image.
[75] The compression algorithm is not accelerated using one of the defined hardware platforms.
[76] The compression algorithm is not accelerated using one of the defined hardware platforms.
[77] The paper was published after the cutoff deadline required for inclusion in this review.

Figure 4. (a) Chart representing the number of records in different types of compression algorithms
of HSI; (b) Temporal evolution of the distribution of number of records in each of the two major
compression types (lossy and lossless) from the year 2000 to part of 2021.

In the remainder of this section, we address research question RQ1: What are the main
hardware platforms and HSI datasets used to accelerate and evaluate HSI compression algorithms
in remote sensing applications?

The list of hardware platforms employed for HSI compression is depicted in Figure 5.
Our results indicate that 42 papers used the FPGA platform, 35 studies used GPUs, and
15 employed SoCs to implement their proposed HSI compression solutions. In the re-
mainder of the paper we use the term FPGA-based platforms to refer to the following
architectures: FPGAs, SoCs, and FPGA-DSP hybrid platforms. FPGA-based platforms al-
low for the processing of complex computational tasks with superior performance in terms
of power requirements and throughput. Further, the industry has recently made available
radiation-hardened models that offer data integrity, making FPGAs the best candidate for
small-satellite missions [79]. While GPUs show remarkable performance and flexibility,
they are characterized by high-power requirements and a lack of radiation tolerance [80,81].
The work in [82] uses both FPGA and GPU implementations and is counted once for each
category. Hybrid GPU-CPU solutions are also adopted to improve the total performance
by utilizing features of different hardware architectures, as presented in [49,69,83,84]. In
addition, records are found that employ parallel architectures such as supercomputers [85],
cloud computing platforms [46], and heterogeneous networks of workstations [86]. Al-
though not suitable for onboard compression, the parallel computing-based techniques
presented in these studies can be exploited and migrated onto portable machines. Finally,
video encoders are proposed in [44] for compressing hyperspectral images as an attempt
to reuse existing solutions. Papers employing only CPU-based computing platforms are
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excluded as this review is focused on hardware-accelerated compression employing high-
performance architectures.

Figure 5. Statistics showing the number of the adopted hardware platforms for HSI compression.

In terms of implementation, CUDA (Compute Unified Device Architecture) is mainly
used for programming GPUs. However, we found one study that employs Python for pro-
gramming GPUs [83]. Python is also used in [85] with the PARAM-SHIVAY supercomputer,
where parallel programming is implemented using a preinstalled multiprocessing library.
FPGA-based platforms are usually configured using Hardware Description Languages
(HDL) such as VHDL or Verilog HDL. In this regard, Figure 6a shows the distribution of
the selected studies according to the employed programming method. We note that when
more than one programming method is found, the record is counted once for each method.
Figure 6b shows the distribution of HDLs and High-Level Synthesis (HLS) tools when
hardware-accelerated compression for HSI used FPGA-based platforms. We observe that
approximately 46% of these compression solutions are implemented using HDLs and about
20% are implemented by means of HLS tools. Such tools include Handel-C [38,41,42,87],
CatapultC [88–92], SystemC [10], Vivado HLS [92] and AccelDSP synthesis tool [93]. The
remaining 34% of the compression solutions on FPGA-based platforms did not specify
their respective implementation method. HLS tools are used to avoid the complexity of
programming in low-level languages and to speed-up the implementation task. However,
they generate less efficient code than direct coding with HDLs [94].

We further observed that about 76% of the studies benchmarked their systems using
the AVIRIS datasets, especially the Cuprite scene, as shown in Figure 7a. Images obtained
by both AIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS) are each
used to validate nearly 11% of the proposed hardware-accelerated solutions. Other spectral
imagers are also utilized, such as the Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM), Hyperion, Landsat, the Compact Airborne Spectrographic Imager (CASI),
and the Hyperspectral Imager for the Coastal Ocean (HICO). Specific hyperspectral cameras
are employed as well, such as Specim FX10 [49,51] and PHI-1307 [95], the latter being an
imager developed by the Shanghai Institute of Technical Physics. It is noted here that the
total number of datasets used is more than the number of records because some papers
validated their results using more than one dataset. Rarely used imagers or synthetic
images are difficult to incorporate in the performance analysis. Nonetheless, the main idea
behind their proposed compression systems is presented herein.
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Figure 6. (a) Distribution of the collected papers in terms of the programming methods (languages
and tools) used for hardware-accelerated compression of HSI; (b) Distribution of the records as
percentages in terms of the employed programming methods for FPGA-based platforms used in the
acceleration of HSI compression.

Figure 7. (a) Percentage of studies employing each of the different hyperspectral imagers’ datasets.
Note that the total number of datasets used is more than the number of records because some of these
validated their results using more than one dataset; (b) Chart showing the number of studies using
each of the scanning order types in HSI compression.

Depending on the scanner type, HSI samples can be arranged in three different
formats: Band Sequential (BSQ) by snapshot scanners, Band Interleaved by Pixel (BIP) for
whiskbroom scanners, and Band Interleaved by Line (BIL) for pushbroom scanners. For
onboard compression, it is assumed that the compression process takes place in the same
order as that of the samples’ arrival. Despite the scanner type, the test hypercube can be
fed to the compression system in the order that represents the best fit for the compression
algorithm. However, for onboard real-time compression, the scanning format used must
match the acquisition order of the hyperspectral data. Studies usually adopt the format
according to its suitability for the proposed algorithm. We also reviewed studies that
benchmarked their compression systems using all three scanning orders [10,82,96–99]. The
distribution of the selected papers based on the adopted scanning format is presented
in Figure 7b. Ten papers used the BIP format, while the BSQ and BIL formats were
reported in seven papers each. These three formats appear to be nearly equally used in the
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validation of the compression results of HSI. A total of 68 studies left the type of scanning
format unspecified.

4. Hardware-Accelerated Compression Algorithms of HSI

This section discusses the hardware-accelerated compression algorithms based on
their class and thus addresses the second research question RQ2: What are the different HSI
compression algorithms and their classes that are accelerated in hardware?

The included research papers in this review are categorized into seven classes accord-
ing to the algorithm family: prediction-based, transform-based, VQ-based, unmixing-based,
learning-based, Distributed Source Coding-based (DSC), and Compressive Sensing (CS)
methods. Figure 8 shows the distribution of the studies according to the algorithm class.
The majority of the reviewed studies (53) are focused on prediction-based algorithms.
The transform-based methods are found in 21 of the studies, whereas spectral unmixing
methods are covered in eight of the studies, with the most recent being conducted in
2012 [45,64]. Furthermore, hardware-accelerated compression of hyperspectral images
using learning-based techniques is found in six of the studies employing different types
of Neural Networks (NN) and Autoencoders (AE). Compressive sensing has caught the
attention of more researchers as nine of the studies fall under the CS category. Finally, only
two relevant studies each for the categories of DSC-based [100,101] and VQ-based [32,37]
were identified in this review. Figure 9 shows a hierarchical categorization of the com-
pression algorithms according to the algorithm class. It represents a taxonomy of various
compression algorithms covered by this review.

Figure 8. Chart showing the number of studies according to the compression algorithm class on
which they are based.
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Figure 9. Taxonomy of HSI compression techniques generated by this review.

4.1. Prediction-Based Algorithms

A prediction-based compression algorithm typically depends on the correlation be-
tween adjacent pixels in hyperspectral data. The basic idea is that the differences between
correlated values are encoded with fewer bits than the actual values [31]. In this class of
algorithms, compression generally consists of three main steps, as depicted in Figure 10.
First, band reordering is applied to improve the obtained compression ratio. Second, the
predicted values are generated across the spectral or spatial dimensions, as well as across
all three dimensions of the datacube. Finally, the differences between the original and
predicted values are passed to the entropy encoder to generate the compressed stream [102].
Band reordering increases the computational complexity. Therefore, it is usually computed
on the ground using pre-acquired samples and then uploaded to the satellite as a Look-Up
Table (LUT). Band reordering depends on the sensor and the scene, so the benefit from
offline band reordering is reasonable in some cases and negligible in others. For each of the
compression algorithms in this class having been accelerated in hardware, we provide next
some of the related details that are specific to this review.

Figure 10. Main steps involved in prediction-based compression of HSI.
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4.1.1. Fast Lossless

References [103–109] cover Fast Lossless (FL). FL is a prediction-based algorithm
developed by Jet Propulsion Laboratory (JPL). It uses the Sign algorithm, a low-complexity
variation of the Least Mean-Square (LMS), for adaptive filtering. Samples are computed
by linear prediction and corrected by subtracting the local mean. Then, the differences
between the predictive and the actual samples are encoded. The hardware acceleration
of Fast Lossless has dramatically improved the performance of the algorithm in [103]
using Xilinx Virtex-IV LX160 FPGA. Uncalibrated AVIRIS images show a compression
ratio of 4:1 and a throughput of 33 MSps with a power requirement of 1.27 Watts. A
modified FL, designed for images acquired by pushbroom imagers, was presented in [104].
Results show significant improvement when the local mean equals the previous sample
in the same cross-track position and the same band. The modified algorithm boosts the
throughput up to 58 MSps with similar compression ratios and within the same power
constraints. On the other hand, a CUDA implementation of the algorithm targeting Nvidia
GeForce GTX 580 GPU produces only 44.85 MSps [105]. Further modification of Fast
Lossless is proposed to increase the compression ratio up to 5.5:1 [106]. However, this
improvement comes at the expense of reducing the system throughput to 40 MSps. The
implementation targets Xilinx Virtex-5 SX50T and Virtex-6 LX240T FPGAs with a required
power of 700 mW. Combined with a radiation hardening technique, a pure software
implementation of Fast Lossless produces 2.58 MSps running on FPGAs integrated with
PowerPC 405 processors [107]. An enhanced speedup of 11.28 is achieved compared to
the software implementation when migrating the key functions of the predictor into the
FPGA fabric of Xilinx Virtex-4 FX60 [108]. The extended version of FL, namely FL Extended
(FLEX), combines lossless and lossy compressions. The lossless part represents the CCSDS
123.0-B-1 standard for lossless multispectral and hyperspectral compression. The algorithm
uses adaptive filtering and exploits redundancy in all three dimensions, spatially and
spectrally. Three IP cores of FLEX are integrated into the Zynq SoC device producing a
compression rate of 70 frames per second (Fps) benchmarked with the AVIRIS Hawaii
hyperspectral image [109].

4.1.2. Fast Efficient and Lossless Image Compression System

Fast Efficient and Lossless Image Compression System (FELICS) is a compression
algorithm that performs significantly faster than the lossless JPEG algorithms, JPEG2000
and JPEG-LS. FELICS is adopted for further improvement in the prediction and encoding
phases [110]. The improved predictor uses four reference pixels instead of two in the
original FELICS, which yields better coding efficiency. Besides, conditional branches are
reduced for improved computational efficiency. The predictor also reduces memory access
to a single pass, instead of two in the original FELICS, by reusing the preceding pixels for
predictions. For the encoding phase, FELICS algorithms accumulate the magnitude of pre-
diction errors which requires oversized lookup tables. The improved method accumulates
only the optimal parameters of recent prediction errors, which allow for smaller lookup
tables. Results show a throughput of 30 MSps at the expense of a minor increase in the
compressed data size compared to the two lossless JPEG algorithms. Compression ratios of
1.7 and 2.7 are obtained using AVIRIS Jasper Ridge and Cuprite images, respectively [111].

4.1.3. Edge Detectors

Edge detection-based algorithms are covered in references [93,95,112–115]. Edge
detectors are image processing methods used to identify discontinuities in the image in
terms of changes in brightness. In data compression, edge detectors are useful in the
extraction of important image features. For instance, the Gradient-Adjusted Prediction
(GAP) is a nonlinear predictor that weighs the adjacent pixels according to the gradient
of the image to detect the magnitude and orientation of edges in the test image [112]. A
lossless compression algorithm that employs GAP is optimized for low complexity and low
power requirement [93]. The algorithm uses Vertical Scanning (VS) to process the image
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blocks and GAP to predict the current pixel. vs. is adopted to support the multidimensional
prediction of independent regions. Therefore, GAP can be carried out using the current and
the previous bands. Finally, entropy coding is performed using Extended Rice, a simplified
version of Golomb codes, optimized by means of quantization. The proposed design is
benchmarked using AVIRIS Cuprite on Virtex-5 FPGA. For efficient use of the resources, the
18 × 18 multipliers are replaced with a multiplier-free design as the quantization procedure
reduces multiplication to 3-bit operations. Results show a compression ratio of 2.8 and
throughput of 210 MSps with a required power of 573 mW.

The Median Edge Detector (MED) is a simple predictor that selects one of three predictions
based on whether the window being processed represents a smooth area, a vertical or
horizontal edge [113]. GAP is combined with MED, used in JPEG-LS, to improve the
accuracy of the predictor [95]. Using Huffman coding, the resulting prediction errors are
encoded into variable-length codewords. However, FPGA registers can only produce
fixed-length sequences. Therefore, additional zeros are added to the codewords to reach
a fixed length of 20 bits limiting the compression ratio to 2.3. The compression method
is implemented on Xilinx Spartan-3E FPGA using Verilog HDL. The proposed method
presents comparable performance to JPEG-LS with reduced complexity. The median
predictor is also employed in [114] for the intra-band prediction. Then, the inter-band
prediction follows, where the initial prediction is calculated and passed to a multi-lookup
table structure to produce the final prediction. Index quantization is applied to reduce the
size of the lookup tables. Finally, entropy encoding is carried out using adaptive arithmetic
coding. A compression ratio of 3.74 is achieved at a throughput of 16.5 MSps utilizing Xilinx
Spartan3 FPGA with an embedded ARM processor. Similarly, the median prediction is
employed for intra-band prediction in [115]. However, the inter-band prediction is carried
out using a hybrid predictor that combines linear prediction and context prediction. The
last stage is entropy coding of the residual data utilizing Huffman coding. This approach
has achieved a compression ratio of 3.28 with a required power of 1194 mW.

4.1.4. Lossy Compression of ExoMars

HSI compression based on Lossy Compression of ExoMars (LCE) is disclosed in refer-
ences [55,88–91,116,117]. LCE is an algorithm designed for onboard image compression for
the European Space Agency (ESA) ExoMars mission. It consists of four phases: prediction,
rate-distortion optimization, quantization, and entropy coding using Golomb codes. Ini-
tially, the algorithm is implemented using ANSI C language for sequential execution on
a CPU. Parallel CUDA implementation is proposed by creating two kernels; one for the
first three phases and another for the entropy coding [116]. Results show a throughput of
12 MSps using the Nvidia Tesla C2075 GPU. The implementation is evaluated using test
images from multiple imagers, AIRS, MODIS, and AVIRIS. An improved CUDA implemen-
tation is proposed with an extra kernel to perform bit packing [117]. A notable throughput
that exceeds 100 MSps using the same GPU architecture is achieved. Further investigation
on the impact of varying step sizes of the quantization phase is found in [55]. LCE is also
implemented on the FPGA platform by means of HLS tools, namely CatapultC [88]. The
source code is first prepared for synthesis. Then, data types are converted to algorithmic C,
and dynamic memory allocation is replaced by fixed data size. The compiled code was
executed on the Virtex-5 FPGA and yielded a throughput of 19 MSps. Improved throughput
of 26 MSps is achieved in [89]. Instead of generating a Register-Transfer Level (RTL) design
directly from the source code, it first splits into independent modules where connections
and control logic are manually written. The LCE algorithm is also accelerated using the
anti-fuse Microsemi RTAX2000 FPGA at lower throughput of 5–6 MSps and with only
400 mW of power [90]. These studies on LCE algorithm utilizing different architectures are
collectively analyzed in [91].
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4.1.5. Clustered Differential Pulse Code Modulation

The Clustered Differential Pulse Code Modulation (C-DPCM) is a prediction-based
algorithm that clusters similar spectra of the input hyperspectral image into classes. Then,
the current band of each class is predicted from the previous band using linear predic-
tion [118,119]. A lossless compression by means of C-DPCM is combined with the removal
of spectral outliers in [118]. The proposed algorithm consists of three steps: clustering,
prediction and coding. First, linear regression produces the predicted values for each
cluster. To minimize the residual, the predicted values are then used to remove spectral
outliers in each cluster. The remaining spectral vectors produce the final prediction values
by performing a second round of linear regression. Finally, the residuals, obtained by
the difference between the original and the predicted image, are entropy encoded using
arithmetic coding. A GPU implementation of C-DPCM aims to enhance the aggregate
throughput by employing multiple optimization strategies in [119]. One of these strategies
uses shared memory and registers, another employs a multi-stream technique, and a third
by using a multi-GPU platform.

4.1.6. Low Complexity Predictive Lossy Compression

Low Complexity Predictive Lossy Compression (LCPLC) is an algorithm based on
prediction, uniform threshold quantization, and rate-distortion optimization. A hardware
acceleration of LCPLC that employs pipelining is proposed in [60]. Two levels of pipelining
are introduced in this architecture. High-level pipelining across modules and another
level of pipelining within each individual module. The proposed approach maintained a
throughput of 162 MSps with a power requirement of less than 1 W.

4.1.7. Recursive Least Squares

References [85,120] deal with Recursive Least Squares (RLS). RLS is an adaptive
filtering algorithm that recursively finds the coefficients to minimize the least square
estimation of the filter weight vector. An optimized RLS is implemented using CUDA
on Nvidia Kepler GTX 690 GPU based on the optimal number of bands to improve the
bit rate [120]. The basic idea behind the optimized algorithm is to spread the spectral
information to the neighboring pixels until a stable global state of the image is reached.
Three variations of RLS are explained in [85]: Conventional RLS (CRLS), RLS Adaptive
Length Prediction (RLS-ALP), and Fast-RLS-ALP. CRLS is similar to the original RLS
except for the context window size in the spatial decorrelation phase, where 24 instead
of four neighboring pixels are used. RLS-ALP produces optimal results, yet it is more
time-consuming as the algorithm runs multiple times while changing the prediction length
(number of bands) in order to find the optimal length. Fast-RLS-ALP addresses the time
complexity issue by replacing the multiplication with an append operation when calculating
the weight matrix. The complexity is reduced from O(p2) to O(p), where p is the number of
bands. The optimal prediction is reached when the number of bands is equal to 28 with a
negligible impact of the context window size.

4.1.8. Linear Prediction with Constant Coefficients

Linear Prediction with Constant Coefficients (LP-CC) is initially proposed for ultra-
spectral sounder data in [121] and validated with AIRS sounder data. AIRS collects as many
as 240 granules (sounder-generated datacubes) per day. Each granule consists of 135 lines,
90 footprints and 2378 spectral channels. Radiance data is converted into a 16-bit unsigned
integer producing a total size of around 110 Gigabits [102]. In LP-CC, the coefficients are
constant as they are computed for a randomly preselected set of granules and then used
to compress all other granules. A CUDA implementation of the parallel version of the
algorithm in [122] shows a speedup of 30 times compared to the sequential implementation.
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4.1.9. Consultative Committee for Space Data Systems Standard

Most of the studies in the prediction-based class of HSI compression algorithms
follow the CCSDS 123 standard and are treated in [10,50,79–82,92,96–99,123–139]. This
compression standard is designated for lossless compression by the consultative committee
for space data systems. It is a causal algorithm that uses only previously processed pixels
for the current prediction. First, the residual is calculated using N neighboring pixels.
Similarly, pixels at the same location are calculated across P previous bands. The resulting
residual vector is then multiplied by the weight vector that is updated in each iteration
according to prediction error. The outcome of this multiplication is a scaler value. The final
step is mapping the scaled prediction residuals.

The suitability of two hardware architectures is investigated for real-time compression
based on CCSDS 123.0-B-1 [123]. An OpenMP implementation of the algorithm on the
multicore Intel Core i7-2760QM processor yields a throughput of 128 MSps. Further speed-
up is achieved using Nvidia GeForce 560M GTX GPU at a throughput of 322 MSps, whereby
the data dependency inherited in the algorithm is removed by employing suitable buffering.
A compression ratio of 5.3 is achieved for the AVIRIS Hawaii scene as a test image. A near-
lossless compression is obtained by adding a quantization stage to the lossless compression
standard of CCSDS 123 in [124]. An FPGA implementation of the compressor reaches
20 MSps targeting a radiation-hardened Xilinx Virtex-5. Another implementation that
reformulated the CCSDS 123 algorithm at the hardware level has achieved a throughput
of 55.4 MSps [125]. It was benchmarked with images acquired by AVIRIS, MODIS and
CRISM over the space-grade Virtex-5 FX130 FPGA. A CUDA implementation of the CCSDS
123 algorithm employs tiling to present an additional level of parallelism is discussed
in [126]. The on-chip memory is utilized to cache any intermediate compression variables.
Using a platform that combines an Intel Core i5-3470 processor and GeForce GTX 750Ti
GPU, a throughput of 301 MSps is achieved at a compression ratio of 4:1. Moreover,
an error-resilient model using a low-power embedded GPU, the Jetson TX1, achieved a
reduction in throughput up to 3 times compared to GeForce GTX 750Ti [127].

A hardware acceleration named HyLoc, based on CCSDS 123, is implemented over
multiple FPGAs: RTAX2000S, Virtex-5, and Virtex-IV LX160 [80]. A throughput of 11.3 MSps
and a compression ratio of 3.4 are achieved. In the hardware implementation of HyLoc, the
current pixel to be compressed and the previously processed neighbors are stored in FIFO
(first in, first out) buffers at the compressor’s input to reduce the number of accesses to the
external memory and speedup the compression of the subsequent pixels. The work in [128]
is another study that increased the throughput of HyLoc to a value of 20 MSps. Additional
levels of parallelism are identified as there is no dependency between the update of each
weight value, as well as the weight update block and prediction residual mapping. This
allows for these independent calculations to be carried out in parallel. Multiple aspects of
the HyLoc algorithm have been improved in [10], including an enhanced throughput and
the ability to process multiple data formats: BSQ, BIP and BIL. The improved algorithm,
named SHyLoc, combines two standards, with the CCSDS 121 performing entropy coding
of the outcomes obtained by using CCSDS 123. The algorithm is designed and verified
utilizing SystemC for the Electronic System-Level (ESL) modeling and Transaction-Level
Modeling (TLM). In [97], the VHDL implementation of SHyLoc is presented. Synthesis
results on Virtex-5 FX130 show a throughput that exceeds 100 MSps for multiple imagers’
datasets. An enhanced version of SHyLoc, named SHyLoc 2.0 in presented in [98]. It
added new features to improve the algorithm performance. Such added features include
the unit-delay predictor defined by the CCSDS 121.0-B-2 standard to enhance the entropy
coder performance and burst transactions to communicate with an external memory on
the CCSDS 123-IP. This resulted in improving the system’s throughput reaching a value of
150 MSps. Protected versions of SHyLoc by means of Dual Modular Redundancy (DMR)
and Triple Modular Redundancy (TMR) are evaluated in [99]. Results show that DMR
requires half the power of TMR, yet they both provide similar protection coverage.
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ARTICo3 is a framework for multi-accelerator design and management. It provides
three components: FPGA-based processing architecture, an automated toolchain to im-
plement on a multicore system, and runtime management for FPGA reconfiguration and
parallel execution [129]. ARTICo3 is employed in [130] to incorporate 16 HyLoc compres-
sors that operate in single instruction multiple data (SIMD)-like fashion and are managed
by ARTICo3 for dynamic partial reconfiguration. The adaptation is supported at run time
by switching the number of hardware accelerators for performance-power tradeoffs. A
throughput of 67 MSps is achieved at a compression ratio that ranges between 3.2 and 4.
ARTICo3 is also employed in [50] to deploy a lossy extension of the CCSDS 123 lossless
standard. A bit rate control stage is used in an attempt to increase the compression ratio
without compromising the image quality. However, the resulting system throughput is
limited to only 1.7 MSps.

A CCSDS 123 encoder is implemented utilizing a heterogeneous computing plat-
form for low power requirement [131,132]. The implementation on Jetson TX2 GPU,
equipped with an ARM Cortex-A57 and Denver 2 processors, provides a throughput
of 97 MSps with only 5 W of required power. Sample splitting, being the most time-
consuming task of the encoder, is executed on the GPU. The two-core Denver 2 and
four-core ARM processors work concurrently to process the samples. Finally, concatenation
takes place using the Denver 2 processor. Three variations of Jetson architectures are eval-
uated in [133]: Nano, TX2, and AGX Xavier. The latter obtained the highest throughput,
reaching up to 418.7 MSps while encoding the bands sequentially at an overall power
requirement of 11 W.

The real-time performance of a CCSDS 123 hardware acceleration is validated on the
Virtex-4 and Virtex-7 FPGAs [96]. Instead of external random-access memory (RAM), the
implementation utilizes the board memory as a cache for the sensor’s data and a buffer for
storing temporal data needed for the compression. A comprehensive study that extends
the evaluation to Virtex-5 FPGA and two GPU platforms is presented in [82]. Results
demonstrate that the FPGA platform offers the best tradeoff considering both throughput
and power requirement. In addition, real-time performance of CCSDS 123 is achieved
in [134] by utilizing BIP ordering. Unlike BSQ and BIL orderings, BIP does not require the
prediction of the current sample to be complete before the prediction of the next sample
begins. With a Zynq-7020 FPGA operating at 147 MHz, a throughput of 147 MSps is
achieved, producing one sample per clock cycle.

An FPGA implementation of the CCSDS 123 algorithm based on the principles of
C-slow retiming is proposed in [81]. C-slow retiming allows pipelining of the critical path.
Each register is replaced with C registers to enable multiple streams of computations, and
retiming optimizes the balance of these registers by placing them forward or backward.
This process, utilizing the task-level parallelism inherited in the algorithm, increases the
aggregate throughput of the design to reach 213 MSps. A higher throughput reaching up
to 750 MSps is accomplished in [79] while maintaining a required power of 515 mW. The
proposed solution employed advance routing with shifting and delay operations. Besides,
the packing operation of the resulting variable length codewords is done concurrently.
Segment-level parallelism is also employed in CCSDS 123 to increase the resilience of the
compression system to errors [135]. The hyperspectral cube is partitioned into segments
and compressed in parallel using five core compressors implemented on Zynq-7045 FPGA
fabric and controlled by a software scheduler hosted in a CPU. A throughput of 1387 MSps
is achieved with a power requirement of 8.2 Watts. The use of HLS tools is investigated
in [92] for CCSDS 123-based compression on FPGA architectures. CatapultC, as an HLS tool,
is technology independent and can be used with FPGAs from different vendors. However,
it was reported that Vivado HLS outperforms Mentor Graphics’ CatapultC when Xilinx
FPGAs are employed.

CCSDS 123.0-B-1 is implemented using an FPGA for a 3U Cubesat, yielding a com-
pression ratio of four [136]. NOR-based flash memory is shared between the On-Board
Computer (OBC) and the payload, i.e., the hyperspectral imager. The satellite enters the
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compression mode when the shared memory has uncompressed data, and the system
has enough power for compression. In the sun-tracking mode, the power is expected
to increase, therefore, compression can take place simultaneously when enough power
budget is reached. A 3U Cubesat is also the target platform in [137], where CCSDS 123.0-B-1
is implemented using Verilog HDL on a development FPGA board by Digilent named
Zedboard. In addition, an FPGA implementation of CCSDS 123.0-B-1 is accelerated by
adopting two clocks to solve the weight update feedback delay [138,139]. Here, a fast clock
is dedicated to updating the weight coefficients, while the slow clock is used to calculate
the predicted values. Block-based compression is also adopted to constrain the error propa-
gation caused by the compression error of pixels. In Table 3. below, we provide a summary
of the collected studies on prediction-based compression algorithms of remotely sensed
hyperspectral images used on different hardware accelerators. In addition to the name of
the compression algorithm, we include the hardware platform and programming method
used for implementation.

Table 3. List of studies on prediction-based compression systems of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

Fast Lossless (adaptive filtering-Rice code) Xilinx Virtex-IV LX160 FPGA - [103]
VS-3DGAP-ExtRice (CCSDS based) Xilinx Virtex-5 FPGA Matlab-AccelDSP [93]
Fast Lossless (adaptive filtering-Rice code) Xilinx Virtex-IV LX25 FPGA - [104]
LP-CC Nvidia GeForce 9600 GT GPU CUDA [122]
FELICS based- Improved
Prediction-Simplified Rice FPGA-embedded CPU - [110]

Median prediction-LUTs-Adaptive
Arithmetic Coding

Xilinx Spartan3 XC3S4000
FPGA-ARM926EJ-S processor - [114]

(MED-GAP)-Huffman Coding Xilinx SPARTAN-3E FPGA Verilog [95]
FELICS based- Improved
Prediction-Simplified Rice Radiation tolerant FPGA - [111]

LCE Nvidia Tesla C2075 GPU CUDA [116]
Fast Lossless-Adaptive Linear Prediction Nvidia GeForce GTX 580 GPU CUDA [105]
CCSDS Lossless Nvidia GeForce 560M GTX GPU OpenMP [123]
RHBSW (FL-based) Xilinx Virtex-4 FX60 FPGA ×2 - [107]

LCE Nvidia Tesla C2075-GeForce GTX
480 GPUs CUDA [55]

RHBSW (FL-based) Xilinx Virtex-4 FX60 FPGA - [108]
Adaptive predictive-LCE Xilinx Virtex-5 5VFX130 FPGA CatapultC HLS tool [88]
Adaptive predictive-LCE Xilinx Virtex-5 FPGA CatapultC HLS tool [89]
Adaptive predictive-LCE Nvidia Tesla C2075 GPU CUDA [117]
Fast Lossless-Adaptive Linear Prediction Xilinx Virtex-V-VI FPGA Verilog [106]
LCE Microsemi RTAX2000 FPGA CatapultC HLS tool [90]
Inter-band and Intra-band Prediction based Xilinx Virtex-5 Pro FPGA Verilog [115]
LCE Xilinx Virtex-5 FPGA/Actel RTAX2000S CatapultC HLS tool [91]
Extended CCSDS 123 Xilinx Virtex-5 XQR5VFX130 FPGA - [124]
CCSDS-123.0-B-1 Xilinx Virtex-5QV FX130T FPGA - [125]
C-DPCM Nvidia Tesla K20C GPU CUDA [140]

CCSDS 123 based (HyLoc) Microsemi RTAX- Xilinx
Virtex-4,5 FPGAs VHDL [80]

SHyLoc (CCSDS 123 and 121) FPGA 1 SystemC [10]
CCSDS123 Nvidia GeForce GTX 750 Ti GPU CUDA [126]

CCSDS 123 Xilinx Virtex-4,5,7 FPGAs-Nvidia GT
440, 610 GPUs VHDL [82]

Optimized RLS Nvidia Kepler GTX 690 GPU CUDA [120]
CCSDS 123 Xilinx Virtex-4,7 FPGA VHDL [96]
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Table 3. Cont.

Compression Algorithm Hardware Platform Programming Method Ref.

CCSDS123 SoC FPGA ARM Cortex-A9 MPCore - [136]
CCSDS 123 Xilinx Zynq-7020 SoC VHDL [134]

CCSDS 123 Nvidia GeForce GTX 750 Ti GPU-Jetson
TX1 board CUDA [127]

CCSDS 123 Xilinx Zynq-7000 SoC Vivado HLS-Catapult C [92]
FLEX Xilinx Zynq Z7045Q SoC - [109]
CCSDS 123 Xilinx Zynq-7000 SoC VHDL [128]
CCSDS 123 Xilinx Zynq-7035 SoC VHDL [79]
CCSDS 123 Xilinx Zynq-7000 SoC VHDL [130]

Clustered DPCM-Prediction based Nvidia GeForce GTX 1080Ti-TITAN X
GPU CUDA [119]

CCSDS 123 Nvidia Jetson TX2 board CUDA [131]
LCPLC Xilinx Virtex-7 FPGA VHDL and Verilog [60]
CCSDS 123 Xilinx Zynq-7045 SoC HDL [135]

SHyLoc (CCSDS 123-CCSDS 121) Xilinx Virtex-5 FX 130T FPGA,
Microsemi RTG4 VHDL [97]

CCSDS 123-bit rate control stage Xilinx Zynq UltraScale+ FPGA-based
MPSoC VHDL [50]

SHyLoc Xilinx Virtex XQR5VFX130 FPGA VHDL [98]
CCSDS Xilinx Kintex-7 FPGA Verilog [139]
CCSDS123 Xilinx Zynq-7000 SoC Verilog [137]
SHyLoc Xilinx Zynq-7000 SoC VHDL [99]
CCSDS123 Nvidia Jetson (Nano-TX2-Xavier) GPU CUDA [133]
CCSDS123 Xilinx Kintex-7 FPGA - [138]
RLS PARAM-SHIVAY supercomputer Python [85]
CCSDS123 Nvidia Jetson TX2 board CUDA [132]
CCSDS 123 Xilinx Virtex-5QV FPGA VHDL [81]

1 Implemented on FPGA platform, no specific hardware model is mentioned.

4.2. Transform-Based Algorithms

The basic idea behind this class of algorithms is to map the spatial domain of an
image into its transformation domain. Then, the coefficients with larger amplitude, or
energy, are encoded with fewer codewords than coefficients with low amplitude to obtain
higher compression ratios. Transform-based algorithms are mainly applied for lossy
compression [31] and have relatively moderate complexity. In particular, transform-based
compression does not require band reordering. The transform function is first applied
to generate the transform coefficients. For lossless compression, the transform function
should be reversible to avoid data loss. Then, the transform coefficients are decorrelated
to remove redundancy. Finally, the output coefficients are passed to the entropy encoder
to generate the compressed stream. This process is depicted in Figure 11. It is worthy to
note here that transform-based methods are more successful with lossy compression as
the integer form of the transform limits its ability to decorrelate the data being processed.
We next describe the compression algorithms that belong to this class and their respective
hardware accelerations.

Figure 11. Main steps in the transform-based compression class of algorithms.
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4.2.1. Set Partitioning in Hierarchical Trees

Set Partitioning in Hierarchical Trees (SPIHT) is a wavelet-based compression algo-
rithm. It is a progressive algorithm where the critical wavelet coefficients are encoded
and transmitted first. The receiver side then performs inverse transform on the decoded
coefficients to progressively refine the constructed image. SPIHT is suitable for parallelism
on FPGAs as real-number coefficients are represented with multiple fixed-point formats
according to the wavelet level [52]. The fixed order of the transmitted coefficients is also
imposed to address the sequential nature of dynamic coefficients ordering in the algorithm.
The fixed-order SPIHT significantly increases the throughput of the encoder at the expense
of minor PSNR degradation. The algorithm is implemented using VHDL on the WildStar
FPGA processor board populated with three Xilinx Virtex 2000E FPGAs. The obtained
throughput of the system is 50 MSps using 16-bpp images.

Linear prediction precedes SPIHT as a preprocessor to utilize data correlation across
bands. The prediction increases the compression ratio from 8:1 to 40:1. However, the
predictor requires access to the decoded band used for prediction, which complicates the
design in hardware. Miguel et al. in [63] proposed a predictor that avoids decoding and
uses only full bit-planes of the wavelet transform, utilizing the fact that the transform step
of SPIHT requires much less time than the bit-plane coding step. The proposed solution is
benchmarked using AVIRIS Cuprite and designed to run on a two-FPGA platform.

4.2.2. JPEG2000 and JPEG-LS

References [40,47,53,54,141–143] cover compression algorithms based on the JPEG2000
and JPEG-LS, with the first six employing the former and the last reference using the latter.
The JPEG2000 standard offers two compression modes, lossy and lossless. The first step of
the algorithm is to transform the RGB color space into either YCbCr for lossy compression
or YUV for lossless compression. After color transformation, the image is divided into tiles,
where each tile is encoded separately. Tiling is advantageous for the decoder as it reduces
memory requirements. However, tiling can also create blocking artifacts in the image,
similar to DCT-based JPEG. Next, DWT is applied for each tile, and the integer transform
is used for lossless compression mode. In the case of lossy compression, quantization is
then performed to increase the compression ratio. Finally, the resulting wavelet coefficients
are grouped into code-blocks encoded separately by the Embedded Block Coding with
Optimal Truncation (EBCOT) algorithm.

Compression of hyperspectral images using anomaly detection is validated in [40]
by Cook and Harsanyi in 2002. Since they are compressed differently, the anomalous
pixels are separated from the dominant pixels. Further compression is applied to spatial
and spectral data employing the wavelet transform. The approach is benchmarked with
Cuprite and Coleambally scenes acquired by the Hyperion sensor with a compression
ratio of 100:1. However, the observed changes in spectral features and angular differences
might affect obtained results. The proposed hardware architecture integrates FPGA and
DSP technology to meet the compression requirements. In 2004, results were updated to
recommend JPEG2000 for the wavelet-based transform and limit the compression ratio to
25:1 to maintain high-quality images [141]. In another work, JPEG2000 is combined with
2D-wavelet transform to compress hyperspectral images [53]. The wavelet-transform first
decorrelates spatial information for each band. The decorrelated bands are then compressed
using JPEG2000 at a compression ratio of 4:1. The decorrelation step is implemented on
Xilinx Virtex-4 FPGA, where JPEG2000 is implemented on Xilinx Virtex-II Pro FPGA.

JPEG2000 is also employed to compress hyperspectral images produced by a Hadamard
Transform (HT) spectrometer [54]. Images obtained by such a spectrometer have high SNR
leading to higher compression ratios. The compression system has four main components:
Universal Asynchronous Receiver-Transmitter (UART) for data transmission, static RAM
as a data buffer, a designated JPEG2000 codec chip (ADV212), and FPGA to control the
bus and call IP core. The codec chip can process images at a throughput of 65 MSps and
a compression ratio of 8:1. Further, GPU implementations of JPEG2000 show real-time
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results at a compression ratio of 2:1 for both lossy and lossless modes [47]. The impact of
the lossy mode on spectral unmixing is investigated in the study. Using AVIRIS Cuprite as
a test image, results show that spectral similarity is maintained within a compression ratio
of 13:1. The work in [142] attempts to reach real-time performance for lossy compression
by applying extensive pipelining to the most consuming part of JPEG2000 when combined
with PCA. In this regard, the Bit-Plane Coder (BPC) accelerates the execution time by
concurrently processing bits in groups of four. Then, buffering and a system of FIFOs are
incorporated to keep up with the speed requirements in feeding the BPC output to the
arithmetic coder. A VHDL implementation of the proposed approach on Xilinx Virtex-7
FPGA, benchmarked with the AVIRIS dataset, provides a throughput of 72 MSps.

JPEG-LS is a lossless compression standard that consists of two main parts: context
modeling and run-length coding. Context modeling imposes spatial dependency between
adjacent pixels, and run-length coding is processed sequentially. In [143], A CUDA imple-
mentation of the algorithm on Nvidia GTX480 GPU using a block-based strategy results in
a speedup of 26 compared to the corresponding CPU code. Because smaller block sizes
have a negative impact on the compression ratio and larger block sizes reduce the degree
of parallelism, they were maintained at 64 × 64 to balance these two effects.

4.2.3. Video Encoder

The feasibility of H2.64/AVC video encoding standard is explored in [44] for lossy
hyperspectral image compression. Validated by the accuracy of spectral unmixing, the
encoder can provide high compression ratios reaching 16:1 using AVIRIS images for bench-
marking. This work is intended to facilitate the future design of new architectures for HSI
compression using available IP cores and related hardware components already proposed
for the implementation of H.264/AVC codec on FPGAs or GPUs.

4.2.4. Karhunen-Loéve Transform

KLT is an orthogonal linear transform applied to decorrelate bands and construct
more compressible data. KLT requires intensive computations for the covariance matrix
and eigenvector evaluation [78,144,145]. In [144], the implementation of this transform is
accelerated using a low-power SoC that incorporates a flash-based FPGA and ARM Cortex
M-3 microcontroller. The most consuming operations are assigned to the FPGA fabric, and
the less frequent operation and task scheduling are assigned to the embedded processor.
An acceleration method is suggested in [78] using a Matrix Reduction Technique (MRT) that
allows for eigenvectors to be partially computed before the completion of all eigenvectors.
This overlap creates an extra level of parallelism that becomes more significant with the
increasing number of bands.

Pairwise Orthogonal Transform (POT) is an approximation of the KLT algorithm
for spectral decorrelation of hyperspectral images. An FPGA implementation of POT by
Santos et al. in [145] validates the reduced complexity of the algorithm on RTAX2000S-
DSP. POT outperforms the discrete wavelet transform, although not reaching the coding
performance of KLT. To complete the full compression engine, POT is tailed with CCSDS
122.0, a 2D compressor that yields 60 MSps. However, the compression engine is limited by
POT to a throughput of only 12.5–18.4 MSps.

4.2.5. Discrete Wavelet Transform

The DWT is a technique for multiresolution image analysis. It can also be used for
compression when retaining only a few coefficients after applying the said transform. A
compression algorithm based on Region Of Interest (ROI) is implemented using CUDA
on an Nvidia GeForce GTX 750 Ti GPU [66]. First, the samples are clustered employing
the K-Means algorithm. Then, PCA and 2D-DWT are combined for spectral and spatial
decorrelation, respectively. This is followed by applying the Uniform Scalar Dead-Zone
Quantization (USDZQ) before entropy encoding is performed by means of arithmetic
coding. An HSI of a harbor area, captured by AVIRIS sensors, was used to test the parallel
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and sequential implementations. A parallel speedup of 3.21 times is achieved when
compared to a CPU implementation.

4.2.6. Component Analysis

Variations of Component Analysis (CA) are used for compression in [70,84,146]. In
particular, hyperspectral image compression by means of dimensionality reduction is
proposed in [146] employing Fast Independent Component Analysis (FastICA). FastICA
consists of covariance matrix calculation, eigenvalue decomposition, whitening processing,
ICA iteration, and Independent Component (IC) transformation. Timing analysis shows
that 99% of the total processing time is consumed by three steps: covariance matrix calcula-
tion, whitening processing, and ICA iteration. Therefore, these steps are the main focus
of optimization in the study. First, covariance calculation is optimized by load balancing
for the lower triangular matrix, mapping the two-dimensional tasks into one-dimensional
tasks amenable for parallelization. Second, whitening processing is optimized by inter-
changing the inner loops to maintain contiguous memory accesses. Similarly, ICA iteration
is optimized by maintaining contiguous memory accesses using matrix transpose and
temporary array for storage. Compared to the sequential implementation of FastICA, a
GPU implementation results in a parallel speedup of 169 times compared to the sequential
implementation. When parallelized on the 64-node Tianhe-2 supercomputer, the parallel
speedup increases further to reach a value of 410 times.

Kernel Principal Component Analysis (KPCA) is a nonlinear dimensionality reduction
algorithm based on the Gaussian kernel and PCA. It generally consists of the following
steps: computing Gaussian kernel matrix, performing matrix eigenvalues decomposition,
sorting the eigenvalues in descending order, and finally applying KPCA mapping. A study
on the performance of the algorithm is conducted in [84] addressing the memory bottleneck
issue of a single CPU-GPU heterogeneous node by employing a cluster of such nodes.
Three levels of parallelism are presented in the implementation of KPCA, making full use
of different platform resources to accommodate large-scale data processing. Instead of
coarse-grained parallelization solely based on the Message Passing Interface (MPI), a hybrid
implementation utilizing MPI, Open Multi-Processing (OpenMP), and CUDA is utilized
to achieve parallel speedup values ranging between 2.75 and 9.27 times. Furthermore,
an FPGA implementation of PCA is proposed in [70] and compared to the commercial
software version of the algorithm in ENVI software. Benchmarking with the AVIRIS
Cuprite image, a speedup of 10 times is obtained when using FPGA-based PCA. Such
results make the designed FPGA implementation desirable for onboard data processing of
HSI while exhibiting real-time performance with respect to how long it takes the image
data to be processed by the targeted hyperspectral device.

4.2.7. HyperLCA

References [49,147,148] are related to the use of the Hyperspectral Lossy Compression
Algorithm (HyperLCA). This is a transform-based unmixing-like algorithm designed for
high compression ratios. HyperLCA consists of three steps: first, a spectral transform to
find the most distinct pixels by means of orthogonal projection techniques is employed.
Then, a preprocessing step to prepare the output for entropy encoding is applied. Finally,
the entropy encoding is carried out using Golomb-Rice. A hardware-friendly implemen-
tation of the algorithm is proposed in [147] using integer arithmetic at different precision
levels. The algorithm performance is evaluated on the Xilinx Kintex UltraScaleXQRKU060
FPGA, achieving a throughput of 1.15 MSps with a compression ratio of less than one
bit per pixel. Another study [49] implements the transform step on a GPU, and the en-
coding step is executed as a CPU process. Significant improvement in the throughput
is realized, thereby reaching up to 18 MSps by utilizing the algorithm’s high level of
parallelism and low computational complexity. For these reasons, HyperLCA is a good
compression algorithm candidate for use in systems with tight latency constraints [148],
such as onboard satellites. Table 4 shows the summarized details of the collected studies on
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transform-based compression of remotely sensed hyperspectral images and their related
hardware accelerators.

Table 4. List of studies on transform-based compression systems of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

Fixed-Order SPIHT Xilinx Virtex 2000E FPGAs ×3 VHDL [52]
Anomaly detection-wavelet-based
transform DSP-Xilinx XCV1000-XCV300 FPGAs - [40]

Anomaly detection-JPEG2000 DSP-Xilinx XCV1000-XCV300 FPGAs - [141]
Linear prediction-SPIHT (FPGA 1) ×2 - [63]
Wavelet-JPEG2000 Xilinx Virtex-4-Xilinx Virtex-II FPGAs - [53]
JPEG2000 Xilinx FPGA-ADV212 - [54]
MPEG-4 H.264/AVC encoder - [44]
JPEG2000 (Integer DWT,
No quantization) Nvidia GeForce GTX 480 GPU CUDA [47]

Integer KLT Actel SoC (ARM
Cortex M-3-flash-based FPGA) - [144]

KLT-JPEG2000 Nvidia GeForce GTX580 GPU CUDA [149]
JPEG-LS Nvidia GTX480 GPU CUDA [143]

KLT Intel Cyclone IV FPGA-ARM Cortex M-3
Processor HDL [78]

KLT-JPEG2000 Nvidia GeForce GTX580 GPU CUDA [150]
POT Microsemi RTAX2000S-DSP FPGA - [145]

FastICA (8-core Intel Xeon E5-2650 CPUs-Nvidia
Tesla K20c GPUs) ×2 CUDA/OpenMPI [146]

K-means-PCA-DWT-USDZQ-AC Nvidia GeForce GTX 750 Ti GPU CUDA [66]

KPCA Nvidia Tesla K20c GPU ×2-Intel Xeon CPU
E5-2670 GPU CUDA [84]

PCA Xilinx Virtex-7 XC7VFX690T FPGA VHDL [70]
HyperLCA Nvidia Jetson TK1 GPU CUDA [49]
JYPEC (PCA-JPEG2000) Xilinx Virtex-7 XC7VX690T FPGA VHDL [142]
HyperLCA Xilinx Zynq-7000 SoC VHDL-HLS [51]

1 FPGA platform is used, but device model is unspecified.

4.3. Unmixing-Based Algorithms

In this section, we discuss research works with hardware accelerations of HSI compres-
sion relying on unmixing-based algorithms [38,41–43,45,64,86,87]. In this regard, unmixing-
based methods broadly consist of two main steps: first, the endmembers are extracted
from the hyperspectral image; thus, obtaining spectral signatures that are distinctively
different from one another. Second, the abundance of each endmember is calculated for
all pixel vectors in the image. This would result in a number of abundance images that
are equal to the number of endmembers. The prediction is applied to the resulting abun-
dance images, which are later entropy encoded to obtain the compressed image. Figure 12
shows the overall steps involved in the process of using unmixing-based compression of
hyperspectral images.

Figure 12. Main steps needed in the unmixing-based compression class of algorithms.

Compression of hyperspectral images by means of spectral unmixing using the Par-
allel Pixel Purity Index (P-PPI) algorithm is implemented in various studies [38,41,42,87].
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The P-PPI algorithm is applied first to generate a set of endmembers. The fraction of which
these endmembers contribute to each pixel vector of the image is estimated using the
Parallel Linear Spectral Unmixing (P-LSU) algorithm. Fractional abundance images are
then constructed with respect to each endmember. The abundance images are spatially
decorrelated using predictive coding before they are eventually passed to the Huffman
entropy coder. The proposed solutions are accelerated on the Virtex-II XC2V6000-6 FPGA.
They achieved high compression ratios of up to 80:1 while preserving high spectral similar-
ity values to the original image spectra. Such results surpassed those obtained by JPEG2000
and 3D-SPIHT methods. Spectral unmixing is also employed using the GeForce 8800 GTX
GPU platform in [43]. In this case, endmember extraction is carried out first using the Pixel
Purity Index (PPI) or Automatic Morphological Endmember Extraction (AMEE) algorithms.
AMEE is an algorithm based on mathematical morphology operations such as erosion
and dilation. These operations are performed by processing the image with a carefully
selected set termed Structuring Element (SE). Second, the endmember abundance fractions
are estimated using the Fully Constrained Linear Spectral Unmixing (FCLSU) algorithm
to devise a lossy compression technique. A high compression ratio of 26:1 is obtained
compared to an optimized implementation on a dual-core CPU. The incorporation of DWT
into spectral unmixing is evaluated over a heterogeneous network platform in [86]. The
idea is to perform a one-dimensional DWT in the spectral direction before broadcasting
pixel vectors, skewers, and endmembers by the master node. Results show a reduction in
the communication time by 51.4% at the cost of a slight increase in processing time.

Iterative Error Analysis (IEA) is a spectral unmixing algorithm that controls the amount
of loss and compression ratio by the number of iterations applied. The calculation of spectral
unmixing is performed as more endmembers become available. Because of the lack of
dependency within each iteration, the concurrent processing of pixels is possible. Utilizing
this important fact, a parallel implementation of the algorithm on Nvidia GeForce GTX
580 GPU is evaluated in [45,64] while maintaining endmembers with acceptable similarity
to the reference signatures and yielding a compression ratio of 9.89. Table 5 shows the
overall details of the collected studies on unmixing-based compression of remotely sensed
hyperspectral images and their hardware accelerations.

Table 5. List of studies on unmixing-based compression systems of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

P-PPI-P-LSU Xilinx Virtex-II XC2V6000-6 FPGA Handel-C [41]
P-PPI-P-LSU Xilinx Virtex-II XC2V6000-6 FPGA Handel-C [38]
PPI-LSU Xilinx Virtex-II XC2V6000-6 FPGA Handel-C [42]
PPI-Spectral Unmixing Xilinx Virtex-II XC2V6000-6 FPGA Handel-C [87]
PPI or AMEE-FCLSU Nvidia GeForce 8800 GTX GPU CUDA [43]
DWT-Spectral Unmixing (Heterogeneous Workstations) ×16 C++ [86]
IEA Nvidia GeForce GTX 580 GPU CUDA [64]
IEA Nvidia GeForce GTX 580 GPU CUDA [45]

4.4. Compressive Sensing Algorithms

References [56–59,61,67–69,151] cover Compressive Sensing (CS). In CS, the com-
pressed signal is acquired directly instead of capturing the entire signal. It is an alternative
to classical sampling theory as originally postulated by the Nyquist-Shannon sampling
theorem. As a result, a small number of incoherent measurements are used to reconstruct
the original image [152]. This can reduce the amount of stored and transmitted data and
lead to a significant reduction in power requirements. This approach utilizes the sparsity
of the image, which is a key property of hyperspectral images. Figure 13 shows the main
steps used in compressive sensing-based compression algorithms of HSI.
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Figure 13. Main steps used in the compressive sensing-based class of HSI compression algorithms.

Hyperspectral Coded Aperture (HYCA) [153] is an algorithm that combines com-
pressive sensing and spectral unmixing. It utilizes the high spectral correlation inherited
in hyperspectral data and the fact that the image can be expressed using only a limited
number of endmembers. Therefore, the number of measurements needed to reconstruct
the image is reduced. The algorithm is first accelerated in [67,68] by evaluating two GPU
architectures: GeForce GTX 590 and GeForce GTX TITAN. The study was expanded in [56]
to evaluate four different variations of HYCA on the same platform: Parallel HYCA (P-
HYCA), P-HYCA-Fast, Parallel Constrained HYCA (P-CHYCA), and P-CHYCA-Fast. In
the fast version of P-HYCA, namely, P-HYCA-Fast, the Fast Fourier Transform library cuFF
is replaced by a fast iterative method to solve the quadratic problem in the algorithm while
delivering a speedup of 1.6 times. In the constrained version of P-HYCA, P-CHYCA, the
reconstruction error term is constrained instead of being part of the objective function. A
slightly lower speedup is obtained by the constrained versions, P-CHYCA and P-CHYCA-
Fast, when compared respectively to P-HYCA and P-HYCA-Fast. The compression ratio is
the same for all four variations using AVIRIS Cuprite as the same benchmark image and is
equal to 37.6. P-HYCA is also implemented on the Jetson TX1 GPU card in an attempt to
reduce the high-power requirements present in the former architectures [57,58]. For the
algorithm to operate efficiently on such a low-power platform, the implementation of the
algorithm is simplified. First, the integer data type is used instead of the floating-point
format. Results show no negative effects of this choice on the accuracy of the reconstructed
image. Second, an 8 × 8 window is specified to fit in the shared memory of Jetson TX1,
whereas choosing larger window sizes would produce higher execution times. Similar
results are obtained using the Jetson TX2 and are presented in [59].

An FPGA acceleration of HYCA is proposed in [61,151], where the algorithm is re-
organized to improve data access from the external memory utilizing BIL format. At the
architectural level, the system consists of an accelerator and a processor. The processor
performs as a controller in addition to data transfer from and to the external memory. The
accelerator, on the other hand, runs compute-intensive operations. The proposed solution
shows 100 times improvement in power requirement compared to GeForce GTX 590 and
GeForce GTX TITAN. It also produces a speedup of 49 times when compared to the Jetson
TX2 GPU. On the other hand, the compression ratio is slightly degraded from the GPU-
based HYCA. Spectral Compressive Acquisition (SpeCA) is a dimensionality reduction
method that suggests a measurement approach based on random projection operating
on the spectral domain. The approach relies on the assumption that spectral vectors of
real-world hyperspectral images can be well approximated by a Linear Mixing Model
(LMM). A parallel implementation of SpeCA is proposed in [69] and shows a speedup
of 21 times when compared to its sequential implementation. We provide in Table 6 a
detailed summary of the collected studies on compressive sensing-based compression of
hyperspectral images and their hardware accelerations.
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Table 6. List of studies on compressive sensing-based compression systems of hyperspectral images
and their hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

P-HYCA Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs CUDA [67]
P-HYCA Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs CUDA [68]
P-HYCA-P-HYCA-FAST-P-
CHYCA-P-CHYCA-FAST Nvidia GeForce GTX 590-GeForce GTX TITAN GPUs CUDA [56]

SpeCA Intel i7-4790 CPU-Nvidia GeForce GTX 980 GPU CUDA [69]
P-HYCA Nvidia Jetson TX1 GPU board CUDA [57]
P-HYCA Nvidia Jetson TX1 GPU board CUDA [58]
P-HYCA Nvidia Jetson TX2 GPU board CUDA [59]
HYCA Xilinx Zynq-7020 SoC VHDL [151]
HYCA Zynq Zedboard with a XC7Z020 SoC FPGA VHDL [61]

4.5. Vector Quantization-Based Algorithms

The VQ-based compression methods exploit the fact that pixels representing the same
material have the same spectral information. VQ-based algorithms can obtain higher
compression ratios. However, the significant amount of computations required restricts its
implementation for real-time applications [31]. VQ-based compression of hyperspectral
images consists of two steps: training and coding. First, pixel vectors are grouped based on
similarity, and each group is assigned a vector called codevector. A list of all codevectors
with their corresponding indices forms a codebook. Second, each pixel vector in the image
is replaced by the nearest codevector. An index map of the codevectors is created and
transmitted along with the codebook to the decoder for image reconstruction. Figure 14
displays the main steps involved in using VQ-based algorithms for the compression of HSI.

Figure 14. Main steps used in VQ-based class of compression algorithms of HSI.

Hyperspectral image compression based on the k-means algorithm is proposed in [37].
It describes a simplified hardware implementation of the algorithm by fixing the precision
instead of using floating-point arithmetic in the standard version. In addition, the Euclidian
distance metric is replaced by Max and Manhattan metrics to promote a finer degree of paral-
lelism. Higher throughput is obtained, yet it is less optimal than the standard implementation.
This is attributed to lower quality clusters when measured by misclassification rate.

Two near-lossless algorithms are developed by the Canadian Space Agency (CSA)
based on the VQ method [32]. The first algorithm is called Successive Approximation
Multistage Vector Quantization (SAMVQ). As the name suggests, it is built on a multistage
structure to reduce computational complexity. The training error is iteratively maintained
across all dimensions, and the dimensions that converge faster are excluded from further
training. The training and coding are conducted using the Hamming Distance, which is
computed faster than the Euclidean Distance. The resulting codebook is much smaller than
the conventional VQ-based method, which yields better compression ratios. The second
algorithm is called Hierarchical Self-Organizing Cluster Vector Quantization (HSOCVQ).
It starts with a small number of codevectors, one for each cluster, and then it proceeds
to calculate their fidelity. If the fidelity of a cluster is below a predefined threshold, sub-
clusters are generated with their designated codevector. The process iterates until the
predefined fidelity is reached for all clusters. The near-lossless feature is evaluated for
both SAMVQ and HSOCVQ algorithms at compression ratios of 20:1 and 10:1, respectively.
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A prototype is accelerated on an FPGA platform with obtained throughput of 614 Mbps,
which is about 38 MSps. In Table 7 below, we present the details of the collected studies
on VQ-based compression algorithms of remotely sensed hyperspectral images and their
hardware accelerations.

Table 7. List of studies on VQ-based compression systems of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

K-means clustering FPGA 1 - [37]
SAMVQ and HSOCVQ Xilinx Virtex-II FPGA - [32]

1 Implemented on FPGA, but no specific hardware model is mentioned.

4.6. Distributed Source Coding-Based Algorithms

Compression based on Distributed Source Coding (DSC) methods shifts the com-
putational complexity from the encoder to the decoder side. Multiple sources provide
correlated data yet do not cooperate with one another. Only the decoder side can observe
the extra information and jointly decode the received signals. For onboard compression,
we are interested in a type of DSC, namely remote source coding, where the received signal
presents an extra challenge handling the added noise. DSC-based compression can be of
either lossless or lossy type. DSC types and remote source coding are covered in depth
in [154]. For hyperspectral data, in particular, one of the advantages of applying DSC is
that encoding the current band requires only the correlation information to replicate the
predictor; no further computations and buffering are needed [155]. In Figure 15 below, we
illustrate the concept of DSC and its use in the compression of HSI.

Figure 15. Conceptual framework of distributed source coding-based class of HSI compression algorithms.

Prediction-based algorithms utilizing the DSC technique are studied in [100,101]. DSC
is accelerated using VHDL on Xilinx Virtex-4 FPGA in [100]. Correlated adjacent bands
are compressed independently at the encoder then decoded jointly at the decoder side,
where correlation is modeled. DSC shifts the algorithm complexity from the encoder to
the decoder, which is convenient for onboard compression where resources are limited.
A throughput of 80 MSps is achieved, and compression ratios ranging from 2.4 to 3.5
for raw and calibrated AVIRIS images, respectively, are obtained. DSC is also employed
in [101]. Here, the sources are encoded using Low-Density Parity-Check (LDPC) codes
and jointly decoded with the joint Bit-Plane Belief Propagation (JBBP) algorithm. Since
the decoder side is the most compute-intensive part of the system, it is accelerated using a
GPU platform, achieving 20 times in speedup value when compared to the performance of
a sequential CPU implementation. Table 8 shows the summarized details of the collected
studies on DSC-based compression of remotely sensed hyperspectral images and their
hardware accelerations.
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Table 8. List of studies on DSC-based compression systems of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

Scaler Coset Codes Xilinx Virtex-4 FPGA VHDL [100]
LDPC-JBBP Nvidia GTX480 GPU - [101]

4.7. Learning-Based Algorithms

The transform-based techniques used for compression, e.g., PCA and wavelet trans-
form, are linear. On the other hand, learning-based techniques such as neural networks
make use of probability theory and back-propagation. They allow for solving nonlinear
problems, where the compression in the neural network represents the compression of the
HSI. Figure 16 shows the general framework of hyperspectral image compression based on
the learning method.

Figure 16. Conceptual framework of hyperspectral image compression and restoration using the
learning-based class of algorithms.

Principal Component Analysis is a widely used technique for dimensionality reduc-
tion, data compression, and feature extraction. It transforms the highly correlated data into
an uncorrelated subspace where the first principal components have the most important
features. Nonlinear PCA (NPCA) is implemented by Auto-Associative Neural Networks
(AANN), providing better target detection of hyperspectral images at the same compression
ratios of the original PCA [39]. The training process is accelerated using a GPU platform. A
neural network model is also employed in [83] with a network of nine nodes in the middle
layer. The network is trained using 1,440,000 samples accelerated via the use of parallel
processing on a GPU.

Deep neural networks are used for nonlinear compression of hyperspectral images in
the form of autoencoders (AE) [46]. The employed algorithm is implemented on a cloud
computing platform. The performance of AE is compared against PCA using two different
activation functions. Similar performance is observed when a linear activation function is
used. However, using AEs outperforms PCA when the nonlinear ReLU activation function
is utilized instead. Stacked AE is employed in [65] to compress hyperspectral images. A
specific soil dataset, namely LUCAS 2009 topsoil, is used to evaluate the impact of the
compression system on the prediction of soil properties. The training process is accelerated
to roughly 5 min using an Nvidia GTX 970 GPU. Hyperspectral data compression combin-
ing spectral clustering and online dictionary learning is proposed in [48]. First, spectral
clustering is implemented using graph theory instead of conventional k-means clustering.
The method is selected to avoid local optimum, possibly encountered when employing
the k-means method. Then, the resulting subclasses from the first phase are used to train
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the dictionary subclasses. The obtained results show better SNR using the online learning
dictionary when compared to transform-based methods at lower compression ratios.

Generative Neural Network (GNN) is employed for hyperspectral image compression
in [156], utilizing both spectral and spatial correlations. GNN maps between the latent
space, i.e., the bottleneck layer and the image space. Data partitioning is used to increase
the compression ratio. However, the use of more blocks yields a lower reconstructed image
quality. Weight pruning is also applied to increase the compression ratio with limited
loss in the constructed image. It reduces the connections between layers, which implies
fewer computations and faster execution. The compression ratio reaches 33:1 with PSNR
maintained at around 38 dB, after blocking and pruning. We disclose in Table 9 the details
of the collected studies on learning-based compression of remotely sensed hyperspectral
images and their hardware accelerations.

Table 9. List of studies on learning-based compression algorithms of hyperspectral images and their
hardware platforms.

Compression Algorithm Hardware Platform Programming Method Ref.

AANN-NLPCA Intel Sandy Bridge GPU - [39]
Graph theory-based clustering-Online
learning dictionary Nvidia GPU 1 - [48]

Neural Network Nvidia GeForce GTX 650 Ti
GPU-Intel Core-i7-870 CPU Python [83]

Autoencoder JetStream Cloud Services Openstack [46]
GNN Nvidia GTX 1060 GPU - [156]
Autoencoder Nvidia GTX 970 GPU - [65]

1 GPU model is unspecified.

5. Discussion

In this section, we provide a comparison between the performance of various studies
based on the three selected metrics of throughput, power requirement, and Compression
Ratio (CR) and according to the used HSI dataset for testing and validation. We then sum-
marize these performance results by ranking the best six hardware-accelerated compression
algorithms for HSI using a convenient efficiency metric that combines two of the three men-
tioned measures related to hardware performance. We also discuss the impact of multiple
factors on onboard hyperspectral image compression and their hardware accelerations and
provide recommendations for future research. Specifically, we address:

• In Section 5.1, research question RQ3: What are the comparative performance results,
obtained thus far, of the hardware-accelerated HSI compression algorithms?

• In Section 5.2, Section 5.3, Section 5.4, Section 5.5, research question RQ4: What are
some of the other pertinent factors that can impact the onboard implementation and utilization
of hardware-accelerated HSI compression algorithms?

5.1. Performance Comparison

The reviewed studies are grouped by the HSI dataset used to validate the compression
system. The goal is to give a meaningful comparison of the system performance accord-
ing to the following three metrics: compression ratio, throughput, and required power.
The majority of the studies evaluated their proposed solution using the AVIRIS dataset.
However, to include as many records as possible, the Hyperion imager is also selected for
comparison. Records with rare or synthetic hyperspectral images are excluded from the
comparison results.

The studies presented in Tables 10–15 are grouped based on the following images
from HSI datasets: Cuprite, Yellowstone, Hawaii, World Trade Center (WTC), Indian Pines
and the Lunar Lake image, respectively. An additional table, Table 16, groups four studies
that used hyperspectral images acquired by the Hyperion. Note that the three evaluation
metrics used in this review are missing in 24% of the studies and that less than 10% of the
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studies provide analysis with all these three metrics presented. The highest compression
ratio among all studies was reached at 100:1 and is published in [40]. However, this result
was re-evaluated by the same two authors in [141] with a focus on obtaining a better image
quality where the compression ratio is reduced to 25:1.

The compression ratio of 80:1 is reached using lossy unmixing-based compression al-
gorithms. Their evaluations were achieved using benchmarking with Cuprite, Hawaii and
WTC images, respectively (see Tables 10, 12 and 13). Data regarding their throughput and
power requirement were not provided. The next-highest compression ratio is reported to
be 44.8:1 using compressive sensing, then 40:1 using the transform-based SPIHT algorithm,
benchmarked with Cuprite image as shown in Table 10. The corresponding throughput is
missing from these studies, as their main focus was on obtaining a high compression ratio.
In addition, the highest lossless compression ratio is equal to 3.74. It is produced using a
prediction-based algorithm that employs lookup tables. The highest throughput is realized
using a prediction-based compression at 219 MSps on an FPGA platform. Similarly, the
corresponding compression ratio is missing from this study. Only two studies in Table 10
present full analysis using all three metrics. They are both of lossless type and belong
to the prediction-based class of compression algorithms. The best combination of these
three metrics is accelerated on a Xilinx Virtex-5 FPGA [93]. This study offers a through-
put of 210 MSps while requiring only 0.573 Watts and providing a lossless compression
ratio of 2.8.

Studies using benchmarking with the Yellowstone image are presented in Table 11.
The highest lossy compression ratio of 8:1 is obtained using a compression algorithm
that employs compressive sensing. For lossless compression, the best compression ratios
are obtained using the prediction-based clustered DPCM and RLS algorithms at 4.8 and
4.7, respectively [103,104]. Similarly, the remaining two performance metrics are missing
from these two studies. The best combination is found in [151] using HYCA compressive
sensing with a compression ratio of 8:1, the highest throughput of 391 MSps and low power
requirement of 2.6 Watts. It was accelerated on the Xilinx Zynq-7020 SoC platform.

In Table 12, the Hawaii image is utilized in benchmarking and the best lossless com-
pression ratio is obtained at 6.4:1 using the optimized RLS algorithm [104]. The highest
throughput is equal to 402.5 MSps generated whilerequiring 11 Watts on a GPU platform
employing the CCSDS 123 standard. The best combination of the three metrics is reached
via the predictive LCPLC algorithm indicated in [60]. Accelerated on a Xilinx Virtex-7
FPGA, it produced a throughput of 162 MSps with a required power of less than 1 Watt
and a compression ratio of 4. However, the adopted scanning order of BSQ might hinder
its application for real-time compression.

For studies using the WTC image, they are listed in Table 13. Only one study presents
a full analysis using all three metrics [96]. The same study offers the lowest power require-
ment (0.55 Watts) and a relatively low throughput of 23.3 MSps at a lossless compression
ratio of 2.5 while employing the CCSDS 123 standard. Moreover, an FPGA implementation
of the same standard produced a much higher throughput of 219.4 MSps while requiring
more power (5.30 Watts) [82]. However, no compression ratio was reported in this work.
Studies using benchmarking with the Indian Pines image are presented in Table 14. Using
a GPU card for acceleration, the highest lossy CR value was reached at 3.2 based on an
adaptive predictive LCE algorithm [101]. With a heavy power requirement of 225 Watts,
it yields a throughput of 100 MSps. Most of the proposed compression systems in this
group that display high throughput values are based on GPUs and are also power hungry.
On the other hand, the low-power solutions, which are based on FPGAs, show a reduced
throughput not exceeding 11.3 MSps. For all these reasons, the seven studies included in
this table are ill-suited for adoption in real-time onboard compression.
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Table 10. Comparison of the proposed compression system validated using the AVIRIS Cuprite image.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

Linear prediction-SPIHT Transform-based
(Lossy) 40 - - - (FPGA) ×2 - - [63]

P-PPI-P-LSU Unmixing-based
(Lossy) 80 - - - Xilinx Virtex-II

XC2V6000-6 FPGA Handel-C - [41]

SAMVQ and HSOCVQ VQ-based
(Near-Lossless) 20 38 - - Xilinx Vertext-II FPGA - - [32]

P-PPI-P-LSU Unmixing-based
(Lossy) - - - Xilinx Virtex-II

XC2V6000-6 FPGA Handel-C - [38]

PPI-LSU Unmixing-based
(Lossy) 80 - - - Xilinx Virtex-II

XC2V6000-6 FPGA Handel-C - [42]

Scaler Coset Codes DSC-based
(Lossless) 2.9 80 - - Xilinx Virtex-4 FPGA VHDL BSQ [100]

VS-3DGAP-ExtRice
(CCSDS based)

Prediction-based
(Lossless) 2.8 210 0.573 366.5 Xilinx Virtex-5 FPGA Matlab-AccelDSP - [93]

Median
prediction-LUTs-Adaptive
Arithmetic Coding

Prediction-based
(Lossless) 3.74 16.5 - -

Xilinx Spartan3
XC3S4000
FPGA-ARM926EJ-S
processor

- - [114]

MPEG-4 Transform-based
(Lossy) 16 - - - H.264/AVC encoder - - [44]

FELICS based-Improved
Prediction-Simplified Rice

Prediction-based
(Lossless) 1.7–2.7 30 - - Radiation tolerant

FPGA - - [111]

JPEG2000 (Integer DWT,
No quantization),
JPEG2000

Transform-based
(Lossless, Lossy) 2–13 - 250 - Nvidia GeForce GTX

480 GPU CUDA - [47]

Integer KLT Transform-based
(Lossless) - - 0.25 -

Actel SoC (ARM Cortex
M-3 microcontroller-
flash-based
FPGA)

- - [144]

IEA–Unmixing Unmixing-based
(Lossy) 9.89 - 244 - Nvidia GeForce GTX

580 GPU CUDA - [45]

KLT-JPEG2000 Transform-based
(Lossy) - - 224 - Nvidia GeForce

GTX580 GPU CUDA - [149]

JPEG-LS Transform-based
(Lossless) 2.2 - 250 - Nvidia GTX480 GPU CUDA - [143]



Sensors 2022, 22, 263 34 of 53

Table 10. Cont.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

IEA Unmixing-based
(Lossy) 9.89 - 244 - Nvidia GeForce GTX

580 GPU CUDA - [64]

KLT-Integer KLT Transform-based
(Lossless, Lossy) - - 2–1.3 -

Intel Cyclone IV FPGA,
ARM Cortex M-3
Processor

HDL - [78]

KLT-JPEG2000 Transform-based
(Lossy) - - 224 - Nvidia GeForce

GTX580 GPU CUDA - [150]

P-HYCA CS-based (Lossy) 37.6 - 365–250 -
Nvidia GeForce GTX
590-GeForce GTX
TITAN GPUs

CUDA - [67]

P-HYCA CS-based (Lossy) 37.6–14.93 - 365–250 -
Nvidia GeForce GTX
590-GeForce GTX
TITAN GPUs

CUDA - [68]

P-HYCA-P-HYCA-FAST-P-
CHYCA-P-CHYCA-FAST CS-based (Lossy) 44.8–14.93–

37.6 - 365–250 -
Nvidia GeForce GTX
590-GeForce GTX
TITAN GPUs

CUDA - [56]

Prediction-based CCSDS 123
(Lossless) - 179.7 3.04 59.1 Xilinx V-5QV FX130T

FPGA VHDL BIP [82]

Prediction-based CCSDS 123
(Lossless) - 116.0 0.95 122.1 Xilinx V-4 XC2VFX60

FPGA VHDL BIP [82]

Prediction-based CCSDS 123
(Lossless) - 219.4 5.30 41.4 Xilinx V-7 XC7VX690T

FPGA VHDL BIP [82]

Prediction-based CCSDS 123
(Lossless) - 62.2 65 0.96 Nvidia GT 440 GPU OpenCL BIP [82]

Prediction-based CCSDS 123
(Lossless) - 62.6 29 2.2 Nvidia GT 610 GPU OpenCL BIP [82]

Graph theory-based
clustering-Online learning
dictionary

Learning-based
(Lossy) 5.3 - - - Nvidia GPU - - [48]

Prediction-based CCSDS 123
(Lossless) 2.5 23.3 0.55 42.4 Xilinx Virtex-4 FPGA VHDL All [96]
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Table 10. Cont.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

Prediction-based CCSDS 123
(Lossless) 2.5 47.6 - - Xilinx Virtex-7 FPGA VHDL All [96]

PCA Transform-based
(Lossy) - - - - Xilinx Virtex-7

XC7VFX690T FPGA VHDL - [70]

JYPEC (PCA-JPEG2000) Transform-based
(Lossy) - 23.75 - - Xilinx Virtex-7

XC7VX690T FPGA VHDL - [142]

HYCA CS-based (Lossy) - - 3.66 - Zynq Zedboard with a
XC7Z020 SoC FPGA VHDL BIL [61]

Table 11. Comparison of the proposed compression system validated using the AVIRIS Yellowstone image.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

CCSDS123 Prediction-based
(Lossless) 3.4 3.5 0.169 20.7 Microsemi RTAX FPGA VHDL BSQ [80]

CCSDS123 Prediction-based
(Lossless) 3.4 11.3 2.345 4.8 Xilinx Virtex-4 FPGA VHDL BSQ [80]

CCSDS123 Prediction-based
(Lossless) 3.4 11.2 2.345 4.8 Xilinx Virtex-5 FPGA VHDL BSQ [80]

Optimized RLS Prediction-based
(Lossless) 4.7 - - - Nvidia Kepler GTX 690 GPU CUDA - [120]

CCSDS123 Prediction-based
(Lossless) - 20.4 - - Xilinx Zynq-7000 SoC VHDL BIP [128]

CCSDS123 Prediction-based
(Lossless) 3.2–4 165.65 2.6 63.7 Xilinx Zynq-7000 SoC VHDL BSQ [130]

Clustered
DPCM-Prediction based

Prediction-based
(Lossless) 4.8 280 650 0.4 Nvidia TITAN X GPU CUDA - [119]
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Table 11. Cont.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

CCSDS 123 Prediction-based
(Lossless) 1.5–5.5 - - - Nvidia Jetson TX2 board CUDA - [131]

LCPLC Prediction-based
(Lossy) 4.3 162 0.7 231.4 Xilinx Virtex-7 FPGA VHDL and Verilog BSQ [60]

LCPLC Prediction-based
(Lossy) 4.3 119.96 2.73 43.9 Xilinx Virtex-5 FPGA VHDL and Verilog BSQ [60]

HYCA CS-based (Lossy) 8 391 2.6 150.4 Xilinx Zynq-7020 SoC VHDL BIL [151]

CCSDS123 Prediction-based
(Lossless) - 45 5.7 7.9 Nvidia GPU Jetson (Nano) CUDA BSQ [133]

CCSDS123 Prediction-based
(Lossless) - 146.9 6.28 23.4 Nvidia GPU Jetson (TX2) CUDA BSQ [133]

CCSDS123 Prediction-based
(Lossless) - 308.13 10.9 28.3 Nvidia GPU Jetson (Xavier) CUDA BSQ [133]

RLS Prediction-based
(Lossless) - - - - PARAM-SHIVAY

supercomputer Python BIL [85]

CCSDS123 Prediction-based
(Lossless) - 69.8 4.56 15.3 Nvidia Jetson TX2 board CUDA - [132]

Table 12. Comparison of the proposed compression system validated using the AVIRIS Hawaii scene.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

Linear prediction-SPIHT Transform-based
(Lossy) 40 - - - (FPGA) ×2 - - [63]

P-PPI-P-LSU-Predictive
coding spatially-Huffman

Unmixing-based
(Lossy) 80 - - - Xilinx Virtex-II XC2V6000-6

FPGA Handel-C - [41]

RHBSW (FL-based) Prediction-based
(Lossless) - 2.58 - - Xilinx Virtex-4 FX60 FPGA ×2 - - [107]

Inter-band and Intra-band
Prediction based

Prediction-based
(Lossless) 3.28 - 1.194 - Xilinx Virtex-5 Pro FPGA Verilog BIP [115]
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Table 12. Cont.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

CCSDS123 Prediction-based
(Lossless) 2.2–4.5 183.4 60 3.1 Nvidia GeForce GTX 750 Ti GPU CUDA - [126]

Optimized RLS Prediction-based
(Lossless) 6.4 - - - Nvidia Kepler GTX 690 GPU CUDA - [120]

CCSDS 123 Prediction-based
(Lossless) - 116–401 15–60 6.7–7.7 Nvidia GTX 750 Ti GPU-Jetson

TX1 board CUDA - [127]

FLEX Prediction-based
(Lossless) - - 9 - Xilinx Zynq Z7045Q SoC - - [109]

Clustered
DPCM-Prediction based

Prediction-based
(Lossless) 5 233 - - Nvidia TITAN X GPU CUDA - [119]

CCSDS 123 Prediction-based
(Lossless) 1.5–5.5 129 4.9 26.3 Nvidia Jetson TX2 board CUDA - [131]

LCPLC Prediction-based
(Lossy) 4 162 0.7 231.4 Xilinx Virtex-7 FPGA VHDL and Verilog BSQ [60]

LCPLC Prediction-based
(Lossy) 4 119.96 2.73 43.9 Xilinx Virtex-5 FPGA VHDL and Verilog BSQ [60]

CCSDS123 Prediction-based
(Lossless) - 66 5.7 11.6 Nvidia GPU Jetson (Nano) CUDA BSQ [133]

CCSDS123 Prediction-based
(Lossless) - 203.3 6.28 32.3 Nvidia GPU Jetson (TX2) CUDA BSQ [133]

CCSDS123 Prediction-based
(Lossless) - 402.5 10.9 36.9 Nvidia GPU Jetson (Xavier) CUDA BSQ [133]

RLS Prediction-based
(Lossless) - - - - PARAM-SHIVAY supercomputer Python BIL [85]

CCSDS123 Prediction-based
(Lossless) - 93.2 4.56 20.4 Nvidia Jetson TX2 board CUDA - [132]
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Table 13. Comparison of the proposed compression system validated using the AVIRIS World Trade Center image.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

PPI Spectral Unmixing Unmixing-based
(Lossy) 80 - - - Xilinx Virtex-II XC2V6000-6 FPGA Handel-C - [87]

PPI or AMEE-FCLSU Unmixing-based
(Lossy) 80 - - - Nvidia GeForce 8800 GTX GPU CUDA - [43]

Daubechies wavelet Unmixing-based
(Lossy) - - - - (Heterogeneous Workstations) ×16 - - [86]

KLT-JPEG2000 Transform-based
(Lossy) - - 224 - Nvidia GeForce GTX580 GPU CUDA - [149]

KLT-JPEG2000 Transform-based
(Lossy) - - 224 - Nvidia GeForce GTX580 GPU CUDA - [150]

CCSDS 123 Prediction-based
(Lossless) - 179.7 3.04 59.1 Xilinx V-5QV FX130T FPGA VHDL BIP [82]

CCSDS 123 Prediction-based
(Lossless) - 116.0 0.95 122.1 Xilinx V-4 XC2VFX60 FPGA VHDL BIP [82]

CCSDS 123 Prediction-based
(Lossless) - 219.4 5.30 41.3 Xilinx V-7 XC7VX690T FPGA VHDL BIP [82]

CCSDS 123 Prediction-based
(Lossless) - 62.2 65 0.96 Nvidia GT 440 GPU OpenCL BIP [82]

CCSDS 123 Prediction-based
(Lossless) - 62.6 29 2.2 Nvidia GT 610 GPU OpenCL BIP [82]

CCSDS 123 Prediction-based
(Lossless) 2.5 23.3 0.55 42.4 Xilinx Virtex-4 FPGA VHDL All [96]

CCSDS 123 Prediction-based
(Lossless) 2.5 47.6 - - Xilinx Virtex-7 FPGA VHDL All [96]
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Table 14. Comparison of the proposed compression system validated using the AVIRIS Indian Pines image.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

LCE Prediction-based
(Lossy) - 12 225 0.05 Nvidia Tesla C2075 GPU CUDA BSQ [116]

LCE Prediction-based
(Lossy) - 130 225 0.6 Nvidia Tesla C2075-GeForce GTX

480 GPUs CUDA - [55]

LCE Prediction-based
(Lossy) - 130 250 0.52 Nvidia GeForce GTX 480 GPU CUDA - [55]

Adaptive predictive-LCE Prediction-based
(Lossy) 2.7–3.2–1.6 120–100–110 225 0.53–0.44–0.5 Nvidia Tesla C2075 GPU CUDA BSQ [117]

CCSDS 123 Prediction-based
(Lossless) 2.3 3.5 0.169 20.7 Microsemi RTAX FPGA VHDL BSQ [80]

CCSDS 123 Prediction-based
(Lossless) 2.3 11.3 2.345 4.8 Xilinx Virtex-4 FPGA VHDL BSQ [80]

CCSDS 123 Prediction-based
(Lossless) 2.3 11.2 2.345 4.8 Xilinx Virtex-5 FPGA VHDL BSQ [80]

Table 15. Comparison of the proposed compression system validated using the AVIRIS Lunar Lake image.

Compression Algorithm Details Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

JPEG-LS Transform-based
(Lossless) 2 - 250 - Nvidia GTX480 GPU CUDA - [143]

ANN-NLPCA Learning-based
(Lossy) - - - - Intel Sandy Bridge GPU - - [39]

Graph theory–Online-learning
dictionary

Learning-based
(Lossy) 5.3 - - - Nvidia GPU - - [48]
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Table 16. Comparison of the proposed compression system validated using the Hyperion imager.

Compression Algorithm Algorithm Class CR Throughput
(MSps)

Power
(Watts)

Efficiency
(MSps/W) Hardware Platform Programming

Method
Scanning

Order Ref.

Anomaly detection-wavelet-based
transform

Transform-based
(Lossy) 100 - - - DSP-Xilinx

XCV1000-XCV300 FPGAs - - [40]

Anomaly detection-JPEG2000 Transform-based
(Lossy) 25 - - - DSP-Xilinx

XCV1000-XCV300 FPGAs - - [141]

CCSDS 123 Prediction-based
(Lossless) - 147 0.295 498.3 Xilinx Zynq-7020 SoC VHDL BIP [134]

Autoencoder Learning-based
(Lossy) - - - - JetStream Cloud Services Openstack - [46]

CCSDS 123 Prediction-based
(Lossless) - 750 0.515 1456 Xilinx Zynq-7035 SoC VHDL BIP [79]
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Studies presented in Table 15 use the Lunar Lake image as the benchmark for testing.
Only a single study disclosed two performance metrics; the rest providing at most one
with throughput results missing in all of them. Hence, due to the lack of additional data,
it is difficult to decide which work offers the best combination of the three metrics. The
last set of studies, presented in Table 16, employ the Hyperion imager as the source of
HSI used for evaluation. A high throughput of 750 MSps is obtained in [79] with a power
requirement of 0.515 Watts on an FPGA platform. However, no single study within this
set has provided a complete analysis using all three metrics. The highest throughput
values exhibited in Tables 10–16 indicate that achieving high throughput is not limited to
hardware accelerations using GPUs, but promising results can also be realized on FPGA-
based platforms. Similarly, achieving low power requirements is not solely obtained by
FPGA-based accelerations of these compression algorithms. In fact, the related results in
Tables 11 and 12 confirm the existence of a few GPU implementations that require less than
11 Watts.

Table 17 shows the highest-ranked six studies based on the highest obtained efficiency
value, collected via the synthesized data from the seven tables: Tables 10–16. Here, efficiency
in (MSps/Watts) is calculated by dividing the throughput by the total required power of
the compression algorithm. We follow herein the same approach applied in [133] to
compare the efficiency of multiple compression implementations. We observe that both
the fourth and sixth-ranked algorithms were validated by two sets of HSI: The AVIRIS
Yellowstone and Hawaii scenes for the former and the AVIRIS Cuprite and World Trade
Center scenes for the latter. Therefore, they appear in Table 11, Table 12, Table 10, and
Table 13, respectively. Although this review spans more than 20 years, the most efficient
hardware implementations of HSI compression are mostly implemented during the last
five years, except for the third most efficient record being published more than ten years
ago (2009). Among these six highly ranked hardware accelerations, three were evaluated
on SoC platforms while the remaining three were tested using FPGA devices. Moreover,
five of the six top-ranked algorithms in terms of efficiency are prediction based while the
remaining algorithm from this set is based on compressive sensing.

As also depicted in Figure 17, the most efficient hardware implementation has an
efficiency of 1456.0 MSps/Watt. It provides the highest throughput at 750 MSps and
requires the second least power at 0.515 Watts. In addition, it uses the BIP format, which
is well-suited for real-time compression onboard satellites. Its compression algorithm
employs the CCSDS 123 standard and belongs to both the prediction-based class and the
lossless compression type. The latter was accelerated on an SoC platform along with the
second best compression engine in terms of efficiency. On the other hand, the sixth-ranked
compression algorithm among this group provides an efficiency value of 122.1 MSps/Watt,
a throughput of 116.0 MSps for sixth best, and a power requirement of 0.95 Watts for
fifth best. Likewise, it is a prediction-based and lossless type algorithm that implements
the CCSDS 123 compression standard on an FPGA and employs the BIP format. When
comparing these two performances in terms of efficiency, we observe that the highest-
ranked compression algorithm delivers 11.92 times more efficiency than the sixth best-
ranked algorithm. This was obtained as a result of delivering 6.47 times more throughput
while also requiring 54.21% less power. Moreover, two of the six listed algorithms are of
the lossy compression type. They are ranked fourth and fifth in terms of efficiency while
producing compression ratios of 4 and 8, respectively. We expect further improvements
in the future since the current most efficient implementations of this compression type
have not yet achieved their potential target of higher values of CR. Due to the lack of
reported performance data using the three previously mentioned metrics and based on
the rankings obtained in Table 17, it is difficult to make further conclusions regarding
learning-based, unmixing-based, and transform-based implementations in so far as their
efficiency is concerned.
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Table 17. Ranking of the best six hardware-accelerated compression algorithms for HSI in terms of their efficiency.

Rank Efficiency
(MSps/W)

Throughput
(MSps)

Power
(Watts) CR Compression

Algorithm Details
Algorithm Class

(Compression Type) Hardware Platform Programming
Method

Scanning
Order Ref. (Year)

1 1456 750 0.515 - CCSDS 123 Prediction-based
(Lossless) Xilinx Zynq-7035 SoC VHDL BIP [79] (2019)

2 498.3 147 0.295 - CCSDS 123 Prediction-based
(Lossless) Xilinx Zynq-7020 SoC VHDL BIP [134] (2018)

3 366.5 210 0.573 2.8 VS-3DGAP-ExtRice
(CCSDS based)

Prediction-based
(Lossless) Xilinx Virtex-5 FPGA Matlab-AccelDSP - [93] (2009)

4 231.4 162 0.7 4 LCPLC Prediction-based
(Lossy) Xilinx Virtex-7 FPGA VHDL and

Verilog BSQ [60] (2020)

5 150.4 391 2.6 8 HYCA CS-based (Lossy) Xilinx Zynq-7020 SoC VHDL BIL [151] (2020)

6 122.1 116.0 0.95 CCSDS 123 Prediction-based
(Lossless) Xilinx Virtex-4 FPGA FPGA VHDL BIP [82] (2017)

The boldface indicates the best obtained value for each metric among the six studies.
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Figure 17. The best efficiency, in MSps/Watt, obtained by six hardware-accelerated imple-
mentations of hyperspectral image compression algorithms (the displayed results refer to the
works in [49,64,76,115,116,139], respectively).

5.2. The Impact of Imager Type

There are two types of imagers used in the spatial scanning of HSI: whiskbroom scanners
and pushbroom scanners. A whiskbroom scanner uses mirrors that sweep back and forth
across the swath to collect data using only few detectors. On the other hand, a pushbroom
scanner uses an array of detectors and fewer moving parts. This makes the latter more
sensitive to light due to its longer exposure time [157]. However, there exist variations across
the detector array of the pushbroom scanner as well. Research efforts in this regard are made
to develop better uniformity corrections to reduce these variations [158].

A pushbroom scanner, such as Hyperion and CASI, captures all spectral bands of the
scene one line at a time. The long exposure of pushbroom scanners allows for more light to
be captured. However, the varying sensitivity of the individual elements of the detector
causes the cross-track samples to be different. In whiskbroom scanners, the same element
is used to capture cross-track samples. Therefore, more correlations are present when using
datasets acquired by whiskbroom scanners than pushbroom, such as AVIRIS and Landsat,
which allow for the possibility of higher compression ratios to be attained. For instance,
datasets acquired by both whiskbroom and pushbroom scanners are validated in the
work presented in [159]. A hyperspectral compression algorithm based on the regression
of 3D wavelet coefficients shows compression ratios of 20.85 and 22.12 for pushbroom
datasets (Hyperion). The compression ratio employing the same algorithm increased to
26.95 and 27.02 when tested using whiskbroom datasets (AVIRIS). It is noted that this
work was excluded from the review because it does not include a hardware-accelerated
implementation on one of the previously defined platforms.

5.3. The Impact of Scanning Order

The impact of the scanning order on the algorithm dependency is significant since
performing a type conversion requires extra memory and additional latency. This is partic-
ularly important for real-time applications. Different scan orders have different memory
requirements, with BSQ being the most consuming type where the amount of memory
required is proportional to the spatial dimension of the sensor. Further, BSQ also shows
strong data dependency between adjacent samples, which limits the obtained throughput.
The two scanning orders BIL and BIP, require fewer resources in general. However, BIL
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inherits data dependency between the adjacent samples within a line resulting in a reduced
throughput when compared to BIP. The highest throughput is obtained by using the BIP
format at one sample per clock cycle. This is difficult to achieve using BIL and BSQ as
the inherent data dependency forces the compression engine to take more time and, thus,
run slower.

5.4. The Impact of Signal-to-Noise Ratio

During radiometric calibration, the image data are corrected according to the sensor’s
radiance quality. Calibrated images produce higher compression ratios as they allow the
system to make intelligent decisions. Raw pushbroom data exhibit artifacts that hinder
the compressor from reaching its full potential, unlike calibrated data or images acquired
by whiskbroom scanners. For instance, hyperspectral data acquired by Walsh Hadamard
spectrometer have high SNR and thus are expected to produce high compression ratios [54].

5.5. Power Considerations

In order to investigate the power considerations for the compression system, we
assume the use of CubeSats as the host for such a system. CubeSats, known for their
modularity, are categorized by a standard size and weight: the one-unit CubeSat (1U) is
10 × 10 × 10 cm, the two-unit CubeSat (2U) is 10 × 10 × 20 cm, and the three-unit CubeSat
(3U) is 10 × 10 × 30 cm. The largest weight is 1 kg per unit size, e.g., 3 kg for a 3U CubeSat.
This limited size restricts the area available for solar panels [9]. Based on the NanoSat
Database [160], the smallest launched CubeSat is 0.25U, and the largest is 12U, which took
place in January 2019. The launch of 16U and 20U CubeSats are expected to take place in
the near future.

According to AAC Clyde Space [161], a company specializing in CubeSat manufactur-
ing, the peak payload power for 1U, 3U, 6U and 12U CubeSats are 15, 60, 120, and 240 Watts,
respectively. The typical FPGA power requirements range between 5 and 10 Watts for Vir-
tex and Stratix FPGAs. Devices requiring less power are also available, such as Xilinx
Spartan, Altera Cyclone, and Xilinx Artix families, with power requirements ranging from
1 to 2.5 Watts [9]. Among the SoC platforms covered in this review, the largest required
power was reached by Xilinx Zynq Z7045Q SoC at 9 Watts [109]. Comparing this to the
GPU power requirements, it is reported that, for instance, the Nvidia GPUs require power
that ranges between 75 and 365 Watts [162]. It follows that the number of CubeSat units
needed when using GPUs will have to increase due to the limited power budget of the
former. This would lead to further increases in the cost of acquiring and launching such
satellite systems. It is especially true when knowing that the estimated cost to build one
CubeSat unit is between 50,000 and 200,000 USD and that a similar amount is required for
the launching of the built system [163].

Based on the above analysis, FPGA-based platforms provide a clear advantage when
compared to GPUs in terms of power requirements except for the Jetson GPU accelerators,
as theirs range between 5 and 30 Watts. However, the lack of radiation-hardened GPUs im-
poses enabling of the hardening via software and the use of extra memory for data integrity,
which further exacerbates the amount of power required by the system. Nonetheless, GPUs
show higher flexibility and lower development time. In terms of throughput, the Jetson
accelerators present a good tradeoff. On the other hand, all the GPU-accelerated studies
in this review validated their implementations using only the BSQ format. This format is
well-suited for real-time compression for snapshot imagers since the spatial data across all
bands are captured simultaneously. However, we found no relevant studies that employ
GPUs with either the BIL or BIP scanning formats. If the latter were true, it could be also
convenient for pushbroom and whiskbroom scanners to achieve real-time compression. By
real-time we mean performing the compression upon data arrival during the acquisition
process. According to [164], this is also called online compression, as opposed to the offline
approach where compression is started after data have been stored. Real-time compres-
sion allows for more data to be captured before it gets overwritten due to limited storage
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capacity. This is particularly important for massive data sizes such as those obtained by
hyperspectral imagers and sounders.

5.6. Current Research Gaps

Over the course of this review, we observed that only few studies investigated the
feasibility of learning-based techniques for onboard compression of HSI. They are mostly
lossy algorithms and are mainly implemented using GPU architectures. So far, no stud-
ies were found using FPGA-based platforms for the acceleration of learning algorithms
designed for compression of remotely sensed hyperspectral images.

The strength of compressive sensing, besides the small number of measurements, is
that the technique is blind and does not require prior knowledge of the image character-
istics. Although CS is intriguing, it appears that all the available hardware-accelerated
implementations so far are attempted by one group of researchers [56–59,61,67–69,151].
In addition, the FPGA-accelerated compression algorithms by means of unmixing have
been implemented using only high-level synthesis tools. We believe that more efficient
implementations could be accomplished by considering direct hardware implementations
using HDLs.

Prediction-based techniques have proved their suitability for onboard compression
due to their simplicity and low memory requirements compared to other techniques such
as transform-based and dictionary-based methods. The error propagation problem of
this technique could be constrained by applying block-based compression. While there
are many parallel implementations of the CCSDS standard in the literature using both
GPU and FPGA-based architectures, other prediction-based techniques remain overlooked
thus far. The latter could become, after some adaptation, valuable future candidates to
enhance the current state of the art in HSI compression. Transform-based compression
algorithms provide higher compression ratios with lower throughput due to the high
amount of computations needed. We note that most of the transformed-based studies
focus their optimization on only one of these metrics. In some of these studies, there were
limited results and a lack of information concerning other metrics. Consequently, this could
complicate the decision-making process of how to proceed forward with improving some
of these compression algorithms.

5.7. Future Recommendations

Given the current state of hardware-accelerated compression of remotely sensed
hyperspectral images, we make the following suggestions for future research:

• More research work needs to be focused on hardware-accelerated compression by
means of learning-based and compressive-sensing techniques in order to enrich the
state of the art in this area.

• The full potential of hardware-accelerated compression using unmixing algorithms
is not fully explored. Unmixing techniques can be further simplified to reduce their
complexity. The power of this technique is manifest in the provision of both compression
and classification, which is the purpose of obtaining spectral signatures in the first place.

• As space agencies around the world make available a variety of hyperspectral data for
the research community, different datasets should be considered in the same study to
present results that are unbiased by calibration or scanner type.

• Researchers are encouraged to provide more information regarding the performance
of the implemented compression algorithm in terms of a full range of metrics such as
compression ratio, throughput, and power requirement. This is in addition to SNR
in order to better support decision making in regards to the best tradeoffs needed for
further improvements.

• Explore other transform-based techniques for compression of HSI as the current
methods are mainly focused on three transforms: DWT, DCT, and KLT.

• The use of Synthetic Radar Aperture (SAR) data types for hyperspectral image com-
pression should be studied further. These data types might be promising in terms of
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obtaining more efficient compression because the coherence data from SAR images
could be employed to detect different levels of changes in the scene. This is due to the
fact that SAR’s performance is independent of visibility and available daylight.

• The use of Machine Learning (ML) techniques and models to solve many engineering and
scientific problems is increasing at a rapid pace as ML is becoming less domain-specific
and more general purpose than ever before [165]. To deliver on the high potential of ML,
the design of domain-specific architectures tailored specifically for machine learning is
paramount in this regard [166]. Given that ML has become a powerful prediction tool for
the analysis and processing of hyperspectral data [167], we recommend exploring these
new hardware platforms for the acceleration of HSI compression.

6. Conclusions

We present in this paper a systematic review study of hardware-accelerated compres-
sion algorithms for remotely sensed hyperspectral images spanning more than 21 years of
research works published in recognized journals and conferences. In order to include the
research papers that would facilitate answering the research questions, a careful selection
strategy has been followed using the PRISMA protocol. We also provide a comparative
analysis of the collected research papers to glean the emerging hardware architectures most
suitable for HSI compression according to the dataset used and based on suitable evaluation
metrics that include compression ratio, throughput, power requirement, and efficiency.
The best compression ratios are generally obtained by unmixing-based algorithms, while
prediction-based methods produce faster results in terms of higher efficiency and through-
put. Further, power requirement is mainly characterized by the underlying computing
platform, whereas the choice of hardware architecture is driven by the nature of the com-
pression algorithm. Due to the high number of computations involved, the unmixing-based
and the transform-based algorithms are the most computationally demanding methods.
In terms of hardware accelerators, FPGAs, GPUs, and SoCs will continue to be the most
adopted platforms for HSI compression, especially as future improvements in their clock
speed, throughput, memory capacity, and power requirement are attained.

The review shows the rapid increase of research in this area over the last 11 years,
about 3.6 times the number of publications compared to the first half. In particular, the
studies published from 2012 onwards are dominated by the CCSDS standard, potentially
driving the research trend away from the other compression techniques. As expected, the
data obtained by the AVIRIS imager are the most widely used benchmark, found in about
76.24% of the studies. Although AVIRIS is a high-resolution whiskbroom imager, it is less
likely to be used for small satellites such as CubeSats since the mechanics of the moving
parts make such scanners expensive in terms of power requirements and development cost.

We conclude by stating that the full potential of hardware-accelerated compression
techniques has not been fully realized yet. This can be inferred by the myriad of compres-
sion algorithms solely covered in software-based reviews over the last decade. Nonetheless,
these recent works have enriched the field with many learning-based techniques. We
recommend that researchers consider such HSI compression algorithms when designing for
high-performance solutions as these methods could be excellent candidates for hardware
accelerations on different platforms.
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