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Abstract: As a revolutionary technology, terrestrial laser scanning (TLS) is attracting increasing
interest in the fields of architecture, engineering and construction (AEC), with outstanding advan-
tages, such as highly automated, non-contact operation and efficient large-scale sampling capability.
TLS has extended a new approach to capturing extremely comprehensive data of the construction
environment, providing detailed information for further analysis. This paper presents a systematic
review based on scientometric and qualitative analysis to summarize the progress and the current
status of the topic and to point out promising research efforts. To begin with, a brief understanding of
TLS is provided. Following the selection of relevant papers through a literature search, a scientometric
analysis of papers is carried out. Then, major applications are categorized and presented, including
(1) 3D model reconstruction, (2) object recognition, (3) deformation measurement, (4) quality assess-
ment, and (5) progress tracking. For widespread adoption and effective use of TLS, essential problems
impacting working effects in application are summarized as follows: workflow, data quality, scan
planning, and data processing. Finally, future research directions are suggested, including: (1) cost
control of hardware and software, (2) improvement of data processing capability, (3) automatic scan
planning, (4) integration of digital technologies, (5) adoption of artificial intelligence.

Keywords: terrestrial laser scanning (TLS); point cloud; citespace; architecture; engineering and
construction (AEC)

1. Introduction

In the context of “Industry 4.0”, the architecture, engineering and construction (AEC)
industry is undergoing a significant shift from conventional labor-intensive practices
towards digitalization and intelligence [1]. The rapid development and application of
information technologies is bringing about unprecedented changes in the AEC industry.
Especially in recent years, with hot discussions about the concept of smart construction and
the technologies of artificial intelligence (AI) and digital twins (DT) [2–5], various informa-
tion technologies have been introduced in the AEC industry to improve the productivity
and management efficiency of construction, including BIM [6], RFID [7], photogramme-
try [8], Internet of Things [9], cloud computing [10], blockchain [11], etc.

For the last three decades, TLS has been used incrementally with success in the
AEC industry, with continuous development in the performance of laser scanners. Espe-
cially in the last ten years, plenty of studies have been conducted to verify the potential
application of TLS, which has been proven to be a promising technique. In this case,
some review articles about this topic have been published. Tang et al. [12] surveyed
automatic reconstruction techniques for as-built building information models from scan-
ning point clouds and discussed their potential application to automated BIM creation.
Mukupa et al. [13] reviewed the application of TLS in the monitoring of structures, in-
cluding change detection and deformation monitoring. Xu et al. [14] summarized various
existing methods of building reconstruction from point clouds, with a particular focus on
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the discussion of data acquisition and processing techniques. Dong et al. [15] provided a
comprehensive review of point cloud registration methods and a large-scale benchmark
dataset to support the development of cutting-edge point cloud registration methods. Wang
et al. [16] compared different approaches to point cloud data acquisition and discussed
the different methods for each processing procedure, including (1) data cleansing, (2) data
registration, (3) data segmentation, and (4) object recognition. Xu et al. [17] reviewed
the methods and applications of voxel-based point cloud representations and analyzed
the potential of using voxel-based representations in the construction industry. Rashidi
et al. [18] explored the applications of TLS in bridge engineering. Wang et al. [19] presented
the applications of point cloud data obtained from laser scans, images, and videos in the
construction industry and discussed the acquisition and processing of point cloud data.
However, the current reviews have various limitations, including (1) being out of date, (2)
presenting an incomplete discussion that focuses on one of the specific applications, (3)
provision of insufficient analysis, with an emphasis on point cloud data processing.

The number of relevant publications has increased sharply since 2017. In consequence,
this paper provides a state-of-the-art review on the application of TLS in the AEC industry.
The main objectives of this review are to: (1) introduce TLS and summarize the potential
benefits of TLS in the AEC industry (Section 2); (2) collect relevant papers according to a
preset literature search strategy and perform scientometric analysis to reflect the trends,
top journals, co-occurrence keywords, and co-citation documents of publications (Section 3);
(3) generalize the current TLS-related applications in the AEC industry (Section 4);
(4) analyze critical issues related to application (Section 5); (5) point out future research
directions (Section 6).

2. TLS Technology

The first working laser with three energy level transitions was created by Theodore
Maiman in 1960 [20]. However, it was not until the 1990s that the first commercial laser
scanners appeared on the market. Subsequently, driven by technical advances in optics,
sensors, electronics and computers, significant improvements in the performance of scan-
ners, such as with respect to speed, accuracy, and weight, were observed over the following
three decades. Especially in the last ten years, the new generation of terrestrial laser
scanners has provided better performance and improved system performance [21]. For
example, laser scanning technology has been integrated into total stations [22,23]. Nowa-
days, TLS has gradually matured through continuous improvements, and has a wide range
of applications.

2.1. Working Principle of a Terrestrial Laser Scanner

The ranging system is the core component of a terrestrial laser scanner, and uses a
laser ranger to measure the distance from the scanner to an object. The working principle is
that the scanner emits a laser beam to the preset scanned area by changing the deflection
angle in vertical and horizontal directions. As the laser beam hits a reflective surface in
its path, it returns to the receiver. By using different methods in range measurement, the
distance (S) between the scanner and the object can be calculated. Finally, according to
the azimuthal (horizontal) and elevation (vertical) angles (α, β) of the light, the reflecting
point position (Xp, Yp, Zp) can be determined by Formula (1) based on the instrument
coordinate system (Figure 1). 

Xp = S cos β cos α

Yp = S cos β sin α

Zp = S cos β

(1)
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Figure 1. Working principle of a laser scanner.

Currently, there are two primary distance measurement methods used in commer-
cial laser scanners: time-of-flight (also known as “pulse-based”) and phase-based. Each
type of scanner has suitable applications in different scenarios depending on the project
requirements. The strength of time-of-flight scanners lies in their much longer effective
measurement range and reduced spurious point noise, while pulse-based scanners have
a substantial advantage with respect to measurement accuracy and speed of acquisition.
Table 1 compares the technical performance of typical scanners regarding maximum range,
scan speed, and ranging accuracy.

Table 1. Comparison of different type laser scanners (specifications offered by manufacturers).

Distance
Measuring
Methods

Typical Products Maximum
Range (m)

Scan Speed
(pts/s)

Ranging
Accuracy

Time-of-flight Riegl VZ-400i 800 500,000 5 mm @ 100 m
Topcon GLS-2000 500 120,000 3.5 mm @ 150 m

Phase-based
Faro FocusS 150 150 976,000 1 mm @ 25 m

Z+F IMAGER 5016 365 1,100,000 1.6 mm @ 100 m

(1) Time-of-flight: This principle is based on the classic method of recording the
traveling time of a pulse of laser energy [24]. Since the speed of laser is known very
precisely, if the round-trip time of the emitted pulse is recorded, the distance can be
calculated using Formula (2), where c stands for the speed of laser and t the round-trip
time of the light pulse.

S =
1
2

ct (2)

(2) Phase-based: The laser emits a continuous wave beam with different harmonic
wavelengths typically realized by amplitude modulation (AM). The distance between a
scanner and an object is determined by the shift in phase between the sent and received
wave [22,25], given by Formula (3) [24]. f represents the frequency of the wave, λ is the
wavelength, ∆ϕ refers to the phase shift, N is the multiple number of full wavelengths.

S =
1
2

(
N · λ + λ

∆ϕ

2π

)
with λ =

c
f

(3)

2.2. Potential Benefits of Using TLS in the AEC Industry

The main advantages of TLS over traditional measurement techniques include
five aspects:

(1) Fast and massive sampling capability: A significant advantage of TLS is that it
enables fast collection of high-density points, thus increasing productivity. Traditional
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instruments such as levels and total stations rely on the measurement of a limited number
of points on the surface of the object [25]. Since TLS is capable of acquiring large amounts
of data with speed and accuracy, it can obtain the complete surface of the object.

(2) Much more information: Apart from 3D positional information, the obtained data
consist of reflected intensity values and RGB colors. With the help of this information, it is
easy for an engineer to create an accurate geometric model and extract the required data,
such as dimensions, spatial positioning, and structural characterization [26].

(3) Highly automated: To carry out the survey properly and effectively, it is an essential
requirement for operators that they should be familiar with surveying instruments. The
laser scanner is easy to use due to the high degree of automation. Learning to operate the
scanner takes little time, and barely requires technical qualification.

(4) Non-contact: Since the laser beam can be reflected by most objects, the scanning
process is generally non-contact. This feature contributes to improving safety in the case of
hazardous environments [27] and reducing their impact on the construction process [28].

(5) Relatively high accuracy: Although the single point accuracy of TLS is usually lower
than traditional techniques, it can be improved through adjustment techniques [29,30].
In addition, it can take advantage of large amounts of data to achieve better modeling
accuracy [31,32].

3. Method
3.1. Literature Search and Dataset Construction

To ensure the adequate and accurate coverage of the research topic, the process of
collecting data is performed according to the following five steps (Figure 2).

Step 1: Specifying the search scope.
To acquire the detailed records and cited references of influential articles for further

analysis, the topic search is limited to original academic articles in English indexed by
the Web of Science Core Collection. Only peer-reviewed journal articles are selected for
analysis, because they display more rigorous and valuable contents. The topic search may
miss relevant literature if the query terms are not included in the titles, abstracts, and
keywords. Thus, the dataset is constructed through topic search and citation indexing to
cover a more comprehensive context of the field [33]. If an article cites any of retrieved
records from a topic search, the article can reasonably be considered to be thematically
relevant to the research [34].

Step 2: Developing the search strategy.
The following two additional criteria are adopted to refine the search results:
(1) The publication time is from 1 January 2009 to 30 June 2021. The primary reasons

for this are as follows: (1) Prior to 2009, most commercial laser scanning instruments
used outdated technologies, and the application scope of TLS in the AEC field was quite
restricted [21], and thus there were few meaningful papers, as demonstrated in the ex-
isting article [19]. (2) Relevant research was mainly published in conference papers with
insufficient influence.

(2) The topic search is carried out by adopting the search set: (“laser scan*” OR “3D
scan*” OR “scan* data” OR “point cloud*”) AND (“civil engineering” OR “construction
engineering” OR “structural engineering” OR “construction industry” OR “construction
management” OR “construction project” OR “construction site” Or “project management”
OR tunnel OR bridge OR dam), in which the keywords were selected from the previous
relevant literature. The search set is a combination of two aspects of keywords with “AND”
Boolean operator: one is about laser scanning technology along with its generated data,
and the other is about application fields. The wildcard asterisk (*) represents any number
of characters, and is used to briefly express a word family.

Step 3: Performing a preliminary search.
A comprehensive search is initiated in accordance with the above strategy. As a result,

a total of 13,585 candidate records are retrieved, including 1003 publications resulting from
a topic search, and 12,582 cited articles from the creation of citation reports.
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Step 4: Screening articles.
The preset topic is the application of TLS in the AEC industry. During the initial

review process, any articles irrelevant to the pre-defined topic are eventually excluded.
To select data quickly, a two-stage selection plan is applied. Specifically, in the first

stage, 1003 topic search records are screened by title and abstract. This step produces
209 records as Set A, which will be the main basis for conducting an in-depth discussion.
In the second stage, the search is expanded by citation indexing, and excludes the papers
irrelevant to the subject area. This step generates 438 records as Set B, which is adopted to
perform the scientometric analysis in combination with Set A.

Step 5: Constructing the dataset.
Finally, the combined dataset is reduced to 647 publications. Each of the output

records contains complete data for subsequent analysis. For example, authors, title, source,
keywords, cited references, etc.

Figure 2. Flowchart of literature retrieval.

3.2. Analysis of Publications

To select the journals that have contributed the most to studies on the topic, a publica-
tion analysis was carried out on the basis of Set A.

(1) Figure 3 reveals the trend of the annual relevant publications. Although there
are fluctuations every year, the number of publications showed an upward trend during
the period 2009–2021, which indicates that the application of terrestrial laser scanning
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is attracting increasing attention from researchers in the AEC industry. The number of
influential publications has increased rapidly since 2009, benefitting from improvements
in the technical performance of commercial scanners. Particularly starting from 2017,
the quantities increase, accounting for approximately 64.4% of the total published papers
(excluding 2021). The publications in the first half of 2021 surpassed the annual publications
before 2016. These data indicate that the topic is attracting increasing attention, with the
expectation that informatization technologies will be introduced into the AEC industry.

Figure 3. Annual publications from 2009 to 2021 (half-year).

(2) Figure 4 shows the top journals with the highest number of relevant papers and the
number of articles cited by citation indexing in these journals. These journals have made
great contributions to the development of the related research. As can be seen, the top three
journals (including those tied for place no. 3), accounting for 24.9% of publications in the
dataset, are Automation in Construction, Remote Sensing, Sensors and Journal of Computing in
Civil Engineering. All of these journals have a five-year impact score larger than 3.0, which
fully reflects the continuity and stability of the journal’s influence. Moreover, the articles
from these journals are more inclined to be cited by scholars in related fields.

Figure 4. Top 10 journals in terms of publication number and number of citations.

Traditional review methods strongly rely on domain experts’ individual decisions,
which leads to the results being subjective [35,36]. In this paper, a Java-based scientometric
software package named Citespace is used to reduce research bias and increase the quality
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of review. Citespace was developed to analyze the scientific literature and generate the
visual network based on citation records [34,37].

(3) Co-occurrence keywords analysis. Keywords are important for indicating the core
research contents of papers and capturing the focus and development trend of subject areas
over time, and was performed with the help of Citespace. The co-occurrence keywords
were extracted from “Title, Abstract, Author Keywords (DE) and Keywords Plus (ID)
provided by WOS database” in the software. As shown in Figure 5, each keyword in the
network is presented as a node, the size of which is directly proportional to the number of
papers containing the established keyword. Meanwhile, the link between different nodes
indicates the corresponding keywords appear in a same publication.

Figure 5. Network of co-occurrence keywords.

The top 10 most frequently occurring keywords are listed in Table 2. To better under-
stand the network, a serious of keywords can be divided into two parts. One is concerned
with the preset topic, including “Construction industry”, “Terrestrial laser scanning” and
“Point cloud”. The other is about specific applications, such as “Building information mod-
eling”, “Deformation monitoring”, and “Progress monitoring”. In addition, the keywords
“Information technology”, “Finite element model”, “Data processing”, “Deformation moni-
toring”, “Progress monitoring” and “Building information modeling” receive a high value
of centrality, and are considered to be pivotal nodes in the network, likely exerting greater
influence on others.

Table 2. List of Top 10 keywords and related network data.

Keywords Count Centrality Year

Construction industry 334 0.13 2010
Terrestrial laser scanning 155 0.08 2009

Building information modeling 144 0.17 2012
Point cloud 117 0.12 2012

Data processing 87 0.20 2012
Deformation monitoring 87 0.18 2011
Information technology 64 0.37 2012

Progress monitoring 40 0.17 2013
Finite element model 33 0.23 2014

Quality control 32 0.14 2012
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(4) Document co-citation analysis. Document co-citation network is used to demon-
strate the most frequently cited and influential research references, on the basis of which
new researchers can easily get involved in a specific research domain [38]. As shown in
Figure 6, each node, labeled with the representative author’s name and the year of publica-
tion, stands for a cited paper. The top 5 high-frequency cited and high-centrality papers
are listed in Tables 3 and 4. These important papers cover the major applications of TLS
in the AEC industry and provide a critical reference for subsequent research. Specifically,
they can be divided into five categories, basically including: (a) 3D model reconstruction.
Golparvar-Fard M et al. [39], which receives the highest centrality score, compared image-
based with laser scanning reconstruction and modeling approaches for as-built project
status. Volk R et al. [40] and Patraucean V et al. [41] provided a general overview of BIM
creation and implementation from data collection to BIM generation. (b) Progress tracking.
Turkan et al. [42], which has been cited the most frequently, developed a progress tracking
system by realizing a 4D model (combination of 3D model and schedule data) on the
basis of scanning data. Kim C et al. [39] presented a construction progress measurement
system consisting of three phases: alignment of the scanning data with the as-planned
model, matching of the scanning data to information in the BIM, and revision of the as-built
status. (c) Object recognition. Xiong XH et al. [37] presented an automated method for
identifying and modeling the main structural components of a building from point clouds.
Bosche F et al. [38] improved the algorithm for the recognition of 3D CAD model objects in
construction scanning data and proposed an algorithm for automatically calculating the
as-built pose of the recognized CAD objects. Bosche F et al. [43] presented a method based
on Hough transform to automatically recognize and identify objects with circular cross-
sections in scanning data acquired from construction sites, given the project’s 3D design
BIM model. Walsh SB et al. [44] outlined the key steps required for processing point clouds
and developed data processing algorithms from raw scanning data. (d) Quality assessment.
Kim MK et al. [45] developed a holistic framework for the dimensional and surface quality
assessment of precast concrete elements based on BIM and TLS. (e) Integrated application.
Fekete S et al. [28] employed a laser scanner for geotechnical assessment in tunnel operation.
The collected scanning data were used for further analysis, including lining evaluation,
quality control, controlled overbreak analysis and surface characterization identification.

Table 3. List of Top 5 high-frequency cited papers and related network data.

Cited References Count Centrality Year

Turkan Y [42] 57 0.06 2012
Xiong XH [46] 37 0.16 2013
Bosche F [47] 37 0.07 2010

Kim C [48] 36 0.11 2013
Kim MK [45] 35 0.08 2015
Bosche F [43] 35 0.08 2015

Table 4. List of Top 5 high-centrality papers and related network data.

Cited References Centrality Count Year

Golparvar-Fard M [39] 0.27 25 2011
Xiong XH [46] 0.16 37 2013

Volk R [40] 0.13 33 2014
Patraucean V [41] 0.13 32 2015

Fekete S [28] 0.12 11 2010
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Figure 6. Network of document co-citation.

4. Research Topics Related to TLS in the AEC Industry

The output of the laser scanning process consists of high-density point clouds that
contain (x,y,z), RGB, and intensity values, which help to capture the precise geometric
data and detailed texture information of the object to be measured. Referring to the
network of co-occurrence keywords (Figure 5), an in-depth analysis was performed based
on the 209 publications in Set A according to five major applications, including: (1) 3D
model reconstruction, (2) object recognition, (3) deformation measurement, (4) quality
assessment, and (5) progress tracking. Figure 7 illustrates that the most widely studied
topic is deformation measurement, with 53 papers, accounting for 25.4% of all publications.
Additionally, another two major applications are quality assessment (22.5%) and 3D model
reconstruction (20.6%). Please note that papers published in fields in which papers are
seldom published and those without any specific application, such as those focused on data
acquisition, data processing, data quality, etc., are categorized into the “other applications”
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category in Figure 7. For a clear understanding, a summary of the literature regarding
different applications is shown in Table 5.

Figure 7. Distribution of applications of TLS in the AEC industry.

Table 5. Summary of applications of TLS in the AEC industry.

Applications References

3D model reconstruction
(MR)

BIM [49–79]
FEM [74,80–86]
DEM [87]

object recognition
(OR) [42,44,47,57,68,70,75,78,88–98]

deformation measurement (DM) [52,59,80,84,85,99–145]

quality assessment (QA)

construction quality Management [74,131,146–151]
dimensional quality inspection [45,47,56,64,66,71,79,92,152–157]

surface quality
inspection [44,45,64,71,75,89,98,99,104,158–175]

progress tracking (PT) [42,53,54,88,92,176–178]

4.1. 3D Model Reconstruction (MR)

The application of building information modeling (BIM) facilitates information ex-
change and enhances communication between the various stakeholders over the course of
the project life cycle in the AEC industry. Nowadays, BIM is reconstructed with a heavy
reliance on 2D CAD drawings, while such a model does not accurately reflect the as-built
condition of buildings or facilities (Figure 8). Actually, changes between as-designed
information and as-built condition affect the effective use of BIM. In recent years, Scan-to-
BIM has become a feasible approach for improving management in the construction and
maintenance phases by capturing dynamically updateable as-built information.

Compared to other general techniques like a total station, the main advantage of
terrestrial laser scanning is the fast collection of high-density points with x, y, z coordinates
and RGB and intensity values, which can be further used in reconstructing a 3D model
of objects in construction environments. With the development of TLS and modeling
approaches, relevant studies have been conducted on the reconstruction of different objects,
including buildings [49,51,53,54,58,60,61,65,70,72], civil infrastructure and its components
(bridges [55,62–64,73–77], tunnels [50], precast concrete elements [71,79], removable flood-
walls [56], bridge piers [66], pipe racks [52]), and construction sites [67–69]. The process
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of 3D model reconstruction using TLS can be classified into three main phases: (1) data
collection, (2) data pre-processing, in which the critical task is to register multiple scans in a
common coordinate system, and (3) modeling.

Figure 8. Examples of a building. (a) 2D blueprint; (b) 3D BIM; (c) point cloud [14].

Besides BIM, TLS has been developed for use in connection with the finite element
model (FEM) and the digital elevation model (DEM). The precise 3D geometric model
could be reconstructed from point clouds, which is suitable for the finite element analysis
of structural behaviors. Izabela Lubowiecka et al. [82] performed prior research integrating
laser scanning, ground penetrating radar (GPR), and finite element analysis (FEM) in
historic bridge modeling. The authors applied TLS to obtain the geometry of the structure
and used the GPR data to study the internal structure. The resulting information was used
to properly define a finite element-based structural model for simulating the structural
behaviors of the bridge. Qiu et al. [87] generated a high-resolution DEM of a railway tunnel
surface at a resolution of 0.005 m from TLS data for further analysis.

Point cloud data are the basis of 3D model reconstruction, and there is a correlation
between modeling accuracy and the number of acquired points of objects [179]. Of all the
technologies that can be used to capture point clouds (summarized in Section 4.6), the
prominent advantages of TLS in MR application include the measurement accuracy and
the amount of data, especially for large-scale and complex objects [39,180,181], while in
many applications it captures unnecessarily dense data, wasting time for data collection
and processing. When there is a high demand in terms of time or there is no specific
need for the modeling accuracy in the project, TLS is not as useful or convenient as other
technologies [182]. Thus, the selection of an appropriate method for acquiring point clouds
depends on the project requirements and the technical performance of the instrument.

4.2. Object Recognition (OR)

In general, three types of knowledge need to be represented in the reconstruction
process: object geometric shapes, object identities, and spatial relationships between ob-
jects [12]. However, the raw point clouds do not contain any semantic or topological
information. To use the massive data for further applications in the AEC industry, it is
necessary to process the acquired points to generate a semantically rich BIM. Object recog-
nition aims to detect and classify different types of objects in point clouds by recognizing
geometric and semantic information as well as the topological relationships between objects.
Strictly speaking, the application of 3D model reconstruction consists of an object recog-
nition process. To make a clear comparison, model reconstruction, as mentioned above,
emphasizes the generation of a geometric model, while the identified model of the objects
not only contains geometric information, but also object-based semantic information.

Previous researchers have developed different strategies and algorithms for identifying
various objects (building components [42,47,70,88,92], bridge components [44,57,75,89,91,95,97],
tunnel components [78,98], construction site [96], and construction equipment [68]). The
typical approach in object recognition is to use shape descriptors. Using various machine
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learning methods, the object to be recognized is matched with objects with high descrip-
tor similarity in the model database. Xu et al. [14] and Ma et al. [58] introduced and
categorized the most popular approaches to semantic model reconstruction from point
cloud data. It is worth noting that with the rapid development of machine learning meth-
ods, recognition approaches based on deep learning are attracting increasing attention.
Kim et al. [90] compared three deep-learning models, PointNet, PointCNN, and Dy-
namic Graph Convolutional Neural Network (DGCNN), for classifying the components
of bridges.

Nevertheless, recognizing objects from raw point clouds remains a challenging task.
Most previous studies involve small objects like structural components. In complex con-
struction site environments, many recognition algorithms fail to maintain a good recog-
nition rate [183]. The reason for this is that it is difficult to obtain complete 3D point data
of objects due to confounding factors like noise and occlusion. Furthermore, similarities
between different types of objects can also cause problems for classification. Image-based
photogrammetry is the most common method for object recognition due to the availability
of large amounts of training data. Thus, large point cloud datasets are needed to train
classifiers for recognizing objects from point clouds. Hackel et al. [184] provided a good
example of solving this problem. Another possible solution is to convert the existing 3D
CAD models into point clouds to form the training dataset [183].

4.3. Deformation Measurement (DM)

Engineering structures such as high-rise buildings, bridges, tunnels, foundations,
etc., are exposed to changing applied loads not only during the construction phase but
throughout the entire lifetime of the projects, which generally leads to deformation and
structural change. It is of great importance to understand the mechanics of deformation and
to check various theoretical hypotheses regarding the behavior of deformed objects, which
can be performed mainly through the monitoring and analysis of structures. Over the
course of recent decades, the role of deformation measurement has significantly increased.
It primarily contributes to providing safety assurances with respect to the monitored object
in order to ensure a long lifespan. Meanwhile, deformation monitoring is conducted
to provide engineering data for further analysis, such as verifying design parameters,
predicting the behavior of a monitored object, and developing measures for implementation
in the case of accidents. In comparison with other types of surveys, the higher requirements
with respect to the accuracy, periodicity and repeatability of observations are the main
distinguishing characteristics of deformation measurement [185]. Considering the above
situations, TLS is introduced to monitor the structure, as it is able to provide more complete
information, and the chance to extend the capacity of region of deformation monitoring.

Deformation measurement is focused on changes in the relative position of a structure,
which requires the collection scanning data at a certain interval to maintain periodic monitor-
ing of the structural response by comparing data at different time points. Various case studies
have been carried out on the monitoring of engineering structures, including buildings [104,145],
dams [113,122,126,130], bridges [59,100,105,106,108–110,116,118,119,121,123,124,128,137,144],
tunnels [57,80,103,107,114,115,117,125,127,129,131,132,134–136,139,140], stations [99,143],
foundation pits [186], pipe racks [52], towers [101], and many others. In addition, an-
other main direction of studies for deformation measurement is to perform structural
health monitoring of infrastructures that are in service for a long time, especially for
masonry [99,144,187–189] and wooden structures [190–192].

According to the current standards, the deformation of structures is monitored based
on critical points. There is no doubt that the ranging accuracy of TLS is not as high as
traditional instruments like levels and total stations [111,193]. In addition, traditional
instruments are more suitable for high-frequency deformation measurements carried out
on the basis of capturing and processing limited point data [194]. However, the exploitation
of scanning data with high redundancy is the key to deformation analysis [195], and the
accuracy can increase depending on the analysis techniques. Various approaches have
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been developed to analyze structural alterations in terms of shape or dimensions, and
these can be categorized into four major groups: point-based methods, point-to-surface-
based methods, surface-based methods, and geometry-based methods [108]. Additionally,
point-based methods represent not only point-to-point but also point-cloud-to-point-cloud
approaches. In practice, except for point-to-point-based deformation analysis, which often
relies on artificial targets such as spheres and retro-reflective targets placed on a deformable
object, the other methods do not require auxiliary targets, and data captured from different
epochs can be directly compared to calculate the deformation after transformation into a
common coordinate system.

4.4. Quality Assessment (QA)

Quality assessment consists of three parts, depending on the different target problems:
construction quality management, dimensional quality inspection, and surface quality in-
spection. For all these applications, the key is to extract geometric and semantic information
from point clouds of objects.

Construction quality management concentrates on the process monitoring and control
of construction activities with the intention of meeting requirements of the design plans
and specifications. In this regard, the majority of research has focused on assembly process
management for prefabricated components. Zhou et al. [76] proposed a framework for
the virtual trial assembly (VTA) of steel structures with bolted connections to reduce on-
site assembly discrepancies. After collecting high-precision point clouds of prefabricated
segments, a finite element analysis is performed on the basis of the reconstructed BIM to
simulate the deformation and stresses caused by forced assembly. Kim et al. [148] and
Jeng et al. [147] used TLS to capture the geometric and position information of prefabricated
components in the process of bridge assembly and construction. Xu et al. [131] examined
the feasibility of using point cloud data for near-real-time quality inspection of newly
assembled circular tunnel shield segment rings. In addition, some papers have applied TLS
to calculate the excavated volume in order to evaluate the excavation quality of different
tools [146,150,151].

A part of industrialization, prefabrication has become a popular construction com-
ponent in the ACE industry. Compared to cast-in-place construction, precast elements
offer faster production, lower cost, and a cleaner and safer construction environment [79].
However, the use of precast elements can suffer from unexpected delays and unavoidable
increases in cost during construction if the compliance of the precast elements with dimen-
sional tolerances is not properly assessed. To avoid failure during on-site construction,
efforts should be made towards performing a comparison between the dimensional con-
formance of precast elements in as-designed status and as-built status. Research efforts
have covered a wide range of precast elements, such as concrete elements (walls [56,71],
columns [153], stairs [71], slabs [45,79,92], hollow spheres [155], bridge piers [66]), steel
structures [47,156], pipes [154,157], and joinery products [152]. Obviously, the key point
in dimensional quality inspection is that the fabrication model of precast elements con-
structed from point cloud data should be compared with the corresponding as-designed
BIM model in a common coordinate system in order to identify dimensional discrepancies.
Additionally, it makes sense to perform dimensional inspection on infrastructures that
have been in service for a long time. The point cloud data obtained by TLS can be used
not only to effectively document historical buildings and structures, but also to provide
useful geometric parameters for structural analysis. Studies in this area have focused on
masonry [188,196–204] and wooden infrastructures [191,192,205–208].

Many existing structures suffer from damage due to age or accumulated damage
from hazards [89]. Surface quality inspection mainly refers to the inspection of the present
conditions of a concrete surface, which is important for assessing the safety and reliability
of a structure. The most researched topics related to surface quality inspection can be
grouped into flatness assessment and structural damage identification. In general, there are
two common methods for surface flatness inspection that can be found in previous studies:
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(1) following quantitative indexes defined in relevant standards such as the F-numbers
method [163,172]; or (2) setting up a reference plane and calculating the deviations between
surface points and the reference plane [162,170]. On the other hand, the majority of papers on
structural damage identification are focused on surface cracks [89,98,99,104,144,171,174,175],
spalling [75,89], corrosion [161], water leakage [173], and concrete loss [160,166].

4.5. Progress Tracking (PT)

The effectiveness of TLS applied in monitoring construction activities progress has
been validated in a number of previous studies [42,54,92,177,178]. As with quality as-
sessment, object recognition plays an important role in progress monitoring. Individual
as-built components need to be recognized from the point clouds and compared with the
corresponding as-designed part to track the progress. Turkan et al. [42] made an impor-
tant contribution to this research topic. In their article, a 3D CAD model combined with
schedule information was used to provide the designed spatial characteristics of the facility
under construction over time, and scanning data were used to provide the current site
conditions. The proposed system required the point clouds and the 4D model to be regis-
tered in the same coordinate system to be able to extract useful data for progress tracking.
Furthermore, the critical point was the identification of objects from point cloud data, and
the construction progress to date was calculated by the system on the basis of the object
recognition results from the analysis of the scans acquired on that date. In recent years,
the integration of multiple technologies developed for monitoring construction progress
has become popular. Braun et al. [88] presented a method for improving the accuracy of
construction progress monitoring by fusing point clouds, semantic data, and computer
vision. Their contribution to the combination of methods was the introduction of a CNN-
based object-detection method to correctly detect elements that otherwise tend to be falsely
classified. Ali et al. [53] proposed a near-real-time construction progress monitoring system
called iVR. Specifically, the iVR consists of five modules: iVR-location finder (finding laser
scanner located in the construction site), iVR-scan (capturing point cloud data of job-site
indoor activity), iVR-prepare (processing and converting 3D scan data into a 3D model),
iVR-inspect (conducting immersive visual reality inspection in the construction office), and
iVR-feedback (visualizing inspection feedback from the job-site using augmented reality).

4.6. Other Applications
4.6.1. Performance Evaluation of Terrestrial Laser Scanners

The reliability of point cloud data is critically important to the application of TLS in
the AEC industry. Accordingly, users need to evaluate the performance of instruments to
determine whether they meet the technical specifications supplied by the manufacturers
or the project requirements. Several studies have made efforts to verify the performance
of scanning systems under laboratory or field conditions to determine their consistency
with technical specifications [111,112,209–216]. Evaluating the ranging accuracy and point
accuracy are critical procedures for performing the test. In general, the test is verified by
establishing reference values with a high-accuracy instrument such as a laser tracker [217–219]
and a total station [112,210,220]. Additionally, system calibration and performance eval-
uation are closely related topics. By quantifying and correcting the influence of specific
systematic errors, periodic system calibration is critical for ensuring the reliability of the
data. Some papers have developed self-calibration methods and procedures [221–226]. The
publication of the ASTM E2938-15, ASTM E3125-17, and ISO 17123-9 standards enables ob-
jective comparability between the various instruments. Wang et al. [227] and Shi et al. [228]
provided a reference for understanding and implementing the standards.

4.6.2. Comparison of Different Techniques and Tools for Capturing 3D Point Clouds

3D point clouds are currently most commonly acquired by a terrestrial laser scanner.
However, several limitations are found in TLS applications, such as the high equipment cost
and the restricted access [229]. Several studies have been conducted on different techniques
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and tools for obtaining detailed point clouds in the AEC industry, including laser scanning,
photogrammetry, and videogrammetry, as explained in the following. The comparison of
different methods is shown in Table 6.

Table 6. Comparison of different point clouds acquisition methods.

Technology Tools Range
(In General)

Accuracy
(In General)

Cost
(In General)

Laser scanning
TLS Moderate 0.5–10 mm High
ALS Long >10 mm High
MLS Moderate >10 mm High

Photogrammetry Smartphone-based Close >10 mm Low
UAV-based Moderate >10 mm Moderate

Videogrammetry Smartphone-based Close >10 mm Low

(1) Laser scanning
Apart from TLS, there are other two types of laser scanning based on different working

platforms: airborne laser scanning (ALS) and mobile laser scanning (MLS) [16]. TLS is
ground-based and usually mounted on a static tripod. ALS refers to a scanning system
mounted in an aircraft such as UAV or helicopter. MLS can be mounted on land-based
mobile platforms such as cars or robots. These three systems differ in terms of scanning
mechanism, speed, accuracy, etc. Therefore, each system has different advantages and is
suitable for certain projects. ALS and MLS can scan large areas quickly and survey areas
with limited accessibility, while TLS allows for more detailed point clouds with relatively
high precision and low cost [230–234].

(2) Photogrammetry
Photogrammetry works by taking high-resolution photographs of a scene from dif-

ferent locations via cameras and then processing photos through programs to obtain the
spatial information of objects. Depending on the number of cameras, Structure from Mo-
tion (SfM) and Multi-View Stereo (MVS) are the mainstream methods for image-based 3D
reconstruction and point cloud generation. The traditional photogrammetric instruments
include single-lens cameras, stereo cameras, RGB-D cameras, etc. Due to the advance-
ment of camera technology and image processing algorithms in recent years, smartphone-
based [235–237] and UAV-based [229,238–242] acquisition methods of point clouds have
been developed and applied. The key benefit of most photogrammetric instruments is
real-time acquisition (portable and flexible) at low cost. However, several limitations can
be found in the previous studies, among which the most significant are the lower accuracy,
especially in large-scale environments, compared to TLS and the less automated process,
which leads to more error [39,243–245].

(3) Videogrammetry
Videogrammetry is similar to photogrammetry, but extracts point cloud data from

video streams. It can be used with a single camera, a stereo camera, or a multi-camera
system to collect video frames and then recover the 3D spatial information of the objects.
In the case of a single video stream, since the information from each video frame builds
upon the previous one, the sequential characteristic of the video frames makes it possible
to progressively reconstruct the detailed spatial information [246]. In comparison with pho-
togrammetry, the videogrammetric method requires little human intervention in the data
capturing process, and is appropriate for dynamic object reconstruction [246]. However,
the feasibility of videogrammetry in the AEC industry suffers significantly from the quality
of the captured frames and the computational process [243,247]. It is a major concern that
the quality of video frames is poor compared to still images. In addition, considering
the complexity of a construction site, a video sequence consists of many frames, making
performing post-processing computationally expensive. As a result, only a few studies
have used videogrammetry to obtain point cloud data [248–250].
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4.6.3. Integration of Digital Technologies

Currently, the AEC industry is experiencing rapid digital transformation, and an
increasing number of advanced technologies will be developed and introduced in the
AEC industry in future. With the rapid development of various digital technologies,
the advantages of using a single technology are becoming weak, and they are not able
to satisfy the comprehensive management requirements on site. Accordingly, integrated
development and the application of multiple technologies are topics that have been brought
to the fore. These approaches can compensate for the drawbacks of individual technologies,
resulting in improvement in the productivity and accuracy of the collected data. BIM is
the most relevant technology for TLS, as summarized in Section 4.1. Additionally, various
technologies have been integrated with TLS to achieve better results in application. Apart
from the above techniques for capturing point clouds, common techniques include:

(1) Ground Penetrating Radar (GPR) and Infrared thermography (IR)
As non-destructive techniques, GPR and IR provide an effective complement to TLS

in structural evaluation [251–254]. Lafi et al. [255] demonstrated that IR and TLS are the
most useful automatic tools for monitoring and assessing civil infrastructure conditions.
TLS is able to capture the precise external geometry of structures, while GPR and IR
provide valuable information for detecting internal and sub-surface structural elements.
For instance, Puente et al. [251] integrated mobile and static light detection and ranging
devices to analyze the exterior of a bridge, while ground penetrating radar equipment was
used to characterize its internal stonework.

(2) Digital Twin (DT)
DT technology incorporates three key components—the physical entity, the virtual

entity, and the connection of data—to form a practical loop [2]. Several papers have
discussed the inclusion of TLS in DT [57,256]. Firstly, point cloud data of the physical object
are collected and transferred to the virtual environment. Then, solutions are provided
to predict and guide the realistic process by processing and optimizing the data in a
virtual model. However, research has seldom [256] carried out the second step for further
application, with most studies focusing on the first step. Research aiming towards the
integration of TLS and DT remains a challenge.

(3) Virtual Reality (VR) and Augmented Reality (AR)
In recent years, due to the advantage of providing an engaging environment, im-

mersive technologies like VR/AR have been tentatively applied to simulate hazardous
construction scenarios and to conduct construction engineering education and training.
Duer et al. [257] and Shanbari et al. [65] showed TLS and VR/AR to be a useful tool for
documenting the existing conditions of buildings for education management.

Additionally, some researchers have tried to use point cloud data for construction
safety management [258–261]. In these papers, computational algorithms were developed
to automatically identify spatial blind spots from the collected point cloud data of heavy
construction equipment in field environments. Furthermore, Nguyen et al. [67] integrated
BIM and TLS to improve the efficiency of the quantity management process.

5. Critical Issues in Application
5.1. Workflow

As numerous studies and applications have been conducted in the AEC industry, it
is of great significance to create general rules for TLS-based workflows for the purposes
of widespread adoption. Based on the literature review, in this section, an integrated
framework is developed, in which the proper use of TLS in the AEC industry is promoted.
The framework, shown in Figure 9, provides a detailed workflow for TLS and specific
considerations at each step. The framework is composed of five essential stages for per-
forming a typical scanning job, each of which consists of a series of steps. The specifics of
the framework are described in the following.
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Figure 9. Workflow of TLS.

Preparation: As the basis for a scanning work, this stage primarily deals with the
preparation of the equipment used to collect field data, including the instrument and acces-
sories, software, and the necessary work to ensure the appropriate use of the instrument. At
present, choosing the appropriate scanner is a question of budget as well as theoretical and
practical requirements. The features that need to be considered mainly include: accuracy,
range, speed, portability, field-of-view, operating environment, etc. Furthermore, the selec-
tion of software primarily depends on the deliverable requirements and the capabilities of
the software. Regardless of whether purchasing or renting a laser scanning system, it is an
essential requirement for users that they should be familiar with the instrument in order to
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be able to carry out the work properly and effectively. The instruments should be operated
only by experienced persons and those who have received training. Since the long-term
use of instruments may reduce their precision and resolution, calibration of surveying
instruments should be carried out periodically and before application. Standard calibration
procedures and proper calibration techniques contribute to minimizing systematic error
and ensuring the long-term reliability of the instruments.

Planning: Before conducting field operations, a strong emphasis has to be placed on
planning work, as in most engineering projects. The following factors should be considered:
(1) confirm project objectives and requirements, including objects to be scanned, accuracy
required, time constraints, deliverables, etc. (2) Site survey. Site conditions should be
considered to determine the scanning scheme (pre-scan if needed). (3) Establish control
network (highly recommended). It is critical to establish a control network for high-
accuracy work, especially in the AEC industry. This delivers the basis that links the local
coordinate system to a global coordinate system. (4) Develop an implementation plan.
The plan scheme contains at least the following important points: selection of optimum
scan position, specification of scan parameters, and determination of the schedule of
data collection.

Scanning: Start the field work according to the plan scheme. The target object should
be scanned in as much detail as possible in the first survey. If the site conditions do not
correspond to the plan, the operator should select more suitable locations and parameters.
Additionally, monitoring the operation at each scan position is an important step in the
scanning process. The operator should note if and when the system encounters difficulty
and should be prepared to take appropriate action to ensure data quality. Anomalies during
scanning should be documented and dealt with in a timely fashion. Such unexpected situa-
tions can include: unfavorable weather conditions, disruptions, problems, accidents, etc.
When all the planning works are completed, it should be determined if have been achieved
preliminary objectives of data collection. It is highly recommended that the accuracy of
scan registration in the field be checked whenever possible to ensure data quality.

Processing and analyzing: The processing of the raw scanning data is essential prior to
the further analysis. Details are described in Section 5.4. Depending on the objectives and
deliverables of the project, the processed data will be evaluated using a variety of different
techniques and methods. In practice, the analysis procedure and algorithms make a great
deal of difference in specific applications, as summarized in Section 4.

5.2. Data Quality

Accuracy in the millimeter range or higher is a typical standard for high-precision
applications in the AEC industry, such as structural assessment and assembly management.
As a result, data quality is one of the most important factors in whether TLS can be used
effectively in the AEC industry. As in the case of conventional technologies, TLS is also
subject to different sources of uncertainties during the surveying process. In this case,
it is critical to identify the underlying sourceds of error that influence data quality and
to evaluate their effect on the results. As shown in Figure 10, a list of error sources is
summarized and categorized by cause. In general, uncertainties can be grouped into four
broad categories in terms of whether they are related to the instrument, the target object,
the environment, or the operator. (1) Instrument error may be further partitioned into
ranging error, angular error, and beam property error. (2) Target object error is associated
with the incidence angle of the laser beam on the object surface and surface physical
properties. (3) Environment error is largely related to atmospheric and environmental
effects on the scanning device. (4) Human error arises from the process of operating
instruments depending on the skill and experience of operators.
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Figure 10. The classification of error sources.

A considerable number of studies have addressed the error analysis and performance
evaluation of laser scanners, which is critical for ensuring adequate data quality and reli-
ability. JavierRoca-Pardiñas et al. [262] proposed an error model for TLS measurements,
in which the error was estimated on the basis of the distance to the object and the an-
gle of incidence. Wang et al. [263] introduced a combined model by integrating external
models related to atmospheric refraction, beam wander and incidence angle into a seven-
parameter similarity transformation model to detect external errors and register multiple
scans. Kerekes et al. [264] presented a stochastic model for TLS observations. By classify-
ing the atmospheric parameters as stochastic correlating elementary errors, the currently
elementary error model is expanded. Ling et al. [211] studied the influence of distance,
incident angle, and target color on the accuracy of the scanner. Bolkas et al. [265] demon-
strated that users should consider instrument specification, required precision of plane
residuals, required point spacing, target color, and target sheen when selecting scanning
locations. It should be noted that standardized tests for quantifying the effect of various
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error sources are still lacking [266]. Thus, demonstrating data quality and reliability can
still pose challenges.

5.3. Scan Planning

The high efficiency of data acquisition plays an important role in complex and con-
stantly changing construction environments. Therefore, it is necessary to determine ap-
propriate scan positions and parameters so that the quality requirements of the collected
data could be satisfied with minimal operating time before the process of data acquisition.
The current practice of scan planning relies on the experience of trained operators, for
whom conducting a one-off successful scan task with the required data quality is also a
challenge. Occasionally, redundant scans are needed to reduce the risk of incomplete and
low-quality data, which is time-consuming and inefficient. Accordingly, some researchers
have focused on automated strategies for generating optimal scan plans and parameters.
Argüelles-Fraga et al. [267] carried out one of the early studies regarding tunnel scan plan-
ning. A method was proposed for optimizing tunnel scanning tasks by estimating the
angular interval and the maximum scan distance. Cabo et al. [268] described a method
for scan planning in tunnels that determined the optimal scanner positions throughout
the tunnel. The proposed approach achieved this by finding the largest possible distance
between adjacent scanner positions, while satisfying some restrictions with respect to the
point density, incidence angle, scanning distance, and placement of the scanner.

A functional model was refined from the previous studies based on the IDEF0 method
shown in Figure 11. Scan planning was formulated as a series of optimization problems,
with three main elements to the optimization problems: inputs, controls, and optimization
models. Aryan et al. [269] reviewed prior publications based on these three problem
elements and proposed three main data quality considerations: completeness, accuracy,
and registrability.

Figure 11. The functional model of scan planning.
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5.4. Data Processing

Data processing is as important as data acquisition in the application of TLS. The
successful use of TLS depends not only on the technical specifications of the scanning
instruments themselves, but also on the capabilities of data processing to address the data
and perform necessary analysis after data acquisition. Before processing point clouds,
the data acquired from different positions need to be transformed into a given coordinate
system to constitute an entire object. In addition, data cleansing and the filtering of noise
from the raw data are necessary to optimize data quality for analysis and to decrease
computational load. In some cases, the raw scanning data should be converted into another
format, depending on the requirements of the post-processing software.

Many studies have been conducted on processing techniques and algorithms in recent
years. In fact, the specific procedure and approaches used for data processing depend on
the intended application of TLS, as different objectives may require different approaches to
performance evaluation and have different deliverables. Tang et al. [12] and Xu et al. [14]
provided a thorough review of the processing techniques and methods for model recon-
struction and object recognition using point clouds. Mukupa et al. [13] presented a detailed
investigation of robust processing methods for detecting change and deformation, and
proposed a three-stage process model for deformation analysis. Kim et al. [45] established
an end-to-end framework consisting of a quality assessment procedure for the dimen-
sional and surface quality assessment of precast concrete elements based on BIM and 3D
laser scanning.

Dedicated processing software has a considerable influence on the acceptance of
TLS. Nowadays, there is a wide range of software tools with different algorithms and
application patterns. Some of those software tools have been developed by laser scanner
manufactures to be used mainly with manufacturer-specific scanners and are associated
with a particular type of data format, such as Faro Scene from FARO. There may be
limitations with respect to the processing of point cloud data from these specific scanners
when using other software. In addition, there are many packages like PolyWorks from
InnovMetric that offer full support for entire data processing workflows, and which are
capable of supporting different scanners. Moreover, some software products have been
developed for specific functions or applications, the analysis features and algorithms of
which differ from package to package.

6. Future Research Directions

To facilitate TLS development and application in the AEC industry, the following
future research directions are suggested:

(1) Cost control of hardware and software
As mentioned above, the development of TLS in the AEC industry is restricted by both

hardware and software. As one of the major barriers, the cost of hardware and software
is high in applications at present compared with other techniques, especially for minor
projects or those that do not require accurate data. For example, Bhatla et al. [180] and
Gautier et al. [270] used handheld digital cameras and depth cameras instead of TLS to
generate as-built 3D point clouds due to their lower cost. However, the drawback of these
techniques is the insufficient accuracy of their measurements. As a consequence, it is vital
to control the cost and maintain a balance between performance and cost for the healthy
development of TLS.

(2) Improvement of data processing capability
Despite plenty of studies having been conducted on data processing, considerable

gaps still exist between the state of the art and the demands of their application. There is
great potential to improve the processing efficiency, effectiveness, and automation level of
the algorithms. In addition, the developed algorithms and methods should be application-
oriented and universal in highly specialized fields like the AEC industry. Finally, a standard
system for the evaluation of algorithm performance should be established in order to select
appropriate methods for different applications.
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(3) Automatic scan planning
Most of the existing publications solved medium-scale and generally simple prob-

lems [269], while working in real construction environments is difficult, owing to the more
complicated set of limitations. Future research should be conducted to optimize the main
elements in a functional model of scan planning, including: (a) exploring various kinds of
input model matching the real environment well; (b) investigating the required data quality
for specific applications and establishing the relationship between the required data quality
and the scan parameters; (c) developing more optimal solutions for solving constrained
nonlinear optimization problems; (d) using AI technologies and optimization algorithms to
increase the level of automation and real-time adjustment to reduce manual intervention in
data acquisition.

(4) Integration of digital technologies
On one hand, various techniques for acquiring point cloud data compensate for the

drawbacks of TLS in terms of cost, convenience, accessibility, etc. On the other hand, the
integration of other types of technologies effectively extends the application area of TLS.
However, there are still many challenges, such as the fusion of multi-source information,
especially point cloud data. In addition, it is difficult to obtain real-time information for
most data acquisition technologies. Thus, there is a lack of applications in dynamic sce-
narios such as safety management. Integration with wireless location and communication
technologies is one of the possible directions.

(5) Adoption of artificial intelligence (AI)
As a branch of computer science, artificial intelligence has created tremendous value

by revolutionizing the AEC industry. Due to the great advantage of transforming big data
into useful knowledge, there is no doubt that AI in collaboration with TLS will be one
of the primary future trends in the field of AEC. In recent years, various AI techniques,
deep learning in particular, have been found in previous studies to have huge potential in
object detection and quality assessment [90,271–274]. Potential AI-based solutions in future
may include: (a) prediction of project activities (e.g., safety, progress, and productivity);
and (b) decision-making optimization (e.g., project planning, scan planning, and resource
management). In this context, there is an urgent demand for generating training datasets
of point clouds for construction activities.

7. Conclusions

The appearance of TLS in the field of AEC was relatively recent, but it is attracting
increasing interest. This research evaluates the application of TLS in the AEC industry
on the basis of scientometric and qualitative analysis. A five-step literature retrieval was
conducted to collect relevant papers. It was found that the number of publications increases
from 2017, meaning that the topic has been receiving increasing attention in recent years. To
reduce research bias and increase the quality of the review, Citespace was used to investigate
keyword co-occurrence and co-citation to provide a reference for further analysis.

The five major applications of TLS in the AEC industry were determined, which
include 3D model reconstruction, object recognition, deformation measurement, quality
assessment, and progress tracking. To promote the widespread adoption of TLS in the AEC
industry, on the basis of the discussion of a set of critical issues in application, a general
framework of TLS-based workflow was developed. Meanwhile, the sources of error that
influence data quality were summarized, and a functional model for scan planning was
developed. This study finally indicates the following future research directions in the hope
of providing recommendations and direction to researchers: (1) cost control of hardware
and software, (2) improvement of data processing capability, (3) automatic scan planning,
(4) integration of digital technologies, (5) adoption of artificial intelligence.

In summary, this paper provides a foundation for the widespread adoption of TLS in
the field of AEC, making several contributions, as follows: (1) the evolution and status of
the use of TLS in the AEC industry is revealed, helping to understand the research topic;
(2) the critical issues in application are explored in order to promote effective use in practice;
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(3) future directions of the research topic are described in order to provide a reference for
further research.
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