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Abstract: Unmanned Aerial Vehicle (UAV)-assisted cellular networks over the millimeter-wave
(mmWave) frequency band can meet the requirements of a high data rate and flexible coverage
in next-generation communication networks. However, higher propagation loss and the use of a
large number of antennas in mmWave networks give rise to high energy consumption and UAVs
are constrained by their low-capacity onboard battery. Energy harvesting (EH) is a viable solution
to reduce the energy cost of UAV-enabled mmWave networks. However, the random nature of
renewable energy makes it challenging to maintain robust connectivity in UAV-assisted terrestrial
cellular networks. Energy cooperation allows UAVs to send their excessive energy to other UAVs with
reduced energy. In this paper, we propose a power allocation algorithm based on energy harvesting
and energy cooperation to maximize the throughput of a UAV-assisted mmWave cellular network.
Since there is channel-state uncertainty and the amount of harvested energy can be treated as a
stochastic process, we propose an optimal multi-agent deep reinforcement learning algorithm (DRL)
named Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to solve the renewable energy
resource allocation problem for throughput maximization. The simulation results show that the
proposed algorithm outperforms the Random Power (RP), Maximal Power (MP) and value-based
Deep Q-Learning (DQL) algorithms in terms of network throughput.

Keywords: Unmanned Aerial Vehicles (UAVs); energy harvesting; energy cooperation; power
allocation; Multi-Agent Deep Reinforcement Learning (MADDPG)

1. Introduction

Unmanned Aerial Vehicles (UAVs) are aircrafts without a human pilot on board. UAVs
are able to establish on-demand wireless connectivity faster than terrestrial communications
and they can adjust their height and position to provide robust channels with short-
range line-of-sight links [1]. Therefore, UAV-aided wireless communication is a promising
solution to provide temporary connections to devices without infrastructure coverage (e.g.,
due to severe shadowing in urban areas) or after telecommunication infrastructure has
been damaged in natural disasters [1].

UAVs are identified as an important component of future-generation (5G/B5G) wire-
less networks due to their salient attributes (dynamic deployment ability, strong line-
of-sight connection links and additional design degrees of freedom with the controlled
mobility) [2].

In UAV-assisted wireless communications, UAVs are employed to provide wireless
access for terrestrial users.

We distinguish between three use cases [1]:

(1) UAV-aided ubiquitous coverage: UAVs act as aerial base stations to achieve seamless
coverage for a given geographical area. Some related applications are a fast commu-
nication service recovery in disaster scenarios and temporary traffic offloading in
cellular hotspots.
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(2) UAV-aided relaying: UAVs are employed as aerial relays between far-apart terrestrial
users or user groups. Some examples of applications include UAV-enabled cellular
coverage extension and emergency response.

(3) UAV-aided information dissemination and data collection: UAVs are used as aerial access
points (APs) to disseminate (or collect) information to (from) ground nodes. Some
related applications are UAV-aided wireless sensor networks and IoT communications.

The use of UAVs as aerial nodes to provide wireless sensing support has several
advantages compared to ground sensing [3]. UAV-based sensing has a wider field of view
due to the elevated height and reduced signal blockage of UAVs. In addition, UAV mobility
enables to sense hard-to-reach poisonous or hazardous areas. Furthermore, the mobility of
UAVs enables to perform sensing performance optimization by dynamically adjusting the
trajectory of the UAVs.

UAV-based sensing has a wide range of potential applications, such as precision
agriculture, smart logistics, 3D environment map construction, search and rescue, and
military operations. There is a growing interest in the development of UAV-based sensing
applications.

In Ref. [4], a complete framework for the data acquisition from wireless sensor nodes
using a swarm of UAVs is introduced. It covers all the steps from the sensor clustering to
the collision-avoidance strategy. In addition, a hybrid UAV-WSN system that improves the
acquisition of environmental data in large areas has been proposed [5].

UAVs are a popular and cost-effective technology to capture high spatial and temporal
resolution remote sensing (RS) images for a wide range of precision agriculture applica-
tions [6]. UAVs equipped with dual-band crop-growth sensors can achieve high-throughput
acquisition of crop-growth information. IoT and UAV can monitor the incidence of crop
diseases and pests from the ground micro and air macro perspectives, respectively [7]. In
these applications, UAVs collect data from sensor nodes distributed over a large area. It
is required to synchronize the UAV route with the activation period of each sensor node.
The UAV path through all sensor nodes is optimized in Ref. [8] to reduce the flight time
of the UAV and maximize the sensor nodes’ lifetime. In addition, an aerial-based data
collection system based on the integration of IoT, LoRaWAN, and UAVs has been devel-
oped [9]. It consists of three main parts: (a) sensor nodes distributed throughout a farm; (b)
a LoRaWAN-based communication network, which collects data from sensors and conveys
them to the cloud; and (c) a path planning optimization technique for the UAV to collect
data from all sensors.

In IoT communications [10], UAVs have also been proposed to assist the localisation
of terrestrial Internet of Things (IoT) sensors and provide relay services in 6G networks.
A mobile IoT device [11], located at a distant unknown location, has been traced using a
group of UAVs equipped with received signal strength indicator (RSSI) sensors. In smart
logistics, a UAV-based system aimed at automating inventory tasks has been designed
and evaluated [12]. It is able to keep the traceability of industrial items attached to Radio-
Frequency IDentification (RFID) tags.

In search and rescue operations, a real-time human detection and gesture recognition
system based on a UAV with a camera is proposed [13]. The system is able to detect,
track, and count people; it also recognizes human rescue gestures. Yolo3-tiny is used for
human detection and a deep neural network is used for gesture recognition. UAV-assisted
wireless networks can benefit from gigabit data transmissions by using 5G millimeter wave
(mmWave) communications. The millimeter wave frequency band ranges from around
30 GHz to 300 GHz, corresponding to wavelengths from 10 to 1 mm. This key technology
delivers higher data rates due to a higher bandwidth [14].

UAV-enabled mmWave networks offer a lot of potential advantages. On the one
hand, the large available spectrum resources of mmWave communication and flexible
beamforming can meet the requirements of high data rate and flexible coverage for UAVs
serving as base stations (UAV-BSs) in UAV-assisted cellular networks [3]. These networks
consist of a base station (BS) mounted on a flying UAV in the air, and mobile stations (MSs)
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distributed on the ground or at low altitude. High data rate communication links between
the MSs and UAV BS are desirable in typical applications (e.g., to send control commands
and large video monitoring traffic data from many camera sensors) [15]. On the other hand,
the existence of a line-of-sight (LOS) path in the link from a UAV to the ground favors that
mmWave communication obtains a high beamforming gain. However, higher propagation
loss and the use of a large number of antennas in mmWave networks give rise to high
energy consumption and UAVs are constrained by their low-capacity onboard battery.

Energy harvesting (EH) is a viable solution to reduce the energy cost of UAV-enabled
mmWave networks; green energy can be harvested from renewable energy sources (e.g.,
solar, wind, electromagnetic radiations) to power UAVs. Energy-harvesting powered
UAVs can prolong longer their operational duration as well as the wireless connectivity
services they offer [16–18]. However, the random nature of renewable energy makes it
challenging to maintain robust connectivity in UAV-assisted terrestrial cellular networks.
Energy cooperation (also known as energy sharing or energy transfer) has been introduced
in Ref. [19] to alleviate the harvested energy imbalance problem, where a source assists a
relay by transferring a portion of its remaining energy to the relay.

We consider a UAV-assisted mmWave cellular network. Some UAVs will have plenty
of energy because their flight duration is shorter or because they have harvested abundant
energy due to better environmental conditions (e.g., sunshine without clouds). Energy
cooperation allows that these UAVs can send their excessive energy to other UAVs with
reduced energy.

In the literature, several works have investigated energy cooperation in renewable
energy harvesting-enabled cellular networks. In Ref. [20], an adaptive traffic management
and energy cooperation algorithm has been developed to jointly determine the amount of
energy shared between BSs, the user association to BSs, and the sub-channel and power
allocation in BSs. In Ref. [21], an energy-aware power allocation algorithm was developed
in energy cooperation-enabled mmWave cellular networks. It uses renewable energy
harvesting to maximize the network utility while keeping the data and energy queue
lengths at a low level. In Ref. [22], a power allocation strategy is proposed that uses energy
cooperation to maximize the throughput in ultra-dense Internet of Things (IoT) networks.
However, these contributions do not analyze energy cooperation in UAV-assisted cellular
networks.

Several authors proposed using energy transfer in UAV-enabled wireless communi-
cation systems. In Ref. [23], the total energy consumption of a UAV is minimized while
accomplishing the minimal data transmission requests of the users; in the downlink the
UAV transfers wireless energy to charge the users, while in the uplink the users utilize
the harvested energy to transmit data to the UAV. Similarly, in Ref. [24], a downlink
wireless power transfer and an uplink information transfer is proposed for mmWave UAV-
to-ground networks. However, these contributions do not analyze energy cooperation
between UAV-BSs.

In this paper, we propose a power allocation algorithm based on energy harvesting
and energy cooperation to maximize the throughput of a UAV-assisted mmWave cellular
network. This optimal power allocation and energy transfer problem can be regarded as a
discrete-time Markov Decision Process (MDP) [25] with continuous state and action space.
As statistical or complete knowledge about the environment, the real channel state, and the
energy harvesting arrival is not easily observable, traditional model-based methods cannot
be leveraged to tackle with this MDP. Therefore, we adopt multi-agent deep reinforcement
learning (DRL) [26] to solve this problem and propose a multi-UAV power allocation
and energy cooperation algorithm based on the Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [27] method to optimize the policies for UAVs. To the best of our
knowledge this is the first paper that analyses energy cooperation between UAV-BSs in
UAV-assisted mmWave cellular networks and develops a DRL algorithm to maximize
the network throughput. The proposed DRL algorithm can be applied in an emergency
communication system for disaster scenarios. In these scenarios user devices that are out of
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the coverage range from UAVs cannot obtain wireless access. Therefore, it is important that
UAVs increase their wireless coverage and reduce the channel access delay. Since UAVs are
limited by their battery power, energy harvesting and energy cooperation are promising
solutions to satisfy the requirements of an emergency communication system.

The contributions of this paper are summarized as follows:

• We study optimal power allocation strategies for UAV-assisted mmWave cellular
networks when there is channel-state uncertainty and the amount of harvested energy
can be treated as a stochastic process.

• We formulate the renewable energy resource allocation problem for throughput maxi-
mization using multi-agent DRL and propose an MADDPG-based multi-UAV power
allocation algorithm based on energy cooperation to solve this problem.

• Simulation results show that our proposed algorithm outperforms the Random Power
(RP), Maximal Power (MP) and value-based Deep Q-Learning (DQL) algorithms and
achieves a higher average network throughput.

The paper is structured as follows. In Section 2, we analyze our system model. In
Section 3, we state the renewable energy resource allocation problem and formulate it
as an MDP with the objective to maximize the throughput. In Section 4, we introduce
the MADDPG-based multi-UAV power allocation algorithm based on energy cooperation
for solving the MDP. Simulation results are presented in Section 5. Finally, the paper is
concluded in Section 6.

2. System Model

Our network architecture is shown in Figure 1. For clarity, we summarize all the
following notations and their definitions in Table 1. We consider a multi-antenna mmWave
UAV-enabled wireless communication system, where multiple UAV-mounted aerial base
stations (BSs) fly over the region and serve a group of users on the ground. We consider that
each UAV is dedicated to serve a cluster of users with the same requirements. The locations
of the UAV-enabled BSs are modelled as a Poisson point process (PPP) Φj with density λj.
We consider that users are static. We assume that the location of users is modelled as a
Poisson cluster process (PCP) Φi with density λi [28]. We also assume that all UAVs are
elevated at the same altitude Hj � 0.

Figure 1. Network architecture.
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Table 1. List of notations.

Notations Definitions

M Number of UAVs

L Number of user sets

ρ Mean number of buildings per square kilometer

κ Scale parameter

α Fraction of area covered by buildings to the total area

L(t) Path loss

αL LOS path loss exponent

αN NLOS path loss exponent

CL Intercept of the LOS link

CN Intercept of the NLOS link

ĥS Small-scale fading

NL Nakagami fading parameter for LOS link

NN Nakagami fading parameter for NLOS link

Hi,j(t) Channel gain from the j-th UAV BS to a i-th ground user

Gxr Directional antenna gain

G0 Maximum antenna gain

θa
c Azimuth plane

θe
c Elevation plane

Mc Mean lobe gain

mc Side lobe gain

γij(t) Signal-to-interference-plus-noise ratio from UAVj to user i

Pi,j(t) Transmit power selected by UAVj

Pmax Maximum transmission power

Ii,j Interference to UAVj

σ2 Noise power level

N Total number of time slots

τ Te slot duration

Ej Amount of harvested energy for UAVj

Emax Maximum harvested energy

C Battery capacity of each UAVj

Bj Battery state for UAVj

Ri,j(t) Downlink rate of user i

W MmWave transmission bandwidth

U(t) Total throughput

jj′ Energy transferred from UAVj to UAVj’

β Energy transfer efficiency between two UAVs.

S State space

Aj Action space

P State transition function

Rj Reward function
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UAVs are powered by hybrid energy sources. Onboard energy, along with a part of
the harvested energy, is used to maintain the flight while the rest harvested energy is used
to support the communication modules of the UAVs. The imbalance of energy harvesting
between UAVs is compensated through energy cooperation.

The UAVs and user sets are denoted asM = {1, . . . , M} and L = {1, . . . , L}. The
total number of users served by UAVj, j ∈ {1, 2, . . . , M}, can be represented by Lj only
associated with UAVj. For simplicity, the typical user set is associated with the closest
UAV-BS; that is, the UAV that maximizes the average received SNR.

This paper focuses on the design of an optimal power allocation strategy to maximize
the throughput for multi-UAV networks over N time slots. It is assumed that all UAVs
communicate without the assistance of a central controller and have no global knowledge
of wireless channel communication environments. This means that the channel state
information (CSI) between a UAV and the mobile devices of the users is known locally.

2.1. Blockage Model

A major challenge in mmWave communications is the blockage effect [14], namely,
mmWave signals are blocked by physical obstacles in their propagation. We adopt the
building blockage model introduced in Ref. [29], which defines an urban area as a set of
buildings in a square grid. The mean number of buildings per square kilometer is ρ. The
fraction of area covered by buildings to the total area is α. Each building has a height which
is a Rayleigh-distributed random variable with scale parameter κ. The probability of a
UAV having a line-of-sight (LOS) connection to the user i when the horizontal transmission
distance is r is given by

PL(ht, hr, r) =
max(0,d−1)

∏
n=0

(1− exp(−

(
max(ht, hr)− (n+0.5)|ht−hr |

d

)2

2κ2 ) (1)

where ht is the transmitter height, hr is the receiver height, d =
⌊
r
√

ρα
⌋

and b.c is the
floor function. Furthermore, the probability for a non-line-of-sight (NLOS) transmission is
PN(.) =

(
1− PL(.)

)
.

2.2. UAV-to-Ground Channel Model

The path loss law in the UAV network is given by [30]:

L(ht, hr, r)
B
(

PL(ht, hr, r)
)
CL√(

r2 + |ht − hr|2
)αL

+
B
(

PN(ht, hr, r)
)
CN√(

r2 + |ht − hr|2
)αN

(2)

where B(x) is a Bernoulli random variable with parameter x. The parameters αL and αN
are the LOS and NLOS path loss exponents, and CL and CN are the intercepts of the LOS
and NLOS links.

The amplitude of the received UAV-to-ground mmWave signal can be modelled as a
Nakagami-m fading distribution for both the LOS and NLOS propagation conditions at

mmWave frequency bands. Let ĥS. be the small-scale fading term on the l-th link.
∣∣∣ĥS

∣∣∣2 is

a normalized Gamma random variable. ĥL ∼ Γ
(

NL, 1
NL

)
for LOS and ĥN ∼ Γ

(
NN , 1

NN

)
for NLOS, where NL and NN represent the Nakagami fading parameters for the LOS and
NLOS links.

At time slot t, the LOS channel gain from the j-th UAV BS located at xt ∈ R2 to a i-th
ground user located at xr ∈ R2 can be expressed as

Hi,j(ht, hr, xr) = L(ht, hr, xr)Gxr

∣∣∣ĥxr

∣∣∣2 (3)

where Gxr is the directional antenna gain.
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When the transmission has the maximum antenna gain, the channel gain is H0
i,j(ht, hr, xr)

= L(ht, hr, xr)G0

∣∣∣ĥxr

∣∣∣2.

2.3. Directional Beamforming

Beamforming, also known as spatial filtering, concentrates the signal energy over a
narrow beam by means of highly directional signal transmission or reception; this way, the
spectral efficiency is improved [14]. The narrow beams of the mmWave signals allow to
achieve highly directional signals along the desired directions. We assume that NB and
NU antenna arrays are deployed at both the UAV-BSs and the mobile user sets, respectively.
It is required to use efficient alignment policies (beam tracking, beam training, hierarchical
beam codebook design, accurate estimation of the channel, etc.) to align the beams between
transmitter and receiver [14].

We consider that the UAV-BS and user set antennas adopt a sectorized model that
is shown in Figure 2. The antenna array pattern is characterized by four parameters: the
half-power beamwidth in the azimuth plane θa

c , the half-power beamwidth in the elevation
plane θe

c, the mean lobe gain Mc and the side lobe gain mc, where c ∈ {t, r} refers to the
transmitter (UAV-BS) and the receiver (user set), respectively.

Figure 2. Sectorized antenna pattern.

The directivity gain at one receiver located at l from the j-th UAV-BS can be expressed
as follows:

Gl = G(Mt, mt, θa
t , θe

t )G(Mr, mr, θa
r , θe

r) (4)

where G(θa
c , θe

c , Mc, mc) denotes the directional antenna gain.
The transmitter and receiver should adjust their antenna directions towards each other

to achieve the maximum beamforming gain G0 = Mt Mr.

2.4. Signal Model

The UAV-to-ground user pair communication is affected by the interference signals
from the remaining UAVs. Therefore, the received signal-to-interference-plus-noise ratio
(SINR) from UAVj located at xt ∈ R2 to user i at time slot t can be expressed as

γij(t) =
Hi,j(t)Pi,j(t)
Ii,j(t) + σ2 (5)
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where Hi,j(t) denotes the channel gain between UAVj and user i at time slot t, Pi,j(t) is the
transmit power selected by UAVj at time slot t, Ii,j is the interference to UAVj that satisfies
Ii,j(t) = ∑

m∈M, m 6=j
Hi,m(t)Pi,m(t) and σ2 is the noise power level.

3. Problem Formulation

In this section, we investigate the optimal power allocation and energy transfer prob-
lem for throughput maximization in UAV-enabled mmWave networks, which can be
regarded as MDP. Since the real channel state and energy harvesting arrival are not eas-
ily observable, traditional model-based methods are infeasible to tackle with this MDP.
Therefore, we reformulate this problem using multi-agent DRL to make it solvable.

3.1. Throughput Maximization Problem

We introduce the following notation:

• t ∈ {1, 2, . . . , N} is one time slot of a finite horizon of N time slots.
• τ = tn − tn−1, t ∈ {1, 2, . . . , N} is the time slot duration.
• Ej ∈ R is the amount of harvested energy for UAVj at time slot t.
• C is the battery capacity of each UAVj.
• Bj ∈ {0, . . . , C} is the battery state for UAVj at time slot t.
• Pj is the transmission power allocated by UAVj to serve all its users.

The theoretical downlink rate of user i, i ∈ Lj connected to UAVj at time slot t is given
by

Ri,j(t) = Wlog2

(
1 + γi,j(t)

)
(6)

where W is the mm Wave transmission bandwidth.
The total throughput at timeslot t is

U(t) =
M

∑
j=1

Lj

∑
i=1

Ri,j(t) (7)

The current battery capacity of each UAVj stores mainly the renewable energy har-
vested during the current time slot, the energy transferred by other UAVs during the energy
cooperation process, and the remaining energy from the last time slot.

The charging rate of the energy storage is usually less than the energy arrival rate,
because of the limited energy conversion efficiency of the circuits. We consider that the
charging rate and energy arrival rate are expressed as Ej and Êj , respectively. Therefore,
Ej = ηÊj ≥ 0, where 0< η ≤ 1 is the imperfect conversion efficiency. In the rest of the paper,
the energy arrival rate refers to the effective energy arrival rate that is assimilated by the
system, i.e., the charging rate of the storage Ej.

After Ej is harvested at time slot t, it is stored in the battery and is available for
transmission in time slot t + 1. The rechargeable battery is assumed to be ideal, which
means that no energy is lost with energy storing or retrieving. Once the battery is full, the
additional harvested energy is removed.

The battery energy level of UAVj at the time t + 1 is

Bj(t + 1) = min{C, Bj(t) + Ej(t)− τPj(t)−
M

∑
j′=1,j′ 6=j

ε jj′(t) +
M

∑
j′=1,j′ 6=j

βε j′ j(t)} (8)

where ε jj′ denotes the energy transferred from UAVj to UAVj’, ε j′ j denotes the energy
transferred from UAVj’ to UAVj and β ∈ [0, 1] is the energy transfer efficiency between
two UAVs.

The problem can be formulated as follows:
P1. Throughput optimization problem
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Find: Pi,j(t)
Max:

∑
t∈N

U(t) (9)

Subject to:
0 ≤ Ej(t) ≤ Emax(t) (10)

0 ≤ τPj(t) ≤ Bj(t + 1) (11)

Pj(t) =
Lj

∑
i=1

Pi,j(t) (12)

0 ≤
M

∑
j′=1,j′ 6=j

ε jj′(t) ≤ min{C, Bj(t) + Ej(t)} (13)

0 ≤
M

∑
j=1,j 6=j′

ε j′ j(t) ≤ min{C, Bj′(t) + Ej′(t)} (14)

The objective function of problem P1 aims at finding the best values of Pi,j(t) that
maximizes the throughput. We observe that P1 is a non-linear optimization problem.

Constraint (10) limits the harvested energy. Constraint (11) determines that the total
energy consumed by each UAV should not exceed its battery level. Constraint (12) refers to
the total allocated power by UAVj to serve all its users at time t. Since the energy storage at
each UAV is limited, Constraint (13) expresses that the total energy transferred from UAVj
to other UAVs should not exceed the current battery energy level. The same applies to
Constraint (14) for the total transferred energy transferred from UAVj’ to other UAVs.

The optimization problem may be solved only if the complete information about
energy harvesting arrival and channel state information (CSI) is known. RL algorithms can
achieve near-optimal performance even without prior knowledge about the CSI, the user
arrival, the energy arrival, etc. [31]. In what follows, we analyze this problem under the
MDP framework and reformulate it by adopting multi-agent RL.

3.2. Multi-Agent RL Formulation

The proposed problem can be considered an MDP. Therefore, multi-agent RL can be
adopted to solve this problem efficiently.

Each UAV can be regarded as an agent in the proposed system and all the network
settings can be regarded as the environment. UAVs can be characterized by a tuple
〈S ,

{
Aj
}

j∈M, P,
{
Rj
}

j∈ M〉 as follows:

• S denotes the state space including all possible states of UAVs in the system at each time
slot. The state of the j-th UAV, denoted by sj = (γj(t), Rj(t− 1), Ej(t)), is described by
the current SINR of the users served by UAVj, the link’s corresponding downlink rate
Rj(t− 1) at the last time slot and the current harvested energy of UAVj, respectively.

• γj(t) =
{

γ1j(t), γ2j(t), . . . γLj j(t)
}

, ∀j ∈ {1, 2, . . . M} refers to the SINR of the cur-

rent serving users of UAV j. Rj(t− 1) =
{

R1j(t− 1), R2j(t− 1), . . . RLj j(t− 1) }, ∀j ∈
{1, 2, . . . M} refers to the downlink rate of the current serving users of UAV j.

• Aj, j ∈ M denotes the action space consisting on all the available actions of j-th UAV
at each time slot. The action of the j-th UAV, denoted by aj, is defined as aj =

(
Pj
)
.

This means that each UAV selects the power allocated to serve its users. At state sj,
the available action set of the j-th UAV is expressed as Aj = A

(
sj
)
.

• P : SM ×
M
∏
j=1
Aj → ∏(S) is the state transition function, which maps the state spaces

and the action spaces of all UAVs in the current time slot to their state spaces in the
next time slot.



Sensors 2022, 22, 270 10 of 19

• Rj, j ∈ M is the reward function of the j-th UAV, which maps the state spaces and the
action spaces of the UAV in the current time slot to its expected reward. The reward of
the j-th UAV, denoted by rj, is defined as rj = U(t).

Each UAV is motivated to maximize the throughput by making decisions on power
allocation. In our system, the policy of a UAV is defined as a mapping from its state space
to its action space, denoted by π. At the beginning of each time slot the j-th UAV observes
the state of all UAVs, s =

{
sj
}

, from state space SM, and takes an action aj based on its
policy πj. Actually, a UAV cannot know the states of other UAVs by itself. However, before
making decision in a cycle, the UAV can observe the states of other UAVs by sending a
beacon. After making the decision, the UAV will keep its decision unchanged till the end
of the current cycle. The policy of the j-th UAV can be defined as aj = πj(s), where s is
the state of all UAVs in the system and aj is the action of the j-th UAV. After that, the UAV
receives a reward rj and then observes the next state s′, namely, the states of all UAVs at
the beginning of the next time slot. Therefore, the throughput maximization problem can
be transformed into maximizing the total accumulated rewards of all UAVs in the system
by optimizing their policies; that is,

P2. Maximization of the total accumulated rewards
Max:

∑
t∈N

rj (15)

4. Proposed Multi-Agent Reinforcement Learning Algorithm

Our target is to design an efficient algorithm for power allocation and energy transfer
for UAVs that maximizes the throughput. Existing approaches such as dynamic program-
ming is not suitable for such challenging tasks. Therefore, we adopt an RL algorithm to cope
with the problem (P2). DRL has a better performance on tasks that have a sophisticated
state space and time-varying environment than traditional reinforcement learning. There
are different kinds of DRL that could deal with different situations, e.g., Deep Q-Learning
(DQL) could work well with a limited action space and deep deterministic policy gradient
(DDPG [32]) has a remarkable performance with continued action space. There are two
ways to apply the DDPG algorithm in our proposed scenario. The first solution would be
to have a global DDPG agent that outputs all UAVs’ actions and there is only one reward
function in this centralized fully observable case. However, if we consider one action
(transmission power) with an infinite action space for each UAV, a global agent would have
to cope with an exponential number of actions, which would become a problem. Another
solution is to apply DDPG on each UAV; in this case, we would have multiple DDPG
agents that output actions for each UAV. However, this solution is inefficient compared
to MADDPG [27] because at every time slot each UAV agent will be trying to learn to
predict the actions of the other UAVs while also taking its own actions. On the other hand,
MADDPG is the state-of-the art solution for multi-agent DRL. It employs a centralized critic
and decentralized actors. Actors can use the estimated policies of other agents for learning.
This way, agents are supplied with information about the other UAVs’ observations and
potential actions, transforming an unpredictable environment into a predictable one. This
additional information is used to simplify the training, as long as it is not used at the
test time (centralized training with decentralized execution). In this paper, we propose a
MADDPG-based multi-UAV design algorithm for power allocation and energy transfer
to optimize multiple UAVs’ policies. Afterwards, we introduce the training process of the
proposed algorithm.

4.1. Algorithm Design

MADDPG is an actor-critic algorithm [33] designed for multi-agent environments.
Actors are responsible for learning policies and critics evaluate the actors’ action choices.

MADDPG adopts a strategy based on centralized training and distributed execution.
Each UAV works as an agent and has an actor network θ

µ
j ∈

{
θ

µ
1 , . . . , θ

µ
M

}
, which means
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that each agent j takes continuous policies µj with regard to parameters θ
µ
j . Each agent also

has a critic network θQ
j ∈

{
θQ

1 , . . . , θQ
M

}
. The critics are fed with information about the

global state S and actions A of all agents. They are aware of the actions of all agents and
output a Q value that describes how good joint actionA is on state S . Target networks serve
as stable targets for learning. Each agent has an actor target network θ

µ
j
′ ∈
{

θ
µ
1
′
, . . . , θ

µ
M
′}

and a critic target network θQ
j
′
∈
{

θQ
1
′
, . . . , θQ

M
′}

.
The loss function of the critic network is calculated by

L
(

θQ
j

)
= Est∼D [ (Qj(st, at

∣∣∣θQ
j )− yt

j)
2
] (16)

where D is the replay buffer that stores historical experience. yt
j is defined as

yt
j = rt

j + ˘Q′j
(

st+1, at+1
j
′
∣∣∣θQ

j
′
)∣∣∣

at+1
j
′
=µ′j(s

t+1
j )

(17)

The gradient of the expected reward for agent j with deterministic policies µj is given
by

∇Θµ
j

J(Θµ
j ) = Est∼D [∇at

j
Qj

(
st, at

j

)
∇

θ
µ
j
at

j |at
j=µj(st

j)
] (18)

The MADDPG algorithm is shown as Algorithm 1.

Algorithm 1: MADDPG-based multi-UAV power allocation algorithm based on energy
cooperation

Input: The structures of the actor network, critic network, and their target networks; Number of
episodes
Output: Policy πj;
1: Initialize the replay memoryRM with size X.

2: Initialize critics Qj(st, at
∣∣∣θQ

j

)
and actors µj(sj

∣∣∣ θ
µ
j ) with random weights θQ

j and θ
µ
j
′

Initialize target networks with random weights θQ
j
′

and θ
µ
j
′

3: Receive initial state st
j ;

4: for nepi = 1 : Nepi do
5: for t = 1 : N do
6: Each agent selects an action at

j =µj(st
j

∣∣∣ θ
µ
j )+ vj, where vj is the exploration of the action.

7: Receive reward rt
j and observe next state st+1

j

8: Store (st
j , at

j , rt
j , st+1

j ) in the replay memoryRM
9: ifRM is full do
10: Sample a batch of random samples ((st

j , at
j , rt

j , st+1
j ) fromRM.

11: Set with (17).
12: Update the actor of the estimated network θ

µ
j with (18).

13: Update the critic of the estimated network θQ
j with (16).

Update the target network parameters with θQ
j
′
← ξθQ

j + (1− ξ)θQ
j
′

, θ
µ
j
′ ← ξθ

µ
j + (1− ξ)θ

µ
j
′

14: end for
15: end for
16: Return θ

µ
j .

17: Choose optimal action at
j∗ =µj(st

j

∣∣∣ θ
µ
j ) at time t.

4.2. Complexity Analysis

The computation complexity and the space complexity for the proposed MADDPG
algorithm can be estimated by the replay memory and the neural networks’ architecture.
In MADDPG, the training network of each agent consists of two sets of actor networks and
two sets of critic networks. The time complexity (computations) is given with regard to
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the floating-point operations per second (FLOPS). The neural networks are fully connected
layer networks. For dot products of a P vector and a P×Q matrix, the FLOPS is (2P− 1)Q
because for every column in matrix we need to multiply P times and add (P− 1) times. It
is also necessary to derive the computations of the activation layers. In this case addition,
subtraction, multiplication, division, exponentiation, square root, etc., count as a single
FLOP. Therefore, the computations are Q with Q inputs for ReLU layers, 4×Q for sigmoid
layers and 6×Q for tanh layers.

We consider that ua,j is the unit number in the j-th layer of the actor, and uc,j the
number of neurons in the k-th layer of the critic. The number of layers for the actor and
critic networks are J and K, respectively.

Therefore, the time complexity of the training is:

vactui + 2
J−1

∑
j=0

ua,jua,j+1 + 2
K−1

∑
k=0

uc,kuc,k+1 = O

(
J−1

∑
j=0

ua,jua,j+1 +
K−1

∑
k=0

uc,kuc,k+1

)
(19)

where ui means the unit number in the i-th layer and vact means the corresponding param-
eters determined by the type of the activation layer.

Space is needed to store the learning transition. The memory replay in MADDPG
occupies some space to store the state sets; therefore, the space complexity is N. For a fully
connected layer in both the actor and the critic network, there is a P×Q matrix and a Q
bias vector. The memory for a fully connected layer is (P + 1)Q. The space complexity of
the neural networks is given by

2
J−1

∑
j=0

ua,jua,j+1 + 2
K−1

∑
k=0

uc,kuc,k+1 + vactui + N = O

(
J−1

∑
j=0

ua,jua,j+1 +
K−1

∑
k=0

uc,kuc,k+1

)
+ O(N) (20)

5. Simulation Results

In this section, we present the simulation results of the multi-UAV power allocation
and energy transfer algorithm. The simulation parameters are given in Table 2. We assume
that the mmWave network is operated at 28 GHz. We set each actor or critic network as a
four-layer neural network with two hidden layers, in which the number of neurons in the
two hidden layers are 64 and 128, respectively. The activation function for the hidden layers
is rectified linear unit (ReLU) f (x) = max(o, x). The Adam algorithm is adopted as the
optimizer and the learning rate is set as exponentially decayed to improve the performance
of the training.

Next, we compare the proposed algorithm MADDPG with the Random Power (RP),
Maximal Power (MP), Multi-Armed Bandit (MAB) and value-based Deep Q-Learning
(DQL) algorithms. Upper confidence bound (UCB) is used to solve the MAB problem. RP
and MP are two classical algorithms, whereas MADDPG, DQL and MAB are RL-based
algorithms. Maximal Power (MP) consumes as much energy as possible in each time slot
to improve its immediate throughput regardless of the future and the performance of the
other UAVs. Random Power (RP) only consumes a part of the energy chosen randomly in
each time slot. The average throughput for the five power allocation schemes is shown in
Figure 3 as a function of the number of UAVs. We observe that the average throughput is
increased with the number of UAVs. MADDPG achieves the highest average throughput
in all testing scenarios and outperforms the other algorithms. The gap between the RP/MP
allocation schemes and the rest of the algorithms is decreased when the number of UAVs
increases.
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Table 2. Simulation parameters.

Parameters Values
Number of UAVs 4

Maximum flying altitude of UAVs 100 m
Number of users 12

Mean number of buildings per square kilometer
is ρ

300/km2

Fraction of area covered by buildings to the total
area α. 0.5

Scale parameter κ 20 m
LOS intercept CL 1.39

NLOS intercept CN 1.39
LOS path loss exponent αL 2

NLOS path loss exponent αN 3
LOS Nakagami fading parameter NL 3

NLOS Nakagami fading parameter NN 2
Available bandwidth W 1 GHz

Noise figure NF 10 dB
Noise power σ2 −170 + 10log10(W) + NF dBm = −70 dBm

Transmission power Pmax (0,20) dBm
Battery capacity C 4000 J

Energy Arrival Emax (0,125) J
Energy transfer efficiency between two UAVs β 0.9

Number of episodes 5000
Number of time slots per episode 500

Batch size 500
Replay memory size 50,000

Learning rate for DQL 10−3

Actor CriticLearning rate for MADDPG
10−4 10−3

Figure 3. Average throughput as a function of the number of UAVs.

The average throughput for the different policies is shown in Figure 4 as a function of
the number of time slots. We can observe that MADDPG always outperforms the other
algorithms. Since MADDPG does not divide the action space into discrete values like DQL,
it can select a better action in each time slot without quantization errors. We notice that
when the number of time slots increases, the average throughput is much larger for the
RL-based algorithms, because they can adjust the transmission power in a smart way. MAB
shows similar but worse behavior than DQL.
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Figure 4. Average throughput as a function of the number of time slots.

The average throughput as a function of the number of users is illustrated in Figure 5
with four UAVs. We observe that the average throughput is increased because more users
are served. MADDPG improves the average throughput compared to the other approaches.
It is 13.6% higher than DQL, 22.53% higher than MAB, 46.24% higher than RP and 49.56%
higher than RP for 24 users, which proves the effectiveness of the proposed approach.

Figure 5. Average throughput as a function of the number of users with 4 UAVs.

The energy transfer efficiency between two UAVs is shown in Figure 6 as a function of
the number of users with four UAVs for MADDPG. We observe that the energy transfer
efficiency has a high value for a different number of users.
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Figure 6. Energy transfer efficiency as a function of the number of users.

The average throughput for the RL-algorithms is shown in Figure 7 as a function of
the energy arrival Emax. We observe that the average throughput is increased with the
maximum energy harvested Emax. The average throughput for MADDPG is higher than
for DQL and for MAB. Since the amount of collected energy is lower than the size of the
battery capacity the throughput is increased for larger values of Emax.

Figure 7. Average throughput as a function of the energy arrival Emax.

The average throughput for the RL-algorithms is shown in Figure 8 as a function of the
battery capacity C. We observe that the average throughput is increased with the battery
capacity. The average throughput is higher for MADDPG than for DQL and for MAB. We
observe that when the battery capacity is increased the throughput values for the policies
tend to stabilize since the value of Emax limits the system throughput increase.
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Figure 8. Average throughput as a function of the battery capacity C.

The average throughput for the RL-algorithms is shown in Figure 9 as a function of the
energy transfer efficiency between two UAVs β. We observe that the average throughput
is increased with the energy transfer efficiency. The average throughput is higher for
MADDPG than for DQL and for MAB for all the values of β.

Figure 9. Average throughput as a function of the energy transfer efficiency between two UAVs.

The convergence behavior of the reinforcement-based algorithms in terms of average
reward is shown in Figure 10 for a network of three UAVs and 14 users. The convergence be-
havior is around 1400 iterations for MADDPG. For DQL it is shorter (around 600 iterations).
Finally, for MAB the convergence time is larger (around 1100 iterations).
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Figure 10. Convergence behavior for the reinforcement learning protocols.

6. Conclusions

In this paper, the optimal power allocation strategies for UAV-assisted mmWave
cellular networks were analyzed. A power allocation algorithm based on energy harvest-
ing and energy cooperation is proposed to maximize the throughput of a UAV-assisted
mmWave cellular network. Since there is channel-state uncertainty and the amount of
harvested energy can be treated as a stochastic process, we propose an optimal multi-agent
deep reinforcement learning algorithm (DRL) named Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) to solve the renewable energy resource allocation problem
for throughput maximization. The simulation results show that the proposed algorithm
outperforms the Random Power (RP), Maximal Power (MP), Multi-Armed Bandit (MAB)
and value-based Deep Q-Learning (DQL) algorithms in terms of network throughput.
Besides, the RL-based algorithms outperform the traditional RP and MP algorithms and
show improved generalization performance, since they can adjust the transmission power
in a smart way. The average throughput is increased with the number of UAVs, the energy
arrival, the battery capacity and the energy transfer efficiency between two UAVs. When
the battery capacity is increased the throughput values for the RL policies tend to stabilize
since the value of Emax limits the system throughput increase.

MADDPG can be applied to many tasks with discrete or continuous state/action
space and joint optimization problems of multiple variables. It can successfully solve user
scheduling, channel management and power allocation problems in different types of com-
munication networks. The optimization of the locations of UAVs and their trajectories [34]
is an important topic. Therefore, we will further investigate the development of a joint
power allocation and UAV trajectory approach as future work.
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