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Abstract: The COVID-19 Pandemic has punched a devastating blow on the majority of the world’s
population. Millions of people have been infected while hundreds of thousands have died of the
disease throwing many families into mourning and other psychological torments. It has also crippled
the economy of many countries of the world leading to job losses, high inflation, and dwindling Gross
Domestic Product (GDP). The duo of social distancing and contact tracing are the major technological-
based non-pharmaceutical public health intervention strategies adopted for combating the dreaded
disease. These technologies have been deployed by different countries around the world to achieve
effective and efficient means of maintaining appropriate distance and tracking the transmission
pattern of the diseases or identifying those at high risk of infecting others. This paper aims to
synthesize the research efforts on contact tracing and social distancing to minimize the spread of
COVID-19. The paper critically and comprehensively reviews contact tracing technologies, protocols,
and mobile applications (apps) that were recently developed and deployed against the coronavirus
disease. Furthermore, the paper discusses social distancing technologies, appropriate methods to
maintain distances, regulations, isolation/quarantine, and interaction strategies. In addition, the
paper highlights different security/privacy vulnerabilities identified in contact tracing and social
distancing technologies and solutions against these vulnerabilities. We also x-rayed the strengths
and weaknesses of the various technologies concerning their application in contact tracing and social
distancing. Finally, the paper proposed insightful recommendations and open research directions in
contact tracing and social distancing that could assist researchers, developers, and governments in
implementing new technological methods to combat the menace of COVID-19.

Keywords: COVID-19; sensor technologies; contact tracing; social distancing; internet of things;
artificial intelligence; review

1. Introduction

Since 30 January 2020, when the World Health Organization (WHO) announced the
outbreak of COVID-19, the global stories have been pathetic. People have been dying in
pitiable numbers, pushing their dependents into misery, untold hardship, and unexplain-
able difficulties. Furthermore, businesses have been shut down and human movements
are restricted as a measure to curtail the disease. The impact has been devastating on the
economy as many organizations have had their businesses closed or partially in operation.
Consequently, the outbreak has led to staff retrenchments, loss of revenues, and dwindling
gross domestic products (GDP) in most economies around the world. It is known that
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infectious disease outbreaks such as the COVID-19 are usually characterized by a lack
of immediate vaccines and cures. As a result, infection control measures such as contact
tracing and social distancing are usually employed by health authorities pending when
vaccines and permanent cures of such diseases are found [1].

Contact tracing is a public health intervention scheme aimed at timely identification,
isolation, and diagnosis of people who are at the risk of contracting infectious diseases as a
result of their close interactions with already infected persons. This scheme is necessary
because some infected persons are healthy carriers who may not go down with the signs
and symptoms of the disease but keep infecting others when they interact with them. The
overall purpose of the contact tracing scheme is to truncate the infection path to halt the
further spread of the disease [2]. Conventionally, contact tracing is performed through
manual methods or technological-based methods. The manual method is performed by
interviewing infected persons to get the names, addresses, and other details of people who
came in close contact with them within a specified period believed to be the incubation
period of the infectious disease. The named contacts are thereafter invited for diagnosis
and interviews repeating the cycle until the infectious disease is fully contained. However,
the use of manual approaches for contacting tracing has been observed to be tedious,
expensive, and time-consuming. Moreover, the effectiveness of the manual approach
cannot be guaranteed since the infected persons have to solely rely on the recollection
ability of the fallible human memory for contact data collection. Another limiting factor
is that the privacy of both the infected persons and their contacts cannot be protected in
the manual scheme [3,4]. Due to the inefficiency of manual-based contact tracing methods,
technological-based approaches are widely adopted to minimize the spread of coronavirus
disease. The technological approaches of contact processing are the main focus of this paper.

On the other hand, social distancing is a public health intervention scheme aimed at
minimizing close human interactions and physical contact that may lead to the spread of
deadly diseases [5]. For effective social distancing against COVID-19, it has been recom-
mended that people should keep a minimum of two meters distance from each other [6].
Traditionally, social distancing is implemented using policy statements by government
authorities such as the closure of public places, placing a ban on public gatherings and
events such as funerals, wedding ceremonies, etc. [7]. However, these state-of-the-art
approaches not only cause discomfort to the people but also negatively impact their social
life and source of livelihood [8–10].

In this context, studies have proposed various technology-based methods to automati-
cally detect individuals that might have come in contact with COVID-19 infected persons
or are at risk of spreading the disease. Similarly, government agencies and institutions
have proposed different social distancing mechanisms using technologies to minimize
the spread of COVID-19 by reducing the frequency of closeness [2,5]. These technologies
have played vital roles in both contact tracing and social distancing enforcement. Some of
these technologies include smartphone devices and their embedded technologies such as
Bluetooth low energy, Wi-Fi, RFID, and magnetometer sensors. Others include Blockchain,
artificial intelligence, and computer vision methods [11,12]. This insightful paper discusses
contact tracing and social distancing technologies against COVID-19.

As summarized in the taxonomy shown in Figure 1, the paper highlights contact
tracing technologies, recent protocols, apps, and security/vulnerabilities inherent in re-
cently proposed literature. In addition, we outlined the strengths and weaknesses of each
protocol to enable the research community to make an informed decision while developing
contact tracing intervention strategies against COVID-19. Moreover, the paper provides
an all-inclusive survey of social distancing, distance measures, automated crowd control,
face mask detection, isolation/quarantine, and how to maintain social interaction in the
COVID-19 period through virtual means.
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Most of the existing literature on non-pharmaceutical intervention strategies against
coronavirus disease separately focused on contact tracing and social distancing. Some
studies have either focused on contact tracing [12–14] or social distancing techniques [11,15]
to minimize the spread of coronavirus. To the best of our knowledge, none of the existing
studies have comprehensively surveyed the feasibility of deploying both contact tracing
and social distancing approaches as non-pharmaceutical strategies against COVID-19.
Table 1 highlights some of the existing studies and their limitations. From this table,
we can conclude that most of the existing reviews have failed to take into consideration
recent technologies such as artificial intelligence, cellular networks, Blockchain, proximity
estimation methods, etc. in developing efficient contact tracing and social distancing
apps. Additionally, the strengths and weaknesses of various protocols recently developed
by different researchers were not highlighted in previous studies. These strengths and
weaknesses would aid developers to make informed choices on the protocols to adopt.
Moreover, from available studies in literature, there are no comprehensive surveys or
reviews that provide important discussions on the intersection of contact tracing and social
distancing technologies, protocols, apps, and security/vulnerability as non-pharmaceutical
intervention strategies to minimize the spread of the COVID-19 pandemic. The main goal
of this paper is to guide technology-based intervention strategy researchers and developers
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in contact tracing and social distancing on the major technologies, protocols, methods, and
apps, and future research prospects that require further focus.

Table 1. Summary of recent literature on technology-based and non-pharmaceutical interventions
against COVID-19.

References The Objective of
the Study Limitations Significance of Our Study Research Gap

[11]

Review of various
emerging technologies that

contribute to the
development of
social distancing

Did not discuss the
various protocols and

apps deployed for
social distancing

Provides a detailed review
of apps, protocols, and
technologies for both
contact tracing and

social distancing

Contact tracing
schemes were not

included in the study

[12]

To perform a systematic
review on COVID-19

mobile apps for
contact tracing

Focuses on Apps without
discussing the

technologies and
the protocols

Provides a detailed review
of apps, protocols,
and technologies

Social distancing
schemes were not

included in the study

[13]

To analyze existing contact
tracing protocols, apps,

and underlying
technologies to identify

their strength
and weakness

Did not perform in-debt
analysis of the various

proposed protocols

Provides a detailed review
of apps, protocols,
and technologies

Social distancing
schemes were not

included in the study

[14]
A comprehensive survey of

contact tracing
apps attributes

focused on the
architecture of contact
tracing apps and the

respective cyber security
vulnerabilities

Provides a detailed review
of apps, protocols, and
technologies for both

contact tracing and social
distancing systems

Social distancing
schemes were not

included in the study

[16]
To perform qualitative

synthesis of digital
contact tracing Systems

The focus is on the
impact of adoption rate,
proximity accuracy, and

public’s trust on the
effectiveness of digital
contact tracing systems

Provides a detailed review
of the various apps,

protocols, and technologies

This study failed to
incorporate social

distancing schemes and
contact tracing

protocols in the review

[17]
To conduct a review of
global deployment of
contact tracing apps

The emphasis on
Bluetooth based apps

Offers a comprehensive
study of the various apps

developed using
different technologies

This study is limited to
only single technology
for contact tracing. No

social distancing
schemes in the review

[18]

To study the combination
of Blockchain and

advanced cryptography for
security and privacy in the

fight against COVID-19

Only analyzed recent
Blockchain-based

solutions for contact
tracing and the
management of

immune/vaccine
certifications

Not limited to Blockchain
but Provides a detailed

review of apps, protocols,
and technologies for both
contact tracing and social

Focused on Blockchain
for contact tracing. No

Social distancing
schemes

[19]

Examines the extent to
which design and
implementation

considerations for contact
tracing apps are detailed in

the available literature

Focused on design and
implementation

considerations of contact
tracing systems

Provides a detailed review
of apps, protocols, and
technologies for both

contact tracing and social

Social distancing
schemes were not

included in the study

[20]

To review big data
analytics, artificial
intelligence, and

nature-inspired computing
models for accurate

detection of COVID-19
pandemic cases and

contact tracing

Limited to artificial
intelligence,

nature-inspired
computing, and big data

analytic for epidemic
detection and

contact gracing

Provides a balanced study
of the various technologies

including artificial
intelligence and computer
vision methods for contact

tracing and
social distancing

Social distancing
schemes were not

included in the study
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Table 1. Cont.

References The Objective of
the Study Limitations Significance of Our Study Research Gap

[21] To review digital contact
tracing apps

This study did not
consider proximity

accuracy in the review

Identified proximity
accuracy issues in contact

tracing systems

Social distancing
schemes were not

included in the study

[22]

To analyze existing contact
tracing apps and examine

their underlying
technologies, public
reception, and data

management procedure

This study did not
consider proximity

accuracy in the review

Identified proximity
accuracy issues in contact

tracing systems

Social distancing
schemes were not

included in the study

[23]

To survey existing
contact-tracing apps and
organize them based on
underlying technologies

Failed to consider the
protocols employed in

the surveyed apps

Provides a detailed review
of apps, protocols, and
technologies for both
contact tracing and

social distancing

Social distancing
schemes were not

included in the study

[24]

To analyze the
opportunities and

challenges of integrating
emerging technologies into

contact tracing systems

Focuses on emerging
technologies without

discussing the apps and
the protocols

Provides a detailed review
of apps, protocols,
and technologies

Social distancing
schemes were not

included in the study

[25]

To provide the research
community with new

insights into the ways AI
and big data can help in

the fight against COVID-19

Did not specifically relate
the study to contact

tracing and
social distancing

Provides a detailed review
of apps, protocols, and
technologies for both
contact tracing and

social distancing

Both contact tracing
and social distancing

schemes were not
included in the study

[26]

To provide a review and
discussion on the

contribution of AI in the
fight against COVID-19

Did not specifically relate
the study to contact

tracing and
social distancing

Provides a detailed review
of apps, protocols, and
technologies for both
contact tracing and

social distancing

Both contact tracing
and social distancing

schemes were not
included in the study

Contributions of the Study

This study provides an extensive review of contact tracing and social distancing tech-
nologies as non-pharmaceutical interventions against the COVID-19 pandemic. In summary,
the contributions of this review to the current body of knowledge include:

• In-depth exploration of recent contact tracing and social distancing schemes highlight-
ing their various strengths and weaknesses.

• More so, the study provides a comprehensive review of the technologies, protocols,
apps, proximity estimation techniques, security and privacy issues in contact tracing.

• Furthermore, the study performs an in-debt analysis of the approaches, proximity
estimation techniques, and security and privacy issues in social distancing.

• Finally, the study identifies and proposes some open research directions.

The remainder of the paper is organized as follows: Section 2 explains the various
technologies employed in contact tracing highlighting the protocols and apps developed
using each of the technologies. Section 3 presents various technologies and approaches for
social distancing. In Section 4, the findings of the review are extensively discussed while in
Section 5, open research directions were identified and proposed. The review is concluded
in Section 6.

2. Technology-Based Contact Tracing Methods against COVID-19

Different technologies are being employed or proposed for deployment in contact
tracing solutions against infectious diseases. Those technologies include proximity sensing
technologies such as Bluetooth, Global Positioning System (GPS), and Artificial Intelligence
(AI), and other technologies that possess high potential for implementation in contact
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tracing frameworks include Wi-Fi, Smartphone Magnetometer Traces, Cellular Networks,
Near Field Communication (NFC), Radio Frequency Identifier (RFID), Blockchain, and
Ultra-Wide Band. Many protocols have been proposed and apps developed leveraging
these technologies [27]. In this subsection, these technologies are discussed highlighting
their various features, protocols, and apps already deployed.

2.1. Bluetooth-Based Protocols and Apps for Contact Tracing

Bluetooth is a short-range communication protocol developed by a consortium of
companies including Ericsson, IBM, Nokia, Toshiba, and many others who came together
under the umbrella of Bluetooth special interest group (SIG) [28]. A newer version called
Bluetooth low energy (BLE) was designed specifically for low energy applications such as
in the internet of things (IoT) [29]. Consequently, BLEs have gained special attention in the
development of contact tracing systems against COVID-19.

We, therefore, present protocols and applications developed using Bluetooth technol-
ogy as shown in Figure 2. For clarity purposes, the classification of contact tracing protocols
and apps are categorized into the three major data management methods: centralized,
decentralized, and hybrid architectures [30].
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2.1.1. Centralized Architecture

The centralized protocol implies that user devices depend on a central server to
perform key functions including computation of anonymous identifiers, data processing
(reconstruction, encryption, and decryption), risk analysis, and sending of alerts to risky
users informing them of their risk level. Under this architecture, users’ apps exchange
anonymous Bluetooth identifiers (encrypted or/and randomized) and store them locally.
When a user is infected, with the permission of a health authority, the stored data are up-
loaded to the central server. The central server thereafter performs risk-level computations
and notifies risky users of their likely exposure to the disease. A schematic representa-
tion of the functionality of centralized protocols is shown in Figure 3. In this sub-section,
we discuss the various Bluetooth-based protocols and apps developed leveraging on the
centralized architectures.
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Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT): A foremost pro-
moter of the centralized data management architecture in contact tracing systems is the
Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT), an international team
consisting of more than 130 members across several European countries. The team is
composed of a consortium of academics, technological experts, and business stakeholders
whose aim is to provide a framework that will guide developers and countries in deploy-
ing effective and privacy-oriented contact tracing systems against the coronavirus. The
framework is developed in full compliance with the European General Data Protection
Regulation (GDPR) which implies that no personal or location information will be shared
in the framework. Furthermore, the framework source code was made open and free [31].
In the PEPP-PT framework, the system assigns each user device a permanent Identification
number (id) through which it creates pseudonyms broadcasted as Bluetooth IDs. The Blue-
tooth ids being broadcasted and sensed by other user devices are randomized pseudonyms
to provide user privacy. Sensed data is stored in the user device’s local memory. Upon
infection of a user, the infected user voluntarily uploads the stored data to a central server
for risk computation and notification of the close contacts of infected persons.

However, PEPP-PT being a centralized framework suffers a single point of failure.
This implies that any compromise or damage to the server will render the entire system
useless. The PEPP-PT framework has also been accused of lack of transparency which led
to the resignation of some of the team members [32].

Blue Trace: The BlueTrace protocol [33] is powered by the Singaporean Government
Digital Services. In this protocol, users’ phone numbers are mapped to the randomized
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temporary identities (TempIDs) generated for every subscriber. During encounters, user
devices exchange TempIDs and store them locally in their local memories. If tested positive,
the user uploads its contact details to a Health Authority server where the messages are
decrypted and risky users contacted through their phone numbers. Figure 4 shows a
schematic diagram of how the BlueTrace protocol works. The major stand-out area of this
protocol is that the TempIDs are generated centrally and mapped to device phone numbers
making it possible for the risky individuals to be identified and contacted without difficulty.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 65 
 

 

Blue Trace: The BlueTrace protocol [33] is powered by the Singaporean Government 

Digital Services. In this protocol, users’ phone numbers are mapped to the randomized 

temporary identities (TempIDs) generated for every subscriber. During encounters, user 

devices exchange TempIDs and store them locally in their local memories. If tested posi-

tive, the user uploads its contact details to a Health Authority server where the messages 

are decrypted and risky users contacted through their phone numbers. Figure 4 shows a 

schematic diagram of how the BlueTrace protocol works. The major stand-out area of this 

protocol is that the TempIDs are generated centrally and mapped to device phone num-

bers making it possible for the risky individuals to be identified and contacted without 

difficulty. 

 

Figure 4. BlueTrace Protocol. 

However, as applicable to every centralized system, the protocol suffers a single 

point of failure. This implies that any compromise or damage to the server where the 

TempIDs are stored will render the entire system useless. Furthermore, since the temps 

are mapped to devices’ phone numbers, an adversary may attack the system by sending 

fictitious messages to the phone numbers, hence creating panics capable of discrediting 

the system. 

Robust and Privacy-Preserving Proximity Tracing Protocol (ROBERT): The Robust 

and Privacy-Preserving Proximity Tracing Protocol (ROBERT) [34] is powered by Inria 

and Fraunhofer which are French and German companies, respectively, and are members 

of the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) project. The protocol 

adopts a centralized data structure in its privacy-preserving contact tracing solution. To en-

roll in the system, users download the apps and install them on their mobile devices. For 

every subscriber, unlike in BlueTrace, a permanent ID is assigned by the server with which 

Figure 4. BlueTrace Protocol.

However, as applicable to every centralized system, the protocol suffers a single point
of failure. This implies that any compromise or damage to the server where the TempIDs
are stored will render the entire system useless. Furthermore, since the temps are mapped
to devices’ phone numbers, an adversary may attack the system by sending fictitious
messages to the phone numbers, hence creating panics capable of discrediting the system.

Robust and Privacy-Preserving Proximity Tracing Protocol (ROBERT): The Robust
and Privacy-Preserving Proximity Tracing Protocol (ROBERT) [34] is powered by Inria
and Fraunhofer which are French and German companies, respectively, and are members
of the Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) project. The proto-
col adopts a centralized data structure in its privacy-preserving contact tracing solution.
To enroll in the system, users download the apps and install them on their mobile devices.
For every subscriber, unlike in BlueTrace, a permanent ID is assigned by the server with
which it identifies the user. Each device creates some ephemeral Bluetooth IDs which are
functions of the assigned permanent ID. During daily interactions with other users, the
ephemeral Bluetooth IDs are exchanged and stored in the mobile devices of the users. If a
user is diagnosed with coronavirus, the stored ephemeral Bluetooth IDs are voluntarily
uploaded to the central server where the risk computation is performed and risky users
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notified. Similarly, this protocol also suffers a single point of failure since any compromise
or damage to the central server implies that the entire system has failed.

2.1.2. Decentralized Protocols

Moreover, in the decentralized protocols, user devices generate random ephemeral
identifiers (EphID), beacons, or private seeds through which random anonymous keys
(pseudonyms) are computed anonymous BLE IDs and stored locally in user devices. The
EphIDs, beacon, or Pseudonyms are broadcasted as Bluetooth identifiers for nearby user
devices to interact with and store as IDs of close contacts. Where necessary, the stored data
is forwarded to a central system that carries out the decryption of the anonymous BLE IDs
and provides the platform for other users to ascertain their risk level. When a user tests
positive to the disease, they upload their stored EphIDs, beacon, or pseudonyms to a server
which reconstructs and stores the pseudonyms in a format where user devices can query to
ascertain their status or download them to their local devices for matching to confirm if the
user is at risk or not. Any user whose device ID matches the published ones implied that
he has encountered an infected person, hence, has a high chance of being infected. Figure 5
shows a pictorial representation of decentralized protocol.
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Some of the protocols based on decentralized data management architecture include
Apple-Google, DP-3T, PACT, and TCN. In real-life apps development, these protocols have
been adopted by many countries around the world including Switzerland, Germany, and
the United Kingdom.

Apple-Google Protocol: At the peak of the ravaging coronavirus pandemic, the two
global technology giants—Apple and Google agreed to combine their efforts to solve the
privacy-related challenges inherent in existing contact tracing protocols [35]. Being that
Apple and Google are, respectively, the owners of the two major mobile phone operating
systems, iOS and Android, their emergence in the scene of contact tracing brought about a
major positive turnaround in the fight against COVID-19. The key feature of their protocol
is the elimination of a central server that performs data storage, risk computation, and
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notification of risky users. Their protocol advocates that Bluetooth identifier beacon keys of
devices that have had close contact with a user should be stored locally in an anonymous
format. For any user that is diagnosed positive, the stored anonymous identifier beacon
keys will be uploaded to a cloud server. To verify the status of every subscriber, there
should be a periodic download from the cloud device which stores all the identifier beacon
keys of users who tested positive of the disease. A key matching feature is integrated with
the user app which compares the downloaded identifier beacon keys with those locally
stored in the user device. A successful match of the keys implies that the user has come in
contact with an infected patient, hence should self-isolate or seek medical advice.

Distributed Privacy-Preserving Proximity Tracing (DP-3T): DP-3T is powered by
a group of international professionals, medical, technological, and legal experts whose
common objective is to achieve user privacy preservation in contact tracing. It is more of
a peer-to-peer contact tracing scheme that eliminated the overbearing control of central
servers [36]. In DP-3T as shown in Figure 6, smartphones locally generate and broadcast
ephemeral identifiers (EphID) for a given period called epoch which could vary between
10 min to 24 h before a new EphID is generated. Upon diagnosis of a patient, after due
authorization by the relevant authority, the user uploads their EphIDs to a trusted backend
server. To confirm the status of other users, the protocol is designed in a manner that every
user periodically queries the central server to match the locally stored EphIDs with those
stored in the backend server. A successful match shows that the user has come in contact
with an infected user, hence could be at risk of the infection. There are three versions
of the DP-3T protocol which include low-cost, un-linkable, and hybrid versions of this
protocol. The low-cost version of the protocol computes and stores the EphIDs which
are the hashes of the daily generated seeds [37]. This version disseminates the EphIDs
along with the user seeds. The low-cost version is less bandwidth-demanding but is not
fully free from user traceability attacks. The un-linkable version on the other hand is more
bandwidth-demanding but has more user privacy features. Instead of disseminating the
EphIDs along with the user daily seeds, the un-linkable version displays a hash of the seeds
which is stored in a cuckoo filter. In this version, the user has the redact capability. This
offers the user the flexibility to choose the period or time of the day which he wishes to
display the EphIDs of their contacts. Finally, the hybrid design merged some features of
both the low-cost and the un-linkable versions. In this version, the bandwidth requirement
is lower than as it is in the un-linkable version yet, its privacy feature is higher than that
of the low-cost version. In the hybrid version, a seed is generated for a defined window
period. Upon infection of a user, only relevant seeds are uploaded.

Privacy-Sensitive Protocol and Mechanism for Mobile Contact Tracing (PACT):
This is a decentralized contact tracing protocol proposed by researchers from the Uni-
versity of Washington [38]. The protocol which is closely related to DP-3T was designed in
such a way that user devices generate private seeds through which random anonymous
keys (pseudonyms) are computed and broadcasted as Bluetooth IDs. Each of the devices
hears and records the pseudonyms of other nearby user devices. When a user tests positive
for the disease, they upload their stored pseudonyms which represent the anonymous
IDs of persons who came in close contact with them. A dedicated server reconstructs and
publishes the pseudonyms in a comprehensible format for other users to infer their status
by matching them with their respective pseudonyms. Any user whose device ID matches
the published ones implies that he has encountered an infected person, hence has a high
chance of being infected.

CONTAIN: This Privacy-Oriented Contact Tracing Protocol for Epidemics is similar
to the DP-3T protocol in that a central server displays the details of infected users while
other users confirm their status through the central server. In CONTAIN [39], user devices
periodically beacon encrypted messages containing unique ID, timestamps, and random
numbers that are stored locally. When a user is infected, their encrypted beacons are
forwarded to a central server where they are displayed in an encrypted format. Other users
get the data from the central server to ascertain their status. If users successfully decrypt
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the beacons, it implies they have been in contact with an infected person. Such a user is at
risk, hence, should seek medical advice immediately. There is also another version of the
protocol which is called a random beacon protocol. This is similar to the encrypted version
only that the beacon is not encrypted but randomized. The beacons of an infected user are
made public for other users to compare. If any of the beacons matches with the logs of any
of the users, such a user must have been in close contact with the carrier, hence is at risk.
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Privacy-Preserving COVID-19 Contact Tracing App: A Zero-Knowledge Proof Ap-
proach (PPC): In this protocol, subscribers generate both secrete and public keys and
supply the public keys to the Government website during their daily registration. Health
workers on the other hand acquire additional secret codes from their hospitals through
which they generate group signatures on behalf of their respective hospitals. The contact
encounters are recorded by user devices which acquire and store locally the hash of the
Bluetooth IDs of nearby users’ Bluetooth active devices. Upon the confirmation that a user
is infected, the patient sends the acquired anonymous data to a central health server where
the health authority appends zero-knowledge signature before publishing the pseudo keys
on the bulletin board for users to confirm their status. The users confirm their status by
downloading the anonymous IDs from the bulletin boards to their devices which performs
the decryption of the hashed data. A successful decrypting of any of the anonymous data
implies that they have come in close contact with the infected person [40].

Contact Tracing Application Using a Distributed Hash Table (CAUDHT): The
CAUDHT [41] protocol uses distributed hash tables (DHT) to the encrypted identities of
users, hence sharing the data concerning the disease infections in a secure manner. In
this protocol, an algorithm is created that encrypts the devices’ Bluetooth IDs using both
secrete and public keys. While the secrete keys are kept with the user, the public keys are
broadcasted as the Bluetooth IDs for other devices to store locally. Upon confirmation of
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infection, the user requests a blind signature from a central authority (server) before the
contacts can have access the data in a distributed hash table.

Temporary Contact Number (TCN) Protocol: The Temporary Contact Number Proto-
col (TCN) is powered by experts from Stanford University and the University of Waterloo
who came together to form the COVID-19 Watch team. It is a decentralized privacy-
preserving contact tracing protocol whose source code is available online to the program-
ming community. The protocol adopts Bluetooth low energy (BLE) as its proximity sensor.
As users interact during their normal activities, their devices exchange their temporary
contact number (TCN) which is a 128-bit number generated as a seed value of (a function)
of the user BLE identity. The exchanged TCN is stored on the device’s local memory until a
user gets infected and uploads them to the central server. Other users download and match
the TCN locally on their devices. Only the device whose BLE seed value equals the TCN
will have a successful matching, hence will be notified of the risk of the infection as a result
of their close contact with an infected person [42].

2.1.3. Hybrid Data Management Protocols

Additionally, the hybrid data management architecture balances the features of both
centralized and decentralized protocols. In this approach, some functions are distributed
while part is centralized. For instance, one device (such as a user’s mobile device or a
stand-alone server) generates and manages the anonymous or pseudonyms keys/tokens
while other systems perform risk analysis and notification of risky users as shown in
Figure 7. This feature tries to close possible loopholes that may aid linkage attacks. Some
of the protocols whose designs conform to the hybrid architecture include Contra Corona,
Epione, and Desire protocols.
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Contra Corona: This protocol is aimed at bridging the centralized–decentralized
divide for Stronger Privacy [43]. It is a Bluetooth-based contact tracing mechanism against
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coronavirus where the server services are separated into matching and warning servers,
respectively. Upon infection of a user, the anonymous contact details which were earlier
stored in the user device are uploaded into the matching server. The matching server in
turn performs risk computation using the uploaded data to identify the persons that came
in close contact with the infected person. Once the data matching is completed, the list of
risky contacts is forwarded to the warning server who sends messages notifying them of
their risk level and the necessary actions to take. The key strength of this protocol is that it
tries to block all clues that may contribute to learning who is infected or through who the
infected was transmitted.

Epione: This is a lightweight Contact Tracing with Strong Privacy [44]. The protocol
adopts the use of a pseudorandom generator (PRG) to generate random tokens in vari-
ance with its seed which are saved in the user’s mobile devices. The random tokens are
exchanged when uses are in close contact. Users’ mobile devices also store all exchanged
tokens from close contacts. When some users are diagnosed with the disease, encrypted
PRG seeds (encrypted using the Epione server private key) from each of the infected users
are handed to the health authority who thereafter sends it to the Epione server. The Epione
server obtains the PRG seeds of the diagnosed patients through which it learns their tokens.
For other users to confirm their status, their apps periodically query the Epione server
which compares their tokens with those of infected persons uploaded by health the health
provider. A match is an indication of having been in contact with an infected person.

DESIRE: In desire, the Third Way for a European Exposure [45], user mobile devices
generate and locally save their private encounter tokens (PET) which are functions of their
Bluetooth identifiers. If diagnosed positive to COVID-19, the user voluntarily uploads the
stored PETs to a central server. The central server keeps a database of PETs of an infected
person. Other users confirm their status through their apps which periodically queries the
central server. The central server matches the respective mobile devices’ PETs with the
stored PETs from infected persons. Any successful matching infers that the user has come
in contact with an infected person.

2.1.4. Mobile Applications (Apps) Based on Bluetooth Technology

Various mobile applications have been developed by countries around the world
using the management architecture of Bluetooth low energy for contact tracing. Some
of these apps include Singaporean TraceTogether, Australian CovidSafe, Canadian AB-
Tracetogether, SwissCOVID, German-Warn-App, etc., here, we classified these mobile apps
based on protocol architecture deployed for implementation. These include centralized
and decentralized based mobile apps.

• Centralized Architecture based Mobile Apps

There are some existing national apps developed and deployed in the fight against
COVID-19 which are deployed in line with centralized data management architecture. The
Singaporean TraceTogether, Australian CovidSafe, Canadian ABTraceTogther, and Indian
Aarogya Setu are good examples of the apps developed using the centralized architecture.
These apps are briefly discussed below:

The Singaporean Tracetogether: The Singaporean Tracetogether is a very popular BLE-
based contact tracing app that was among the foremost national interventions in the fight
against Coronavirus. The Tracetogether app was developed by the Singaporean govern-
ment technology agency (GoveTech), and the Singapore Ministry of health underpinning
the centralized data management framework provided by the BlueTrace protocol [33].
OpenTrace which is the Tracetogether source code for both Android and iOS is available
for the open-source community since March 2020. During encounters, users exchange
15 min TempIDs and store them locally in their mobile phone memories for 21 days. A
positive tested user uploads the stored TempIDs to a central health authority server where
the messages are decrypted and risky users contacted through their phone numbers. The
Tracetogether was adjudged by the manufacturers as being fairly secure and privacy-
preserving. This is because the app neither reveals user phone numbers and geolocation



Sensors 2022, 22, 280 14 of 62

nor displays identifiable user details. These strengths initially attracted Singaporean cit-
izens to Tracetogether to the extent that above 500 subscribers downloaded the app in
one day.

However, within a short period, apathy against Tracetogether was observed among
Singaporeans citizens. This occurred because there were some concerns raised against
the application. First, it was alleged that the system compromised user privacy by keep-
ing a record of peoples’ movement and interactions, hence user confidence in the app
crashed. Secondly, it was alleged that the app drains phone batteries thereby making users
uncomfortable [46].

Australian CovidSafe: CovidSafe is another contact tracing app that was developed
leveraging on the centralized framework provided by BlueTrace protocol. It was powered
by the Australian Health Authority and was released in April 2020 following the success
stories of the Singaporean Tracetogether. The CovidSafe source code was released in
May 2020. However, variations exist between the two protocols in the respective lifetimes
of their TempIDs. While Tracetogether adopts the BlueTrace recommended 15 min lifetime
of TempIDs, the CovidSafe resets its TempIDs every 120 min which could widen the replay
attack windows [47]. Similar to the Tracetogether app, the CovidSafe app experienced an
initial mass download of up to two million downloads within a day after release and above
six million in a few weeks. Nevertheless, just like the Singaporean Tracetogether, some
professionals still vigorously criticize the app. For instance, it is alleged that the privacy
of CovidSafe users is not fully guaranteed. One major concern raised is that the company
hosting the CovidSafe application may not be trusted. Many Australians are skeptical
that Amazon Web Services (AWS), an American company may likely show allegiance to
their country by illegally compromising their data if so requested by the United States of
America. Furthermore, despite the number of downloads, the app was officially reported
to have traced only about 200 contacts in the entire Australian nation [46].

Canadian ABTracetogether: The Canadian AB Tracetogether [48] launched in May 2020
was also developed leveraging on the centralized architecture provided by BlueTrace. The
App is owned by Alberta Provincial Government and can be installed both on Android and
iOS mobile phones. The subscription into ABTraceTogether is voluntary and users may
quit at will. Similar to the Tracetogether of Singapore and the CovidSafe of Australia, the
AB Tracetogether app of Canada was fully embraced by the people of Alberta. Within one
week of its deployment, the app recorded 140,000 downloads.

In this protocol, the central server assigns a permanent ID to every device upon
registration. The IDs are encrypted and broadcasted as Bluetooth IDs. During interactions,
each system logs the encrypted version of the Bluetooth IDs sensed from other users’ mobile
phones within a 2 m distance for up to 15 min. When a user is diagnosed with COVID-19,
the stored data is uploaded to a central server through which their close contacts are
identified and informed of their risk level. The central server achieves this by decrypting
the uploaded Bluetooth IDs to decipher the permanent ID through which the user is
identified and contacted. The AB Tracetogether app has been adjudged by experts to be
safe for contact tracing against infectious diseases.

However, the major weakness of the app is that it is prone to a single point of fail-
ure vulnerability just like every other app designed based on a centralized architecture.
Furthermore, the AB Tracetogether app does not work well in Apple iOS, at least in the
current version [49].

Indian Aarogya Setu: The Indian Aarogya Setu [50], is a contact tracing mobile app
developed by the Government of India in the fight against COVID-19. The application was
among the most popular contact tracing apps in the world with over one hundred million
downloads in about forty days of its launch. It combines Bluetooth and GPS technologies
in mobile phones to perform its contact tracing. To subscribe, users must provide an Indian
mobile number and other relevant details. The system records Bluetooth IDs and location
details of every encounter and forwards the same to a central server in an encrypted format.
When a user is diagnosed, the system notifies all their contacts of their risk level. Its use is
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mandatory especially for professionals working in both public and private establishments
in India.

The Government of India has promoted the Aarogya Setu app explaining that it
exhibits a reasonable level of user privacy, security, and transparency. They further involved
Indian professionals for security audits and enhancement to improve acceptability and
user trust. This led to a well-articulated privacy policy document that is available for
public scrutiny. Consequently, there is an enhanced adoption rate of up to 150 million users
making Aarogya Setu one of the most downloaded contact tracing apps [51].

However, similar to other apps developed in line with centralized network architecture,
the Aarogya Setu app is prone to single point of failure vulnerability just like every other
app designed based on a centralized architecture. Furthermore, since the app is built around
user phone numbers, there is a likelihood of attacks through user phone numbers [52].

• Decentralized Architecture based Mobile Apps

We discuss some of the apps developed following the decentralized architecture.
Some of such apps include the SwissCOVID, the German Corona-Warn-App, and the NHS
COVID-19 App of the United Kingdom.

SwissCOVID: The SwissCOVID app [53] is a legally approved decentralized contact
tracing app developed following the Apple–Google and the DP-3T frameworks. The app
which was released on the 25 June 2020 is powered by the Swiss Federal Office of Public
Health (FOPH) in collaboration with some organizations such as the Federal Office for
Information Technology, Systems and Telecommunication (FOITT), Federal Institutes of
Technology in Zurich (ETH), Lausanne (EPFL) and the Swiss company Ubique. It uses
Bluetooth technology for proximity detection in which Bluetooth data of people who have
come in contact with a user are stored locally in their mobile devices. In this scheme, there is
no central server where data is uploaded for risk-level computation and notification of risky
users. Rather, both proximity detection, data storage, and notification of risky individuals
are performed by the user devices. Upon positive diagnosis of a user, a Covidcode (also
known as release code) is issued to the user by the health authority empowering him
to activate the notification feature of the app thereby enabling the user to send warning
messages to those who have come in contact with them. However, a critical review of the
app that was carried out by [54] reveals that this app is vulnerable to false positive and
linkage attacks.

German Corona-Warn-App: Launched on 16 June 2020, the German Corona-warn-
App [55] is another decentralized contact tracing app developed leveraging the Apple–
Google framework. Its development is powered by the federal ministry of health in
collaboration with some technical institutions such as Deutsche Telekom and SAP. The
system generates varying (yet remembered) Bluetooth IDs which are broadcasted for
handshakes with nearby Bluetooth active mobile phones. Each user device stores the
Bluetooth ID of any mobile device that comes in contact with it. When one of the users
is diagnosed with the disease, the stored IDs are voluntarily uploaded to the central
system. The central system only acts as the storage of IDs of infected people and each user
periodically downloads the stored IDs to enable their mobile devices to compare to find
out if there is a match. If there is an ID match, it implies that the user has encountered
an infected person. In such a situation, the user app computes the risk level using the
encounter distance, duration of the encounter, and other relevant indices before issuing a
notification. However, analysis of this app shows that the app is vulnerable to revealing
user identity and possible false-positive attacks [56].

NHS COVID-19 App of United Kingdom: The National Health Service (NHS) of the
United Kingdom (UK) has powered the development of a decentralized Bluetooth-based
contact tracing application called NHS COVID-19 App [57] which was launched on the
24 September 2020. It was developed following the Apple–Google exposure notification
and logging framework using Bluetooth technology. The app was deployed for residents
of England and Wales of ages 16 years and above where over 21 million downloads
were recorded.



Sensors 2022, 22, 280 16 of 62

If a user tests positive for the coronavirus, the app notifies their close contacts to self-
isolate and can help the user to request a test. A special feature of the app is the integration
of a QR code that notifies a user of any visit to a high-risk location. However, a study
has shown that the app is vulnerable to user privacy leakage [58]. We also summarized
the features of Bluetooth-based contact tracing apps and Protocols in Tables 2 and 3,
respectively.

Table 2. Summary of Bluetooth-based contact tracing Apps.

Architecture Apps Protocols Strengths Weaknesses References

Centralized

Tracetogether of
Singapore BlueTrace Does not disclose

user information

Suffers Single point of
failure and drains user

device battery
[33]

Australian
CovidSafe BlueTrace Does not disclose

user information

Suffers Single point of
failure and was hosted by a

non-national company
[47]

AB Tracetogether BlueTrace Does not disclose
user information

Suffers single point of
failure and does not work

well in Apple iOS
[48]

Aarogya Setu Not specified Transparent in privacy
and security policies

Single point of failure and
possibility of attacks

through phone numbers
[50]

Decentralized

SwissCOVID Apple-Google and
the DP-3T

Not susceptible to
single point of failure

Vulnerable to false positive
and linkage attacks [53]

The German
Corona-Warn-App

Apple-Google
framework

The majority of the
processes are
performed by
user devices

Still susceptible to single
point of failure [55]

The NHS
COVID-19 App of
United Kingdom

Apple-Google
framework

Integration of QR
Code into the system

Vulnerable to user
privacy leakage [57]

2.2. Global Positioning Systems (GPS) in Contact Tracing

Global positioning system (GPS) is a satellite-based positioning technology that can
provide real-time object localization anywhere on the surface of the earth. It is made up
of three major segments: orbital satellites, the control stations, and the user devices (GPS
receivers). The orbital systems are comprised of over 24 satellites fitted with stable clocks
in space for time synchronization. They are controlled through one major control station
located at the Colorado Springs Air force base, Colorado, United States of America. Other
unmanned control stations are spread across different locations of the world including
Hawaii, USA, Ascension Island in the Atlantic Ocean, Diego Garcia in the Indian Ocean,
and Kwajalein in the Pacific Ocean [3].

Today, GPS systems are being exploited in many non-military operations such as
wireless video processing and monitoring, navigations, surveying, internet services, and
location tracking [59]. The GPS can track more than one object and determine their re-
spective distances relative to each other, also taking record of their periods of interactions.
This special feature has positioned GPS as a choice technology for contact tracing systems.
Moreover, researches have shown that there are many weaknesses inherent in GPS-based
systems. First, GPS systems reveal device identity and locations, therefore, are prone
to security and privacy-related vulnerabilities. Furthermore, it has been observed that
GPS-based systems suffer from poor co-location accuracy, high battery consumption and
are not suitable for indoor applications [60–62]. Despite these weaknesses of GPS-based
systems, there are some Apps developed leveraging GPS technology in the fight against
the coronavirus. We briefly discuss these apps classifying them into two: centralized and
decentralized apps as shown in Figure 8.
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Table 3. Summary of Bluetooth-based contact tracing Protocols.

Architecture Protocols Apps Strengths Weaknesses References

Centralized

BlueTrace

Tracetogether of
Singapore,
Australian

CovidSafe and
AB Tracetogether

Does not disclose user
information

Trust issues and Single
point of failure [33,47]

Not specified Aarogya Setu Transparent in privacy
and security policies

Single point of failure and
possibility of attacks

through phone numbers
[50]

Decentralized

Apple-Google and
the DP-3T SwissCOVID Not susceptible to

single point of failure

vulnerable to false
positive and

linkage attacks
[53]

Apple-Google
framework

The German
Corona-Warn-App

The majority of the
processes are
performed by
user devices

Still susceptible to single
point of failure [55]

The NHS COVID-19
App of

United Kingdom

Integration of QR
Code into the system

Vulnerable to user
privacy leakage [57]

Hybrid

Contra Corona nil
Balances centralized

and decentralized
architectures

Not implemented for
public use [43]

Epione nil
Balances centralized

and decentralized
architectures

Not implemented for
public use [44]

Desire nil
Balances centralized

and decentralized
architectures

Not implemented for
public use [45]
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2.2.1. Centralized Architecture-Based GPS Mobile Apps

Philippine WeTrace: WeTrace [63] was developed by a team of experts in Genni Hut
Technologies Incorporated of the Philippines. Later, it was adopted and made compulsory
by the Cebu province authority for use by its residents. It is a GPS-based system designed
to detect people within the Cebu Province who has some COVID-19 related symptoms such
as catarrh, cough, difficulty in breathing, and fever. The system uniquely identifies users
with a QR code or device ID number. It reports its findings to relevant health authorities,
performs mapping of infected persons, and keeps logs of their movements and locations.
However, users have criticized the app as being poorly developed, delays in loading, and
draining phone batteries.

South Korean Corona-100 m: The South Korean Corona-100 m (Co100 app) is a privately
developed app that utilizes data from the Government database to notify subscribers of
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diagnosed patients’ whereabouts. The system acts as a digital perimeter fence of about
a 100-m radius and alerts users if any diagnosed patient encroaches the borderline or is
within the 100-m radius. Furthermore, the Corona Map utilizes Government data to keep
track of diagnosed patients’ movements or locations visited. The major weakness of these
apps is that there is a possibility of user privacy abuse since the app makes public patient’s
diagnosis date, nationality, age, gender, and prior locations [64].

2.2.2. Decentralized Architecture-Based Mobile Apps

Israeli Hamagen: The Hamagen is a contact tracing app fully endorsed by the Israeli
ministry of health as a veritable tool to combat COVID-19. It is a GPS-based solution that
compares users’ GPS logs with data sent from the ministry of health which represents the
locations visited by infected persons. Where there is a likelihood that the user has come in
contact with an infected person, the app notifies the user stating the exact location and time.
Where the user is convinced that such occurred, the notification is accepted and other steps
are taken for further diagnosis. On the contrary, the notification is rejected and normal life
continues [14]. However, this app most likely suffers poor accuracy and will not be suitable
for indoor applications as applicable to GPS-based systems [60,61].

Iranian AC19: The Iranian AC-19 is a contact tracing app that employs GPS to deter-
mine the user’s location. Launched in March 2020 by the Iranian ministry of health in the
fight against COVID-19, the app provides a platform for self-diagnosis by citizens, a feature
that is aimed at reducing congestion in the country’s health facilities [65].

However, there are concerns that the app collects and uploads citizens’ sensitive data
such as phone numbers, names, addresses, dates of birth, and movement records to the
central server. Consequently, the Government has been criticized by some experts as being
unduly utilizing such data to track users’ movement and invade citizens’ privacy, hence,
the removal of the app from the Google play store [66].

The USA Private Kit-Safepaths: Safepaths [67] combines trails from Bluetooth and GPS
to provide a platform through which users can determine if they have come in contact
with a person infected with the coronavirus. It is an open-source application powered by
the Massachusetts Institute of Technology (MIT) which is aimed at providing a free and
privacy-preserved contact tracing solution against COVID-19. The app collects subscribers’
location information by keeping an encrypted copy of 5 min interval logs within the last
28 days discarding older data. In the early version, Users are expected to upload their
locations to the health officials if diagnosed positive but the later version has a feature to
notify their close contact of their risk. It comprises both mobile phone applications called
privateKit and a web application called safe places.

Pakistan COVID-19 PK: The Pakistan COVID-19 PK was developed by the Ministry
of Information Technology and Telecommunication in collaboration with the National
Information Technology Board of Pakistan. It is an application that is fitted with a dash-
board that keeps citizens informed of the total infected persons arranged in the province
by the province before providing a summed figure for the entire country. It also has
self-assessment and some notification features such as radius alerts and personal hygiene
reminders. The system also has some interactive features such as Chabot and sensitiza-
tion videos. However, the developers did not provide the privacy details of the app [68].
Features of the centralized and decentralized GPS-based contact tracing systems are also
summarized in Tables 4 and 5, respectively.
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Table 4. Centralized GPS-based contact tracing apps.

Applications Architecture Strengths Weaknesses References

Philippine
WeTrace Centralized

Detects symptoms
such as catarrh,

cough, difficulty in
breathing, and fever

Poorly developed,
delays in loading
and drains phone

batteries.

[63]

South
Corona-100 m Centralized

Has notification
features such as
radius alerts and
personal hygiene

reminders

App abuses user
privacy by
displaying

personal data

[64]

Table 5. Decentralized GPS-based contact tracing apps.

Applications Architecture Strengths Weaknesses References

Israeli Hamagen Decentralized The app is partially
distributed

Suffers poor
accuracy and is
not suitable for

indoor
application.

[60,61]

The Iranian
AC-19 Decentralized User self-diagnostic

feature

Government
tracks users via

collected sensitive
data

[65,66]

The USA private
Kit: Safepaths Decentralized

Open source and
supports user

privacy preservation

Likelihood of
tracking user since

the app keeps a
record of user

location

[67]

The Pakistan
COVID-19 PK Decentralized

Has notification
features such as
radius alerts and
personal hygiene

reminders

Serves only as an
infection notice

board
[68]

2.3. Artificial Intelligence (AI)

Artificial intelligence (AI) is the creation and training of devices—robots and other
smart machines to become intelligent enough to be able to perform human-related activities
such as learning, reasoning, and self-correction [20]. There are many application areas
of artificial intelligence ranging from speech recognition, semantic information process-
ing, language translation, learning and adaptive systems, pattern recognition, modeling,
robotics and games, healthcare, automotive, economics and computer networks, etc. [69].

More so, AI has been applied widely in the fight against infectious diseases such
as COVID-19. Areas of its possible application include medical diagnosis [70], virus
transmission modeling, and forecasting (Hu et al., 2020; Jiang, Coffee, Bari, Wang, and Jiang,
2020; R. K. Singh, Rani, Bhagavathula, and Sah, 2020), biological data analysis for drug
discovery [71], etc. For instance, in Canada, the Blue dot was used to predict the outbreak of
the coronavirus before it arrived [72]. Data from social media were also analyzed to provide
intelligence concerning the COVID-19 outbreak before the World Health Organization
(WHO) announced the outbreak [73]. Furthermore, deep learning modeling was employed
to assist in the detection of COVID-19 disease on X-rays films [74]. The model when
demonstrated with 260 images showed very high accuracy. This result suggests that the
model could assist health workers in the early diagnosis of COVID-19 cases.

Furthermore, technology experts and researchers have continued to point out the high
potential of artificial intelligence in contact tracing against infectious diseases [11,12,69]. For
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instance, Facedrive Inc., a Canadian organization who in partnership with some researchers
from the University of Waterloo has announced its plan to combine Bluetooth and artificial
intelligence technologies in the development of TraceScan, a contact tracing and risk alerting
system [75]. Similarly, Volan Technology, a company that provides hotel security and similar
services has launched an artificial intelligence-based contact tracing, social distancing, and
temperature monitoring system. Their system is a modification of the technology originally
designed and piloted for emergencies in schools, hotels, and other workplaces but the
advent of COVID-19 has opened the door for its application in contact tracing [76]. Despite
the much-talked-about potentials of artificial intelligence in contact tracing, only a few fully
tested and nationally recognized artificial intelligence-based contact tracing apps have been
deployed. Some of those apps include The Chinese Alipay and WeChat mobile app and
the StayHomeSafe of Hong Kong. Their features are AI-based contact tracing systems are
summarized in Table 6.

Table 6. AI-based contact tracing apps.

Applications Architecture Strengths Weaknesses References

The
ChineseAlipay

and WeChat
mobile app

hybrid

The integration of
smart wristwatch
makes the system

more effective

Unavailability of
training data

makes the systems
ineffective

[77]

The
LeaveHomeSafe of

Hong Kong
decentralized

The system is
designed not to

disclose user
personal

information

Users can easily be
linked to the

QR code
[78]

ChineseAlipay and WeChat Mobile App: The Chinese Alipay and WeChat mobile ap-
plications are quick response-based systems that rely on self-inputted data by users. The
user scans a government-owned QR scanner over their mobile device before being granted
access to public places. The system compares the QR acquired information with health
authority records domiciled in a central server before assigning the users one out of the
three color codes of green, yellow, or red. The color codes define the infection risks of
users ranging from free from the infection (green), status not yet known but at high risk
(yellow), and confirmed carrier (red). The infection status determines the level of freedom
of movement of such individuals. The government requires citizens to strictly obey the
set down rules or face serious sanctions [66]. These functions are performed by allowing
users access to only adjudged safe places and also keeping a log in the central server for
notification of users in case of a positive diagnosis of their close contacts. However, there
have been privacy-related concerns in using this system since the identities of the users are
required at the point of enrollment [77].

LeaveHomeSafe of Hong Kong: The LeaveHomeSafe of Hong Kong is a QR code-powered
contact tracing application that was launched on 16 November 2020. The download of
the app is voluntary except for overseas returnees who are mandated to wear a smart
wristband integrated with the LeaveHomeSafe app within the first fourteen days of their
arrival. The app keeps the log of public places and taxis visited or boarded by the users
taking special note of the date and time [78]. It implied that once a user visits a public place
or boards a taxi, he/she clocks in of public places or taxis by scanning their QR code and
clicks the leave button when leaving the venue. If a user is diagnosed with COVID-19, the
app notifies users who visited the same place with the infected person at the same time.
The user can also upload their record to the central server for further use by the health
authority. There are, however, some privacy concerns against the app. For instance, despite
the assurances of the Government, the citizens are not certain of the safety of the data
collected and are afraid of being tracked using the app.

However, studies have shown that there are limitations of artificial intelligence-based
contact tracing techniques. For instance, as was noted in [25,79], artificial intelligence is
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only effective if the relevant data needed for the analysis or the training of the intelligent
agents is available. Unfortunately, at the early stage of disease outbreaks, such data are not
usually available [80].

2.4. Other Technologies for Contact Tracing Systems

In this subsection, we review other technologies recently proposed by researchers
for the implementation of contact tracing systems and also attempt to highlight the fea-
tures that make them suitable for such applications. Some technologies include Wi-Fi,
Smartphone Magnetometer Traces, Near Field Communication (NFC), Radio Frequency
Identifier (RFID), and Blockchain technology.

2.4.1. Wireless Fidelity (Wi-Fi) in Contact Tracing

Wireless fidelity (Wi-Fi) is an IEEE 802.11 standard-based wireless communication
technology that connects devices such as mobile phones, tablets, and computer systems
to other network devices or the internet at a high speed without the use of network
cables [81,82]. Wi-Fi signals are transmitted at frequency ranges of 900 MHz, 2.4 GHz,
3.6 GHz, 4.9 GHz, 5 GHz, 5.9 GHz, and 60 GHz bands at the speed of up to 150 Mbps. The
more recent upgrade in wireless fidelity is version 6 (Wi-Fi 6) which is supported by IEEE
802.11ax standards [83].

In a Wi-Fi environment, wireless access points (AP) automatically advertise their
service set identifier (SSID) through radio signals broadcasts for other Wi-Fi enabled
devices within the area of coverage to connect for onward communications [84]. In a large
Wi-Fi setting such as a University campus, multiple access points are strategically installed
to ensure maximum coverage. A key feature of Wi-Fi technology is that as users move from
one location to another, the user devices keep reconnecting to nearby access points thereby
creating Wi-Fi fingerprints or digital traces in the enterprise device as shown in Figure 9.

The continuous handshakes between APs and user devices as the user moves from
one location to the other is an important index for contact tracing. There are two major
approaches to developing Wi-Fi-based contact tracing systems. The two methods are the
client-centric and the network-centric approaches. The network-centric approach entails
direct analysis of the user logs stored in the enterprise devices while the client-centric
method requires the development of a mobile app that will acquire this information and
perform the analysis in the user’s mobile devices [85]. Various contact tracing protocols
have been developed using the Wi-Fi technology. These protocols are explained below.

WifiTrace: A foremost Wi-Fi-based study was presented by [86] where the authors
proposed a network-centric contact tracing Protocol captioned WiFiTrace which employs
a graph-based analytic tool for contact tracing. Infected users’ network logs are used to
plot a trajectory graph showing their movement history relative to the people that came in
contact with them and for how long they interacted. Although WiFiTrace protocol could
aid contact tracing, the authors admitted that it could only supplement the traditional
method but cannot be fully depended upon for effective contact tracing during an infectious
disease outbreak.

Encounter-Based Architecture for Contact Tracing (ENACT): On the other hand, Prasad
and Kotz [87] proposed a client-centric contact tracing protocol named Encounter-based
Architecture for Contact Tracing (ENACT). A mobile contact tracing application is devel-
oped which acquires the user’s event tags containing the MAC address of access points
connected and user location. The AP gives a footprint of locations visited by the users.
Upon diagnosis of a user, the ENACT server performs a matching of the tags which reveals
people who had close contacts. A similar study was carried out by [88] where the authors
proposed VContact, a Wi-Fi-based contact tracing protocol. In this protocol, Wi-Fi provides
the communication platform for some internet of things (IoT) devices such as smartphones,
smart wristwatches e.t.c which perform the sensing of close devices. Data acquired is
uploaded to a central server for further analysis. The unique feature of this work is that it
puts into consideration the virus lifespan.



Sensors 2022, 22, 280 22 of 62

Sensors 2022, 22, x FOR PEER REVIEW 22 of 65 
 

 

2.4.1. Wireless Fidelity (Wi-Fi) in Contact Tracing 

Wireless fidelity (Wi-Fi) is an IEEE 802.11 standard-based wireless communication 

technology that connects devices such as mobile phones, tablets, and computer systems 

to other network devices or the internet at a high speed without the use of network cables 

[81,82]. Wi-Fi signals are transmitted at frequency ranges of 900 MHz, 2.4 GHz, 3.6 GHz, 

4.9 GHz, 5 GHz, 5.9 GHz, and 60 GHz bands at the speed of up to 150 Mbps. The more 

recent upgrade in wireless fidelity is version 6 (Wi-Fi 6) which is supported by IEEE 

802.11ax standards [83]. 

In a Wi-Fi environment, wireless access points (AP) automatically advertise their ser-

vice set identifier (SSID) through radio signals broadcasts for other Wi-Fi enabled devices 

within the area of coverage to connect for onward communications [84]. In a large Wi-Fi 

setting such as a University campus, multiple access points are strategically installed to 

ensure maximum coverage. A key feature of Wi-Fi technology is that as users move from 

one location to another, the user devices keep reconnecting to nearby access points 

thereby creating Wi-Fi fingerprints or digital traces in the enterprise device as shown in 

Figure 9. 

 

Figure 9. Wi-Fi setup in a large network. 

The continuous handshakes between APs and user devices as the user moves from 

one location to the other is an important index for contact tracing. There are two major 

approaches to developing Wi-Fi-based contact tracing systems. The two methods are the 

client-centric and the network-centric approaches. The network-centric approach entails 

direct analysis of the user logs stored in the enterprise devices while the client-centric 

method requires the development of a mobile app that will acquire this information and 

Figure 9. Wi-Fi setup in a large network.

However, there are some weaknesses inherent in Wi-Fi-based systems. The system
can only perform within the area of coverage of the Wi-Fi network. This made Wi-Fi a
choice technology for projects in the confined environment but not for national deployment.
Furthermore, where users own more than one device or fail to connect their devices to the
Wi-Fi network deliberately or unknowingly, their movement cannot be monitored or traced.

2.4.2. Smartphone Magnetometer Traces

Smartphones have been observed to maintain high linear correlation in their magne-
tometer traces if positioned at close range [89]. This discovery is being harnessed in human
proximity detection against infectious diseases. Being that magnetometer traces neither
reveal devices’ identities nor locations nor does it require additional infrastructure, this
method possesses high potentials for conforming to user privacy-preserving designs. The
experiments reported in [60] show that the magnetometer traces coefficient is strong at
distances of about 1–2 m between the smartphones both for static and dynamic coexistence.
A few studies have been carried out to evaluate the suitability of magnetometer traces in
contact tracing against infectious diseases. The study presented in [90] which attempted to
evaluate the usefulness of magnetometer traces in proximity detection is a good example.
In the study, magnetometer sensing apps were developed and installed in some android
smartphones including Samsung Galaxy S5, S6, S8, and LG G3 and G4, and synchronized
with Network Time Protocol (NTP). Three locations each in five different buildings on
campus were selected for the experiments and magnetometer traces were collected six
times in each of the locations. The magnetometer sensing apps submitted their stored
traces to a centralized server for analysis and computation. The result of the analysis shows
that the smartphone magnetometer-based method is accurate and could be adopted as a
clinical tool for contact tracing. Similarly, Kuk et al. [61] reported a study to determine
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the relationship between clarity of magnetometer traces, sampling rate, and smartphone
battery consumption. The study utilized magnetometer traces independently generated by
different people across different countries for their analysis. The result shows that although
existing magnetometer-based systems employ high frequencies of about 10–200 Hz, apps
designed using the frequency of 1 Hz is more energy-efficient, yet it is sufficient to detect
the correlation of smartphone magnetometer traces. This implies that developing apps at a
sampling rate of 1 Hz is sufficient for proximity detection and will prolong smartphone
battery usage time.

While we note some of the challenges inherent in magnetometer-based methods
including that magnetometer traces are susceptible to distortions within ferromagnetic [60]
and that battery consumption is still a challenging issue in magnetic traces-based proximity
detection systems [61], we opine that the potentials in this technology are yet to be fully
harnessed especially in the area of contact tracing against infectious diseases.

2.4.3. Cellular Networks (CN) in Contact Tracing

Cellular Networks (now referred to as mobile phone networks) are modern tech-
nologies for mobile communication. Generally, the architecture of cellular networks is
as shown in Figure 10. Nordic mobile telephone (NMT) was the pioneer cellular system
ever developed and launched in some countries including Denmark, Finland, Norway,
and Sweden [91]. This was followed by the development of other wireless mobile net-
works such as first-generation (1G), second generation (2G), enhanced second generation
(2.5G), third generation (3G), and fourth generation (4G) [92–94]. Lately, the fifth genera-
tion (5G) network was developed while other newer generation networks are also being
proposed [95]. In these emerging networks (5G and beyond), enabling technologies such
as Multiple-Input Multiple-Output (MIMO) [96] are utilized to enhance the multiplex-
ing techniques, frequency spectrum bands, network throughput, and spectral efficiency
relative to older generations of cellular networks. This implies that they are expected to
provide a more robust, flexible, and efficient wireless communication platform capable of
accommodating the high volume of data generated from the emerging IoT-driven wireless
technology sector.

Fascinatingly, cellular technologies particularly the 5G network has been identified to
be beneficial in the fight against COVID-19 [97–99]. Furthermore, 5G has been proposed
for contact tracing. For instance, Zhang et al. [100] proposed PTBM, a 5G-based privacy-
preserving contact tracing protocol linked with BlockChain-based medical applications.
In this system, user devices are installed with the contact tracing apps and connected
with 5G networks which enable users to perform contact tracing without infringing on
the privacy bounds of other users. Similarly, Rahman and Khan [101] proposed a contact
tracing framework using user position data provided by the cellular network. The protocol
is utilized to pinpoint high-risk areas of COVID-19 and trace the contact of infected persons.
The phone numbers of all exposed users are securely stored in a central server managed
by the health authority. Those exposed users are thereafter notified of their risk and
advised to seek medical attention. Contact tracing is therefore performed by retrieving
the phone numbers of people whose mobile phone data reveals that they have come in
close contact with an infected person. A related study was carried out by [102] where the
authors developed a new framework that utilizes logs of the 5.85 million cellphone users in
Shenzhen city for determining the intra-urban risk of the dengue fever disease. A human
trajectory map was developed which gave insight on a better intervention strategy against
the disease. This suggests that the data was helpful in the fight against dengue disease.
Similarly, Farrahi et al. [103] proposed a contact tracing scheme using communication traces
obtained from mobile phones providers. The study lasted for over a nine month period
using a dataset of 72 students whose physical interactions as well as their mobile phone
communication traces were known. The result of the work suggests that this approach
could aid contact tracing during an outbreak of epidemic diseases. However, the accuracy
of cellular network-based systems is a major challenge for its application in contact tracing
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and social distancing systems. High precision measurement of a few meters (2 m for
example) may be difficult to achieve [90].
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2.4.4. Radio Frequency Identifier (RFID) in Contact Tracing

RFIDs are real-time location systems that use unique codes to perform automatic and
contactless objects identification even if not aligned in a line of sight. The three major
components of RFID devices include RF tags, antennas, and readers.

The RF tags also known as transponders are chips programmed with unique codes
and fixed on objects or devices for identification. The RF readers have inbuilt memory
devices for the storage of unique identity codes. The communication between the RF tags
and readers is made possible by the antennas fitted in both devices.

The tags respond to queries from RFID readers by supplying their unique codes and
other accompanying data to the reader. There are two major classes of RFID based on the
type of transponder-active and passive RFID. An active RFID is characterized by in-build
batteries for its operations. On the other hand, the passive RFID systems are dependent on
energy sources from the RFID readers for them to be powered. To obtain object identity, the
RFID readers also called interrogators query the RFID tags who in turn supply its identity
details. The interrogators could be RFID read-only or read-write readers. The read-only
readers can only obtain programmed identity codes from the RFID tags while the read-write
readers can be used to also program a blank tag or edit existing identity code [104]. There
are many application areas of RFID systems especially in object localization and tracking,
industrial application, supply chain, retailing, financial exchanges, and access control. RFID
devices possess some attractive features that made them appealing to technology experts
and researchers. First, RFIDs obtain the identity of objects in an automatic and contactless
manner. Furthermore, it does not depend on line of sight for its operations.
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These features perhaps have attracted researchers to explore their suitability in contact
tracing against infectious diseases. Some studies have been carried out to compare the
effectiveness of the RFID-based contact tracing approach with the conventional electronic
medical record (EMR) method. For instance, Hellmich et al. [105] and Nibras et al. [106]
evaluated the effectiveness of real-time location systems (using RFID) vis-à-vis the tra-
ditional Electronic Medical Record EMR methods for contact tracing against pertussis
disease were carried out. The study shows that the RFID-based method produced double
of the EMR result which indicates that RFID has a very high potential in contact tracing
against infectious diseases. During the outbreak of COVID-19, a similar study reported
in [107] validated the earlier findings in [105]. There are so many other RFID-based studies
in contact tracing. For instance, the study reported in [108] proposes a combination of
RFID and GPS technologies to achieve effective contact tracing solutions against infectious
diseases. Furthermore, Bian et al. [109] integrated RFID with Blockchain for contact tracing.

However, it should be noted that even though RFID technology has the advantages
of the low cost of deployment and not being limited by line of sight, some inherent
weaknesses need to be considered and enhanced for its effective application in contact
tracing is achieved. One of such weaknesses is that RFID tags are limited in storage, hence
may not accommodate many security codes. This implies that the security of RFID systems
may not be fully guaranteed. In addition, RFID tags are limited in battery, hence may not
be powered over a long time without incurring the cost of battery replacement [110].

2.4.5. Near Field Communication (NFC)

The Near Field Communication System (NFC), which was founded by a combined
effort of Sony and Philips, is a technology developed leveraging the RFID technology. NFC,
therefore, shares a similar interface and protocol with RFID making both technologies
compactible. It is a wireless communication protocol for objects at a close range of fewer
than 4 cm at a transmission speed of about 424 kbps. It can communicate between an active
and passive device or between two active devices. The communication between the NFC
devices is achieved using the magnetic coupling technique [111].

NFC is applied in smart technologies such as access control systems and wireless pay-
ment and ticketing systems. Therefore, it can be said that NFC is a technology that provides
a seamless, fast, and reliable platform for device communication and data exchange [111].
NFC is among the emerging technologies with the potentials for deployment in contact
tracing systems. However, its applicability is yet to be investigated [15].

2.4.6. Internet of Things

The term internet of things (IoT) was coined by Kevin Ashton in 1999 when he
envisaged a world where physical objects will have internet capability to support human-
to-machine and machine-to-machine communication [112]. This concept entails that objects
are fitted with intelligent devices and communication capabilities to achieve remote data
transfer and/or control. Interestingly, the IoT industry has grown rapidly as there is massive
integration of sensors and actuators to the network thereby exponentially multiplying both
the number of subscribers and also data generated. IoT application spans many fields of
human endeavors. As was outlined in Nord et al. [113], there are various application areas
of IoT to include but are not limited to energy, transportation, logistics, industry, supply
chain, agriculture, health, and smart environment (homes, city, office, car, etc.). However,
recent studies show that the emergence of COVID-19 has shifted investments on IoTs to the
health and related sectors believed to be relevant in the fight against the pandemic [114].

Consequently, experts have proposed various frameworks for the effective application
of IoTs to combat COVID-19. For instance, Roy et al. [115] proposed a novel IoT-based
protocol that can detect basic symptoms of the COVID-19 disease and also perform efficient
tracking of the disease spread by identifying infection clusters. This framework helps
both in fighting the disease and in the equitable distribution of scarce materials such as
protective equipment during the pandemic period. Similarly, an IoT-based framework has
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been employed for real-time monitoring of users against known symptoms of COVID-19.
The framework also performs a follow-up monitoring of patients who have recovered
from the disease. In addition, the framework collects and analyzes relevant data to further
understand and reveal the characteristics of the virus which could be useful in its diagnosis
and treatment [115].

However, despite the advances made so far in the field of IoT, experts believe that its
potentials are still under-explored [116]. Therefore, the application of IoT to achieve privacy-
preserving contact tracing against infectious diseases remains an open research direction.

2.4.7. Blockchain Technology

Blockchain (BC) which was first introduced by Satoshi Takemoto in 2008 is a decen-
tralized database originally designed for financial-related applications. It is the underlying
technology of bitcoin—a peer-to-peer electronic cash system in which a virtual currency
called bitcoin is circulated in the online economy without a central controller [117]. This
approach entails the mutual performance of transactions using a distributed online ledger.
If the transaction meets the requirement, it is unanimously validated by the nodes (called
miners) in the network [118]. The transactions once validated are linked (or chained) to
older transactions forming shapes that look like a group of blocks chained together, hence
the name Blockchain. Hash as was explained by [119] is a mathematical algorithm that
produces a string of characters called hash value which is used to sign digital signatures as
a means of validating that the requestor is the rightful person. Blockchain can be classified
as public (permission-less), Private (permissioned), or Consortium (hybrid) Blockchain
technologies [120]. The public Blockchain (PBC) is open for anybody to join. PBC is fully
decentralized and transactions are open for all to read and write to. Prove of work (POW) is
the consensus mechanism in which every node will participate making the process resource-
demanding and time-consuming. An example of public Blockchain is bitcoin. Consortium
Blockchain is partially decentralized while private Blockchain is fully centralized. Private
Blockchain and consortium are restricted to participating organizations. Consensus is
performed using proof of stake (POS) or other, variants of consensus mechanism in private
and consortium Blockchain.

The distributed data storage and management feature of Blockchain is appealing
and is expected to play a major role in resolving the privacy issues inherent in data
management architectures in the existing contact tracing applications. The study reported
in [109] lays credence to this assertion. In this research, the authors evaluated the feasibility
of integrating Blockchain with IoT devices (RFID) in the deployment of contact tracing
systems. Their prototype was developed using Ethereum Blockchain taking advantage of
its smart contract. The evaluation performed on the prototype shows that the approach
is cost-effective. A similar framework was proposed in [109] using a public Blockchain
network (PBN) where an infected person can share his contact list by initiating a transaction.
Upon successful approval and addition of the new block, other users can confirm their
status by initiating a query transaction on the Blockchain network. Another Blockchain-
based contact tracing framework was proposed by [121] where the authors opined that
with their framework, infection risk for international travels is reduced. Their proposal
also ensures that contact tracing of users can be achieved in a privacy-preserving manner.

2.4.8. Software-Defined Networking

Software-defined networking (SDN) is an emerging paradigm in the networking
ecosystem that employs standardized network application programming interfaces (API)
for network configuration, data storage, and data sharing. It separates the network control
from the data forwarding functions thereby creating a platform for independent pro-
gramming of the network control This implies that SDN is a three-tier architecture where
applications and high-level network instructions occupy the top tier, the controller in the
middle tier while the bottom tier houses the infrastructure layer where both the physical
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and virtual switches are located. One major feature of SDN is that it is an open standard
architecture that eliminates vendor-specific dominance and control [122].

Interestingly, due to the open standard feature of SDN, experts consider it as a
potential technology for multi-domain applications such as vehicular ad-hoc networks
(VANETs) [123], big data applications [124], mobile ad-hoc networks [125], and the internet
of things [126,127]. Furthermore, SDN has been proposed as a veritable technology that can
provide a high quality of service in providing telemedicine services during the COVID-19
pandemic [128].

In addition, the emergence of COVID-19 introduced a shift to a ‘new normal’ especially
on how resources are accessed over the internet. For example, people work from home,
shopping has to be performed online and lectures are attended remotely. This paradigm
shift comes with some constraints such as multi-domain interoperability, scalability, and
security of network systems. Unfortunately, the existing network infrastructures are yet to
meet these requirements. To solve this problem, experts are proposing that SDN technol-
ogy may provide the needed dynamism for such complex scenarios [129]. For example,
Jung et al. [130] proposed an SDN-based platform for monitoring infected persons who
have their smartphones installed with the virtual IoT app. In this framework, the controller
serves as the central point where location information and other relevant data from the
respective virtual IoT nodes are collected.

Moreover, as has been observed earlier, contact tracing systems are most susceptible to
architecture-related issues such as single point of failure, data security, and user privacy is-
sues. Consequently, a lot of research efforts have been expended to enhance the architecture
of contact tracing systems. Therefore, in our opinion, since SDN is an emerging network
architecture, its potential in this regard should be explored by the research community.

For clarity purposes, we summarized the features of contact tracing protocols based
on these technologies in Table 7.

Table 7. Contact tracing Protocols using other technologies.

Technologies Descriptions Strengths Weaknesses References

Wireless Fidelity
(Wi-Fi)

IEEE 802.11
standard-based
communication
technology that

interconnects
devices without
the use of cables

Low
deployment

cost

Poor proximity
estimation
accuracy

[81–84]

Smartphone
Magnetometer

Traces

A concept that
smartphones
maintain high

linear correlation
in their

magnetometer
traces if

positioned at
close range

Does not
reveal device

identities

Magnetometer
traces suffer

distortion in a
ferromagnetic
obstacle and

require a high
energy

requirement

[60,61,89]

Cellular
Network (CN)

technologies
used for mobile

phone
communication

High coverage
area

Poor proximity
estimation
accuracy

[91,95]

Radio Frequency
Identifier (RFID)

Real-time
location systems
that use unique

codes for
automatic and

contactless
objects

identification

does not
depend on line
of sight for its

operations

RFID tags are
limited in

storage, hence
may not

accommodate
many security

algorithms

[104]
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Table 7. Cont.

Technologies Descriptions Strengths Weaknesses References

Internet of
Things (IoT)

Technologies for
detection of
COVID-19
symptoms

Adds
intelligence to

devices

Security
vulnerabilities [115,116]

Near Field
Communication

(NFC)

wireless
communication

protocol for
objects at close

range of less
than 4 cm at

about 424 kbps

provides a
seamless, fast,
and reliable
platform for

device commu-
nication and

data exchange

Suitable for
objects at about
4cm range and
not for higher

ranges

[111]

Blockchain
Distributed

database for data
management

No central
control over
the database

The technology
is relatively new,

requires high
technical skills,

and high
installation cost

[90]

Software-
Defined

Networking
(SDN)

Employs
standardized

network API for
network

configuration,
data storage,

and data sharing

Eliminates
vendor-
specific

dominance
and control

Requires highly
skilled personnel

to implement
[122–124,128–130]

2.5. Proximity Estimation Techniques in Contact Tracing Systems

The effectiveness of contact tracing schemes depends on the accuracy of the proximity
detection methods. For instance, the accuracy of IoT-based systems such as [131,132] are
dependent on the precision of the imbedded sensors. It follows that an efficient proximity
detection technique will produce a highly accurate system devoid of the common errors in
contact tracing systems including false positive, false negative, and other errors [133]. Prox-
imity estimation is a key step in proximity detection because it tries to compute the distance
between one object and the other in space. It therefore implies that proximity detection
algorithms rely on the precision of the proximity estimation technique for its effectiveness.

Some conventional proximity estimation techniques include the time of arrival (TOA) [134],
time difference of arrival (TDOA) [135] angle of arrival (AoA) [133] have been implemented
in various contact tracing systems. However, notwithstanding that these techniques offer
relatively high accuracy in proximity estimation, their setup is complex requiring multiple
antennas and high precision synchronization [135]. Consequently, other proximity estima-
tion methods such as the RSSI, GPS, and computer vision are being employed in contact
tracing systems.

2.5.1. RSSI-Based Proximity Estimation Technique in Contact Tracing Systems

The received signal strength indicator (RSSI) technique estimates object positions by
measuring the difference in signal power between the source and the destination. This
technique employs a path-loss model [136] where the range can be expressed as:

RSS = A − 10nlogd (1)

where A is the received signal power 1 m away from the transmitter, d is the distance from
the transmitter to the reference point and n is the path-loss exponent of the environment.

There are two main approaches to the RSSI proximity estimation namely, RSSI trilater-
ation and the fingerprinting methods [137,138]. The major weakness of the RSSI methods
is that the performance is largely dependent on factors that vary once there is an environ-
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mental change. For instance, if a new infrastructure such as furniture, refrigerator, etc.
are introduced to the same environment, or the distance estimation is performed in an
entirely new location, the RSSI value changes due to the shadowing, shading effects, and
the multipath losses in the different environments [137]. Moreover, despite the errors in
RSSI-based techniques, it is still a very popular proximity estimation method in contact trac-
ing systems [139]. Consequently, experts have proposed various schemes for enhancing the
accuracy of RSSI-based proximity estimation techniques. Some of the employed schemes
include the integration of other smartphone sensors [140,141], the application of different
filtering methods [142,143], and the use of machine learning approaches [144,145]. Another
good future of the RSSI technique is that it can be applied not only for Bluetooth technology-
based systems but also in other wireless technologies such as Wi-Fi [146], Bluetooth [86],
and RFID [147,148].

2.5.2. GPS-Based Proximity Estimation Technique in Contact Tracing Systems

The global positioning system (GPS) as was earlier described in Section 3.2 is a satellite-
based localization system. The GPS estimates object position on the earth’s surface by the
trilateration of the object with a minimum of three satellites.

Trilateration is a localization technique that employs the distance of satellites whose
positions are known to estimate the location of an object on the earth’s surface [149]. Since
satellite broadcast their signals as a sphere, the intersection of the spheres from three
satellites gives the exact location of the object as shown in Figure 11 (panel i). Another
popular localization technique is triangulation. In triangulation, angles are utilized to
estimate the location of an object as depicted in Figure 11 (panel ii).
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However, GPS-based proximity estimation methods are susceptible to poor proximity
estimation precision occasioned by factors such as signal delay in the space, blockage of
satellite view by poor weather conditions, etc. Most importantly, GPS-based systems are not
suitable for indoor applications [60–62]. Consequently, studies in contact tracing systems
adopt hybrid approaches in their designs. For example, Banerjee et al. [150] proposed
a hybrid contact tracing system by combining GPS and BLE data. The study proposes
proximal, a graph-based contact tracing solution that seeks to achieve power efficiency
and accuracy. The system when evaluated outperformed older systems by achieving 94%
in both precision, sensitivity, and F-score. Similarly, Xiong et al. [151] also proposed a
hybrid of GPS and BLE termed REACT. The novelty of this framework is that it assigns
geoids to locations depending on the different risk levels. This provides the users with the
ability to control the access level to their private details. When evaluated, the framework
outperformed other similar frameworks. However, even though the hybrid solutions
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perform can be applied both in indoor and outdoor scenarios, the location privacy issues
associated with GPS systems remain a challenge.

2.6. Privacy/Security Loopholes in Contact Tracing Systems

The security and privacy of contact tracing systems play a major role in boosting users’
confidence. Consequently, a secure and privacy-oriented device will command a higher
adoption rate thereby making the system more effective. We have identified as shown in
Figure 12 that two major sources of security/privacy loopholes in contact tracing systems
include: (a) adopted technology and (b) system architecture.
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2.6.1. Privacy/Security Loopholes due to Choice of the Technology

Material selection is a very important step in system design. This is because each
technology has its peculiar security/privacy vulnerabilities. Various factors such as material
availability, cost, and other constraints have continued to influence designers’ choice of
materials. Unfortunately, where weak materials are selected, there is a corresponding
privacy/security cost on the final product. In this sub-section, we examine the security
vulnerability of some of the common technologies applied in contact tracing systems such
as BLE, GPS, and W-Fi.

Security/Privacy Vulnerabilities of BLEs

There are three main association models for BLE devices. Starting from the weakest,
they are (a) Just works (b) Passkey and (c) Out of band models. When two BLE devices
(particularly versions 4.0 and 4.1) try to connect, they do so using a pairing method called
the LE legacy pairing technique. This implies that after advertisement, the devices exchange
temporary keys (TK) (and its extension called short term keys (STK) whose values depend
on the association model adopted. For instance, systems that employ the just works associ-
ation models set the TK to zero making its paring method the weakest. On the other hand,
systems using the passkey model apply only a portion of the TK in their security. Conse-
quently, the security codes are a few bits long, hence are guessable. Lastly, systems using
the out-of-band association model apply the complete 128 bits TK for its security. However,
their security codes are in plain text format which also leaves the system porous. Thus,



Sensors 2022, 22, 280 31 of 62

it can be deduced that the privacy of BLE devices especially versions 4.0 and 4.1 which are
the common BLEs in the market can easily be compromised through various attacks such
as passive eavesdropping, man in the middle, relay, and denial of service attacks, etc. [152].
These attacks may lead to grave consequences such as adversaries gaining unauthorized
access to the system to either obtain confidential/sensitive information, hampering the
network performance, or even controlling the network remotely [153]. Fortunately, the
later versions of BLE such as versions 4.2 and 5 connect via a more secure paring tech-
nique known as LE secure. In this paring technique, a long-term key is generated and
encrypted using Elliptic Curve Diffie-Hellman (ECDH). Therefore, they are less vulnerable
to privacy/security compromises. To further strengthen the security, when these higher
versions are used, weak association models such as just works and pass-key models should
be avoided, proper encryption mechanism should be adopted, source code should not be
made public to avoid reverse engineering, authentication passwords should be made very
strong, etc. [154].

Security/Privacy Vulnerabilities of GPS

GPS devices are majorly for sensing object locations with a time stamp. This implies
that GPS-based contact tracing systems are likely to reveal the location and time of the
user encounters [155]. Therefore, the main privacy vulnerability of GPS-based systems
is the possibility of inferring the identity of users based on the location and time of en-
counters [156]. Consequently, from the GPS-based contact tracing data, it is possible to
determine infected persons or has infected other people. Accordingly, unhealthy behavior
such as stigmatization and hatred against some members of society may set in. Therefore,
when GPS sensors must be used for contact tracing systems, efforts must be made to
conceal the GPS data. For instance, GPS data can be encrypted so that an adversary may
find them useless.

Wi-Fi Security/Privacy Vulnerabilities

Wi-Fi protocols are known to be susceptible to various attacks such as man in the
middle, key recovery, traffic description, and denial of service [157]. It has also been
discovered that there are some security flaws in Wi-Fi-based systems originating from the
design of the IEEE 802.11 standard. These flaws are in frame fragmentation and aggregation
functionality of all versions of Wi-Fi including wireless equivalent privacy (WEP) and the
various versions of Wi-Fi protected access (WPA) such as WPA2 and WPA3 [158]. These
flaws if exploited by adversaries could enable the gain unauthorized access to the Wi-Fi
networks with the view of retrieving confidential information or harming the network.
Moreover, security experts warned that this vulnerability is worsened if the Wi-Fi network
is poorly configured. By implication, gaining unauthorized access to Wi-Fi networks is not
easily achieved if the necessary security codes are configured in the network. Therefore,
to minimize the impact of frame fragmentation and aggregation flaws in contact tracing
systems, developers of such systems should pay serious attention to security configuration.

2.6.2. Security and Privacy Loopholes due to System Architecture

As earlier explained, contact tracing systems are designed using either centralized,
decentralized, or hybrid architecture. However, there is a correlation between the archi-
tecture and the security vulnerability of the systems. For instance, centralized systems
are known to be susceptible to trust-related vulnerability. The handlers of the central
database could for some reason decide to compromise the user privacy. Some possible rea-
sons could be for national interests especially the foreign hosting companies and financial
gratification such as sales of sensitive data. Furthermore, central systems suffer from a
single point of failure. Once an adversary successfully gains unauthorized access to the
central system, there is a total collapse of the privacy of the system [159]. On the contrary,
the decentralized systems are not by a single central system, hence are not susceptible to
centrality vulnerability. Therefore, research efforts should be directed towards developing
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robust decentralized contact training systems since it has been discovered that they are not
vulnerable to centrality-related attacks.

2.6.3. Boosting User Trust by Enhancing the Security of Contact Tracing Systems
via Cryptography

Cryptography is the science of encoding messages in a manner that only intended
recipients can access or understand the messages [160,161]. It is intended to achieve data
security goals such as confidentiality, integrity, authentication, and non-repudiation, etc.
The most popular technique of cryptography is encryption. Encryption is the process of
securing information using secret codes. The two types of encryption are symmetrical
and asymmetrical encryption methods. Symmetrical encryption (also called private-key)
implies that both the sender and the receiver share the same secrete key. On the other hand,
asymmetric encryption (also referred to as public-key encryption) requires two types of
keys namely, public and private keys. The public key is available and can be seen by any
person while the private key is exclusively for the authorized recipient [161].

Cryptography is applied in many real-life scenarios to achieve secure communication
and end-end encryption in critical sectors such as but not limited to internet banking [162],
vehicular ad-hoc network (VANET) [163], and web security [164]. Cryptographic algo-
rithms are also applied in energy constraint devices such as the Internet of things (IoT) [165]
and electronic health systems [166]. Nevertheless, the advent of COVID-19 has further
increased the demand for e-health facilities.

COVID-19 came along with it a lot of myths and conspiracy theories that brought so
much distrust against the global health professionals and the authorities of the various
countries [167]. In this scenario, systems that cannot provide timely and accurate informa-
tion in a privacy-preserving manner will lose users’ trust. Therefore, it is obvious that there
exists a strong link between system security and users’ trust. Consequently, the concept of
trust is very crucial in the life cycle of e-health solutions such as contact tracing systems.
Since the system adoption rate is also tied to user trust, enhancing user trust in the system
is critical. We, therefore, recommend that the same way trust prediction is performed for
online users to determine their online reputation [168,169], trust prediction for e-health sys-
tems is also important. Because the system adoption rate (which is a function of user trust)
is critical in determining the effectiveness of such a system, the importance of enhancing
system security via cryptography cannot be over-emphasized.

Some security mechanisms based on cryptography have been proposed in this re-
gard. For example, Sing and Raskar [167] proposed a privacy-preserving COVID-19 result
verification framework. This protocol is aimed at reducing the spread of the diseases by
providing a platform that, in a timely manner, verifies and grants access to only those who
meet up with set rules. Some proposed contact tracing frameworks rely on data encryp-
tion. Similarly, An et al. [170] proposed a privacy-oriented technique for epidemic contact
tracing (PROTECT). This protocol employs Brakerski/Fan-Vercauteren homomorphic en-
cryption to achieve secure contact tracing. In addition, a privacy-preserving system named
GoCoronaGo was proposed in [171]. This system applied asymmetric encryption where
the public keys are displayed online while the private keys are issued offline. Furthermore,
Kim et al. [172] proposed Safe contact tracing for COVID-19, a system that employs a func-
tional encryption technique and optimization to achieve privacy-preserving contact tracing
in addition to the visualization feature of the framework.

Moreover, eliminating trust bottlenecks has been identified as a new way to go. In this
regard, BlockChain technology has been employed to achieve a trustless framework. In their
recent research, Simmhan et al. [173] proposed a framework that leverages BlockChain
technology and its cryptographic-based security to address trust-related issues in the
COVID-19 use case. Other blockchain-based contact tracing systems such as [109,121] are
already discussed in Section 2.4.7.

However, despite these efforts, a lot of research efforts are still required to achieve
secure and privacy-preserving contact tracing systems.
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3. Social Distancing Methods against COVID-19

The early stage of infectious diseases outbreaks is mostly characterized by the lack
of vaccines or permanent cures for such diseases. In some cases, such as the COVID-19,
vaccines may not provide the needed protection, hence, the need for a supportive measure.
In line with this, the world health organization has advised that people should keep at least
2 m (6 feet) distance away from each other to be safe from the coronavirus [174]. Social
distancing, therefore, is a non-pharmaceutical infectious diseases control and management
strategy employed to reduce human interactions that may lead to physical contact during a
pandemic situation [5,175].

Moreover, the state-of-the-art approaches of social distancing are based on policy state-
ments by government authorities. Such measures are usually enforced using approaches
such as public place closures, placing a ban on public gatherings and events such as fu-
nerals, wedding ceremonies, etc. [7]. However, these policy-based approaches do not only
cause discomfort to the people but also negatively affect their source of livelihood and the
national economy at large. As a result, people find it extremely difficult to adhere to the
social distancing protocols, hence, the need for assistive technologies. To alleviate the pains
on the people, a lot of efforts have been expended trying to integrate technologies in social
distancing. We have identified the four measures as shown in Figure 13 through which
technologies may be applied to achieve effective social distancing. These measures include
keeping a distance, crowd regulation, wearing of facemask, isolation/quarantine, and
virtual interactions. We, therefore, discuss these measures and the respective technologies
for achieving them.
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3.1. Keeping a Distance

We have identified two scenarios where technologies can be deployed to help humans
to keep social distance. They are either individual-centric or location-based technologies
for keeping a distance to achieve social distancing. The individual-centric social distancing
system assumes that every individual subscribes to the system and is always moving
around with their devices. The devices are characterized by mobility to guide and guard
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the user even while on the move. On the other hand, location-based systems are designed to
limit the spread of infectious diseases in designated places such as workplaces, event halls,
markets, schools, worship centers, etc. We, therefore, classify social distancing into mobile
and location-based social distancing scenarios. In this sub-section, we briefly discuss the
technologies employed in each of these scenarios.

3.1.1. Individual-Centric Measures of Maintaining Social Distancing

Personal protection is a key component of social distancing. Considering human
mobility nature, some researchers have proposed social distancing frameworks that move
along with the users. We classify such mobile social distancing devices and apps as
individual-centric systems because it is expected that every individual should acquire them
and wear or move along with them. Fortunately, smartphones which have become the
closest companion to humans have become useful in the development of mobile social
distancing systems. Another popular individual-centric social distancing implementation
platform is the wearables such as bracelets, bangles, facemasks, etc. Since most existing
individual-based social distancing systems are mostly powered by BLE, Wi-Fi, and a few
other sensors such as passive infrared and ultrasonic sensors, we will dwell more on
those technologies.

• BLE for individual-based social distancing

BLE has not only gained popularity in the fight against COVID-19 but is a choice
protocol for mobile applications. This is because BLEs have endearing features such as low
energy consumption, ease of deployment and can be applied for both indoor and outdoor
environments. Furthermore, smartphones, where most COVID-19 preventive apps are
installed already, have Bluetooth fitted by default. This implies that BLE is not restricted by
location, hence can be applied in mobile scenarios.

Consequently, different studies have been carried out in BLE-based social distancing
solutions especially for mobile scenarios. For example, Munir et al. [176] proposed a two
algorithms model for social distancing. The first algorithm calculates the distances between
two persons using the Bluetooth RSSI values. The algorithm also classifies the distances
into different risk levels before recommending that the individual is safe or at the tail-risk
using a probabilistic linear model. The second algorithm applies a curve-fitting model to
perform risk optimization by creating a risk zone that guides the user in keeping social
distancing. A prototype was implemented in an android environment and the result of the
experiment shows that at 95% of conditional value-at-risk (CVaR) confidence, the model
can handle 45.11% of the risks associated with the user’s safe distance estimation.

Similarly, Kumar et al. [177] presented a BLE-based social distancing scheme that
monitors users and warns them when too close to other users. The system also has three
levels of feedback namely: green, which implies that the user is at safe distance but needs
to be cautious. The next color code is yellow which implies a warning. Finally, the red color
signifies danger. An evaluation of the framework on different android phones showed a
variation of ±2 dBm in signal strength.

Moreover, another BLE-based social distancing study was conducted by [178]. In this
work, 1612 data points were analyzed statistically and observed that an RSSI value of less
than −48 dBm bridges social distancing threshold or otherwise. A simple neural network
was applied in data classification and further analysis. The evaluation of this framework
achieved an accuracy of 89.9%. This study however failed to consider phone orientations
when held at different places such as chest pocket, trouser pocket, held in hands, etc.,
different phone models. The study also did experiment with different phone models to see
if there could be a variation in the RSSI values.

Furthermore, Rusli et al. [179] proposed My safe distancing (MySD) which utilized
a BLE signal for proximity detection and sends an alarm if the set distance threshold is
violated. The system is continuous until the required spacing is achieved. The system
adopts Government classifications of locations as safe (zero cases), unsafe (few cases), and
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danger zone (many cases). Google map and GPS localization are applied to determine the
user’s location to warn if in an unsafe or dangerous zone.

• Sensor for Individual-Based Social Distancing

Sensors are embedded in various devices and can detect environmental changes
and make a decision based on these changes or communicate collected data to other
devices designated for decision making. Sensor-based methods perform their sensing by
converting environmental quantities such as voltage, pressure, temperature, humidity, the
pressure of gases to electrical signals. Examples of sensors include motion sensors such
as accelerometers, gyroscopes, and magnetometer sensors [180]. Their applications span
different fields of human endeavors such as military surveillance, industrial applications,
environmental monitoring, and other medical application areas [181]. In addition, sensors
are widely applied in the detection of objects such as humans, vehicles, social distancing,
and other targets of interest.

In the social distancing scenarios, sensors have been considered a veritable tool for
mobile applications. These sensors are applied mostly in wearable systems. For example, a
wearable social distancing solution using an oscillating magnetic field sensor was proposed
in [109]. This framework employs two magnetic coils which include a 20 kHz magnetic field
transmitter and a magnetic field receiver. The developed prototype not only conforms with
the user privacy protocols as is being promoted by Apple–Google [35] but also overcomes
the multipath propagation errors which are common in existing wireless systems. However,
the prototype needs further miniaturization required of contemporary wearables.

Furthermore, a social distancing smart cap called Suraksha that uses passive infrared
sensors (PIR) was proposed in [182]. The sensors monitor the environment and alert the
user once the social distancing protocol is bridged. The system is comprised of three
passive infrared (PIR) sensors carefully positioned to cover a 360◦ area view and a range
of 1.5 m. However, the sensors’ alignment may shift during usage thereby reducing the
system sensing window.

Moreover, an ultrasonic sensor-based social distancing system was proposed in [183].
The system employed ultrasonic HC-SR04 and a microcontroller Arduino Nano to develop
a smart ID card for social distancing. Similarly, another ultrasonic sensor-based social
distancing scheme is also presented in [184]. The study proposed an ARM microcontroller
and ultrasonic sensor for the development of a wearable social distancing system with an
inbuilt LCD user interface. However, although this concept gave insight into sensor-based
human proximity sensing, the choice of ultrasonic sensors whose sensing window is about
20◦ may lead to false-negative errors (where the user is bridging the social distancing
protocol but the system fails to detect it). Furthermore, ultrasonic sensors are sensitive to
both animate and inanimate objects [185]. This may as well lead to false-positive errors
(falsely alerting the user when close to non-human objects.

• Hybrid technology for keeping a distance

Some studies proposed a combination of two wireless technologies to get a robust
social distancing solution. For example, ref. [186] proposed the combination of BLE and
UWB for social distancing. The combination of these two wireless technologies is aimed at
compensating for each other’s weaknesses. The BLE is known for poor accuracy while UWB
has relatively high sensing accuracy. On the other hand, while BLE is more energy-efficient,
UWB is more energy-demanding.

Another proposal that combined Ultrasound and BLE is reported in [187] where
proximity estimation was calculated using time of flight (TOF). The proposed system is not
only distributed but operates in the background in an energy-efficient manner. However,
it is worth mentioning that for commercial deployment, ultra-sound systems are both
expensive and complex to implement. In summary, we have presented the features of the
individual-centric approach to keeping a distance in Table 8.
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Table 8. Individual-centric approach to keeping a distance.

Sensing Devices Platforms Strengths Weaknesses References

BLE Android-based
Smartphone

The system performs both
proximity detection and

developed risk
optimization plan

At 95% of CVaR confidence,
the model can handle only

45.11% of the risks associated
with the user’s safe
distance estimation

[176]

BLE Android-based
Smartphone

Notification is by real-time
popups on a phone screen

The system android specific.
It does not accommodate
users of other operating

systems such as IOS

[177]

BLE Smartphone

The system has an inbuilt
machine learning

algorithm that determines
if social distancing is
bridged or otherwise

The study was limited to
only Xiaomi Redmi 7A and

Bluetooth Huawei CAM-L03
[178]

Oscillating magnetic
field sensor Wearable device

Proposed system not prone
to multipath propagation

errors seen in wireless
technologies

The prototype needs to
be miniaturized [109]

Passive infrared
sensors Wearable cap The system achieved 360◦

coverage using 3 PIRs

A shift in the alignment of
any of the PIR sensors

reduces the sensing coverage
of the system

[182]

Ultrasonic sensor (US) Wearable ID card Automatic alarm
notification

Ultrasonic has poor sensing
coverage and could detect
inanimate objects which

could lead to errors

[183]

Ultrasonic sensor (US) Wearable device with
LCD component Automatic notification

Sensing coverage and could
detect inanimate objects

which could lead to errors
[184]

Hybrid of BLE and
UWB Smartphone

Proposed solution
interoperable with other

BLE or UWB-based
solutions

UWB radios increase
deployment cost
and complexity

[186]

Hybrid of BLE and
ultrasound Smartphone Real-time notification in a

decentralized approach

Ultrasound-based systems
are costly and complex

to deploy
[187]

Moreover, despite the various applications of wireless networks, there are various
security vulnerabilities that designers of social distancing systems via wireless signals need
to plan against. Some of the possible attacks of wireless networks are denial of service
attack, sniffing attack, man-in-the-middle attack, eve dropping attack, etc. [188].

3.1.2. Location-Based Approaches for Maintaining Social Distancing

Location-based approaches to keeping a distance describe those systems deployed to
ensure that people who visit such locations keep to social distancing rules. The systems
are designed to monitor the locations and ensure that each person is at least 2 m farther
from the other. Once a breach of this protocol is detected, a warning alarm is sent to the
offender. Various studies have been reported in location-based approaches to maintain
social distancing. However, it has been observed that computer vision approaches are still
the most popular location-based proximity detection technique [189,190]. Computer vision
is a computing knowledge area that aims at mimicking human vision. This entails the use
of visual sensors (cameras) for the acquisition of videos and images for processing and
analysis to extract meaningful numerical or graphic data that can be interpreted for decision
making [191]. One key application area of computer vision is in object detection which is the
identification and location of objects in an image or a video [152,153]. Proximity estimation
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is an extension of object detection which performs an additional task of computing the
respective distances between the objects and alerts the offenders as shown in Figure 14.
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Image processing in computer vision has been enhanced by deep learning techniques
such as Yolo, Faster R-CNN, Single Shot Detector (SSD), and Region-based Fully Convolu-
tional Networks (R-FCNN), etc. [192]. To achieve location-based social distancing, many
computer vision and deep learning solutions have been proposed. For example, ref. [193]
proposed Deep SOCIAL, a CCTV-based social distancing solution with the combination of
computer vision and YOLOV4 deep neural network for people detection in both indoor
and outdoor environments. The study incorporated adapted inverse perspective mapping
(IPM) technique and simple online real-time tracking (SORT) algorithm into the DNN
framework for proximity estimation and object tracking respectively. When evaluated with
Microsoft Common Objects in Context (MS COCO) and Google Open image datasets, the
study achieved pedestrian detection accuracy of 99.8%.

An attempt to overcome the privacy vulnerability of computer vision-based methods
of object detection was presented in [194]. In this study, monocular cameras were proposed
for real-time human image detection. The major enhancement in this work is that, unlike
the conventional computer vision approaches that record the videos or images using
traditional cameras, this study proposes monocular cameras for real-time image detection
and analysis, hence leaving no trail that could form the basis for privacy infringement. To
evaluate the framework, two pre-trained deep learning algorithms including Faster R-CNN
and YOLOv4 were pre-trained and employed for the image processing and analysis to
determine if the persons whose images are analyzed have violated the social distancing
rule or not. Where a violation is detected, an audio-visual warning is sent to encourage
people in the location to readjust. Nevertheless, there is a need to enhance this framework
so at to overcome occlusion at high-density pedestrians and accommodate some factors
that may affect pedestrian classifications such as groups and close relationships.

Moreover, Neelavathy et al. [195] presented a simple computer vision-based social
distancing enforcement system termed Smart Social Distancing (SSD) mobile application.
In this work, smartphone cameras were used to obtain the video footage of people. Human
image detection in the video was achieved using YOLOV4 deep learning image process-
ing algorithms while the proximity estimation between the persons for social distancing
protocols violation detection was performed using the Euclidean method. The study also
incorporates a Bluetooth technology option where proximity estimation is performed using
BLE received signal strength (RSSI). However, the study used a mobile phone camera that
has a limited view area. Furthermore, the only android-based app was developed which
limits the to only android phone users.

Furthermore, a privacy-preserving computer vision-based social distancing framework
was reported in [196]. This study aims at achieving a cost-effective social distancing
framework that employs a neural network to detect humans using either fixed or mobile
cameras and does not rely on ground plane estimation. Similarly, Punn et al. [197] proposed
a system that utilized YOLOV3 for object detection and a Pair-wise vectorized approach
for proximity detection. Moreover, notwithstanding the popularity of computer vision
in location-based social distancing, object detection accuracy is still a challenging factor.
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Although computer vision-based approaches are popular and accurate, there are some
weaknesses associated with them. To start with, video or photo quality determines the
efficiency of image recognition and tracking. This implies that the system efficiency may
drop in a dark environment since the images will likely be blurred. Again, the computer
vision approach of object detection still has some challenges such as high installation
cost, complexity in video analysis and processing, and privacy-related concerns [198]. A
summary of location-based social distancing using computer vision is presented in Table 9.

Table 9. Location-based social distancing using computer vision.

Video
Sources

Deep
Learning

Object
Detection

Techniques

Distance
Estimation
Technique

Object
Detection

Results
Roles Strength Weaknesses Ref.

CCTV YOLO v4

Inverse
perspective
geometric
mapping

(IPM)

99.8%
enforcing
physical
distance

The
combination of
MS COCO and
Google Open

Image datasets
enhances
detection
accuracy

Model is
complex [193]

Fixed
monocular

camera

Faster
R-CNN and

YOLOv4

Euclidean
distance
Formula

About 42%
for R-CNN
and 43% for

YOLOV4

Keeping a
distance and

entry
regulation

The framework
is user privacy

oriented

Poor pedestrian
detection [194]

Single
motionless

time of flight
(ToF) camera

YOLOV4 Time of
Flight 98.74%

enforcing
physical
distance

The mobility
feature of the
framework

makes it unique

The system was
developed for

a single
motionless ToF
camera and not

for various
kinds of
cameras

[195]

CCTV YOLO v3
Pair-wise

vectorized
approach

84.6% Keeping a
distance

The trials using
other object

detection
models: Faster
RCNN, SSD,

and YOLO v3
further validate

the approach

Detection
accuracy needs
enhancement

[197]

3.2. Crowd Regulation Measures

The second approach to achieving social distancing against infectious diseases is to
regulate entry into public places. There are three major measures as shown in Figure 15 to
regulate the crowd for social distancing purposes.

3.2.1. Real-Time Monitoring

Real-time monitoring systems are automated crowd regulation solutions for social
distancing, especially in public places. As shown in Figure 16, real-time monitoring systems
are designed to enforce social distancing by employing either of the two key strategies
or both. The first strategy is to regulate the population of people in public locations by
ensuring that the number of occupants is within a given threshold which if exceeded,
further entry is restricted. This implies that real-time monitoring systems continually
perform the head count of the occupants to ensure the allowed number is not exceeded.
The second strategy is the monitoring of human–human spacing in the location to avoid
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close contacts that may lead to the transfer of the COVID-19 virus from one person to
the other.
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Various technologies have been employed for real-time monitoring of public places
for social distancing. Two popular technologies employed for real-time monitoring are
Wi-Fi and sensors/IoTs.

• Wi-Fi for Real-time monitoring: Wi-Fi-based solutions utilize users’ smartphone Wi-Fi
signals for population determination and distance estimation. For instance, a Wi-
Fi-based crowd control system for regulating crowds in shopping mall settings is
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proposed in [199]. The system performs digital counting of shoppers in a shopping
mall thereby detecting when the mall is overcrowded or otherwise. The security
guards utilize the information provided by the system to regulate entry into the mall
for social distancing. The system also triggers an alarm when the occupancy level
exceeds a certain number alerting each shopper to keep a certain distance from others.
There is also a web-based component of the system through which the general public
can know the status of the mall ahead of time to know the appropriate time to shop.

Similarly, Oransirikul et al. [200] proposed a Wi-Fi-based solution to control human
congestion in public transportation terminals. The system monitors Wi-Fi signals from
people’s mobile devices to determine if the number of persons in the terminal is still within
the threshold, otherwise, an alarm will notify people to spread from each other.

Furthermore, Wi-Fi/IoT-based system called SafeMobilility which monitors congestion
in an indoor location was presented in [201]. The system performs proximity sensing
and warns occupants when the threshold of 2 m is violated. Furthermore, the system
determines people’s location, counts the occupants, and sends an alarm when the capacity
of the location is exceeded. When evaluated, the system achieved 91% accuracy positioning.

However, one limitation of Wi-Fi-based real-time monitoring systems is that some
users may turn off the Wi-Fi on their mobile devices. If this happens, the system will be
blind to occupants whose devices’ Wi-Fi is turned off. Consequently, the headcount will
not reflect the true number of persons in the location and the distance estimation will also
be faulty.

• Sensors for Real-time monitoring: In this approach, various proximity and vision sensors
are integrated into wearables, robots, or other smart devices to enforce social distanc-
ing. These sensor-based systems perform proximity estimation and issue a warning
alarm to users if social distancing rules are violated.

Various studies have been carried out in this area. For example, ref. [202] presented a
sensor-based framework for social distancing detection, monitoring, and enforcement. In
this framework, a robot is fitted with multiple sensors including an RGB-D camera and
2-D light detection and ranging (LIDAR). The robot moves around and tries to measure
the distance between people in the crowd with the help of the sensors. Once a violation of
the social distancing rule of 2 m apart is detected, a message is displayed on the robot’s
screen which encourages the persons involved to disperse and keep the required distances
apart. The robot is also fitted with thermal temperature measurement for remote body
temperature monitoring by health workers. An experimental demonstration showed that
the framework performed better when integrated with CCTV. Nevertheless, there is a need
to improve on the method of communicating with violators. Furthermore, an algorithm is
needed for the classification of human targets to differentiate their relationships.

Likewise, ref. [203] demonstrated that existing infrastructures in smart environments
can be utilized to enforce social distancing. The study performed an extensive analysis
of sensor data between 2017 and 2018 in a collaborative indoor smart space and was
able to give insight into the location occupancy level, occupancy pattern, and potentially
transmission level. From the analysis, both safe and crowded locations can be identified so
that people will be advised to occupy safer locations.

Similarly, an indoor crowd control system that allocates people within an indoor
environment was proposed in [204]. The study aims to enforce social distancing among
people in an indoor location by allocating people appropriately without displacing those
already occupying the location. The two evolutionary optimization algorithms namely,
particle swarm optimization (PSO) and ant colony optimization (ACO) were employed.
When evaluated benchmarking other approaches such as random placement of nodes and
the generic algorithm (GA), the system performed better.

Furthermore, ref. [205] proposed a vision sensor-based framework for enforcing social
distancing. This study proposed a framework that employed artificial intelligence to
analyze monocular camera data to detect social distancing violations in real-time before
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issuing audio-visual warnings where applicable. Although there were some missing
detections due to high pedestrian density and occlusion, the framework is still effective as
most of the pedestrians were detected.

Nevertheless, the many challenges associated with sensor-based social distancing
schemes. Some of the challenges include sensor sensitivities, sensing coverage, and range,
sensor network security, and system power management [206].

3.2.2. Scheduling

Scheduling in the context of social distancing is a measure aimed at arranging ac-
cess into or out of a location to avoid crowds, especially in the pandemic period. In a
pandemic period such as the COVID-19, many people patronize public places such as
hospitals, schools, and shopping centers. Some studies have been published on the various
approaches to reduce crowds in public places. For instance, Garg et al. [207] proposed
a Blockchain-based movement pass for citizens of a country. This will ensure that only
those with an active pass can move to a designated place at a given time. By so doing, the
population of people in public places will be regulated. Furthermore, people who have
been diagnosed or believed to have closely interacted with infected persons will not be
granted a pass.

Similarly, the University of California, San Francisco (UCSF) Health developed a
COVID-19 self-triage and self-scheduling app aimed at optimizing hospital usage during
the pandemic period. Although the system was an emergency intervention, it was very
helpful to the extent that 1129 patients used the app within 16 days [208]. On the other
hand, a decisional support system (DSS) that uses mixed integer programming (MIP) for
health workers scheduling during the COVI-19 pandemic is presented by [209]. The system
generates a roster with a balanced workload among workers in a manner that guarantees
minimal exposure. Equally, mixed-integer linear programming (MILP) was also applied
to develop a staff scheduling system for a pharmaceutical firm in Italy. This study aims
to develop a system that allows a defined staff on duty without bridging staff contracts in
terms of working hours. When evaluated, the system outperformed the one currently used
in the firm [210].

3.2.3. Incentives

As was advocated in [7], incentives such as compensations, monetary gifts, etc. could
encourage people to obey social distancing rules. Correspondingly, Manoj et al. [211],
proposed an incentive Blockchain-based database of people’s travel history aimed at early
detection and informed decision on the likely status of an individual was proposed. The
framework also advocates for a kind of compensation for those who adhere to the COVID-
19 protocols such as self-isolation, social distancing, and voluntary test requests.

The strengths and weaknesses of some of the studies to regulate crowds are summa-
rized in Table 10.

3.3. Isolation/Quarantine and Encroachment Prevention Technologies

Another key strategy in social distancing protocol is the separation of people who are
exposed to or diagnosed with the infection from the rest of the society to avoid further
spread. Quarantine is the withdrawal of the people who are exposed to the infection from
the rest of the public. In such an instance, the exposed persons separate themselves from
the rest of the society for a given period such as 14 days in the case of COVID-19. On
the other hand, isolation refers to the mandatory restriction of patients who have been
diagnosed with the infection in an environment where they will not mix up with the rest of
society [212].

In both instances, there is a need to ensure maximum compliance from both the
separated persons and the rest of the community especially friends and well-wishers.
There are two major approaches to monitor isolation/quarantine which are geofencing and
landmark-based solution center.
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Table 10. Crowd regulation measures.

Measures Technologies Mode of Operation Strengths Weaknesses Ref.

Real-time
monitoring

Wi-Fi, Sensors, IoT,
computer vision

Monitors occupants in
a location and sends

alarms if a threshold is
exceeded or if social

distancing rule
is violated

The is an
enforcement

measure that is
difficult to bye-pass

Possibility of poor
sensing accuracy [199–202,204,206]

Scheduling Blockchain

Arranges people both
service personnel and

recipients of the
service in a manner

that does not
constitute a crowd

This measure is
preventive in its

approach and is easy
to implement

Makes services
available to only

the scheduled
persons which

might
inconvenience

others

[207–210]

Incentives Blockchain

Provides
compensation and

another lobbying to
people who obey

social distancing rules

This measure is
humanitarian in its

approach, hence can
ease people’s burden

during pandemic
periods

Might require
high cost [211]

3.3.1. Landmark-Based Isolation and Quarantine Systems

Landmark-based solutions are designed using a known structure or fixed object
within the user’s residence. Users are expected to prove that they are within the landmark
whenever necessary. For example, the Ukrainian Act at Home [213] is a public-owned self-
isolating app linked to a user’s driver’s license and vehicle particulars. The app prompts the
users at random times to take a snapshot showing their faces in their registered landmarks
in the isolation center. The pictures are uploaded within a period of 15 minutes of being
prompted to do so failure of which may be interpreted that the patient has wandered away
from the isolation area. The app monitors those in mandatory isolation and ensures their
movements are restricted within their isolation area.

Similarly, the home quarantine app of Poland [214] is a monitoring app that employs
GPS and facial recognition to enforce self-isolation for both diagnosed and exposed persons.
It is used by the authority to ensure that infected or risky people do not move beyond
the quarantine/isolation area. This is achieved by letting users confirm their locations by
taking and uploading pictures in their registered addresses within twenty minutes after
being prompted to do so. The system also allows users to perform basic health checks and
report emergencies to the relevant authorities.

3.3.2. Geofencing for Isolation/Quarantine

One major measure to enhance isolation/quarantine is digital geo-fencing. This
approach tries to monitor a location to avoid trespassing into/out of the restricted zone.
A notable example is the Kyrgyzstan StopCovid-19 KG mentioned in [215]. This app was
powered by the operational headquarters of the Kyrgyz Republic using some experts under
the umbrella of the State Committee for Information Technology and Communications
(ITC) in the Kyrgyz Republic. After the development, the app was donated to the health
authority for the fight against coronavirus. It uses a GPS-based map for surveillance of
areas occupied by people already infected by COVID-19 so as detect people who have
closely interacted with them or prevent people from encroaching into the area. The app also
helps to prevent influx into the Kyrgyz Republic to arrest the further spread of the dreaded
COVID-19. However, there have been a series of security and privacy concerns against
the StopCovid-19 PK app. First, users are not sure of which individual or organization is
collecting the data, how the data is processed, and where the data is stored. Furthermore,
there were reports of privacy breaches where users’ private data surfaced online. Finally,
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the app has been observed to show that users visited were in actual sense they never
visited [216].

Another social distancing enforcement tool is the StayHomeSafe of Hong Kong [217].
This app which is integrated with a smart wrist bangle allows the user to create a digital
perimeter fence representing the isolation zone. When a violation is suspected, alarms
are sent expecting the user to perform a QR code scanning within 15 s. If the QR code
scanning is performed within the prescribed 15 s, it means the user has not strayed beyond
the confinement zone. Otherwise, it implies the user has violated the isolation rule of which
the health authority is expected to take further actions.

3.4. Virtual Interactions

Virtual interaction is a phenomenon that allows people to relate in an online environ-
ment without having any physical contact. It became the alternative way of life for the
people’s interactions following the ban on physical contact. This is possible because the
virtual interaction concept has recreated the world and introduced some new concepts such
as virtual communities and global villages which are not affected by geographical bound-
aries [218]. Consequently, there is a new way of teaching and learning, healthcare delivery,
business meetings, in fact, a new way of doing everything [219]. The virtual interaction
technologies on their own may not enforce social distancing, but they provide platforms
that keep human activities going thereby encouraging. They mimic physical interaction
scenarios by digitally bringing different people who are physically located in different
parts of the world to interact in real-time. In other words, virtual interaction technologies
encourage social distancing by creating a digital world for people to interact as if they are
physically located in the same environment. Some virtual interaction technologies which
played a major role in the fight against COVID-19 include social media applications, web
conferencing and distance learning platforms, and online shopping and drone-based home
delivery systems. The features of existing virtual interaction platforms for social distancing
are presented in Table 11.

3.4.1. Social Media Apps

These are the interactive online environments that enable people to share multime-
dia files, plain text messages, ideas, and other information among members themselves.
Some examples of social media platforms include Facebook, Twitter, WhatsApp, Telegram,
YouTube, etc. [220]. Social media apps have been useful tools that helped people during
the hash and compulsory social distancing policy that led to lockdown in many coun-
tries. Social media became the main source of interaction among people hence the sudden
increase in its usage within the peak COVID-19 period [221]. It has also been opined that so-
cial media has helped in social distancing. For instance, ref. [222] showed how social media
became a tool that connects the teachers and the students and fostered active learning since
the period when face-to-face contact became unsafe. Moreover, studies in [220,223] reveal
that social media users promoted social distancing protocols. This led to mass acceptance
of social distancing in most parts of the world irrespective of its social-economic adverse
effects. However, because social media is open to all, professionals and non-professionals
alike, and is not regulated in many countries, information received from social media may
not be fully relied upon as being accurate [224,225].

3.4.2. Online Interactive Platforms

Online interactive platforms are systems that bring people from different locations
of the world into a virtual environment for real-time interaction as shown in Figure 17.
Two major examples of online interactive platforms are web-conferencing and distant
learning systems. The web conferencing apps also referred to as video meeting or online
meeting apps are internet-based real-time interactive platforms that connect people for
purposes of discussions, presentations, teaching and learning, meetings, and multimedia
data sharing irrespective of their geographical locations. Some popular web conferencing
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platforms include Zoom, GoToMeeting, Cisco WebEx, and Google Meet, Zoho meeting,
Microsoft teams [226–228]. Despite that web conferencing platforms have been in use over
a long period, the outbreak of COVID-19 coupled with its consequent social distancing
protocols have caused unprecedented multiplication in their usage especially in the field
of education.

Table 11. Virtual interaction platforms for social distancing.

Virtual
Platforms

Mode of
Operation Strengths Weaknesses References

Social media

Provides a
medium for

people to
interact and

share
information and
multimedia data

Information
dissemination is
rapid and easily

accessible

Not regulated in
many countries

hence could
spread false
information

[220–225]

Online
interactive

system

A platform for
remote

interactions
especially for
business and

academic
purposes

Cost saving as
distance is not a

barrier for
participation

Requires stable
internet for

seamless
streaming

[226–229]

Online shopping
and robotic

delivery

A medium
through which

sales and
purchases can be
made virtually
and probably
delivered via

robotic services

Time saving and
eliminates

inconveniences of
going to physical

shops

May incur
additional cost [190,230–236]

Augmented and
virtual realities

Launches user
into a virtual

environment or
adds some

audio-visual
enhancement to

a user

Creates artificial
environment or

enhances existing
environment to

give the user a new
understanding

High cost of
acquisition [237–243]

Similarly, distance learning platforms, even though they may not be fully equated to
face-to-face learning, are very helpful in keeping the light of education burning in a socially
distancing compliant manner [229]. Some of the popular distance learning platforms are
Coursera, Skillshare, Udacity, Udemy, Edx, and Future Learn. Indeed, web conferencing
and distance learning platforms brought succor to the education sector because they
provided a virtual environment for academic activities such as conferences, symposia,
lectures, and presentations that would not have been possible due to the social distancing
rules. To say the least, these systems contributed immensely to the enforcement of social
distancing protocol imposed on humans by the dreaded coronavirus.

3.4.3. Online Shopping Apps and Robotic Home Delivery Services

Online shopping apps are web-based systems that provide people the platforms to
buy and sell goods and services over the internet [230]. This has become a viable alternative
to conventional shopping where people physically visit the malls or the market for daily
purchases of goods and services. The COVID-19 pandemic which brought about social
distancing has forbidden people from freely moving about for their daily activities including
shopping in the conventional malls and markets. This posed serious hardship to the society
which would have forced people to revolt against the government. Moreover, patronage
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of online shopping platforms was recommended to reduce the difficulties associated with
social distancing [231].

Sensors 2022, 22, x FOR PEER REVIEW 46 of 65 
 

 

non-professionals alike, and is not regulated in many countries, information received 

from social media may not be fully relied upon as being accurate [224, 225]. 

Online Interactive Platforms 

Online interactive platforms are systems that bring people from different locations of 

the world into a virtual environment for real-time interaction as shown in Figure 17. Two 

major examples of online interactive platforms are web-conferencing and distant learning 

systems. The web conferencing apps also referred to as video meeting or online meeting 

apps are internet-based real-time interactive platforms that connect people for purposes 

of discussions, presentations, teaching and learning, meetings, and multimedia data shar-

ing irrespective of their geographical locations. Some popular web conferencing platforms 

include Zoom, GoToMeeting, Cisco WebEx, and Google Meet, Zoho meeting, Microsoft 

teams [226–228]. Despite that web conferencing platforms have been in use over a long 

period, the outbreak of COVID-19 coupled with its consequent social distancing protocols 

have caused unprecedented multiplication in their usage especially in the field of educa-

tion. 

 

Figure 17. Online interactive platform. 

Similarly, distance learning platforms, even though they may not be fully equated to 

face-to-face learning, are very helpful in keeping the light of education burning in a so-

cially distancing compliant manner [229]. Some of the popular distance learning platforms 

are Coursera, Skillshare, Udacity, Udemy, Edx, and Future Learn. Indeed, web conferenc-

ing and distance learning platforms brought succor to the education sector because they 

provided a virtual environment for academic activities such as conferences, symposia, 

lectures, and presentations that would not have been possible due to the social distancing 

rules. To say the least, these systems contributed immensely to the enforcement of social 

distancing protocol imposed on humans by the dreaded coronavirus. 

  

Figure 17. Online interactive platform.

Consequently, the patronage of online shopping services increased during the social
distancing era in many countries such as Qatar [232], Germany [233], and Taiwan [234].
There are many online shopping platforms in different countries. For instance, in Nigeria,
popular online shopping sites include Jumia.com.ng, konga.com, slot.ng, OLX.com.ng, etc. [235].
To further enhance social distancing by reducing human contacts, drones were being em-
ployed for the in-home delivery of goods and services. These innovative drone-based home
delivery services have positively reshaped people’s perceptions of the social distancing
protocol. In the United States, drone delivery has been reported to be very beneficial [236].
In the fight against coronavirus, the study in [190] proposes a drone-based delivery service
for the tourism and hospitality industry. The drone-based services are aimed at uniquely
minimizing human contact, hence, encouraging social distancing against the coronavirus.

3.4.4. Augmented and Virtual Reality

Virtual reality (VR) technologies launch the user into a computer-generated 3D simu-
lated environment giving an impression of a different location entirely. In other words, VR
projects the user into an artificial environment by taking over some or all the five senses
during the interactions. Some virtual reality systems include 360◦ videos and Oculus Quest
headset and the Pokemon go game [237]. Virtual reality tools can be applied in scenarios
like virtual tours, meetings, and conferences. Other application areas include educational,
medical, and military training. Furthermore, it has been noted that virtual reality promotes
teamwork and a sense of togetherness without incurring the cost of traveling. Experts
have opined that VR is a very useful tool in combating COVID-19 since it can effectively
reduce people’s physical contacts yet provides an environment that appears as though the
people are in their original interactions [197,198]. VR can be applied in the fight against
COVID-19 especially in telemedicine, awareness campaign, and other activities that en-
hance the efficiency of health services such as medical training during the lockdown period.
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VR was indeed very useful in medical training to the extent that the authors recommended
its real-life implementations [240].

Similarly, augmented reality (AR) was also applied in social distancing against COVID-19.
Unlike VR which launches the user into a new digital realm, AR only adds some audio-
visual and other digital enhancements to the user’s interactions with the real-world en-
vironment [241]. AR has been proposed as pro-social distancing technology in many
scenarios. For instance, ref. [242] has opined that the tourism sector can be revived through
the application of AR. It has also been shown that financial managers and auditors can
maintain social distancing and reduce travel costs by leveraging AR technologies for the
effective discharge of their duties [242]. A review presented by Vuta et al. [243] shows that
AR has been extensively considered as a tool that can re-launch the global education sector
without violating social distancing protocols.

3.5. Facemask Detection

The wearing of a facemask is a key strategy in flattening the infection curve of the
COVID-19 virus. Before COVID-19, not much research efforts were expended on facemask
detection. However, the outbreak of the COVID-19 pandemic necessitated social distancing
and mask-wearing thereby attracting so much research attention in this area of study [244].
Similar to human proximity detection, facemask detection has been performed mainly by
artificial intelligence techniques such as convolutional neural networks (CNN) and deep
learning models.

For example, a facemask detection model was presented in [82,245] where a combina-
tion of different super-resolution and classification networks (SRCNet) for mask detection
and classification was proposed. The model utilized 3835 images from the medical mask
dataset of which 671 were unmasked, 134 incorrectly worn masks, and 3030 correctly worn
masks. The evaluation result shows that the framework achieved 98.7% detection accuracy.
Additionally, a deep learning network model of mask detection known as Facemasknet
was proposed in [246]. In their study, 35 numbers of image datasets comprising 10 un-
masked images, 10 correctly worn masks, and 15 incorrectly worn masks were used to
train the system before integrating it into the mask detection algorithm. The evaluation
shows that the system achieved 98.6% mask detection accuracy. However, it could be seen
that the training dataset is too limited, hence the system may not perform effectively in
real-life scenarios.

Furthermore, a CNN-based study that employed a combination of Keras/TensorFlow
and OpenCV was proposed in [247]. The authors had 1376 images—690 with mask, 686 no
mask. A total of 560 images were later selected which 80% was used as training images
and the remaining 20% was reserved as testing data. After evaluation, accuracies of 98.86%
were achieved for training data, 96.19% for testing data, and 96% as the overall accuracy.
However, the framework suffers delays in detection time.

Furthermore, Jiang et al. [248] proposed a Retina facemask that follows the object de-
tection framework proposed in [109]. The framework likens object detection activities to a
human body system that depends on the head, the neck, and the backbone for its functional-
ity. The study uses ResNet or MobileNet as the backbone, Feature Pyramid Network (FPN)
as the neck, and context attention modules as the head. A total of 7959 dataset images (with
and without face masks) were trained and transferred to the mask detection system. Data
filtering was performed using the object removal cross-class (ORCC) algorithm. During the
evaluation, 2.3% and 1.5% greater than the baseline accuracies were achieved in face and
mask detections respectively. However, even though a high accuracy was recorded, it was
observed that not all the components of the system worked well with the ResNet backbone.

Moreover, a facemask detection framework named SSDMNV2 was proposed in [249].
This technique employs OpenCV deep neural network, TensorFlow, Keras, and Mo-
bileNetV2 architecture for image classification. The solution is cost-effective, lightweight,
and showed an accuracy of 92.64%. Similarly, Pynq-YOLO-Net—a lightweight Convo-
lutional Neural Network (CNN) and the YOLO object detection model-based facemask
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detection framework is proposed in [250]. Very large datasets from various sources includ-
ing RMFD, MFDD, SMFRD, and MAFA were gathered and added into the training dataset
for the development of a facemask detection system. After the training and integration into
the system, upon evaluation, the detection accuracy of 97% was achieved. However, this
proposal has not been evaluated in a real-life environment such as a CCTV camera.

Likewise, a Yolov2-based ResNet-50 deep learning model for mask detection is pre-
sented in [251]. In this study, 1415 images were extracted from the medical mast dataset
(MMDS) and face masked dataset (FMD) and included in the training dataset. Mean
intersection over union (MIOU) was used to enhance detection accuracy of which 81% was
achieved using Adams optimizer. A related study that fine-tuned the Inception v3 deep
learning model was proposed in [252]. Here, 1570 images were trained and tested in a
simulated masked face dataset (SMDFD) applying image augmentation to take care of the
limitedness of images. The model achieved 99.9–100% detection accuracy. Table 12 shows
the features of some of the existing facemask detection technologies.

Table 12. Facemask detection technologies.

Mask Detection
Techniques Data Set Detection

Accuracy Strengths Weaknesses References

Combination of
Different

super-resolution
and classification

networks (SRCNet)
for images

3835 medical masks
dataset images

wearing, 671 no
mask-wearing,
134 incorrect
wearing, and

3030 correct wearing

98.70%

The use of
super-resolution and

classification
networks (SRCNet)
in the framework is
novel and relatively

efficient

The Mask
identification period is
10 images per second

which is below the
video frame rate of

24 images per second.
No video in a dataset

[245]

Facemasknet
which uses Deep

Learning

35 images of
10 wearing mask,
10 no mask and

15 incorrect wearing
of a mask

98.6%

The framework
works for both still
images and video

streams

Inadequate training
data. Could not

classify images of
partially hidden faces
or images higher than

10 feet

[246]

CNN in
combination with
Keras/TensorFlow

and OpenCV

1376 images of
690 with mask,

686 no mask. 560
later selected—80%

training and
20% testing data

98.86% with
training data and
96.19% with test
data all together

above 96%

The trial was
conducted using a
reasonable number

of dataset

Delays in image
detection time [247]

Retinafacemask
with ResNet or

MobileNet
backbone, FPN,

and context
attention modules

7959 images being a
total for both with or
without a face mask

2.3% and
1.5% > baseline
accuracy in face

and mask
respectively

The trial was
conducted using a
reasonable number
of the dataset which
enhances detection

accuracy

Some components of
the framework do not
work well with ResNet

[248]

SSDMNV2 which
employs OpenCV

deep neural
networks with
MobilenetV2

image classifier

5521 images for both
with or without

a mask
92.64%

The trial was
conducted using a
reasonable number
of the dataset which
enhances detection

accuracy

The study could not
evaluate the

framework in a
Real-world application

scenario

[249]

Pynq-YOLO-Net—
lightweight

Convolutional
Neural Network
(CNN) and the
YOLO object

detection
framework

Very large
dataset—from
RMFD, MFDD,

SMFRD, and MAFA

97%
A very large dataset

that enhances
detection accuracy

The framework was
not evaluated on video
surveillance systems

nor tested on
real conditions

[250]
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Table 12. Cont.

Mask Detection
Techniques Data Set Detection

Accuracy Strengths Weaknesses References

YOLO v2 based
ResNet-50 model

1415 images being
filtered images from

MMDS and FMD
81%

Since the study
focused on medical
face mask detection,
it will be useful in
the hospital setting

where medical
facemasks are
mostly used

The framework
adopted classical
machine learning

methods which have
slow detection time
and low accuracy

[251]

InceptionV3 with
image

augmentation

1570 simulated
masked face dataset
of masked and 785

unmasked

100%

The framework
integrated image

augmentation
techniques to

enhance
performance

The proposal failed to
classify the type

of mask
[252]

4. Discussion

The review work is a comprehensive study on the use of technologies as a non-clinical
measure against COVID-19. The study specifically reviews digital methods of contact
tracing and social distancing schemes for combating the coronavirus. In the study, contact
tracing methods were reviewed under three sub-headings, namely, technologies, protocols,
and apps.

Our review of the technologies in contact tracing systems shows that most contact
tracing system developers prefer Bluetooth low energy (BLE) as the proximity sensing
technology. This is because BLE is cost-effective since they are already fitted in most smart
devices by the manufacturers. Other sensors such as GPS and Wi-Fi are also sometimes
used in contact tracing systems as proximity sensing technology. However, although these
other sensors are also available in many smart devices, BLE is more energy conserving [61]
and flexible in framework designs, hence, is more user privacy conserving. In addition,
despite its poor accuracy [253,254], most authors prefer the use of the received signal
strength indicator (RSSI) as the proximity estimation technique in contact tracing systems.
This might be because of its ease of implementation, especially with BLE-based solutions.

Moreover, smartphones are the most preferred implementation platform for contact
tracing systems. The reason is that mobile phones have become an indispensable part
of human lives. People move about with them; therefore, mobile phones can be used to
track human locations cost-effectively. Nevertheless, smartphone devices are prone to
sensing errors if positioned in a place where human muscle tissues or other obstacles can
obstruct their signal line of sight or if positioned in different orientations or alignments
such as putting them in back or chest pockets. Furthermore, being that some users place
their smartphones inside other containers such as briefcases and handbags, it implies that
readings taken from the smartphone’s sensors may not represent the accurate colocation
distances [60,211].

Moreover, the study identified two major sources of security and privacy loopholes in
contact tracing systems, namely loopholes due to adopted technologies and from chosen ar-
chitecture. We discovered that sensing technologies such as BLE, GPS, and Wi-Fi have some
inherent privacy and security vulnerabilities that system developers must consider during
their designs to avert some security/privacy lapses that may lead to unauthorized access
and compromise [152,155,157]. Secondly, there are loopholes in contact tracing systems
due to the adopted network architecture. The study discovered that there is a correlation
between the architecture and the security vulnerability of contact tracing systems. For
instance, centralized systems are known to be susceptible to trust-related vulnerability.
The handlers of the central database could for some reason decide to compromise the
user privacy. Some possible reasons could be for national interests especially the foreign
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hosting companies and financial gratification such as sales of sensitive data. Furthermore,
central systems suffer from a single point of failure. Once an adversary successfully gains
unauthorized access to the central system, there is a total collapse of the privacy of the
system [159]. On the other hand, the decentralized frameworks are complex both in design
and system management but, they are not vulnerable to a single point of failure since the
goal is to eliminate central control of the system.

On the part of Social Distancing, the study identified five major approaches of
achieving social distancing, namely, keeping a distance, crowd control, face mask,
isolation/quarantine, and virtual interactions.

It was observed that smartphones and wearable devices are mostly applied in the
individual-centric method of keeping a distance. This is because individual-centric devices
require mobility, hence need mobile tools such as smartphones and wearable devices. On
the other hand, computer vision approaches are more popular in the location-based method
of keeping a distance. This method requires the installation of cameras for capturing images
and videos through which social distancing is enforced.

Moreover, the study identified two major approaches of enforcing isolation/quarantine
of infected persons, namely, landmark-based and geofencing methods. Our review shows
that both methods have been employed by some countries. For instance, the Ukrainian
Act at Home [213] and the home quarantine app of Poland [214] are both landmark-based
isolation/quarantine apps while the Kyrgyzstan StopCovid-19 KG and StayHomeSafe of
Hong Kong are both are geo-fencing-based measures.

Likewise, the study outlines some virtual interactions platforms such as social media
platforms, online interactive platforms, online shopping and robotic delivery services,
and augmented and virtual reality. These platforms were very vital in encouraging social
distancing [220,223]. One major strength of virtual systems is that information sharing is
cost-effective since the platform is open to the general public. However, they are not regu-
lated in many countries and hence could spread false information [224,225]. Furthermore,
although virtual interaction systems played a very vital role in the education sector partic-
ularly during the COVID-19 when social distancing forbids facet-face classroom studies,
it was opined that they are not natural and are not appealing to some people, hence may
not effectively replace the classroom-based studies [229].

Finally, face mask detection is a major measure of enforcing social distancing. This
strategy automatically discovers people who are not compliant and take the necessary
actions required for enforcement in that location. However, our review has discovered that
some frameworks were performed poorly due to some factors such as inadequate training
data, poor detection accuracy, and poor evaluation methods.

Generally, a combination of contact tracing and social distancing schemes when
properly implemented will go a long way to minimize the impact of contagious diseases.
System efficiency and privacy of users are two key issues. However, there seems to be a
dilemma of sacrificing user privacy for system efficiency and vice versa. This dichotomy
has spurred a silent argument on one part that for the systems to be efficient in the task of
contact tracing and social distancing, users should overlook their privacy vulnerabilities
in the interest of saving lives. For instance, the BlueTrace and Pan-European Privacy-
Preserving Proximity Tracing (PEPP-PT) protocols emphasized more on system efficiency
than user privacy. On the other hand, decentralized protocols such as DP-3T, Apple–Google
protocol have prioritized user privacy though not undermining system efficiency. This
perspective advocates that user privacy conserving is a priority in health techs such as
contact tracing and social distancing systems. There is therefore a need to strike a balance
is to develop a protocol that will achieve both efficiency and user privacy preservation.

5. Open Research Issues

In this section, open research directions identified during this extensive review work
are presented. This section highlights key areas where interested researchers and experts
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should channel more efforts to enhance the effectiveness of contact tracing and social
distancing systems. The open research directions are therefore hereunder presented:

• Architecture-based System Security and User Privacy Issues: From our extensive review, we
have discovered that system security and user privacy have continued to pose serious
challenges to contact tracing and social distancing systems. We have also discovered
that these privacy issues partly arise from the system architecture architectures. For
instance, centrality introduces a single point of failure, data leakage, and trust-related
vulnerabilities. On the other hand, decentralized architecture introduces complexity
and poor system control which may also lead to security compromises and general
system inefficiencies [16]. A hybrid architecture has also been introduced to bridge the
gap between centralized and decentralized architecture. However, despite these, the
architecture-related challenges particularly system efficiency vis security and privacy
vulnerabilities are still challenging.

• Technology-based System Security and User Privacy Issues: Similar to the Architecture-
based issues, some security and privacy vulnerabilities arise from sensing technologies
chosen for the design. For instance, BLE 4.0 and 4.1 have been discovered to be
vulnerable to some attacks such as passive eavesdropping, man in the middle, relay,
and denial of service attacks, etc. [152]. Similarly, GPS is known to be susceptible
to identity leakage. Other sensing technologies also have various vulnerabilities.
Therefore, research efforts are required to subject the various sensing technologies to
more relevant security and privacy attacks to discover more vulnerabilities to guide
against them.

• Sensors’ accuracy issues: The precision, accuracy, and efficiency of contact tracing and
social distancing systems are fully dependent on the accuracy of the sensor utilized
in the design. For instance, RF-based sensing devices such as BLE, WI-FI, GPS are
affected by various factors such as multi-part propagation errors, environmental
factors, reflection, refraction, and absorption [137]. Consequently, the sensing accuracy
of such systems may not be fully guaranteed. Similarly, other devices such as sensors
are limited by ranges and angles of coverage. Therefore, enhancing the precision,
accuracy, and efficiency of contact tracing and social distancing systems is still an open
research direction.

• System Errors due to Implementation Platforms: Smartphones are the most preferred
implementation platform for contact tracing and social distancing systems because
of their ubiquity. Other popular implementation platforms for contact tracing and
social distancing systems include bracelets, bangles, facemask, etc. Nevertheless,
smartphones and other devices are prone to sensing errors if positioned in a place
where human muscle tissues or other obstacles can obstruct their signal line of sights
or if positioned in different orientations or alignments such as putting them in back
or chest pockets (for phones) or due to body movement in for other devices. Further-
more, being that some users place their smartphones inside other containers such as
briefcases and handbags, it implies that readings taken from the smartphone’s sensors
may not represent the accurate colocation distances [60,212]. Therefore, enhancing the
system’s accuracy despite the various scenarios is still challenging.

• System Sensing Errors Due to Proximity Estimation Technique: Because BLE is the pre-
ferred sensing technology, the RSSI is the most popular proximity estimation technique
for contact tracing and social distancing systems. However, RSSI accuracy is affected
by changes in the environment. For instance, if a new infrastructure such as furniture,
refrigerator, etc., are introduced to the same environment, or the distance estimation is
performed in an entirely new location, the RSSI value changes due to the shadowing,
shading effects, and multipath losses in the different environments [137]. Although
several research efforts have been published to enhance RSSI accuracy, there is still
room for further enhancements.

• Incorporation of User Diagnostic Features: Existing contact tracing and social distancing
systems lack basic user diagnostic features such as temperature measurements, blood
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pressure and Blood oxygen level measurements, sneezing and coughing sensing, etc.
These features if incorporated will enhance system effectiveness.

• Improvement of System Adoption Rates: It has been noted that contact tracing and social
distancing apps perform more effectively if accepted by the general populace. With
high adoption rates, flattening the infection curve is easy. However, existing contact
tracing still suffers a low adoption rate. Therefore, researcher efforts are needed to
come up with frameworks that will enhance contact tracing and social distancing
systems adoption rate.

• Application of IoTs to Achieve Privacy-Preserving Contact Tracing: The security vulner-
abilities of IoT devices pose a great challenge against its application in combating
infectious diseases particularly in contact tracing and social distancing systems where
security and User privacy are critical, achieving privacy-preserving contact tracing.

• Application of SDN in Contact Tracing and Social Distancing Systems: One major challenge
of contact tracing and social distancing systems is getting the system architecture right.
Therefore, in our opinion, since SDN is an emerging network architecture, its potential
in this regard should be explored by the research community.

• Application of 5G in Contact Tracing and Social Distancing System: 5G is the network of
the now designed for cross-domain applications. However, just like other generations
of cellular networks, the accuracy in proximity estimation in a few meters (2 m for
example) is a major challenge. Therefore, frameworks of achieving high precision
proximity in a few meters (as required for contact tracing and social distancing) are
still an open research issue.

6. Conclusions

The review work is an extensive study of articles published on the use of technologies
as a non-clinical measure against COVID-19. The study specifically reviewed digital
methods of contact tracing and social distancing schemes for combating the spread of
coronavirus. In the study, contact tracing methods were reviewed under three sub-headings,
namely, technologies, protocols, and apps. Our review of technologies in contact tracing
systems shows that most contact tracing system developers implement Bluetooth low
energy (BLE) as the preferred proximity sensing technology and smartphones as the
implementation platforms. This is due to the availability of mobile phones as part of
human lives and BLEs are already fitted in existing smartphones by the manufacturers.
Other mobile phone-fitted sensors such as GPS and Wi-Fi are also sometimes used in
contact tracing systems as proximity sensing technology. On the part of social distancing,
the study identified five major approaches of achieving social distancing, namely, keeping a
distance, crowd control, face mask detection, isolation/quarantine, and virtual interactions.
Finally, we observed that a combination of contact tracing and social distancing schemes
when properly implemented will go a long way to minimize the spread of contagious
diseases. Finally, the study highlights key open research areas where interested researchers
and experts can channel more efforts to enhance the effectiveness of contact tracing and
social distancing methods as a non-pharmaceutical intervention against COVID-19.
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ACO Ant Colony Optimization
AI Artificial Intelligence
AP Access Point
AR Augmented Reality
AWS Amazon Web Services
BBR Bluetooth Basic Rate
BC BlockChain
BLE Bluetooth low energy
CCTV Closed Circuit Television
CAUDHT Contact tracing Application Using a Distributed Hash Table
CN Cellular Network
CNN Convolutional Neural Networks
DP-3T Distributed Privacy-preserving proximity tracing
DSS Decisional Support System
ECDH Elliptic Curve Diffie-Hellman
EDR Enhanced Data Rate
ENACT Encounter-based Architecture for Contact Tracing
FHSS Frequency Hopping Spread Spectrum
FMD Face Masked Dataset
FPN Feature Pyramid Network
GDP Gross Domestic Product
GDP General Data Protection Regulation
GPS Global Positioning System
IoT Internet of Thing
IPM Inverse Perspective Mapping
ISM Industrial Scientific Medical
ITC Information Technology and Communications
LIDAR Light Detection and Ranging
MAC Media Access Control
MERS Middle East Respiratory Syndrome
MILP Mixed Integer Linear Programming
MIOU Mean Intersection Over Union
MSC Mobile Switching Center
MMD Medical Mast Dataset
MS COCO Microsoft Common Objects in Context
NHS National Health Service
NFC Near-Field Communication
NIST National Institute of Standards and Technology
NMT Nomadic Mobile Telephone
NTP Network Time Protocol
PACT Privacy-Sensitive Protocol and Mechanism for Mobile Contact Tracing
PBC Public BlockChain
PBN Public BlockChain Network
PEPIN-PT Pan-European Privacy-Preserving Proximity Tracing
PIR Passive Infrared Sensors
PHY Physical Layers Extensions
POC Proof of Consensus
PoW Proof of Work
PSO Particle Swarm Optimization
PPC Privacy-Preserving COVID-19 Contact Tracing App
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R-CNN Region-based Convolutional Neural Networks
RF-CNN Recurrent Fuzzy Coupled Cellular Neural Network
RSSI Received Signal Strength Indicator
SARS Severe Acute Respiratory Syndrome
SIG Special Interest Group
DVD Simulated Masked Face Dataset
SORT Simple Online Real-Time Tracking
SRCNet Super-Resolution and Classification Networks
SSD Single Shot Detector
SSID Service Set Identifier
STK Short Term Keys (STK)
TCN Temporary Contact Number
TDOA Time Differential of Arrival
TOA Time of Arrival
Wi-Fi Wireless Fidelity
WHO World Health Organization
RFID Radio Frequency Identifier
RNN recurrent neural network
WEP Wireless Equivalent Privacy
UWB Ultra-Wide Band
VR Virtual Reality
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