
����������
�������

Citation: Palumbo, A.; Ielpo, N.;

Calabrese, B. An FPGA-Embedded

Brain-Computer Interface System to

Support Individual Autonomy in

Locked-In Individuals. Sensors 2022,

22, 318. https://doi.org/10.3390/

s22010318

Academic Editors: Marco Lanuzza

and Sung-Phil Kim

Received: 5 November 2021

Accepted: 29 December 2021

Published: 1 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An FPGA-Embedded Brain-Computer Interface System to
Support Individual Autonomy in Locked-In Individuals
Arrigo Palumbo, Nicola Ielpo and Barbara Calabrese *

Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy;
palumbo@unicz.it (A.P.); ielpon@unicz.it (N.I.)
* Correspondence: calabreseb@unicz.it

Abstract: Brain-computer interfaces (BCI) can detect specific EEG patterns and translate them into
control signals for external devices by providing people suffering from severe motor disabilities
with an alternative/additional channel to communicate and interact with the outer world. Many
EEG-based BCIs rely on the P300 event-related potentials, mainly because they require training times
for the user relatively short and provide higher selection speed. This paper proposes a P300-based
portable embedded BCI system realized through an embedded hardware platform based on FPGA
(field-programmable gate array), ensuring flexibility, reliability, and high-performance features. The
system acquires EEG data during user visual stimulation and processes them in a real-time way
to correctly detect and recognize the EEG features. The BCI system is designed to allow to user to
perform communication and domotic controls.
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1. Introduction

The purpose of the BCI research is the realization of a new assistive communication
and control technology for people with severe neuromuscular disabilities [1–3], such as
amyotrophic lateral sclerosis (ALS), spinal cord injury, stroke, multiple sclerosis, and
muscular dystrophies [4–13]. Therefore a potential group of BCI users consists of people
who cannot activate any muscle despite having an adequate cognitive function (locked-in
syndrome). In addition, in the last years, this technology has been used in cognitive studies,
i.e., for clinical diagnosis and prognosis for patients with disorders of consciousness [14].
In 2012, Wolpaw tried to provide a definition that is exhaustive and complete [15]: A BCI
is a system that measures central nervous system (CNS) activity and converts it into an
artificial output that replaces, restores, enhances, supplements, or improves natural CNS
output and thereby changes the ongoing interactions between the CNS and its external or
internal environment. In general, the CNS function responds to events in the outside world
or the body by producing natural outputs (neuromuscular or hormonal) that meet the
organism’s needs. The phenomena that occur continuously in the CNS (electrophysiological,
neurochemical, and metabolic) can be quantified by monitoring electric or magnetic fields
or other parameters using sensors on the scalp, the brain’s surface, or within the brain.
A BCI, then, acquires the brain signals, analyses them to extract specific measures (or
features) that correlate with the user’s intent, and converts (or translates) these features into
commands that control the application devices [16,17]. The brain signals can be acquired
through different electrophysiological methods, but electroencephalography (EEG) is the
most used non-invasive signal acquisition method for BCI [18].

Different components of the EEG signal could be used to control BCI systems, such
as sensorimotor rhythms [19–21], slow cortical potentials [22], P300 event-related poten-
tials [23,24], and steady-state visual evoked potentials (SSVEP) [25,26], but the P300 and
SSVEP-based BCIs turn out to be the most effective for communication and control appli-
cations. They allow users to select different characters or icons relatively quickly without
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requiring intensive training. Specifically, SSVEP is a visual evoked potential (VEP) consist-
ing of a visual cortical response evoked by repetitive stimuli with a constant frequency on
the central retina. For example, when the retina is excited by a visual stimulus at frequencies
between 3.5 and 7.5 Hz, the brain yields an electrical activity at the same and different fre-
quency of the visual stimulation. The main disadvantages of the SSVEP paradigm are here
reported. First, there could be the risk of inducing photo epileptic seizures for stimulation
frequencies in the 15–25 Hz band. Secondly, SSVEP-based BCIs perform much worse if
the BCI system should discriminate when the subject does nothing versus attending to the
SSVEP stimulus. This problem is known as the zero-class problem and is a severe issue in
real-world BCI systems. P300, instead, can be evoked in nearly all subjects and be easily
elicited differently from other visual evoked potentials.

Farwell and Donchin introduced the first P300-based BCI system in 1988; their goal was
to allow paralyzed people to communicate simple messages using their system [23]. They
proposed a design in which a 6 ∗ 6 matrix of letters and other commands was presented
to the user. The stimulation consisted of flashing the rows and columns of the matrix in
random order; the user had to focus on a letter and mentally count the number of times it
was illuminated. This is defined as the “oddball” paradigm. After several repetitions, the
computer was able to identify the row and column that had elicited the P300 component.
Then, the letter that the user wanted to select could be obtained by the intersection of
the two. Over the years, several groups have perfected this system through the use of
alternative EEG registration sites, signal-processing methods, and stimulus presentation
parameters and formats to improve the speed, accuracy, capacity, and clinical practicality
of the P300-based BCI systems, to make them a valid option of communication and control
for people with severe motor disabilities [27–34]. These BCI systems are based on the
use of personal computers. They, however, are neither compact nor portable because the
EEG signal is amplified and conditioned with commercial amplifiers, and the algorithms
for features extraction and classification work on personal computers; in this way, these
systems cannot be used conveniently in hospitals or at home [35,36]. Instead, parameters
such as energy consumption, size, robustness, portability, and reconfiguration must be
considered to make the BCI system an effective communication and control device. In
recent years some embedded BCI system designs have been proposed. Gao et al. presented
an SSVEP-based BCI system to control environmental devices, such as TV, videotape
recorders, or air-conditioners [37]. Compared to their previous PC-based BCI system,
they used a new stimulator composed of 48 green LEDs, whose blinking frequency is
controlled by a programmable logic device, a trainable infrared remote-controller a DSP
system for all processing and control functions. The results obtained on a subject show
a transfer rate up to 68 bits per minute, an average accuracy of 87.5%, and an average
time for one target selection of 3.8 s. Lin et al. proposed a real-time wireless embedded
EEG-based BCI system for real-time drivers’ drowsiness detection and warning [38]. The
system consists of a four-channel signal acquisition and amplification unit, a wireless
data transmission unit, a dual-core embedded system, a host system for data storage and
real-time display, and a warning device. The system was tested on five subjects, and it
was achieved an average accuracy of 74.6%. Garcia et al. presented a versatile hardware
platform to produce a small, autonomous, and configurable BCI platform adaptable to the
user’s needs [39]. It consists of three modules: (i) an EEG amplifier and digitizer, (ii) a
micro-controller to handle the transfer of the EEG samples in real-time to the computer,
and (iii) a communication module that uses the Zigbee or Bluetooth protocols. However,
signal-processing algorithms have been implemented on personal computers. In 2010 it
was presented an embedded SSVEP-based BCI based on a low-cost field-programmable
gate array (FPGA) [40]. The system includes a customized light-emitting diode (LED)
stimulation panel, an SSVEP acquisition circuit, an FPGA-based real-time signal processor,
a radio-frequency (RF) command transmitter-receiver circuit, and a bio-feedback voice-
output circuit and allows users to control multimedia devices. The system has been tested
on seven subjects (ages 23 to 32); it was obtained an accuracy of 89.29% and an information
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transfer rate of 24.67 bits per minute. Joshi et al. presented a portable and economic mu
rhythm-based BCI accomplished using a programmable system on chip (PSoC, Cypress
Semiconductor) [41]. Through the motor imagery, the user must move a cursor located
on the center of a screen to targets in the top and bottom. The system was tested on three
subjects for two weeks; it was obtained an average accuracy of 70% and a communication
bit rate of up to 7 bits per minute on the final day.

This paper describes an embedded BCI system based on the acquisition and process-
ing of EEG signals aiming to extract and recognize P300 components elicited through the
oddball paradigm. An FPGA-based device was selected among different possible embed-
ded solutions for the system’s development since it offers several advantages, such as
flexibility, reliability, and high-performance features [42,43]. In particular, since the FPGA
chip contains reconfigurable gate arrays and embedded memory, it is suitable for rapidly
implementing a digital signal-processing algorithm. Moreover, the use of parallel archi-
tectures increases system performance by processing high-volume data more efficiently
and performing multiple tasks simultaneously. The event-related potential was chosen
as the control characteristics of our BCI system due to the relatively short training times
required to the user and the increased speed, which allows the selection of one among
several options proposed concerning the sensorimotor rhythms. SSVEPs also enable the
user to select a choice between different possibilities quickly without training. However, as
reported in the work of [44], P300-based systems allow higher classification accuracy than
SSVEP-based BCI systems. Therefore, P300 potential has been preferred.

The paper is organized as follows: Section 2 describes the architecture and the main
functionalities of the FPGA-based brain-computer interface system; Section 3 presents the
main results of the experimental tests. Finally, Section 4 concludes the paper, highlighting
the innovative features of our system.

2. Methods

The P300 event-related potential (ERP) is a cognitive potential that occurs when the
subject recognizes a rare or relevant stimulus (target), auditory, visual, or somatosensory,
within a train of frequent or irrelevant stimuli (non-target) [45]. An example of a stimulation
paradigm is the oddball paradigm. In this paradigm, the users are subjected to events that
can be classified into two distinct categories. Events that belong to one of two types rarely
occur. When the rare event is presented to the user, it elicits the P300 potential. In addition
to the oddball paradigm, i.e., the single-stimulus and three-stimulus paradigms can be
used. P300 consists of a positive deflection in the EEG, which occurs 250–400 ms after the
onset of the target stimulus (Figure 1).
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The P300 potential has an amplitude lower or similar to the EEG background activity;
for this reason, it is necessary to synchronize media from different epochs relating to the
target stimuli to distinguish the P300 potential from regular EEG activity. The amplitude
of the P300 component is inversely proportional to the frequency with which the rare
impulse occurs; it is also influenced by the number of concurrent activities performed by
the user and by changes in the probability of the target stimulus; for example, if two target
stimuli occur consecutively, the amplitude of the P300 potential decreases after the first
rare stimulus [46].

Figure 2a shows the architecture of the proposed FPGA-embedded BCI system, which
includes the following hardware modules: (i) a custom visual stimulator; (ii) a commercial
certified EEG amplifier (g.Mobilab+, g.TEC Graz, Austria); (iii) an embedded hardware
platform for processing and systems control (Single-Board RIO, National Instruments,
Austin, TX, USA). In Figure 2b, it is possible to see the connections between the stimulation
panel and the embedded FPGA-based board.
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Figure 2. (a) Hardware modules of the proposed FPGA-based BCI system; (b) stimulation panel and
embedded-FPGA-based board.

The stimulation panel contains 36 light-emitting diodes (LEDs) organized in a matrix
with six rows and six columns. The LEDs’ flicking is managed according to the oddball
stimulation paradigm by the embedded platform to evoke the P300 response.

EEG amplifier acquires signals coming from eight-sintered silver/silver chloride
electrodes (mounted on an EEG cap) placed according to the International 10/20 System at
Fz, Cz, Oz, Pz, P3, P4, PO7, and PO8. All electrodes were referenced to the right earlobe
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and grounded to the left mastoid. The electrodes that P300 is typically recorded from are
illustrated in Figure 3: the P300 component is more evident in the occipital and parietal
regions. The eight channels were amplified, band-pass filtered between 0.5 and 100 Hz,
and digitized (with a 16-bit resolution) at a 256 Hz sampling rate. Through a serial interface
(RS-232), EEG data are transferred to the embedded platform.
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The embedded platform used for developing the BCI system is an integrated acquisi-
tion and processing system based on FPGA technology. The single-board RIO system is a
low-cost deployment solution based on National Instruments Reconfigurable I/O (RIO)
technology. On a single board, it integrates a real-time processor for reliable stand-alone
operation and signal-processing, reconfigurable FPGA for custom I/O timing and process-
ing, and analog and digital I/O. The real-time processor is connected to the reconfigurable
FPGA Xilinx (Spartan Family) through an internal high-speed PCI bus. The board features
an industrial 400 MHz Freescale MPC5200 processor that determines LabVIEW Real-Time
applications on the reliable Wind River VxWorks real-time operating system. In addition,
FPGA is directly connected to different I/O modules.

The embedded platform can be programmed using the LabVIEW graphical program-
ming language and two specific add-on modules (LabVIEW Real-Time Module to create
applications that can run in the embedded processor and the LabVIEW FPGA Module to
program the FPGA integrated).

The embedded hardware system performs all signal-processing steps needed to extract
the P300 response. In particular, the implemented hardware blocks include conditioning
(pre-processing), feature extraction, and feature translation (classification) (see Figure 4).
Moreover, the embedded system manages the data acquisition from the EEG amplifier, the
timing of stimulation, and gives visual feedback to the user relative to the classification
results at the end of the classification process. In addition to displaying classification
results, the embedded system can operate electrical/electronic devices, i.e., for domestic
applications, using digital I/O lines. A detailed description of different BCI blocks is
reported in the following sections.

2.1. Visual Stimulation

The stimulation interface panel consists of 36 LEDs arranged in a six by six matrix.
The panel’s physical size is 25 cm by 17 cm. The LEDs are mounted on a Plexiglas plate and
driven through a custom hardware module. LEDs have been chosen because they have
several advantages over traditional devices used for visual stimulation in neuroscience
(e.g., LCD screen): they are small, relatively stable, cheap, demand little energy to be driven,
and have low electromagnetic emissions. Moreover, due to their on/off switching response,
LEDs are suitable for displaying precise temporal patterns of stimulation [47]. In particular,
green LEDs have been used because some studies [48] have demonstrated that a green/blue
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flicker matrix can be associated with better performances in a P300 BCI, maintaining safe
conditions for the user.
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Figure 4. Block diagram of the FPGA-based system.

The LEDs driving module provides a robust and high current capacity to the LEDs
matrix. The led driver receives pulse signals from the digital ports of the embedded
hardware system, such that LEDs can be turned on and off according to the stimulation
timing protocol. According to the oddball paradigm, non-target LEDs were alternated with
the target in a pseudo-random sequence. The rows and the columns of the LEDs matrix
were significantly intensified for 125 ms with 125 ms (power off) between intensifications
(Figure 5). A stimulation sequence requires that all rows and all columns of the stimulation
matrix illuminate at least once. Therefore, the acquisition of EEG data relative to two or
more stimulation sequences is needed to correct the P300 component. The set of stimu-
lations sequences delivered to the user represents a trial and allows selecting a target. A
symbolic communicator (a sheet with 36 alphanumeric characters or icons, see Figure 6)
can be overlaid to the stimulation panel based on the specific application in which the
system is used.

2.2. Acquisition Module

The acquisition module represents the interface between the EEG acquisition device
and the embedded hardware platform. This block, implemented on the sbRIO platform,
provides communication with the EEG amplifier, relying on a protocol defined by the
acquisition hardware. During the initialization phase, the acquisition block configures
the external hardware; in particular, it selects the channel for the acquisition and decides
whether to use the two digital lines as an external trigger. While operating, this block
receives data from the EEG amplifier. It then retransmits them with appropriate mark-
ers/labels (i.e., Phase in Sequence, Stimulus Code, Stimulus Type) following the processing
module. These labels will allow for a correct signal segmentation to extract control parame-
ters and, generally, P300 detection. In addition, they provide information about the BCI
session’s current state, allowing for the correct timing of the stimulation and information
about the present stimulus intensified. In addition, the acquisition module is concerned
with saving the data and its labels for further offline analysis. These data are stored
in the memory available onboard the embedded system and are accessible through the
FTP protocol.
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2.3. P300 Signal Processing

All signal-processing operations needed for the extraction and classification of the
P300 component were implemented on the embedded platform, exploiting its dyadic
architecture based on FPGA and a real-time microprocessor. The main steps are illustrated
in Figure 7.
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The conditioning block is the first processing step, as reported in the previous BCI
scheme. Next, the data coming from the acquisition module undergo frequency filtering
operations to improve the signal-to-noise ratio. Frequency filtering includes a band-pass
filter (0.2–80 Hz, Butterworth topology, with 40 dB/dec roll-off) that removes the continuous
and high frequencies and a notch filter (with a 50 Hz cut-off frequency), which eliminates
interferences from the power supply.

The feature extraction block extracts the evoked potentials from the continuous EEG
signal. The P300 detection method followed the procedure developed by Farwell and
Donchin. The EEG filtered signals coming from the eight channels are segmented in epochs
beginning with the intensification and lasting for 800 ms: for each channel, an epoch was
derived in association with each stimulus class, thus for each matrix row and column
intensification. The method assumes that the epochs associated with the target stimulus
will present a detectable P300, while the other epochs will not. Then, the epochs related to
the target and non-target stimuli are averaged for each stimulus class over all stimulation
sequences of a single trial for each electrode site. Equations (1) and (2) show the averaging
calculations for each stimulus class (rows and columns):

R1mean = mean(R1(seq1), R1(seq2),.....R1(seqk)),
......

Rnmean = mean(Rn(seq1), Rn(seq2),.....Rn(seqk))
(1)

C1mean = mean(C1(seq1), C1(seq2),.....C1(seqk)),
......

Cmmean = mean(Cm(seq1), Cm(seq2),.....Cm(seqk)),
(2)

where R1(seq1) is, for example, the epoch relative to stimulus class 1 acquired during the
first stimulation sequence. Therefore, R1mean, . . . , Rnmean are the averaged epochs rela-
tive to nth row stimuli and C1mean, . . . , Cmmean to the mth column stimuli. Particularly,
Rimean ∈ R ns∗nch for i = 1, . . . , n and Cimean ∈ R ns∗nch for i = 1, . . . , m. ns is the total number
of samples in a single epoch and nch the number of acquired channels, respectively 204
and 8.

The output of the features extraction block will be averaged features vectors (Aver-
agedEpochs) related to each stimulus class and electrode site (Equation (3)).

AveragedEpochs = [R1mean,...Rnmean, C1mean,...Cmmean]. (3)

The feature translator block translates the features vectors in a logic control signal
independent of the specific application. It generally consists of linear classification. In
particular, it receives as input the epochs averaged for each stimulus and the weights matrix,
obtained through the offline analysis of previously acquired EEG data. Weights coefficients
are extracted through an offline procedure based on the step wise linear discriminant
analysis (SWLDA) [31]. Then, the feature translator block performs a linear combination
of the features arrays (AveragedEpochs) with the weights (Weights), obtaining the scores
vector (Y) for each stimulus class (Equations (4) and (5)).

Yrow1 = ΣAverageEpochs1(i, j) ∗Weights(i, j),
....

Yrown = ΣAverageEpochsn(i, j) ∗Weights(i, j)
(4)

Ycolumn1 = ΣAverageEpochsn + 1(i, j) ∗Weights(i, j),
....

Ycolumnm = ΣAverageEpochsn + m(i, j) ∗Weights(i, j).
(5)
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Finally, the algorithm searches for the maximum scores (predictedrow and predict-
edcolumn) in the vector for the stimulus class relative to the rows (Yrow) and columns
(Ycolumns) (Equation (6a–d)).

Yrow = (Yrow1, . . . , Yrown) (6a)

Ycolumn = (Ycolumn1, . . . , Ycolumnm) (6b)

predictedrow = argmax(Yrow) (6c)

predictedcolumn = argmax(Ycolumn). (6d)

The intersection of these values provides the winning item (selecteditem) (Equation (7)).

selecteditem = predictedrow ∩ predictedcolumn. (7)

2.4. BCI Operating Modes and Operator Interface

The BCI system implements two different operating modes: calibration and run
modes. Calibration mode is needed to extract from acquired EEG data information for the
classification in the online mode (run mode).

During the calibration mode, the system prompts the user with the character that
he/she is expected to focus on (target); the user was asked to count the target stimuli
during the visual stimulation. The BCI system acquires and saves EEG data and labels.

In the run mode, the user can choose the desired icon/letter on his/her paper commu-
nicator. Then, the embedded BCI starts the visual stimulation, and EEG data are transferred
from the amplifier, saved, and processed. At the end of each trial, the classifier recognizes
the winner stimulus and the BCI device communicates it to the user.

BCI device is provided with a helpful operator interface to configure the BCI device
and assess the correct functioning during the experimentation stage (Figure 8). In addition,
the operator interface allows the configuration of some parameters relative to acquisition,
processing, and stimulation (see Figure 9).
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3. Results

The system was initially tested on a healthy subject to verify the correct operation
and evaluate its performance. The alphanumeric communicator has been overlaid on the
stimulation panel to allow the user to perform a communication task. The subject was
seated facing the stimulation panel (see Figure 10).
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Figure 10. Experimental setup.

At first, the user was involved in the calibration phase: it delivered 10 stimulation
sequences for 7 trials. Next, the system acquired and saved EEG data and labels for training
the classifier in offline mode correctly.

After classifier training, the user could freely decide what icons the system had to
recognize. The number of stimulation sequences in the run mode was lowered to seven.
The user performed a relatively long session with 35 consecutive trials.

Figures 11 and 12 show an example of averaged target and non-target epochs extracted
from the P300 Signal Processor relative to a target and non-target stimulus class during a
trial. It is possible to note in Figure 8 the presence of a P300 event-related potential in the
time interval around 350–400 ms from stimulus onset. This activation component becomes
more negative in the electrodes Cz, Pz, P3, and P4.



Sensors 2022, 22, 318 11 of 16

To assess BCI performance, we evaluated accuracy and selection rate. In particular,
Equation (8) defines accuracy parameter in percentage value:

Accuracy% = Hits/(Hits + Miss) ∗ 100, (8)

where Hits are the correct recognized targets and Miss is the wrong recognized target.
The system correctly recognized 21 targets, while the total targets were 35. Therefore

it was obtained an accuracy of 60%. However, this result is encouraging as it has been
obtained from a user entirely naive for the BCI protocol based on P300. Considering the
14 error cases, 11 refer to situations in which the system can identify at least the row or
column relating to the target icon, 3 to situations in which the system fails. Naturally, the
latter errors are due to the user’s distraction or fatigue.
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Then, the system was tested on six subjects that performed six sessions, each composed
of 15 trials, with the alphanumeric communicator overlaid on the stimulation panel. The
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results in terms of accuracy are represented in Figure 13. The average accuracy is nearly
70%.
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Figure 13. Accuracy results obtained from 6 different subjects involved in experimental sessions of
15 trials.

Figure 14 gives details of the tests on the six subjects. It is worthing to point out that
our system was tested on completely “illiteracy” users, and we reported results relative to
their first sessions to demonstrate our system’s robustness. The columns labeled “Trial”
show the identification codes of each trial: trials from 1 to 15 refer to the first subject; from
16 to 30 to the second subject; from 31 to 45 to the third subject; from 46 to 60 to the fourth
subject; from 61 to 75 to the fifth subject; from 76 to 90 to the sixth subject. The “Target”
columns indicate which icon the user was asked to fix. Finally, the “Results” columns show
the system results.
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30 s w 60 c c 90 x x

Correct
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Error

First user

Second user

Third user

Fourth user

Fifth user 

Sixth user

Figure 14. Detailed results obtained from 6 different subjects involved in experimental sessions of
15 trials.
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The correct results are green; the wrong results are yellow and red. Specifically,
considering the 28 cases of error, 22 instances refer to the situation in which the system can
identify the row or column relating to the target icon (results in yellow), 6 in situations in
which the system completely errs (results in red).

Equation (9) defines the selection rate, considering a minute as time unit:

SelectionRate = 60/SelectionTime. (9)

SelectionTime has been evaluated by using Equation (10):

SelectionTime = ST + PT + RT, (10)

where ST is the stimulation time, PT is the processing time (equal to 4 s), and RT is the
results display time (5 s).

Stimulation time has been evaluated in the following way (Equation (11)):

ST = (SD + ISI) ∗ N_StimulusClasses ∗ N_StimulationSequences, (11)

where SD is the stimulus duration (125 ms), ISI is the inter-stimulus interval (125 ms),
NStimulusClasses is the total number of stimulus classes, and NStimulationSequences is
the total number of stimulus sequences (namely 12 and 7, respectively).

According to these data, the selection time is 30 s and, therefore, the selection rate of
our BCI system is two letters per minute. It could be improved by reducing the number of
stimulation sequences: indeed reducing the number of stimulation sequences from 7 to 5
and the results display time of some seconds, the selection rate changes from two letters
per minute to three letters per minute.

4. Conclusions

A novel FPGA-embedded BCI system has been designed and implemented. In particu-
lar, a hardware FPGA-based system has been realized to achieve precise timing stimulation
and efficient data processing. The system’s design is based on FPGA technology. The use of
an FPGA-based device makes the system flexible because the functionality can be changed
(so we have reconfigurable embedded hardware). Moreover, it is possible to implement
parallel tasks that will be executed simultaneously and independently from each other,
thus guaranteeing high performance (the hardware parallelism of the FPGA is exploited,
which exceeds the computing power of the DSP). Since applications are implemented in
hardware without an operating system, FPGA will run them reliably (so there will be no
software-related time latencies). Moreover, the embedded portable platform avoids using
bulky personal computers accompanied by commercial signal-processing software. The
first P300 FPGA BCI system was illustrated in the work of [49], but only a simple filter
was realized in the reconfigurable logic, while most of the processing was performed in
softcore processors. Moreover, the system did not interface with the EEG amplifier. Instead,
EEG data were sent from the PC using the TCP/IP protocol. Our system is a complete
BCI system where EEG data are acquired using an EEG amplifier that interfaces with an
FPGA-based system for pre-processing and P300 recognition.

This study’s significant shortcomings rely on the fact that the number of subjects
trained and tested on this BCI system is limited. However, the primary objective of vali-
dating the functionality of the BCI is achieved. Another shortcoming of the present study
is the offline calibration. To improve the usability of the system for end-users, an auto-
matic online calibration procedure will be implemented. Moreover, the BCI performance
(particularly, selection rate) could be improved by reducing the number of stimulation
sequences or defining single-trial algorithms for P300 detection. Although the system is
slow compared to conventional media, we must consider that the communication speed is
less important than accuracy and reliability for users with disabilities. Furthermore, the
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problem of increasing the rate selection becomes less critical when the system is used in the
domotic context since the user must select the icons less frequently.
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