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Abstract: Recently, many super-resolution reconstruction (SR) feedforward networks based on
deep learning have been proposed. These networks enable the reconstructed images to achieve
convincing results. However, due to a large amount of computation and parameters, SR technology
is greatly limited in devices with limited computing power. To trade-off the network performance
and network parameters. In this paper, we propose the efficient image super-resolution network
via Self-Calibrated Feature Fuse, named SCFFN, by constructing the self-calibrated feature fuse
block (SCFFB). Specifically, to recover the high-frequency detail information of the image as much
as possible, we propose SCFFB by self-transformation and self-fusion of features. In addition, to
accelerate the network training while reducing the computational complexity of the network, we
employ an attention mechanism to elaborate the reconstruction part of the network, called U-SCA.
Compared with the existing transposed convolution, it can greatly reduce the computation burden
of the network without reducing the reconstruction effect. We have conducted full quantitative
and qualitative experiments on public datasets, and the experimental results show that the network
achieves comparable performance to other networks, while we only need fewer parameters and
computational resources.

Keywords: super-resolution; lightweight networks; reconstruction effect

1. Introduction

The essence of the SR task is to reconstruct the high-resolution (HR) image from
a low-resolution (LR) image. The SR task is a hot and challenging point in low-level
computer vision, which is mainly based on the fact that the reconstruction of a LR image
into a HR image has different reconstruction directions with different environments, so
it is inherently ill-posed. The problem is essentially a one-to-many relationship, which
is difficult to solve with a specific mathematical relation formula. To solve this problem,
many traditional methods have been proposed (e.g., interpolation-based methods [1] and
degenerate model-based methods [2]), but their reconstruction results are not satisfactory.
With the booming rise of deep learning (DL) techniques, convolutional neural networks
(CNNs) have been attempted to constrain the solution space from LR to HR and have
shown excellent performance.

Dong et al. [3] first applied CNN to the SR task and constructed the SRCNN model
by establishing a direct relationship between LR and HR, which is obviously superior
to the traditional non-DL method. Then, inspired by traditional sparse coding, Wang
et al. [4] proposed a progressive upsampling method to achieve better HR generation at
large upsampling factors (e.g., ×4). Due to the outstanding performance of the VGG [5]
network on the ImageNet classification task, Kim et al. [6,7] increased the depth of the SR
network to 20 layers to achieve better performance and showed that it greatly outperformed
the SRCNN. We found that a deeper network model had a significant impact on improving
the reconstruction performance of the network. But deeper networks are not conducive
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to their training, so some researchers have introduced higher learning rate and residual
learning to alleviate this problem. Meanwhile, in order to effectively reduce parameters in
the network, recursive learning was introduced in the DRCN [7] proposed by Kim et al.
to save network parameters significantly. Similarly, DRRN [8] proposed by Tai et al. not
only uses recursive learning to save network parameters but also introduces global and
local residuals to promote the network training. Meanwhile, the MemNet [9] proposed
by Tai et al. solves the CNN long-term dependency problem by applying recursive units
and gate units. However, both algorithms require a long time and substantial graphical
memory consumption during the training and testing phases. The main reason is that the
first stage of these two models is to upsample LR, and the whole network process is to
train the upsampled images without any downsampling operation, which introduces great
computational consumption.

To address the above issues, we further explore the lightweight and reconstruction
performance of single image SR network. In this paper, we propose a simple and efficient
SR network via Self-Calibrated Feature Fuse (SCFFN) to achieve better balance between
network performance and applicability. In the network proposed in this paper, the two
crucial parts of the proposed network are the high-level semantic information learning part
and the reconstruction part. In the deep feature extraction part, we propose the SCFFB
according to the recent self-calibrated convolution [10]. The SCFFB has no complicated
connection structure and up/down sampling operation as these are unfriendly to hard-
ware acceleration. We summarize some previous work and find that other work is to use
transpose convolution and sub-pixel convolution layer to implement image upsampling,
and there is little work to study the impact of the reconstruction component on network
performance and efficiency, but this structure is less efficient. In the network proposed in
this paper, we use traditional NN and convolutional layers to improve the efficiency of the
network and reduce parameters, while our introduced SCA improves the network perfor-
mance at a small parameters cost. Therefore, the reconstruction part contains NN, SCA
and convolutional layers. In general, because our network has no complicated connection
mode, SCFFN is simpler and more efficient than the previous methods. As can be seen in
Figure 1, our network achieves relatively optimal results in terms of parameters, model
complexity and network reconstruction performance compared to the previous network.
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Adds), the vertical coordinates represent the PSNR of the network and the size of the circles in the
figure indicates the network parameters. Multi-Adds are computed on 720p HR images.

The main contributions of this work are as follows:
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• We have carefully designed a simple and effective lightweight SR network (SCFFN),
and extensive experimental results demonstrate the superiority of our network over
other networks.

• Inspired by self-calibrated convolution [10], we constructed a novel high-level feature
learning block (SCFFB) for the SR task, which enables extract high-level information
by its own feature fusion.

• To further improve the efficiency of the network, we used the traditional nearest neigh-
bor interpolation method and the simple channel attention mechanism we designed
in the reconstruction part, named U-SCA block.

2. Related Work

In recent years, supervised deep learning methods have been introduced to various
computer vision tasks [11] and have achieved remarkable success. Garcia et al. [12] sum-
marized the application and achievements of deep learning in semantic segmentation
in recent years. At the same time, to compensate for the disadvantage that supervised
learning requires a large number of labels, researchers have proposed a semi-supervised
learning method, where there is only a small amount of label data and a large amount
of unlabel data. The mean teachers method proposed by Vainen et al. [13] effectively im-
proves the network performance of semi-supervised learning by averaging model weights.
Doulamis et al. [14] proposed a semi-supervised learning method for object classifica-
tion/tracking, which allowed the unsupervised data to initially configure the network,
and then triggered the gradient descent optimization scheme to fine-tune the data. In
addition, an adaptive method was proposed, which allowed the model to be dynamically
modified according to the current visual conditions. Baur et al. [15] embedded the concept
of auxiliary manifold of semi-supervised learning into FCNs to solve the segmentation of
MS lesions. For SR tasks, numerous CNN-based methods have been proposed [16–20] to
improve the reconstruction performance of the network, however, the network parameters
and computational consumption limit their application in industry [21].

Dong et al. [3] constructed the first super-resolution reconstruction method based on
deep learning through three convolution layers, named SRCNN, whose reconstruction
performance is obviously better than that of traditional methods, but the input of SRCNN
is bicubic interpolated image, which greatly increases the computational cost and training
time. To improve the reconstruction performance, the VDSR proposed by Kim et al. [6] used
global residual learning to expand the network to 20 layers, and their experimental results
demonstrated that increasing the depth of the network could improve the performance
of the network. Later, more and more researchers designed very deep and complex
networks to improve network performance, but the consequence was that the network
parameters, complexity and training cost were greatly increased. For example, EDSR [19]
achieved an unprecedented breakthrough in image reconstruction performance and won
the 2017 NTIRE competition, but the network parameters and depth were 43 M and 69
layers respectively. Zhang et al. proposed RDN [16] by introducing dense connection in the
residual block of EDSR, which includes 22 M parameters and 128 layers. Meanwhile, Zhang
et al. proposed RCAN [17] by applying the channel attention mechanism to the residual
structure for the first time, which greatly improved the network performance. The network
depth reached 400 layers but only needed 15.59 M network parameters. Although these
methods achieve good performance, they are not suitable for use in devices with limited
resources. For mobile devices, in the case of limited available memory and inference time,
we should aim at the highest possible SR performance. Moreover, many situations (such as
video applications, smartphones, edge devices, etc.) require good performance and faster
reconstruction speeds. It is therefore essential to design a lightweight and efficient model to
meet these requirements. However, most of the algorithms mentioned above have a large
number of parameters and require much more memory consumption, so these networks
are unaffordable for mobile devices with limited resources in practical applications.



Sensors 2022, 22, 329 4 of 17

Many fast, lightweight networks have been designed to address these issues. To
accelerate network training and reduce computational costs, FSRCNN [22] implements
network upsampling in the final stage of the network. This structure enables the whole
network to learn high-level information in the low-dimensional space. Meanwhile, the
ESPCN [23] proposes an effective sub-pixel convolutional layer to implement image upsam-
pling. In order to reduce network parameters, some researchers adopt parameter sharing
and recursive structure. For example, the DRCN [7] proposed by Kim et al. is the first to
apply recursive structures to the SR task, while introducing residual connection to alleviate
the gradient disappearance caused by too many recurrences. The DRRN [8] proposed
by Tai et al. introduced the recursive structure deeper through gradient cropping and
achieved good results. Meanwhile, Tai et al. adopted recursive units and gate units to
solve the long-term dependency problem of the network and proposed MemNet [9] for
multi-tasks (including image denoising, SR and JPEG deblocking). The abovementioned
methods all adopt recursive structure and parameter sharing to reduce the complexity of the
model. Ahuja et al. introduced the Laplace pyramid structure to the SR task to address the
speed and reconstruction performance of SR, proposing LapSRN [24] and MS-LapSRN [25],
both of which use LR images as input to progressively reconstruct multi-scale HR images.
Similar to this work, the ProSR [26] proposed by Perazzi et al. took this structure while
reconstructing higher quality images at large scaling factors. The CARN [16] proposed
by Ahn et al. uses cascade connection to efficiently transmit information, thus realizing
the lightweight of the network. SRResNet [27] improves the performance by removing
unnecessary blocks. Later, Hui et al. proposed lightweight IDN [18] and IMDN [28] based
on information distillation. In a word, it is of great significance to design a lightweight and
efficient SR network.

In this paper, we further explored the lightweight and reconstruction performance of
the SR network. Inspired by self-calibration convolution [10], we designed a simple and
efficient SR network, namely SCFFN. Consistent with the learning-based reconstruction
method (e.g., pixel shuffling [29]) that realize upsampling at the last stage of the network.
However, the reconstruction module of most networks consists of upsampling (sub-pixel
convolution or transpose convolution) and convolution layers. The reconstruction part
in SCFFN adopts NN, the SCA of our design and two convolutional layers. We conclude
from previous work that attention mechanisms [30,31] can improve network performance,
but there is little work on the impact of the reconstruction stage on network performance.
Therefore, in this work, we employ an attention mechanism-based U-SCA block in the
reconstruction phase to better reconstruct images. Sufficient experiments have shown that
our network is superior to most methods in parameters and complexity.

3. Method

In this part, the proposed network structure is described in detail. Section 3.1 intro-
duces the overall framework and implementation process of our network. Section 3.2
describes in detail SCFFB, which is the core of our algorithm. Section 3.3 shows the recon-
struction module of our network. Section 3.4 presents the loss function we need to train
the network.

3.1. Network Architecture

Figure 2 shows the general architecture of SCFFN, which consists of three modules,
the feature extraction block (FEB), the high-level semantic information learning module
(i.e., a stacked series of SCFFB) and the reconstruction module (U-SCA).

The LR image is first fed to the FEB for shallow feature extraction, which consists of
two convolution layers. The FEB can be expressed as:

f0 = Conv(ILR) (1)

f1 = Conv( f0) (2)
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where Conv indicates a convolutional layer with kernel 3 for shallow feature extraction and
f1 is the extracted feature.

We then use a series of stacked SCFFB as the nonlinear mapping module for the
network in this work to generate a powerful representation of the LR image high-level
features fn. We denote the SCFFB as HSCFFB(·), the shallow features f1 flow through
the nonlinear feature mapping module to obtain the high-level features fn, which can be
expressed as:

fn = Hn
SCFFB

(
Hn−1

SCFFB

(
. . . H1

SCFFB( f1) ) ) (3)

where fn is the output feature map of the n-th SCFFB.
The skip connection is used to supplement the details of the original information to

the obtained fn, which can also effectively prevent the gradient from vanishing:

Fn = fn + f0 (4)

where, + is element-wise addition, Fn is the final feature map of low resolution.
Finally, the NN, the SCA we designed and two convolutional layers as the recon-

structed part of SCFFN. We first upsample the feature map Fn to the target size through NN
and then performed feature enhancement by modeling the feature map channels (SCA). In
addition, we employ a global skip connection fUP, and the high-level semantic information
learned by the network is summed element-wise to obtain a detail-rich super-resolution
image. As a result, we obtain:

ISR = HUP(Fn) + fUP(ILR) (5)

where HUP(·) is the reconstruction unit in our network, ISR is the high-resolution im-
age after the final reconstruction of our network, and fUP indicates the perform bilinear
interpolation operation.

Table 1 shows the parameter settings for our network. “Input” and “Output” denote
the input and output flowing through the corresponding network layers, respectively.
“Layers” represents the number of corresponding layers. SCFFB is the high-level infor-
mation extraction block with the number of 12 (discussed in Setion 4 of the article), NN
is the nearest neighbour interpolation upsampling method, and “s” is the scaling factor.
It is worth mentioning that when s = 4, in order to reduce the serious mosaic and saw-
tooth phenomenon of the image caused by too large an upsampling factor, we split it into
two ×2 upsampling.
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Table 1. Setting of network structure parameters of our algorithm.

Module Layer Name Layers Kernel Size Input Output

Shallow feature
extraction

Conv 1 3× 3 3× 64 × 64 40× 64× 64

Conv 1 1× 1 40× 64× 64 40× 64× 64

Deep feature
extraction

SCFFB 12

1× 1 40× 64× 64 20× 64× 64
1× 1 40× 64× 64 20× 64× 64
3× 3 20× 64× 64 20× 64× 64
3× 3 20× 64× 64 20 × 64× 64
3× 3 20× 64× 64 20× 64× 64
3× 3 20× 64× 64 20 × 64× 64
3× 3 40× 64× 64 40× 64× 64

Conv 1 3× 3 40× 64× 64 40× 64× 64

Network
reconstruction

NN 1 or 2 40× 64× 64 40× (s·64)× (s·64 )

Conv 1 or 2 3× 3 40× 64× 64 24× (s·64)× (s·64 )

SCA 1 or 2 3× 3 24× 64× 64 24× (s·64)× (s·64 )

Conv 1 or 2 3× 3 24× 64× 64 3× (s·64)× (s·64 )

3.2. Self-Calibrated Feature Fuse Block

As the core part of the SCFFN, the nonlinear mapping module consists of a series of
stacked SCFFBs. SCFFB performs feature crossing to refine features. It first feeds the input
feature map into the two branches and then strengthens the common part by element-wise
product while increasing the nonlinear capability of the network. By multiple SCFFBs,
the boundaries of the high-level features are sharpened. At the same time, we add a local
skip connection to SCFFB, which can avoid the gradient disappearance caused by multiple
products and compensate for the low-frequency information.

Here, we use fn−1 and fn to denote the input and output of the n-th SCFFB respectively.
Similar to SCNet [10], the SCFFB contains two parts. To reduce the complexity of the
proposed network, we first reduce the dimension in the upper part by 1 × 1 convolution,
FFB then performs feature refinement to enhance the common parts among features,
producing a feature map with clear boundaries. The under part is a local residual connection
to retain the original details. The SCFFB structure is shown in Figure 3. For the input
feature fn−1, we have:

f ′n−1 = Conv( fn−1) (6)

f ′′n−1 = Conv( fn−1) (7)

where f ′n−1 and f ′′n−1 are only half of the number of channels of fn−1, Conv means that 1× 1
convolution layer is used for dimension reduction.

The structure of FFB is shown in Figure 3. The upper part of FFB is about up-down
symmetry. The feature f ′n−1 and f ′′n−1 first pass through the 3× 3 convolution layer to adapt
to the subsequent changes while increasing the nonlinear capability of the network. Then
perform an element-by-element multiplication to highlight the high frequency information
of the image, to achieve the transformation and fusion of the features. The fused features
have clear boundaries and rich semantics. Finally, we use the shortcut to retain the original
information of LR to generate the final output feature map fn. The whole process is
expressed as:

f f use = Conv( f ′n−1) � Conv( f ′′n−1) (8)

H1 = Conv
(

f f use

)
, H2 = Conv

(
f f use

)
(9)

f ′f use = Concat([H1, H2]) (10)

fn = fn−1 + Conv
(

f ′f use

)
(11)

where �means the element-wise product, Concat([H1, H2]) is the concatenation operation
of feature maps H1 and H2, f f use and f ′f use are the feature maps generated in the middle.
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Figure 3. The proposed SCFFB, as the critical part of our network, for high-level semantic information
extraction of LR images.

3.3. U-SCA Block

In the previous work, the reconstruction part of the network is often easily overlooked,
because processing the up-sampled image will introduce a lot of parameters and compu-
tation. Therefore, the reconstruction module of SR network consists of an upsampling
layer (sub-pixel convolution or transposed convolution) and a convolution layer. But the
reconstruction part also has a significant impact on the reconstruction performance of
the network.

In the reconstruction stage of the network, we choose the simple and fast nearest
neighbor (NN) interpolation method, which will also introduce mosaic and sawtooth ef-
fects. To alleviate this problem, this paper introduces the attention mechanism. Because
convolution layer treats each channel-wise feature equally, it is unfriendly to the feature
image after up-sampling by NN. For example, the network should pay attention to areas
(edges, contours, etc.) with rich high-frequency information. Therefore, we modelled the
interdependence among feature channels, introduce a simple channel attention mechanism
(SCA) in the up-sampling phase of the network (the structure is as follows). We expect the
learning of high-level features to be enhanced by explicitly modelling channel interdepen-
dencies, so that the network is able to alleviate the mosaic and jagged introduced by NN.
The network structure of SCA is shown in Figure 4. The experimental results show that the
SCA we introduce has a positive effect on the performance of the network, while only a
few parameters need to be introduced.

In U-SCA, we first upsample the fine feature map of the nonlinear mapping learning
unit to the target size by traditional NN. In order to make the network more effective and
have fewer parameters, we then reduce the dimension of the upsampled feature map (i.e.,
reduce the number of channels) and input it into SCA for information enhancement. Finally,
the number of channels is reduced three channels (i.e., RGB) by a convolution layer. The
mathematical expression is:

h1 = Conv(HNN( fn)) (12)

where HNN (·) represents the nearest neighbour interpolation function, Conv is a 3 × 3 con-
volutional layer, while reducing the image dimension from 40 to 24 to ensure the efficiency
of the network. h1 is the feature map after upsampling and dimensionality reduction.

The obtained feature map h1 is sent to SCA block to enhance the features. Specifically,
firstly, through a global average pooling, then through an attention activation (Sigmoid)
function layer, we get an attention weight vector α ∈ R1×1×C, where C denotes the number
of channels of the weight vector, here C = 24, and finally apply the weight vector to the
feature map by element-wise multiplication and addition to generate a residual map with
abundant details. Its expression formula is given by:

α = Sigmiod(Conv(Avg(h1))) (13)

out = α
⊙

h1 + h1 (14)

where Avg(·) is the global average pooling function, Sigmiod(·) is the Sigmoid function,
and

⊙
is the element-wise product operation between two feature maps.
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3.4. Loss Functions

The loss function is one of the most important parts of deep neural network, which
determines the direction of our network optimization. In the SR task, because L1 [32]
loss function punishes the relative error of abnormal samples less than the MSE (L2) loss
function. Numerous experiments prove that the MSE loss function can produce blurred
images, so in our network, the L1 loss function is used to optimize our network. The
network loss function formula can be expressed as:

L(θ) =
1
N

N

∑
i=1
||HSCFFN

(
Ii
LR

)
− Ii

HR||1 (15)

where HSCFFN(·) denotes the network function the proposed in the paper, θ is a learnable
parameter in SCFFN network, and ||·||1 is the l1 norm.

{
Ii
LR, Ii

HR
}

is the training dataset
pair, Ii

LR and Ii
HR indicate the input LR images and the corresponding ground-truth images

respectively, and N represents the batch-size of training datasets.

4. Experiments

In this section, we verify the effectiveness of our method through sufficient experi-
ments and the final results show its superiority. Section 4.1 introduces the proposed network
training settings (such as datasets, evaluation indicators and training settings). Section 4.2
analyses each part of our network in detail, such as the impact of the number of SCFFB
on performance, the effectiveness of the U-SCA, etc. Section 4.3 compares the proposed
method with other algorithms in terms of objective metrics and visualization results.

4.1. Settings

We are using DIV2K [33] containing 800 high quality images as the training dataset.
Due to the relative simplicity of the proposed network, we did not perform any data
augmentation on the training dataset, but in the image preprocessing, we cut the HR
images in the training dataset into small-size images as input to enhance the data. Also,
the small size of the image better allows the network to learn local information. We
evaluated the SR results of five standard benchmark test datasets under the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [29]: Set5 [34], Set14 [35], BSD100 [36],
Urban100 [37] and Manga109 [38]. At the same time, our model is also evaluated in the
quantitative indicators of cost calculation (Multi-Adds). For a fair comparison, the results of
the experimental quantitative analysis of our network, like other networks, were evaluated
on the luminance (Y) channel in YCbCr channel.

Consistent with the existing network, we downsampled the ground-truth images in
MATLAB using bicubic downsampling to generate LR, where the downsampling factors
include (×2, ×3, ×4), and the final training dataset pair is formed.

We set the input batchsize to 32 to train our network. Also, to ensure that our network
can fully learn the information in LR, we set the patch-size of LR input to 64. Meanwhile,
we use Adam [25] and MultiStepLR learning scheme to optimize the network parameters.
In Adam, we set β1 = 0.9, β2 = 0.99, and ε = 10−8, and the initial learning rate is
7× 10−4. For every 250,000 iterations, the learning rate was cropped by 0.5, and the total of
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1,000,000 iterations are trained. We use Pytorch deep learning framework to implement our
algorithm and train it in TITAN RTX.

4.2. Model Analysis

We first explored the number of SCFFB, then verified the effectiveness of U-SCA and
compared the effects of other upsampling (such as transpose convolution, etc.). Finally, we
qualitatively compare and visualize the proposed methods.

4.2.1. Number of SCFFB Studies

In this section, we analyze the influence of the number of SCFFB on the performance
of network through experiments. As the core component of our network, the number of
SCFFB affects the final performance of our network to some extent. We should not only
consider the performance of the network, but also pay attention to the parameters and
computation of the network. As shown in Figure 5 and Table 2, the results show that when
n = 12, 13, 14, the reconstruction results of the network are close. We know that the larger
the n, the deeper the network, and the more network parameters and computation. The
purpose of this paper is to explore the lightweight of SR network. Therefore, when the
results are similar, we choose a model with relatively few parameters and calculations, so
in this paper, n = 12 is chosen as our final network. It should be noted that SCFFN + (n = i),
Parameters, Multi-Adds, PSNR and SSIM in Table 2 represent the corresponding network
parameters, complexity and the average PSNR/SSIM of five common datasets on ×4 when
the number of SCFFB is i.
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Table 2. Performance analysis of the number of SCFFB.

Method Parameters Multi-Adds PSNR (dB) SSIM

SCFFN + (n = 9) 214 K 24.2 G 28.86 0.8190
SCFFN + (n = 10) 232 K 25.2 G 28.87 0.8188
SCFFN + (n = 11) 249 K 26.2 G 28.85 0.8190
SCFFN + (n = 12) 267 K 27.2 G 28.93 0.8203
SCFFN + (n = 13) 285 K 28.2 G 28.91 0.8199
SCFFN + (n = 14) 302 K 29.2 G 28.92 0.8202

4.2.2. Ablation Study

As can be seen from Figure 2 of the network architecture proposed in this paper, our
network adds a local residual connection (LRC) (as seen in Equation (4)) to supplement
the original rough information of LR and effectively conduct gradient transmission. We
can see from Table 3 and Figure 6 that the LRC is critical to the performance improvement
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of our network. Due to the network is deeper, the weights of the shallow network may
not be updated in time during the training process of the network, causing a significant
drop in the performance of the network. Therefore, the LRC is essential in our network.
SCFFN-LRC indicates removal of the LRC from the SCFFN network (see Equation (4)).

Table 3. Regarding the effect of LRC in Equation (4) on performance results, we test results on ×4
and PSNR, SSIM is the average of the test results on the five public datasets.

Method Parameters Multi-Adds PSNR (dB) SSIM

SCFFN-LRC 267 K 27.2 G 27.90 0.8023
SCFFN 267 K 27.2 G 28.93 0.8203

We also made a detailed experimental comparison on the reconstruction part of
the network. Firstly, we replace the reconstruction part of SCFFN with NN and two
convolutional layers, named Base + NN. Then, like other networks, we use transposed
convolution to perform upsampling, where kernel_size = 6/7/8, padding = 2/2/2 and
stride = 2/3/4 to achieve ×2/×3/×4 perceptibly, denoted Base + Deconv. At the same
time, we also made an experimental comparison of U-SCA, we removed the addition
branch in SCA, denoted as Base + NN + (B-add). The results of the ablation experiment are
presented in Table 4 and Figure 6, where the deconvolution layer dramatically increases the
parameters of the network without increasing the performance of the network, while we
find that the Multi-Adds for just one transposed convolution is 94.4 G, thus demonstrating
that the reconstruction part of our design improves the performance of the network at a
small cost. We also find from Table 4 that the designed SCA also has a positive effect on
the network performance improvement. Overall, our well-designed reconstruction part
is crucial to our network. It is worth mentioning that the “Base” in Table 4 refers to the
network after the reconstruction part is removed by SCFFN, the PSNR/SSIM in the results
of Tables 3 and 4 is the average value evaluated on five common test datasets (×4), the
experimental results in Figure 6 are tested in Set5 (×4).

Table 4. Experimental analysis on the reconstruction part of the network. We test results on ×4 and
PSNR, SSIM is the average of the test results on the five public datasets.

Method Parameters Multi-Adds PSNR (dB) SSIM

Base + NN 266 K 27.2 G 28.86 0.8188
Base + Deconv 353 K 116.8 G 28.86 0.8191

Base + NN + (SCA-add) 267 K 27.2 G 28.89 0.8194
SCFFN (ours) 267 K 27.2 G 28.93 0.8203
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4.2.3. Loss Analysis

In this part, we explore the influence of L1 and L2 loss functions on network perfor-
mance. The experimental results are shown in Figure 7, the results show that the network
performance optimized by L1 loss function is better than that optimized by L2 loss function,
so L1 loss function is more suitable for our network. The result is evaluated on Set5 (×2).
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the SSIM value evaluated on Set5 (×2).

4.2.4. Visual Analysis

We have visualized the intermediate feature map of the network. As shown in Figure 8.
The first column represents the input image of the network, the second column represents
the feature map of the image after shallow feature extraction, the third column shows the
feature map after deep feature learning module, and the fourth column represents the
features of NN upsampling. The last column shows the features after SCA. From these
feature maps, we can find that the shallow feature map contains abundant low-frequency
information. After the deep learning module, the extracted feature image retains a large
amount of high-frequency information. After NN upsampling, the feature map has obvious
mosaic and jaggedness phenomenon. Finally, after our proposed SCA, the high-frequency
information of the image is clearly displayed, and at the same time, it can effectively
alleviate the shortage of NN upsampling. Experiments show that the method we designed
is very effective for lightweight SR.
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4.3. Comparison with State-of-the-Arts
4.3.1. Network Parameters

After sufficient training, comparison of our model with state-of-the-art methods on
the five public test datasets (see Table 5), including SRCNN [3], FSRCNN [23], VDSR [6],
DRCN [7], DRRN [8], MemNet [9], CARN [21], LapSRN [24], SRResNet [27], IDMN [28],
MAFFSRN [39], MADNet [40] and SMSR [41]. For a fair comparison, we only consider the
models with equivalent Multi-Adds for comparison, and therefore models that were too
deep and too large, such as RDN [16] and RCAN [17], were excluded here. According to the
convention, we choose PSNR and SSIM [33] as metrics. The comparison results in network
parameters, reconstruction effect (PSNR) and Multi-Adds (G) are shown in Figures 1 and 9.
Figure 1 shows that our method can balance the parameters, reconstruction performance
and Multi-Adds well. It can also be seen from Figure 9a that although the Multi-Adds
(27 G vs. 19.3 G) of our network is slightly higher than MAFFSRN in ×4 upscaling factors
and can achieve similar performance (in Table 5 shows that we have fewer Multi-Adds
on ×2). It can obtain from Figure 9b that the parameters of our network are only half that
of MAFFSRN (267 K vs. 441 K). Therefore, compared with other methods, our network
is lighter and more efficient. It is worth noting that Multi-Adds are estimated on 720p
(1280 × 720) HR image, and Figure 1 shows our method on Set5 (×2) compared to other
methods, and Figure 9 compare on Set5 (×4).

Table 5. Comparison of the results of the proposed algorithm with the state-of-the-art models on ×2,
×3, ×4.

Scale Method Params (K) Multi-Adds (G) Set5
PSNR/SSIM

Set14
PSNR/SSIM

BSD100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

2

SRCNN 57 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663
FSRCNN 13 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9710

VDSR 666 612 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
DRCN 1774 17,974 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.55/0.9732

LapSRN 251 29.9 37.52/0.9591 32.99/0.9124 31.80/0.8952 30.41/0.9103 37.27/0.9740
DRRN 298 6796.9 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.88/0.9749

MemNet 678 2662.4 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
CARN 1592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765

SRResNet 1518 146.1 38.05/0.9607 33.64/0.9178 32.22/0.9002 32.23/0.9295 38.05/0.9607
IMDN 694 159.6 37.91/0.9594 33.59/0.9169 32.15/0.8987 32.14/0.9274 38.79/0.9764

MAFFSRN 402 77.2 37.97/0.9603 33.49/0.9170 32.14/0.8994 31.96/0.9268 -\-
MADNet 878 178.1 37.94/0.9604 33.46/0.9167 32.10/0.8988 31.74/0.9246 -\-

SMSR 985 131.6 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
SCFFN(ours) 256 68 38.01/0.9604 33.52/0.9169 32.12/0.8990 31.93/0.9261 38.51/0.9768

3

SRCNN 57 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117
FSRCNN 13K 5.0 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210

VDSR 666 612 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
DRCN 1774 17,974.3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.24/0.9343
DRRN 298 6796.9 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.71/0.9179

MemNet 678 2662.4 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
CARN 1592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440

SRResNet 1554 190.2 34.41/0.9274 30.36/0.8427 29.11/0.8055 28.20/0.8535 33.54/0.9448
IMDN 703 71.7 34.32/0.9259 30.31/0.8409 29.07/0.8036 28.15/0.8510 33.58/0.9434

MAFFSRN 418 34.2 34.32/0.9269 30.35/0.8429 29.09/0.8052 28.13/0.8521 -\-
MADNet 930 88.4 34.26/0.9262 30.29/0.8410 29.04/0.8033 27.91/0.8464 -\-

SMSR 993 100.5 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
SCFFN(ours) 256 37 34.29/0.9263 30.27/0.8409 29.04/0.8034 27.98/0.8481 33.30/0.9427

4

SRCNN 57 52.7 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
FSRCNN 13 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7105 24.62/0.7208 27.90/0.8517

VDSR 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
DRCN 1774 17,976.3 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

LapSRN 813 149.4 31.54/0.8850 29.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
DRRN 297 6796.9 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960

MemNet 677 2662.4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
CARN 1592 222.8 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084

SRResNet 1518 146.1 32.17/0.8951 28.61/0.7823 27.59/0.7365 26.12/0.7871 30.48/0.9087
IMDN 715 41.1 32.19/0.8936 28.57/0.7803 27.54/0.7342 26.03/0.7829 30.44/0.9065

MAFFSRN 441 19.3 32.18/0.8948 28.58/0.7812 27.57/0.7361 26.04/0.7848 -\-
MADNet 1002 54.1 32.11/0.8939 28.52/0.7799 27.52/0.7340 25.89/0.7782 -\-

SMSR 1006 57.2 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
SCFFN(ours) 267 27 32.18/0.8950 28.56/0.7809 27.54/0.7352 26.01/0.7832 30.36/0.9070
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4.3.2. Comparison of Reconstruction Performance and Visual Effects of the Network

In this subsection, we show the quantitative and qualitative results of SCFFN compared
with state-of-the-art models (including SRCNN [3], FSRCNN [23], VDSR [6], DRCN [7],
DRRN [8], MemNet [9], CARN [21], LapSRN [24], SRResNet [27], IMDN [28], MAFFSRN [39],
MADNet [40] and SMSR [41]) on performance comparison on the three upscaling factors
×2, ×3 and ×4. The quantitative results of our network are presented in Table 5, which
includes Multi-Adds that show the complexity of the model and parameters. Specifically,
CARN has achieved comparable performance to SCFFN, but its parameters are close to
1592 K, about six times that of the proposed method. The parameters of the proposed
network in this work are only 37% of IMDN, but comparable results can be achieved.
Complete experimental results demonstrate that the proposed lightweight network SCFFN
achieves comparable performance to other state-of-the-art methods on multiple datasets
and scale factors, but we only need fewer parameters and Multi-Adds. It is worth noting
that MAFFSRN is the work from the AIM 2020 Efficient SR Challenge, which ranked the
network third and fourth in terms of Multi-Adds and parameters, respectively, but its code
is not publicly available.

We selected an image from the Set5, Set14 and Urban100 test datasets respectively
for comparison of the visual reconstruction details (shown in Figure 10), we can see that
our method is superior to other methods in details, such as stripes. For the image “ppt3”
and “Baby”, we observe that most comparison methods will produce obvious artifacts and
blurring effects, while our method produce more accurate lines. On the structural details in
“img008”, the proposed network in this paper can realize reconstruction with less artifacts.

4.4. Discussion

Through the above ablation research and comparative experiments, we found that the
image super-resolution reconstruction has great challenges in terms of trade-offs among
network parameters, reconstruction performance and computational complexity, but the
SR lightweight network we designed has achieved good results. However, there is room
for optimization in our approach. Similar to most SR networks, it is difficult to minimize
network parameters, performance and computational complexity at the same time. How-
ever, compared with other comparison networks, we only need fewer parameters and
computational complexity (Multi-Adds) to achieve considerable performance.
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5. Conclusions

In this work, we propose a lightweight network SCFFN for the SR task, in which
SCFFB is the basic building block. SCFFB performs feature crossing to refine features.
Specifically, the input features are first fed into two branches, and then the common part is
strengthened by element-wise multiplication while increasing the nonlinear ability of the
network, so that the fused features have the characteristics of clear boundary, etc. At the
same time, we add the local skip connection, which not only avoids gradient dispersion
caused by multiple multiplications but also supplements low-frequency information. In the
reconstruction part of the network, we adopt the traditional nearest neighbor interpolation
upsampling and introduce SCA to model the features channel to alleviate the mosaic
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and sawtooth phenomenon caused by NN. Comprehensive experiments show that the
proposed method achieves comparable performance with other advanced methods, but we
only need less network parameters and computational complexity.

In the future work, we will continue to explore the lightweight of SR network and
try to introduce non-parametric attention mechanism or dynamic convolution layer to
enhance information extraction in the high-level information learning stage of the network.
In order to design a more effective up-sampling operation for the reconstruction part of the
network, we can try to combine the depth separable convolution or group convolution into
the transposed convolution layer to reduce the network parameters. At the same time, in
the future work, we will apply this work to video SR or introduce it into the real world for
real-time broadcasting.
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