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Abstract: Accurate and robust scale estimation in visual object tracking is a challenging task. To
obtain a scale estimation of the target object, most methods rely either on a multi-scale searching
scheme or on refining a set of predefined anchor boxes. These methods require heuristically selected
parameters, such as scale factors of the multi-scale searching scheme, or sizes and aspect ratios of
the predefined candidate anchor boxes. On the contrary, a centerness-aware anchor-free tracker
(CAT) is designed in this work. First, the location and scale of the target object are predicted in an
anchor-free fashion by decomposing tracking into parallel classification and regression problems.
The proposed anchor-free design obviates the need for hyperparameters related to the anchor boxes,
making CAT more generic and flexible. Second, the proposed centerness-aware classification branch
can identify the foreground from the background while predicting the normalized distance from the
location within the foreground to the target center, i.e., the centerness. The proposed centerness-aware
classification branch improves the tracking accuracy and robustness significantly by suppressing
low-quality state estimates. The experiments show that our centerness-aware anchor-free tracker,
with its appealing features, achieves salient performance in a wide variety of tracking scenarios.

Keywords: visual object tracking; anchor-free; centerness; convolutional neural network

1. Introduction

Visual object tracking (VOT) is a crucial vision task with numerous applications, such
as medical imaging, defense, video security camera systems, autonomous vehicles, and
robotics [1–4]. In a video sequence, given the target state in the first frame, the goal of visual
object tracking is to estimate the target state in the subsequent frames. Although remarkable
progress has been made, VOT is challenging because the target object may experience
extreme appearance variations resulting from interfering challenging factors such as motion
blur and deformation.

Recently, visual trackers based on a Siamese network have received considerable atten-
tion due to the balanced accuracy and speed. In the pioneering work, a fully convolutional
Siamese network (SiamFC) [5] is achieved via training a Siamese network to perform tem-
plate matching and compute a similarity score between the exemplar image of the target
object and the search image. In order to adjust to scale variation, a multi-scale searching
scheme is employed as in [6,7] to perform template matching on multiple scales to identify
the best scale. However, the multi-scale searching scheme is computationally expensive
when facing large scale variations due to the multi-scale feature extraction step. To address
this issue, the Siamese region proposal network (SiamRPN) [8] employs a regional proposal
network (RPN) [9] that includes a classification branch to identify the foreground and a
regression branch to refine the predefined candidate anchor boxes. This representative
anchor-based method avoids the time-consuming multi-scale feature extraction step in the
multi-scale searching scheme while achieving promising accuracy. However, as shown
in [9,10], to achieve satisfactory performance, the hyperparameters related to the anchor
boxes (e.g., numbers, sizes, and aspect ratios) entail tedious and heuristic tuning.

To obviate the need for an anchor box and the associated parameters, the fully convo-
lutional Siamese network for classification and regression (SiamCAR) [11] decomposes the
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tracking into three sub-problems, a binary classification problem, a centerness estimation
problem, and a regression problem. However, to obtain the products of the centerness
scores and the binary classification scores, instead of training a branch to directly out-
put the products, two separate branches are trained for centerness estimation and binary
classification, respectively, and aggregated in the inference stage, which may yield an
inconsistency risk (to be detailed in Section 3.5) between the training and the inference
stages, and therefore may result in less ideal tracking performance.

In this paper, we design a centerness-aware anchor-free tracker (CAT) by decomposing
the tracking into parallel classification and regression problems. With the above decom-
position, the tracking problem is addressed in a per-pixel fashion. The regression branch
regresses each spatial location a relative bounding box by predicting the distance from the
corresponding spatial location to each side of the axis-aligned ground truth bounding box.
Based on the observation that many low quality predictions generated correspond to the
locations that are far away from the center of the target object, the classification branch
is designed to learn to output a 0 for the background and a value ranging from 0 to 1 to
indicate the normalized distance between the spatial location within the foreground and
the target center, thus suppressing low quality state estimations. The main contributions of
this article can be summarized as follows. First, within the anchor-free tracking scheme,
we propose a centerness-aware classification branch that acts as a joint representation of
the binary classification and the centerness estimation branches, and the resulting system
is named CAT. Second, the proposed centerness-aware classification branch mitigates
the inconsistency risk and improves the tracking performance with reduced computa-
tion cost and fewer associated parameters. Third, proof of validation and the efficacy of
CAT is achieved through extensive experiments that are performed on publicly available
benchmark datasets.

The organization of this article is described as follows. In Section 2, Siamese-network-
based trackers and anchor-free mechanisms that are most relevant to our approach are
reviewed. In Sections 3.1–3.3, we describe the main components of the proposed network
including the feature extraction, the feature combination, and the state estimation compo-
nents. The details about the loss function are described in Section 3.4. The relationship
between prior anchor-free methods and our proposed tracker are detailed in Section 3.5.
In Section 4.1, the implementation details of the training and inference stages are described.
The benchmark datasets and evaluation metrics are detailed in Section 4.2. In Section 4.3,
the qualitative and quantitative comparison results are presented. In Section 4.4, an abla-
tion test is performed to reveal the contribution of each component. Section 5 concludes
the article.

2. Related Work

In this section, we review visual trackers based on the Siamese network and anchor-
free mechanism that are closely related to our proposed tracker.

2.1. Siamese Network-Based Trackers

In recent years, the Siamese network has been extensively used in the tracking commu-
nity because of its balanced accuracy and efficiency. In the pioneering work of SiamFC [5],
the Siamese network is employed for feature extraction, and a cross-correlation layer is used
to calculate a similarity score between the target and candidate image patches. Furthermore,
a transformation learning model is proposed in the dynamic Siamese network (DSiam) [12]
to learn the appearance change of the target object more effectively and to suppress the
background. In the residual attentional Siamese network (RASNet) [13], various attention
mechanisms are incorporated for better adaption to the current target state. The Siamese
network with semantic and appearance branches (SA-Siam) [14] achieves improved perfor-
mance through training the two branches separately so that the heterogeneity of different
types of features can be retained. Although promising results have been achieved, these



Sensors 2022, 22, 354 3 of 14

methods resort to the multi-scale searching scheme, and cannot accommodate large scale
variations and aspect ratio variations.

To tackle the large scale variation and aspect ratio variations through refining the
predefined candidate anchor boxes, SiamRPN [8] combines SiamFC [5] with an RPN [9] and
obviates the need for the time-consuming step of extracting feature maps at multiple scales.
Furthermore, the series-parallel matching real-time tracker (SPM-tracker) [15] improves the
robustness and discrimination power of SiamRPN via a series-parallel matching scheme.
Through increasing the hard negative training data in the training stage, the distractor-
aware Siamese regional proposal network (DaSiamRPN) [16] improves the robustness of
the model. To further improve the accuracy, an effective sampling strategy is designed in
the Siamese tracking with a deep network (SiamRPN++) [17] to remove the center bias
in the training stage, enabling the extraction of features using deeper neural networks.
However, as shown in [9,10], the hyperparameters related to the anchor boxes require
heuristic tuning to achieve good performance. In contrast, CAT addresses VOT in an
anchor-free manner and obviates the tuning related to the hyperparameters of the anchor
boxes and hence is more flexible.

2.2. Anchor-Free Mechanism

Recently, anchor-free methods have been widely employed in a family of object
detectors due to their simple architectures and promising performance. In contrast to the
anchor-based methods that refine the predefined candidate anchor boxes, the anchor-free
methods estimate the target state in a more direct way. Generally, the anchor-free detectors
can be grouped into keypoint-based object detectors and dense object detectors.

In Dense RepPoints [18], the object is represented as a large set of keypoints to describe
the object at multiple levels. On the other hand, in CornerNet [19], the target state is
described as paired keypoints and detected using a single convolution neural network. Sim-
ilar to CornerNet, the target state is represented as four extreme points (top-most, left-most,
bottom-most, right-most), together with one center point in ExtremeNet [20], and detected
using a standard keypoint estimation network. Based on CornerNet, CenterNet [21] pro-
poses to exploit the global information of the object to improve the performance. In [22],
the object is modeled as a single point (the center), and all other object proprieties (e.g., size
and orientation) are then regressed directly from image features corresponding to the center
location. In the feature-selective anchor-free object detector (FSAF) [23], a feature-selective
module is proposed to address the heuristic-guided feature selection and overlap-based
anchor sampling problems that exist in the conventional anchor-based detectors.

In contrast to the keypoint-based methods, FoveaBox in [24] learns the object and the
bounding box coordinates without any references (e.g., anchors or keypoints). Furthermore,
the fully convolutional one-stage object detector (FCOS) treats the object detection as
a binary foreground-background classification for each spatial location, together with
the regression of the relative bounding box for the corresponding location. In addition,
the centerness branch is proposed to suppress low quality predictions corresponding to the
locations that are far from the target center. In VarifocalNet [25], a new loss function and a
new star-shaped bounding box feature representation are proposed to improve the ranking
and refinement of the bounding boxes. In tracking, to remedy the issue, in an anchor-based
method, of it being difficult to refine the anchors whose overlap with the target object
is small, Ocean is proposed in [26], which focuses on how to enable the rectification of
imprecise bounding box predictions and learns an object-aware feature to further enhance
the matching accuracy. Similar to FCOS, SiamCAR [11] is proposed to address the tracking
problem by decomposing the tracking task into one classification problem, one centerness
estimation problem, and one regression problem. Our work is inspired by both FCOS and
SiamCAR but is different from these two works. The key differences will be discussed in
detail in Section 3.5.
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3. Proposed Algorithm

In this section, the details of our proposed tracker CAT are described. As shown in
Figure 1, CAT is built upon three main components: a Siamese network as a feature extractor,
a convolution layer with a kernel size of 1× 1 after a depth-wise cross-correlation operation
for feature combination, and a centerness-aware anchor-free network for state estimation.
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Figure 1. Flowchart of the proposed CAT tracker. The backbone Siamese network takes exemplar
image Z and search image X as input and outputs corresponding feature maps denoted as φ(Z)
and φ(X). In order to embed the features from two branches, a depth-wise cross-correlation
operation is employed to get the multi-channel response map denoted as P. Then, to reduce the
computation, a convolution layer with a kernel size of 1 × 1 is employed to fuse the response map.
The fused response map with reduced dimension is denoted as R and is adopted as the input to
the centerness-aware anchor-free network. Regarding every spatial location on the regression map
D, the regression branch learns to estimate the distance from the corresponding location to each
side of the ground truth bounding box. For the classification map C, with the observation that
many low-quality predictions are produced corresponding to the locations far off the target center,
the centerness-aware classification branch learns to output a 0 for the background and a value
ranging from 0 to 1 to indicate the normalized distance between the spatial location within the
foreground and the target center to suppress predictions with low quality.
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The Siamese network takes an exemplar image and a search image as input. The153

image patch with the center point as the target center is cropped in the initial frame, and154

is then adopted as the exemplar image. The search images are cropped in the following155

frames to denote the search region. The Siamese network includes two branches that156

share the same weights to embed both patches into the same feature space. The Siamese157

network takes the exemplar image Z and the search image X as input and outputs φ(Z)158

and φ(X) as the corresponding feature maps.159

As in [9][24], a modified ResNet-50 is used for feature extraction. Specifically,
the strides of the last two residual blocks are reduced to eight, and thus the last three
residual blocks output feature maps with the same spatial resolution. Besides, an extra
1 × 1 convolution layer is appended to each of the block output to reduce the channel
number to 256. We aggregate hierarchical features as in [24] to achieve higher robustness
and accuracy. Formally, the features generated from the last three residual blocks are
respectively denoted as f3(·), f4(·) and f5(·) and combined as

φ(·) = f3(·) ++ f4(·) ++ f5(·), (1)

Figure 1. Flowchart of the proposed CAT tracker. The backbone Siamese network takes exemplar
image Z and search image X as input and outputs corresponding feature maps denoted as ϕ(Z) and
ϕ(X). In order to embed the features from two branches, a depth-wise cross-correlation operation is
employed to obtain the multi-channel response map denoted as P. Then, to reduce the computation,
a convolution layer with a kernel size of 1× 1 is employed to fuse the response map. The fused
response map with reduced dimension is denoted as R and is adopted as the input to the centerness-
aware anchor-free network. Regarding every spatial location on the regression map D, the regression
branch learns to estimate the distance from the corresponding location to each side of the ground
truth bounding box. For the classification map C, with the observation that many low-quality
predictions are produced corresponding to the locations far from the target center, the centerness-
aware classification branch learns to output a 0 for the background and a value ranging from 0 to 1 to
indicate the normalized distance between the spatial location within the foreground and the target
center to suppress predictions with low quality.

3.1. Feature Extraction

The Siamese network takes an exemplar image and a search image as input. The image
patch with the center point as the target center is cropped in the initial frame, and is then
adopted as the exemplar image. The search images are cropped in the following frames to
denote the search region. The Siamese network includes two branches that share the same
weights to embed both patches into the same feature space. The Siamese network takes
the exemplar image Z and the search image X as input and outputs ϕ(Z) and ϕ(X) as the
corresponding feature maps.

As in [11,17], a modified ResNet-50 [27] is used for feature extraction. Specifically,
the strides of the last two residual blocks are reduced to eight, and thus the last three
residual blocks output feature maps with the same spatial resolution. Moreover, an extra
1× 1 convolution layer is appended to each of the block outputs to reduce the channel
number to 256. We aggregate hierarchical features as in [11] to achieve higher robustness
and accuracy. Formally, the features generated from the last three residual blocks are
respectively denoted as f3(·), f4(·), and f5(·) and combined as

ϕ(·) = f3(·) ++ f4(·) ++ f5(·), (1)
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where ++ is the concatenation operation; f3(·), f4(·), and f5(·) each include 256 channels;
and ϕ(·) consists of 768 channels.

3.2. Feature Combination

A depth-wise cross-correlation layer is employed here as in [11,17] to embed the
features from the two branches and generate the multi-channel response map P as

Pk = ϕk(Z) ? ϕk(X), (2)

where ? represents the cross-correlation operation, and ϕk(Z), ϕk(X), and Pk denote the
k-th channel of ϕ(Z), ϕ(X), and P, respectively. Furthermore, a 1× 1 convolution layer
is employed to fuse the response map and reduce the dimension from 768 channels to
256 channels. Through the dimension reduction operation, the number of parameters can
be reduced to speed up the following computation. The response map with the reduced
dimension is denoted as R and employed as the input to the centerness-aware anchor-
free network.

3.3. Centerness-Aware Anchor-Free Network

The centerness-aware anchor-free network includes two branches: a regression branch
and a classification branch that is centerness aware. As in Figure 1, regarding the input
R, the centerness-aware classification branch produces the classification map Cw×h, and
the regression branch produces the regression map Dw×h×4, where w and h denote the
width and height of the classification and regression maps. Each location (m, n) on Cw×h
or Dw×h×4 corresponds to one spatial location on the search image X as (pm, pn) = (b s

2c+
m× s, b s

2c+ n× s), where s denotes the network stride and bc represents the floor operation.
Compared to the anchor-based methods that take every location as the center point of a set
of predefined anchor boxes and predict the offset values regarding the anchor boxes, we
predict the target bounding box for that spatial location directly.

The regression branch learns to output the distance from the spatial location to each
side of the ground truth bounding box. Let the width, height, center point, upper-left
corner, and lower-right corner be gw, gh, (gxc , gyc), (gxul , gyul ), and (gxlr , gylr ), respectively.
The regression targets Dt

m,n = (lm,n, tm,n, rm,n, bm,n) for location (m, n) are computed as

lm,n = pm − gxul , tm,n = pn − gyul ,

rm,n = gxlr − pm, bm,n = gylr − pn,
(3)

where lm,n, tm,n, rm,n, and bm,n denote the distance from (pm, pn) to the left side, top side,
right side, and bottom side of the ground truth bounding box, respectively.

Different from the centerness branch in SiamCAR [11] that only learns to output
centerness value for the foreground spatial locations and generate uncontrollable values for
background spatial locations, our proposed centerness-aware classification branch acts as
the joint representation of the binary classification and the centerness branches that learns
to differentiate the foreground from the background and to output the centerness value
for the foreground spatial locations to denote the normalized distance between the spatial
location within the foreground and the target center. Specifically, the target value Ct

m,n for
location (m, n) is set to be 0 for the background and ranges from 0 to 1 for the foreground to
denote the normalized distance from location (pm, pn) to the target center. Formally, Ct

m,n
is defined as

Ct
m,n = 1c(Dt

m,n)×
√

min(lm,n, rm,n)

max(lm,n, rm,n)
× min(tm,n, bm,n)

max(tm,n, bm,n)
, (4)
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where 1c is the indicator function defined as

1c(Dt
m,n) =

{
1, if min(Dt

m,n) > 0,
0, otherwise.

(5)

The regression branch is composed of four convolutional layers with a kernel size of
3× 3 and a channel number as 256 and one convolutional layer with the same kernel size
and a channel number of 4. Then, an exponential operation is used to map the real number
output into (0,+∞) because the target values of the regression branch output are positive
real numbers. The centerness-aware classification branch has the same structure with the
only difference being that the channel number of the last convolutional layer is 1 instead of
4. Then, the output will be mapped into (0, 1) through a sigmoid function.

3.4. Loss Function

We adopt the intersection over union (IoU) loss [28] for the regression branch. Here, we
only treat the locations within an elliptical area centered within the ground truth bounding
box as positive samples as in [29]. More concretely, the regression loss Lreg is defined as

Lreg =
−1

∑m,n 1d(Dt
m,n)

∑
m,n

1d(Dt
m,n)× ln(IoU(GT, Bm,n)), (6)

where GT and Bm,n denote the ground truth bounding box and the predicted bounding
box corresponding to location (m, n), and 1d(Dt

m,n) is the indicator function defined as

1d(Dt
m,n) =

1, if
(

pm−gxc
α×gw

)2
+
(

pn−gyc
α×gh

)2
< 1,

0, otherwise,
(7)

with α controlling the size of the area corresponding to the positive samples in the training
of the regression branch.

Acting as a joint representation of the binary classification and centerness estimation
branches, the proposed centerness-aware classification branch does pose additional chal-
lenges to the training process. The training of the proposed centerness-aware classification
branch needs dense supervisions across the whole search image and hence may result
in a data imbalance problem. Moreover, compared to the binary classification branch in
SiamCAR that only contains discrete labels, the continuous labels ranging from 0 to 1
make the training more challenging. As shown in Section 4.4, the standard cross-entropy
loss cannot successfully train the proposed centerness-aware classification branch due to
challenges in the training process. Therefore, to ensure the successful training, we combine
the cross-entropy loss [30] with the focal loss [10] as

Lc =
−1

∑m,n 1d(Dt
m,n)

∑
m,n

∣∣Cm,n − Ct
m,n
∣∣β

×
(
Ct

m,n × ln (Cm,n) + (1− Ct
m,n)× ln (1− Cm,n)

)
,

(8)

where −
(
Ct

m,n × ln (Cm,n) + (1− Ct
m,n)× ln (1− Cm,n)

)
acts as the cross-entropy part. Sim-

ilar to [10], the modulating factor
∣∣Cm,n − Ct

m,n
∣∣β reflects the difference between the esti-

mation Cm,n and the continuous label Ct
m,n and makes the training process focus more on

the hard samples via reducing the loss contribution of the easy samples, and β balances
the importance of easy and hard samples. Hence, the training of the entire network is to
minimize the multi-task loss defined as

Ltotal = λ1Lc + λ2Lreg, (9)
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where λ1 and λ2 are the tradeoff parameters that balance the importance of Lc and Lreg.

3.5. Relationship to Prior Anchor-Free Work

CAT shares some motivating factors with the recent detection method FCOS [29] and
the recent tracking method SiamCAR [11]. Here, we discuss the differences with respect to
these two related works.

In FCOS, the task is to detect the category of the objects, and the categories are
predefined. In contrast, in VOT, it is necessary to determine the object at the instance
level. Hence, in CAT, a template branch is adopted to encode the target object appearance
information. Both FCOS and SiamCAR use a binary classification branch to identify
foreground from background and a branch to predict the centerness value to indicate the
normalized distance from the corresponding spatial location to the target center. The low-
quality predictions that are far from the target center are suppressed via multiplying the
outputs of the centerness branch with those of the binary classification branch. However, it
should be noted that, in both the FCOS and SiamCAR methods, the centerness branch is
only trained with respect to the centerness value corresponding to spatial locations within
the groundtruth bounding box, as the centerness value is not defined for background
spatial locations. Hence, in the centerness branch, the output for the background spatial
location is unconstrained. This will not create any trouble in the most ideal scenario,
where the binary classification branch is perfectly trained and outputs exact 0 and 1 for
background and foreground spatial locations, respectively. However, in the inference
stage, the binary classification branch will not output exact 0 and 1 and may result in an
inconsistency risk. For example, when the background classification score is not 0 and the
foreground classification score is not high enough, it is possible that the state estimation
corresponding to background spatial locations is chosen as the tracking result due to the
high unconstrained centerness score corresponding to the background spatial locations. In
addition, since the regression branch is only trained with respect to the foreground spatial
locations, using the output of the regression branch that corresponds to the background
spatial locations cannot provide an accurate state estimation of the target object and may
result in tracking failures. Based on these observations, we propose the centerness-aware
classification branch to directly learn the products of binary classification branch outputs
and the centerness branch outputs in SiamCAR to mitigate the inconsistency risk between
the training and inference stages. Different from the centerness branch in SiamCAR [11]
and FCOS [29], our proposed centerness-aware classification branch will act as the joint
representation of the binary classification branch and the centerness estimation branch to
output 0 for the background and the centerness value for the foreground, hence mitigating
the inconsistency risk and improving the tracking performance with reduced computation
cost and fewer associated parameters.

4. Experiments

Extensive experiments have been performed on benchmark datasets to verify the
efficacy of our proposed tracker. The implementation details about training and inference
are presented in Sections 4.1.1 and 4.1.2, respectively. Section 4.2 describes the employed
benchmark datasets and the evaluation protocols. Qualitative and quantitative comparison
results between our tracker and other representative trackers are presented in Section 4.3.
In Section 4.4, we perform an ablation test to show the contribution of each component.

4.1. Implementation Details
4.1.1. Training

As in [5], the exemplar image size is set as 127× 127 pixels, and the search image
size is set as 255× 255 pixels. The training datasets include COCO [31] , YouTube-BB [32],
ImageNet VID and DET [33], and GOT-10k [34]. The weights of the backbone Siamese
network are set as the pretrained weights on ImageNet as in [17]. We train the entire
network via stochastic gradient descent, in which the minibatch size is set as 64 and the
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number of epochs is set to 20 as in [11]. The learning rate will be increased from 0.001 to
0.005 using a warm-up strategy in the first five epochs, and will be decayed from 0.005 to
0.0005 in the remaining 15 epochs as in [11]. The weights of the backbone Siamese network
is fixed in the first half training stage and fine-tuned with one-tenth of the present learning
rate for the remaining epochs as in [11,17]. The values of the momentum and the weight
decay are set as 0.9 and 10−3, respectively. The parameters α, β, λ1, and λ2 are tuned
manually, using the best-performing values of 0.6, 2, 2, and 6, respectively. Our approach is
implemented in Python using PyTorch on a PC with Intel Core i9-9820X CPU 3.30 GHz,
64GB RAM, two NVIDIA GeForce RTX 2080 Ti GPUs, and one NVIDIA GeForce GTX
TITAN V GPU.

4.1.2. Inference

During inference, we adopt the offline tracking strategy as in [11,17]. The features of
the exemplar image are computed only in the first frame and used to match the subsequent
search images. The search image is cropped centered on the previous estimated target
center. The predicted bounding box Bm,n for location (m, n) is computed as

bxul = pm − Dm,n,0, byul = pn − Dm,n,1,

bxlr = pm + Dm,n,2, bylr = pn + Dm,n,3,
(10)

where (bxul , byul ) and (bxlr , bylr ) represent the upper-left corner and the lower-right corner
coordinates of the predicted bounding box Bm,n. As in [11,17], a scale change penalty and
Hanning window are used to suppress extreme scale variation and fast motion and to
obtain the final classification map. In the final classification map, the maximum value
suggests the location of the target object. To maintain a smooth change of the shape of the
bounding box prediction, the estimated size is updated through linear interpolation with
the estimated size from the last frame.

4.2. Datasets and Evaluation Metrics

All the experiments are performed on the benchmark datasets visual object tracking
challenge 2019 (VOT-2019) [35] and unmanned aerial vehicle dataset (UAV123) [36]. The
UAV123 dataset contains 123 challenging aerial videos with more than 110K frames cap-
tured from low-altitude UAVs. For UAV123, precision and success rate are used as the
evaluation metrics to quantitatively evaluate the tracker performance. The precision score
is defined as the fraction of total frames where the center location error (CLE) between the
predicted target center and the ground truth target center is within the specified threshold
distance. As in the evaluation toolkit [36], the precision score at the threshold of 20 pixels is
used as the representative precision score (Prec.). The success rate is defined as the fraction
of total frames where the intersection over union (IOU) between the predicted and ground
truth bounding boxes is above a predefined threshold. The area-under-curve (AUC) score
is reported to summarize the success plot generated by computing fractions of successful
frames at different defined thresholds of IOU.

VOT-2019 contains 60 challenging videos. Here, the tracker is reinitialized when
the tracker drifts off target. Three metrics are employed: accuracy (A), robustness (R),
and expected average overlap (EAO). The accuracy denotes the mean IOU between the
predicted bounding box and the ground truth bounding box throughout successful tracking
intervals. The robustness denotes the number of times that the target object is lost per video
sequence. The EAO denotes the expected no-reset overlap (IOU) between the predicted and
the ground truth bounding boxes, and is the primary measure that is used to summarize
the performance of the tracker in VOT-2019 since it considers both the accuracy and
the robustness.
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4.3. State-of-the-Art Comparison

To validate the performance of the proposed tracker, CAT is compared to five repre-
sentative state-of-the-art trackers. Based on the methods employed to address the scale
estimation, the selected trackers can be broadly categorized as follows:

• SiamFC [5] employs the multi-scale searching scheme to perform template matching
on multiple scales to identify the best scale.

• SiamRPN [8] and SiamRPN++ [17] employ an anchor-based method to obtain the
state estimation.

• SiamCAR [11] addresses the tracking problem in an anchor-free approach.
• SiamMask [37] represents the target object as a binary segmentation mask instead of

axis-aligned bounding boxes.

All trackers are evaluated on UAV123 and VOT-2019. Figure 2 and Tables 1 and 2 sum-
marize the corresponding results. Figure 2 shows qualitative comparison results between
our proposed tracker CAT and some representative state-of-the-art trackers. As shown
in Figure 2, even when facing partial occlusion, large scale variations, and aspect ratio
variations, our tracker provides accurate state estimation, which validates the robustness
and accuracy of our approach.

Table 1. Comparisons of CAT and five representative state-of-the-art methods on UAV123. The best
and the second best values are in bold and underlined, respectively. CAT obtains the best performance
in terms of the area-under-curve (AUC) and the precision measures. ↑means that a higher score is
better, and ↓ denotes that a lower value is better.

SiamFC SiamRPN SiamMask SiamRPN++ SiamCAR CAT

AUC ↑ 0.485 0.557 0.603 0.610 0.614 0.635
Prec. ↑ 0.693 0.768 0.795 0.803 0.813 0.838

Table 2. Comparisons of CAT with five representative state-of-the-art methods on VOT-2019. The best
and the second best values are in bold and underlined, respectively. The EAO score measures the
expected no-reset IOU between the estimated bounding box and the ground truth bounding box.
The accuracy (A) denotes the mean IOU between the predicted bounding box and the ground truth
bounding box in successful tracking intervals. The robustness (R) denotes the number of times that
the target is lost per video sequence. ↑ means that a higher score is better, and ↓ denotes that a lower
value is better.

SiamFC SiamRPN SiamMask SiamRPN++ SiamCAR CAT

EAO ↑ 0.189 0.272 0.287 0.285 0.288 0.317
A ↑ 0.510 0.582 0.592 0.599 0.593 0.583
R ↓ 0.958 0.527 0.461 0.482 0.451 0.416

As in Table 1, our proposed tracker CAT obtains the best performance on UAV123 in
terms of both AUC score and Prec. score. Compared to SiamCAR that achieves the second
best results, CAT outperforms SiamCAR in terms of the AUC score and Prec. score by 2.1%
and 2.5%, respectively.

According to Table 2, CAT obtains the best performance in terms of both EAO score and
robustness score on VOT-2019. Compared to SiamRPN++, which obtains the best accuracy
score, CAT underperforms in terms of the accuracy score by 1.6% but outperforms in terms
of the EAO score and the robustness score by 3.2% and 6.6%, respectively. SiamRPN++
obtains the best accuracy score at the cost of a low robustness score due to the tracking
reinitialization upon tracking failure in VOT-2019. Compared to SiamCAR, which obtains
the second best performance in terms of the EAO score, the accuracy score, and the
robustness score, CAT improves the performance by 2.9% and 3.5% on EAO score and
robustness score, respectively, while underperforming by only 1.0% on accuracy. These
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results are indicative of the efficacy and robustness of the proposed anchor-free centerness-
aware tracking scheme.Version December 29, 2021 submitted to Sensors 10 of 14

boat3

truck

bike1

wakeboard5

car8

Figure 2. Qualitative comparisons between the proposed tracker CAT and representative trackers
SiamRPN [7], SiamRPN++ [9], and SiamCAR [24] on boat3 (first row), truck1 (second row), bike1
(third row), wakeboard5 (fourth row), and car8 (bottom row) sequences that involve large scale
variations and aspect ratio variations. Compared to other trackers, even facing challenging
scenarios including occlusion, large scale variations, aspect ratio variations, CAT provides accurate
state estimations that significantly improve the robustness and accuracy in tracking.

Figure 2. Qualitative comparisons between the proposed tracker CAT and representative trackers
SiamRPN [8], SiamRPN++ [17], and SiamCAR [11] on boat3 (first row), truck1 (second row), bike1
(third row), wakeboard5 (fourth row), and car8 (bottom row) sequences that involve large scale
variations and aspect ratio variations. Compared to other trackers, even facing challenging scenarios
including occlusion, large scale variations, and aspect ratio variations, CAT provides accurate state
estimations that significantly improve the robustness and accuracy in tracking.

As shown in Tables 1 and 2, in comparison with SiamCAR, our proposed centerness-
aware classification branch mitigates the inconsistency risk and provides promising perfor-
mance improvement. To further validate the efficiency of our proposed method, we performed
the computation and speed analysis, and the average speed (frames per second) on UAV123
is reported in Table 3. As shown in Table 3, compared to SiamCAR [11], our proposed tracker
CAT operates with reduced computation cost and fewer associated parameters.
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Table 3. Comparisons between CAT and SiamCAR with respect to the number of parameters and
speed. ↑means that a higher score is better, and ↓ denotes that a lower value is better.

SiamCAR CAT

Number of Parameters ↓ 51,384,903 51,380,293
Speed (Frames Per Second) ↑ 54.62 57.83

4.4. Component-Wise Analysis of the Proposed Method

In order to reveal the contributions of each part of CAT, we design three variants
of CAT and perform a component-wise analysis on UAV123 and VOT-2019. In these
variants, the regression branches for state estimation are kept the same and trained using
the intersection over union loss, and other branches are trained with standard cross-entropy
loss if not specifically mentioned. The three variants of our proposed tracker are described
as follows, and Tables 4 and 5 summarize the results.

• CAT_wo_cen: The CAT tracker without the centerness-aware classification branch is
denoted as CAT_wo_cen, where a classification branch trained for binary foreground-
background identification is employed instead of our proposed centerness-aware
classification branch.

• CAT_w_cen_div: The CAT tracker with a separate branch trained for centerness value
estimation is denoted as CAT_w_cen_div, in which a single-layer branch paralleling
the binary classification branch is trained to estimate the centerness value.

• CAT_wo_mod: The CAT tracker with the proposed centerness-aware classification
branch trained by the standard cross entropy loss without the modulating factor.

As presented in Tables 4 and 5, the centerness branch yields a significant gain, i.e.,
13.8 points on the AUC score, 15.9 points on Prec. score, 6.7 points on the EAO score, 11.5
points on the accuracy score, and 3.6 points on the robustness score (CAT_w_cen_div vs.
CAT_wo_cen), which verifies the effectiveness of the centerness. By suppressing the low
quality predictions, the tracker avoids low quality predictions that may result in tracking
failures due to the error accumulation. As shown in the comparison between CAT and
CAT_wo_mod, facing the challenges in the training process as described in Section 3.4,
the loss function that combines the standard cross-entropy loss and the modulating factor
ensures the successful training of our tracker with the proposed centerness-aware classifi-
cation branch and yields a significant gain. As presented in the comparison between CAT
and CAT_w_cen_div, the proposed centerness-aware classification branch brings about
a promising performance improvement of 1.7 points on the AUC score, 3.3 points on the
Prec. score, 2.6 points on the EAO score, and 3.0 points on the robustness score (CAT vs.
CAT_w_cen_div). This result demonstrates that the proposed centerness-aware classifi-
cation branch mitigates the inconsistency between the training and the inference stages
by acting as a joint representation of the binary classification branch and the centerness
branch. These comparisons verify the efficacy of different components of CAT.

Table 4. Comparisons between CAT and two variants of CAT on UAV123. The best and the second
best scores are in boldface and underlined, respectively. ↑ means a higher score is better, and ↓
denotes a lower value is better.

CAT_wo_cen CAT_w_cen_div CAT_wo_mod CAT

AUC ↑ 0.480 0.618 0.595 0.635
Prec. ↑ 0.646 0.805 0.788 0.838
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Table 5. Comparisons between CAT and two variants of CAT on VOT-2019. The best and the second
best scores are in boldface and underlined, respectively. ↑means that a higher score is better, and ↓
denotes that a lower value is better.

CAT_wo_cen CAT_w_cen_div CAT_wo_mod CAT

EAO ↑ 0.224 0.291 0.266 0.317
A ↑ 0.475 0.590 0.580 0.583
R ↓ 0.482 0.446 0.547 0.416

5. Conclusions

In this work, we design an effective centerness-aware anchor-free tracking framework
that avoids the heuristic design associated with anchor boxes and a fixed set of scale factors.
Based upon the observation that the location near the center of the target can provide
high quality predictions, we propose a centerness-aware classification branch to yield a
joint representation of the binary classification and the centerness estimation to select high
quality predictions. The centerness-aware design mitigates the risk of inconsistency in the
training and inference stages. Comprehensive experiments validate the efficacy and the
robustness of the resulting tracker, CAT.

To demonstrate the generalizability of our proposed algorithm, our future work
will include tracking moving cells in time-lapse video sequences to help understand the
mechanisms of cell motility and their regulation, and tracking surgical instruments that
are crucial to computer-assisted interventions for minimally invasive surgery. With respect
to cell tracking in vitro and in vivo, we anticipate that CAT will afford a generalized,
robust cell tracker that can adapt to a range of scales. In surgical applications, CAT can be
employed without modification to multiple tools over a range of viewpoints and scales.
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