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Abstract: Nowadays, wireless energy transfer (WET) is a new strategy that has the potential to
essentially resolve energy and lifespan issues in a wireless sensor network (WSN). We investigate the
process of a wireless energy transfer-based wireless sensor network via a wireless mobile charging
device (WMCD) and develop a periodic charging scheme to keep the network operative. This paper
aims to reduce the overall system energy consumption and total distance traveled, and increase the
ratio of charging device vacation time. We propose an energy renewable management system based
on particle swarm optimization (ERMS-PSO) to achieve energy savings based on an investigation of
the total energy consumption. In this new strategy, we introduce two sets of energies called emin
(minimum energy level) and ethresh (threshold energy level). When the first node reaches the emin, it
will inform the base station, which will calculate all nodes that fall under ethresh and send a WMCD
to charge them in one cycle. These settled energy levels help to manage when a sensor node needs to
be charged before reaching the general minimum energy in the node and will help the network to
operate for a long time without failing. In contrast to previous schemes in which the wireless mobile
charging device visited and charged all nodes for each cycle, in our strategy, the charging device
should visit only a few nodes that use more energy than others. Mathematical outcomes demonstrate
that our proposed strategy can considerably reduce the total energy consumption and distance
traveled by the charging device and increase its vacation time ratio while retaining performance, and
ERMS-PSO is more practical for real-world networks because it can keep the network operational
with less complexity than other schemes.

Keywords: energy consumption; particle swarm optimization; wireless energy transfer; energy
renewable management system; wireless renewable sensor networks

1. Introduction

Embedded electronics and wireless devices are rapidly developing, and wireless sen-
sor networks (WSNs) have attracted significant attention among the research community.
Wireless sensor networks are growing rapidly in industry, where intelligent gadgets are
used to monitor a system’s intelligence, and in academic research, as a latent research
domain. Wireless sensor networks are typically made up of tiny devices known as sensor
nodes (SN), which have limited computational capability due to their limited battery capac-
ity. Given the limited battery capacity of nodes, lifetime and energy consumption are critical
hindrances that prevent their proper deployment. To improve energy routing protocols,
different previous studies have often reduced the energy consumption of sensor nodes [1];
some have employed media access control (MAC) protocols [2] or topology control pro-
tocols [3] to minimize energy usage by elongating the network lifespan. However, they
cannot completely solve the energy bottleneck for the deployment of the wireless sensor
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network. Therefore, it is essential to restore the energy of sensor nodes to equilibrate and
extend the network lifetime [4]. At present, there are three categories of solutions existing
for the energy replenishment of the sensor nodes, namely energy harvesting [5], wireless
energy transfer (WET) [6] and sensor node replacement [7]. Several researchers have used
energy harvesting techniques to empower the energy supply towards the sensor nodes,
such as solar energy [8] and wind energy [9]. However, due to the variations and changes
in the natural environment, the collection rate of energy harvesting techniques is difficult
to predict, and its time-varying nature makes it unreliable. Moreover, the replacement of
the sensor node is either expensive or it is impracticable due to the dangerous environment.
The wireless energy transfer technology has made a breakthrough, by resolving the energy
bottleneck of wireless sensor networks and extending their lifetime [10]. The combination
of wireless energy transfer and a wireless sensor network is called a wireless renewable
sensor network (WRSN). A wireless rechargeable sensor network concerns a WSN that is
replenished by wireless energy for sensor nodes using wireless energy transfer techniques.

In Ref. [11], the most recent development in WET technology provides valuable knowl-
edge for powering sensor nodes. In contrast to other energy harvesting strategies, WET
has several advantages, including immunity from a strict source and receiver manage-
ment, highly efficient energy transfer, resistance to environmental circumstances (dirt,
chemicals and air) and small device size [12]. One of the classic solutions to the mobile
charging problems is the traveling salesman problem (TSP) charging protocols [13]. Period-
ically, the wireless mobile charging device carries out the charging techniques following
a pre-optimized tour that helps to charge the sensor nodes in a short period with a small
WMCD travel distance. However, when the nodes’ energy consumptions are dissimilar,
the TSP-based solution may result in unnecessary visits to nodes with sufficient energy.
When mobile charging devices perform sensor node charging tasks, this challenge not only
augments the charging device travel distance but also increases the waiting time before
low-energy nodes can be charged. Unlike previous schemes [13–15], where a wireless
mobile charging device (WMCD) charges all sensor nodes in a renewable cycle, in our
strategy, a WMCD only visits and charges a small group of SNs in each cycle.

The major goal is thus to reduce node energy consumption to keep all nodes opera-
tional, as well as to minimize the WMCD travel distance, which will increase its vacation
time. This is referred to as network eternal functioning, and it is one of the key aims in the
design of WRSNs. Seeking an ideal method to schedule a fleet of WMCDs for recharge
is typically an NP-hard problem, whereas traditional efforts using standard optimization
approaches are not cost-effective due to the WMCD’s limited computing resources. Thus, in
practice, heuristic algorithms are typically recommended to establish a good compromise
between optimality and computing complexity.

Wireless energy transfer is an energy harvesting method to address the network’s
lifetime bottleneck. Kurs et al. [11] considered the development of recharging performance
in the WSN by successfully illuminating a 60 W bulb over a distance of two meters using
magnetic resonance. Several models for wireless energy transfer have been proposed,
each with a different specific goal. Dai et al. [16] suggested a near-optimal solution to the
problem of safe charging in a sensor network deployment with a static base station. The
suggested scheme reduces the unexpected emission of electromagnetic radiated waves
from several sinks to a predefined level. One of the challenges that must be addressed is the
selection of an ideal point for electromagnetically radiated signals in a plane. They demon-
strated that rechargeable sensors can harvest energy from other sources and maximize the
charging efficiency.

Zhang et al. [17] proposed a scheme called ERSVC, and, in their strategy, they prove
that the traveling distance plays a large role in energy consumption. To save energy in
ERSVC, they created a detailed plan for data flow, charging duration and visiting sets.
Furthermore, they showed that ERSVC can theoretically ensure that the network operates
forever. However, their method of charging nodes in each cycle is still a problem because
they wait for their sensor nodes to approach the general minimum energy level, and this
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can cause the WMCD to consume more time and energy, reduce its vacation time and cause
nodes to start dying in early rounds. A dynamic optimal scheme was proposed in [18]
that aimed to increase the vacation time ratio of a wireless mobile charger. In their work,
they offered a novel method for determining the best placement of the service station. To
ensure enough coverage, not all sensor nodes in each subnetwork are chosen as active
nodes. When the sensor node’s remaining energy for active nodes falls below a certain
threshold, the sensor node stops working and waits for charging.

Zhao et al. [19] showed how to schedule charging and allocate charging time simulta-
neously by prolonging the network lifetime and improving the charging efficiency using a
proposed mixed-integer optimization algorithm. According to the simulation results, the
suggested algorithm may achieve a charging success rate of 100 percent in periodic and
hybrid services, which is much higher than the comparison methods. However, due to
the enormous number of request nodes in large-scale networks, it is difficult for a single
vehicle to meet all charging requests. Zhong et al. [20], in the context of incomplete mobile
charger device capability, presented a real-time, on-demand charging scheduling scheme
(RCSS) that examined the dynamic energy consumption of different nodes when creating
the charging path and proposed the next node selection method. Simultaneously, a method
for determining the feasibility of charging circuits was suggested to ensure charging effi-
ciency and was based on an adaptive charging threshold through the charging procedure
to decrease node death

In Ref. [21], the authors started with a Linear Programming (LP) approach to solve the
problem of scheduling a mobile charger, and they then moved on to an efficient scheme
based on the gravitational search algorithm (GSA). Their solution consists of a novel agent
perception as well as an effective fitness function. They ran extensive simulations on the
proposed system to demonstrate how it outperforms two cutting-edge algorithms: first
come, first served (FCFS), and nearest job next with preemption (NJNP). To extend the
lifetime of sensors, researchers have used mobile chargers and external energy sources [22].
In their research, they looked at periodic charging time scheduling and charging path
planning with multiple chargers. They described a slot-based periodic recharge time
scheduling algorithm that includes a fine-grained node classification strategy to avoid
wasted trips to energy-sufficient nodes and a balanced charging task assignment scheme
to avoid charging famine. They also developed a charging path planning algorithm that
allows for parallel energy replenishment using multiple chargers, which resulted in higher
charging efficiency.

The energy capacity issue can be solved using a wireless energy transfer (WET) tech-
nique (WRSNs). Dong et al. [23] proposed a demand-based charging mechanism (DBCS)
for wireless renewable sensor networks by improving charging programming in different
ways: clustering approach, charging node selection, charging trail and charging timetable.
Firstly, they presented a multipoint improved Kmeans (MIKmeans) clustering system that
can group nodes based on their location, remaining energy and past contribution to balance
energy usage. Secondly, the dynamic selection algorithm for charging nodes (DSACN) was
developed to select nodes that need to be charged. Finally, they presented the DBCS to
improve the efficiency of the mobile charging vehicle and developed simulated annealing
based on performance and efficiency (SABPE) to minimize the charging time and path
distance of the charging vehicle.

Kennedy and Eberhart introduced Particle Swarm Optimization (PSO) in (1995), which
is a randomly global swarm-based intelligence algorithm [24]. PSO is determined by the
common behavior of animals such as a group of birds, a school of fish that protects against
predators or a swarm of bees looking for food sources. Particle swarm optimization also
has been used for scheduling charging models in wireless rechargeable sensor networks.
To improve the wireless charging vehicle’s journey time, the cost of the charger’s travel
path between nodes must be considered; Dhurgadevi et al. [22] presented a PSO-based
heuristic for scheduling the journey path of a wireless charging vehicle that considers
both travel cost and travel time. The Particle Swarm Charger Deployment (PSCD) and
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Improved PSCD (IPSCD) algorithms are introduced in [24] to almost optimize WRSN
charger deployment by utilizing the particle swarm optimization (PSO) concept. Distances
between chargers and nodes that were the same as the angles between them were used
to calculate the charging efficiency in PSCD and IPSCD. To acquire statistics on charging
efficiency, the authors conducted experiments using real-world wireless chargers.

PSO has a fast convergence speed, which is best for wireless sensor network appli-
cations. However, this fast convergence speed can result in several drawbacks, including
poor global search ability, low accuracy, fast convergence and stagnation. Reference [25]
observed that PSO is quick at locating a promising region, but cannot refine the solution.
Exploration refers to the characteristics of particle swarm optimization that allow it to de-
scribe favorable regions in the search space, whereas exploitation refers to the ability of the
PSO algorithm to enhance solutions within these favorable regions. Extensive studies show
that PSO’s ability to find a global optimum mostly depends on exploration and exploitation
tendencies [26–28]. Exploration is beneficial for a multimodal search but compromises
convergence speed in the multimodal search, while exploitation is more beneficial for a
unimodal search. The contributions of [26–29] demonstrated that these properties could
be adjusted by carefully choosing the value of inertia weight (ω) in the particle swarm
optimization algorithm. The standard PSO is the version of the PSO that is used today.
Techniques that have been successfully implemented for modifying the algorithm include
enhanced strategies [30], hybrid strategies [31–33] dynamic neighborhood topology [34–36]
and time-varying parameters [37–40], etc.

Our paper is the first that aims to solve this problem by investigating the mobile
charging request strategy called the energy renewable management system, based on
particle swarm optimization (ERMS-PSO), and we examine four metrics together in parallel,
which are vacation time (of WMCD) efficiency, the total distance traveled by the WMCD,
the total energy consumed by the WMCD by traveling through the target nodes and the
total number of cycles.

Unlike [17] during each cycle, where they considered the maximum energy (Emax) and
minimum energy (Emin) in the nodes and optimized the node’s energy consumption and
vacation time ratio, for our strategy, we took into account the total power consumption, total
distance traveled and wireless mobile charging device’s vacation time ratio as performance
metrics and aimed to investigate the mobile charging request strategy called the energy
renewable management system, which is based on particle swarm optimization (ERMS-
PSO). In this new strategy, we introduced two sets of energies, called emin (our minimum
energy) and ethresh (our threshold energy), where, when the first node reaches our emin,
it will inform the base station (BS), also known as the sink node, which is responsible for
collecting all information from sensor nodes and sending it to the end-user. The base station
will calculate all nodes’ energy that fall under ethresh and send a WMCD to change them
in one cycle. Our emin must be greater than the Emin (general minimum energy in the
node) and our ethresh must be greater than emin but less than the general Emax.

The following are the main contributions and innovations of this paper:

1. First, we investigate the operation of a sensor network and propose an on-demand
energy-saving strategy called the energy renewable management system (ERMS) for
keeping the network operational for a long time by examining the wireless mobile
charging device vacation time efficiency, the total distance traveled by the WMCD,
the total energy consumed and the total number of cycles.

2. Secondly, based on the presented strategy, a heuristic algorithm called particle swarm
optimization (PSO) is developed and successfully implemented for solving the energy
replenishing problem of the wireless sensor network and developing a suitable fitness
function for achieving the said objectives.

3. This work aims to solve the problem of wireless energy transfer by investigating
the mobile charging request strategy, where two sets of variables are introduced—
emin, ethresh—to help manage the energy in the node and levels of charging of
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WMCD. We finally compare the results from the proposed algorithm with other
notable algorithms.

We propose a charging scheme that can improve the current designs while decreasing
the effect of their limits.

The remaining part of this work is arranged as follows. We describe the problem
statement in Section 2 and we analyze the total energy consumption in Section 3. Section 4
explains in detail the proposed strategy, ERMS-PSO. Results are delivered in Section 5, with
comparison obtained through both experiments and simulations, and we conclude and
give suggestions for future work in Section 6.

2. Problem Description

In this section, we describe the model of WMCD behavior as well as the WSN control
approach. Abbreviations contain a list of the main acronyms and notations used in this
paper.

The energy harvesting method not only increases the lifespan of individual sensor
nodes but also the overall lifespan of the WSN. We take into account a two-dimensional
area with N randomly distributed sensor nodes, which is similar to the scenario used
in [13–15]. Each node has an energy receiving device that allows it to recharge its batteries
remotely. A wireless mobile charging device (WMCD) has a static base station (BS) and a
rest station (RS), also known as a service station, which is a place that the mobile charger
uses to rest and recharge its battery for the next tour.

The WMCD renewable energy cycle is known as the Hamiltonian cycle, and it begins
and finishes at RS, as seen in Figure 1. The WMCD battery, on the other hand, is recharged
on the RS via immobile energy storage and takes the lead from the RS, proceeding to the
nearest node. The WMCD process continues as all deployed nodes use WET to wirelessly
recharge their batteries. It returns to its rest station after recharging the node batteries
to replenish its battery for the next charge cycle. A wireless renewable sensor network
(WRSN) is defined as a WSN built with a WMCD. In real world scenario, The WMCD could
be a vehicle following a set path.

Figure 1. A WSN with a wireless mobile charging device.

The WMCD must visit and charge some sensor nodes during each cycle (C). Hn
denotes the group of nodes that must be visited in the Cth cycle. WMCD goes through
the smallest Hamiltonian cycle that joins all nodes in Hn and the RS in the Cth cycle. Pn
represents the shortest Hamiltonian cycle’s traveling path. Dn denotes the length of path
Pn, and tn denotes the time spent traveling across distance Dn.
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T is denoted as the time required for the WMCD’s tour cycle and tvac is the vacation
time of the WMCD in the Cth cycle. During the Cth cycle, the WMCD travels from RS to Hn,
visiting and charging nodes before returning to RS for tvac. The cycle time T is calculated
as follows:

T = tn + tvac + ∑
j∈hn

tj (1)

tn =
Dn

V
(2)

where ∑j∈hn tj is the entire length of time that the WMCD spends in charging all nodes in Hn.
We employ a periodic strategy in this paper. As previously stated, a WMCD is used to

charge the sensor nodes periodically on a T-cycle basis. Each node, on the other hand, should be
charged on a regular basis to complement its energy use. Previous studies [13–15] found that
the WMCD goes into the network and charges all nodes in every cycle. In real-world networks,
however, sensors’ energy consumption rates may vary. Some nodes near the base station may
spend several times less energy than faraway nodes; therefore, it is not necessary to charge every
node in the cycle.

This observation introduced a new research direction in wireless energy transfer
research. The questions arising include: Do all nodes need to be charged at every charging
cycle? If not, then how do we select the nodes to be charged at any given time? Must
the energy in the node approach Emin before charging can be initiated? If not, then what
energy level should be initiated?

As a result, we can use a variety of strategies that consider each node’s energy con-
sumption rate. For example, in each cycle, the nodes with the highest energy consumption
will be visited, and those with the lowest amount of energy consumption can be visited
every two cycles or more. As shown in Figure 2, the charging procedure for node i (i ∈ N)
should be replenished regularly to supplement its energy usage over time.

Figure 2. Periodic charging diagram.

The energy conservation principle states that node i’s energy consumption should be
equal to the WMCD’s energy supply [12].

Ti ∗ Pi = ti ∗U (i ∈ N) (3)

where Ti represents the visiting and charging interval of i and pi represents the energy
consumption rate of node i.
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3. Energy Consumption Analysis

In this section, we use the WMCD to calculate the system’s total energy consumption.
To compare, a hybrid vehicle (PHEV) plug-in is used to transport the wireless mobile charg-
ing device battery. According to Pacific Northwest National Laboratory research data [41],
a mid-size PHEV’s energy consumption per mile (ECPM) is 675 J/m. If the WMCD travels
at V = 5 m/s, the WMCD’s energy consumption while traveling is approximately 3 kW.
The sensor node’s energy consumption, on the other hand, ranges from a few milliwatts
to hundreds of milliwatts [42]. The energy required by the WMCD for traveling appears
to encompass the majority of the system’s total energy consumption. We introduce a
particle swarm optimization-based energy renewable management system (ERMS-PSO).
In ERMS-PSO, we first set T accurately, and we then calculate the charging period Ti for
sensor node i based on its energy consumption rate pi. As a result, the WMCD should visit
a subset of nodes in each cycle, reducing the WMCD’s journey travel distance. We employ
two key steps to reduce the two portions of overall energy use. We wish to reduce the
WMCD travel distance as much as possible because it accounts for the majority of the total
energy use.

a. The total power consumption has two parts; their sum is seen in Equation (4) and
can be calculated as follows:

Ptotal =
1
λ
∗∑i,i∈N pi +

Dtotal ∗ ECPM
Ttotal

(4)

where λ is the energy conversion efficiency of non-radiative energy transfer. Ttotal is
the total time and Dtotal is the distance traveled by the WMCD throughout all cycles.

b. The ratio of vacation time of the WMCD (µvac), which serves as the optimization
goal in [13–15]. We describe µvac in this study as the mean percentage of time in each
cycle that the WMCD spent on vacation, and it can be calculated as follows:

µvac =
∑k tvac

Ttotal
, µvac ∈ [0, 1] (5)

where ∑k tvac is the total amount of time that the WMCD spends on vacation across
all cycles. Our goal in this research is to reduce the value of Ptotal . In Equation (5),
we can observe that when µvac grows, the WMCD has a longer period to repair or
replenish its battery at the RS, indicating greater network performance.

4. Implementation of Proposed ERMS-PSO
4.1. Energy Renewable Management System (ERMS)

ERMS implementation consists of two primary steps. The initial stage is to optimize
the first part of the total energy usage ∑i,i∈N pi Secondly, we create a collaborative design
to reduce the WMCD’s trip distance.

The flow rate from node i to node j is represented by Wij, the flow rate from node i to base
station BS is represented by WiB, and Wki represents the bit flow rate coming from node k to i
and. The flow balance constraint is then applied to each node i (Equation (6)).

∑k 6=i
k∈N wki + Ri = ∑j 6=i

j∈N wij + wiB (6)

where ∑
j 6=i
j∈N wij + wiB represents the data flow rate of energy transmission from node i

to j or the base station, and ∑k 6=i
k∈N wki is the data flow rate of energy reception from node

k to i. To transmit and receive data, each sensor node consumes energy. We use the
energy consumption model [16] in this article, which has been widely used in previous
studies [12–14].

pi(t) = ρ ∑k 6=i
k∈N wki + ∑j 6=i

j∈N vij·wij + viB·wiB (7)
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where ρ is the constant coefficient, and Vij and ViB are the energy consumption for transmit-
ting a unit of data from node i to node j or the base station, respectively, which is expressed
as follows:

Vij = β1 + β2·dα
ij (8)

Here, β1 is a distance-independent constant term and β2 is a distance-dependent
term coefficient, dij describes the distance between nodes i and j, while α is the path-loss
index and is 2 ≤ α ≤ 4. We can develop a non-linear function of the BS position (XB, YB)
from Equation (7):

ViB = β1 + β2

[√
(XB − Xi)

2 + (YB −Yi)
2
]α

(9)

The energy consumption rate for reception in this model is ρ ∑k 6=i
k∈N wki, while the

energy consumption rate for transmission is ∑
j 6=i
j∈N vij·wij + viB·wiB We assume that the

network’s flow rates (Wij and WiB) are time-invariant. The optimization goal is to minimize
the total energy consumption of nodes (i.e., ∑i,i∈N pi), which is the first part of Ptotal in
Equation (4). Each node must meet the basic flow balancing constraint in Equation (6), as
well as the energy consumption model in Equation (7). As a result, the optimal problem
can be expressed as a linear programming problem as follows:

min ∑i,i∈N pi

s.t. ∑k 6=i
k∈N Wki + Ri = ∑

j 6=i
j∈N Wij + WiB (i ∈ N)

(10)

pi(t) = ρ ∑k 6=i
k∈N wki + ∑j 6=i

j∈N vij·wij + viB·wiB (11)

Wij ≥ 0

The optimization variables in this problem are Wij, WiB and pi, while constants are
Ri, ρ, vij, and viB. After solving the optimization problem in Equations (10) and (11), the
energy consumption rate pi can be determined for each node i. In this section, we develop
a system that combines the charging period Ti, the visiting set Cth in each cycle and the
WMCD traveling path.

This work aims to solve the problem of WET by investigating the mobile charging
request strategy, where two sets of variables are introduced: emin and ethresh. If the maximum
energy in the battery of nodes is Emax (usually 10.8 KJ) and the minimum energy is Emin
(usually 0.05 × Emax), then the emin is a low battery indicator, which must be higher than
the Emin value, at which the nodes eventually die. The value of emin is carefully selected
to ensure that the nodes in WSN never approach Emin. The value ethresh is the allowable
threshold of energy, which must be higher than the emin but lower than the Emax. Emax is a
safe charging value that ensures the continuous lifetime of the network while minimizing
the charging time.

By communication, when the first node reaches the low battery energy level emin in
Equation (12), it initiates a charging request for the WMCD; then, the base station queries all
the nodes and identifies nodes with battery energy less than the allowable energy threshold
ethresh (Equation (13)); these nodes are lined up as target nodes. The WMCD is required to
visit these target nodes in the particular charging cycle. Reference [13] showed that the
TSP charging route improves the energy efficiency of the WMCD, but it is believed that
this increases the waiting time of the nodes to be charged because some nearby nodes may
possess more battery life while some far-away nodes are at the verge of being extinguished.
When the WMCD visits each of the target nodes, it charges the battery in the node to the
Emax. Our two energy variables are calculated as follows:

emin = Emin + (Emax − Emin) ∗ X1 (12)

ethresh = Emin + (Emax − Emin) ∗ X2 (13)
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0 ≤ X1, X2 ≤ 1

These particular recharging thresholds 0 ≤ X1, X2 ≤ 1 are shared by all network
nodes. If Pmax and Pmin are the energy consumed by the node with the highest data rates
and the lowest data rates, respectively, then the minimum and maximum charging time in
a single operating cycle can be evaluated as follows:

Tmin =
(Emax − Emin)

Pmax
(14)

Tmax =
(Emax − Emin)

Pmin
(15)

Thus, if the nodes are fully charged, it will take Tmin time before the first charging
request is sent and Tmax before the last charging request is sent.

To demonstrate the link between the solutions to the two challenges, the proposed
strategy initially sets the WMCD at the site of the base station. Vacation refers to the state
in which the mobile recharger is stationed at the sink node. During the vacation state, the
mobile recharger:

(i) Recharges its battery;
(ii) Replaces its battery;
(iii) Becomes aware of the received recharging requests.

Denote g as the number of sets to be classified, which is set up as follows:

g = log2
Tmax

T
(16)

During this phase, we establish the charging period Ti for every node i and categorize
the set Zk. To begin, we set each node i (i ∈ N) ‘s charging period Ti as:

Ti = 2a−1 ∗ T (1 ≤ a ≤ g) (17)

Here, a is the approximate logarithm of the Ti and T ratio, obtained as follows:

a = log2

(
Emax − E

pi ∗ T
− 1
)
+ 1 (18)

We define set Zk (1 ≤ k ≤ g) and let i ∈ Za; the WMCD will visit node i in the
(n× 2a−1)th trip cycle. During the Lth cycle and the design of the WMCD’s travel path, we
can obtain Fj, which is the set of sensor nodes that should be charged in the Lth cycle. We
can express L (1 ≤ L ≤ 2g−1) as j = n. 2c, where n is an odd number and can integer and,
here, c ≥ 0.

Fj =

{
Z1 (c = 0)

Z1 ∪ Z2 ∪ Z3 . . . ..Zc+1 (c ≥ 0)
(19)

The steps explained above are given in the Algorithm 1 below.

4.2. Particle Swarm Optimization (PSO)

The PSO is made up of particles, which are members of the population. Each particle
represents a bird in a flock, a swarm of fish or a potential result of an optimization problem.
PSO starts by setting with (nPop) the number of particles and every particle in an n-
dimension solution space. The autocorrelation of particle positions, the average velocity
of each particle per iteration and the fitness of the search are three factors that describe
the movement pattern in a particle swarm. These variables represent swarm movement
patterns and how they affect inertia weight and velocity coefficients (ω and c).
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Algorithm 1. ERMS procedures.

ERMS algorithm

1. Determine the value of T and the number of the visits set
2. Initialize Pmax and Pmin
3. Initialize emin and ethresh
4. Set g
5. Set the recharging period of node i, Ti and classify Zk
6. Define Z1, Z2, . . . , Zg
7. For I = 1, 2, 3, . . . , n do
8. a = log2

(
Emax−E

pi∗T − 1
)
+ 1

9. I ∈ Za Ti = 2a−1 ∗ T
10. End for
11. Set the visiting nodes an and traveling path of T
12. For j = 1, 2, 3, . . . , 2a−1

13. If j is odd, then
14. Fj = Z1
15. else
16. Fj = Z1 ∪ Z2 ∪ Z3 . . . ..Zc+1
17. End if
18. For ∀ni ∈ Fj do
19. Charge nodes ni to Emax
20. End for
21. End for

The PSO algorithm’s general steps are described below, with the input number of
particles m, n number of dimensions of the solution space (dim), inertia weight ω, learning
coefficients c1 and c2 with cognitive and social components, respectively.

Step 1: In the n-dimensional space, create m particles and assign each one an initial
position Xi and an initial velocity Vi In Equations (20) and (21), we define the position Xi
and the velocity Vi vectors of the ith particle as follows:

Xi = (Xi,1, Xi,2 . . . , Xi,dim) (20)

Vi = (Vi,1, Vi,2 . . . , Vi,dim) (21)

Step 2: Based on each particle’s position, we calculate the fitness function f as shown
in Equation (22). We define one cycle (Cyc) time as the interval between two charging
requests, and one cycle time is a summation of the vacation time, the charging time and the
travel time for all the nodes visited. Therefore, the number of cycles can be defined as the
number of charging requests received during the lifetime (total time) of the network.

f =
(

Cyc
102log10Cyc − 1−8

)2
+
(
emin − 1−8)2

+
(
ethresh − 1−8)2

+(
1

tvac
− 1−8

)2
+ ( Dtotal

102log10Dtotal
− 1−8)

2 (22)

s.t Emin < emin < ethresh, Emin = 0.05 ∗ Emax
emin < ethresh < Emax, Emax = 10.8 KJ

where Cyc is the time as the interval between two charging requests and Dtotal is the total
distance traveled by the WMCD throughout all cycles.

Step 3: Update each particle’s velocity and position as follows:
Every iteration, the position Xi and velocity Vi of each particle in the swarm are

updated through Equations (23) and (24) as follows:

Vi(iter + 1) = ω·r·Vi(iter) + c1·r1(PBesti(iter))− Xi(iter)
+c2·r2(Gbesti(iter)− Xi(iter))

(23)
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Xi(iter + 1) = Xi(iter) + Vi(iter + 1) (24)

where rj is a number between [0, 1] and j [0, 1, 2], generated randomly. Every iteration,
the particles in the swarm move closer to the solution of the problem and update their
positions towards PBest and GBest. Equations (23) and (24) generate additional position
and velocity vectors for the next iteration (iter + 1). The inertia weight ω is a learning
coefficient associated with the previous velocity, while learning coefficients c1 and c2 are
associated with the cognitive and social components, respectively.

Step 4: Then, we check if the ending condition has been met; the algorithm is termi-
nated if this is the case; otherwise, the algorithm goes back to Step 2. The PSO ending
condition could be that it has completed the maximum number of iterations or that the
global optimal position’s fitness function value does not increase by a certain amount. In
Equations (25) and (26), the PBest position attained by the ith particle and the GBest position
of the swarm is defined as:

PBesti = (pbesti,1, pbesti,2, . . . , pbesti,dim) (25)

GBesti = min
(

PBest1, PBest2, . . . , PBestnPop
)

(26)

The particle swarm optimization flow chart used in this work is shown in Figure 3.

Figure 3. PSO flow chart.

5. Results

We present some numerical results in this section that show how ERMS-PSO performs
in a real-world network. To evaluate the performance of the proposed ERMS-PSO, we
used a network topology and parameter settings similar to those in [13–16], except for
the wireless network size, which we compared to different wireless network sizes. The
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simulations were run using Matlab software. The parameters used in this study are shown
in Table 1.

Table 1. Parameters used.

Simulation Parameters Description of the Abbreviation

Nodes 50
Area length and width 100, 200, 300, 400, 500 m

RS, BS center
U 5 W
V 5 m/s
λ 0.85

Electricity quantity 2.5 Ah
Emax 10.8 KJ
Emin 0.05 × Emax

Data rate Ri [1, 10] kb/s
β1 50 nJ/b
β2 0.0013 pJ/b/m4

α 4
ρ 50 nJ/b

Inertia weightω 2.1
Cognitive coefficient c1 2.24

Social coefficient c2 1.8
Number of particles m 20

PSO iterations 50

We run the results for the 50-node network. We compared our strategy with the
traditional scheme with a constant cycle (TSCC) and an energy-efficient renewable scheme
with a variable cycle (ERSVC). Table 2 shows the location and data rate of each node in a
(100 × 100) m2 network. Figure 4 depicts the energy consumption results after the first
step of ERMS-PSO optimization. These results compare the proposed energy renewable
management system based on particle swarm optimization. As we can observe, for the
five different network sizes used, ERMS-PSO consumed less energy than other schemes.
Figure 5 shows the cycle number; each scheme runs from 100 to 500 m in network size.

Table 2. Location and data rate for each node in a 50-node network.

Node
Index

Location
(m)

Data Rate
(kb/s)

Node
Index

Location
(m)

Data Rate
(kb/s)

Node
Index

Location
(m)

Data Rate
(kb/s)

1 (42, 20) 5 18 (67, 26) 3 35 (40, 85) 9
2 (27, 61) 3 19 (92, 68) 4 36 (76, 43) 3
3 (76, 2) 2 20 (58, 58) 1 37 (58, 40) 9
4 (43, 72) 3 21 (29, 81) 7 38 (35, 35) 4
5 (22, 93) 8 22 (32, 47) 6 39 (29, 69) 7
6 (53, 74) 4 23 (22, 15) 8 40 (75, 96) 6
7 (49, 91) 7 24 (91, 43) 10 41 (65, 50) 10
8 (20, 40) 8 25 (92, 82) 6 42 (18, 26) 6
9 (94, 28) 2 26 (76, 65) 6 43 (28, 9) 8

10 (17, 78) 7 27 (6, 96) 5 44 (70, 58) 3
11 (92, 96) 1 28 (7, 52) 10 45 (61, 7) 2
12 (93, 14) 5 29 (46, 4) 9 46 (3, 81) 7
13 (79, 30) 8 30 (66, 79) 9 47 (4, 34) 5
14 (8, 21) 3 31 (86, 7) 6 48 (47, 62) 2
15 (87, 57) 10 32 (57, 84) 7 49 (64, 19) 2
16 (55, 28) 8 33 (17, 68) 3 50 (9, 7) 3
17 (9, 72) 5 34 (31, 93) 8
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Figure 4. Energy consumption.

Figure 5. ERMS-PSO running cycles.

As we can see from the above two figures, the fewer cycles that are run, the less energy
consumed. Figure 6 shows the distance traveled by wireless mobile charging devices while
charging nodes in a cycle. Our scheme outperforms others by using the shortest distance
traveled by the WMCD, and this means that the distance is one of the most important
issues to address because it contributes to the energy consumption. The more the WMCD
travels, the more energy consumption and the less vacation time. Figure 7 shows the ratio
of WMCD vacation time, and, as we can see, in our strategy, the vacation time decrease
as the network area grows: for 500 m × 500 m, we achieved 81.6% compared to other
strategies, where ERSCV had a value of 79.3% and TCSS had a value of 75.6%.
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Figure 6. WMCD travel distance.

Figure 7. Ratio of vacation time.

6. Conclusions

In this paper, we studied the operation of a sensor network based on WET, in a
scenario where a WMCD was employed to charge the sensor nodes wirelessly inside the
network. We analyzed the energy consumption of the entire system and pointed out that
the traveling distance of WMCD is the main factor influencing total energy consumption.
Based on energy consumption analysis and periodic strategy, we proposed a new new
strategy called ERMS-PSO to decrease total energy consumption, travel distance and the
charging number of cycles while maintaining the network operational with low complexity.
In this new strategy, we introduced two sets of energies called emin (our minimum energy)
and ethresh (our threshold energy), where, when the first node reaches our emin, it will
inform the base station; then, the base station will calculate all nodes that fall under ethresh
and send a WMCD to change them in one cycle. Our emin must be greater than the Emin
(general minimum energy in the node) and our ethresh must be greater than emin but
less than the general Emax. In contrast to previous schemes in which the WMCD visited
and charged all nodes in each cycle, the WMCD in ERMS-PSO only needs to visit a subset
of nodes by accounting for the difference in energy consumption rates at each node. As
a result, the WMCD’s travel distance and total energy consumption can be significantly
reduced. In ERMS-PSO, we first devised a system for combining each node’s charging
period, the visiting set and the traveling trail during every cycle by first formulating a
practical optimization problem with a flow rate to determine the energy consumption
rate. Following this, we showed how ERMS-PSO can keep the network running. Based
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on simulations, ERMS-PSO can significantly reduce the total energy consumption while
maintaining vacation time ratio performance. For future work, the ERMS-PSO strategy can
be tested using a variety of new heuristic algorithms to determine which one performs the
best and thus extends the network life time.
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Abbreviations

Abbreviations Description
λ The efficiency of non-radiative energy transfer
T WMCD periodic trip cycle
Hn Set of nodes that must be visited during the Cth cycle
Emin General minimum energy in the node
Emax Maximum energy in the node
emin Proposed minimum energy
ethresh Proposed threshold energy
N Number of sensor nodes
RS Rest station
BS Base station
Ri Node i data rate
pi Energy consumption rate at sensor node i
WMCD Wireless mobile charging device
Pk Traveling path of WMCD
Dn Distance of Pk
tn Time spent for traveling Pk
tvac Vacation time of WMCD at rest station
µvac WMCD vacation time ratio
WSN Wireless sensor network
WET Wireless energy transfer
ERSVC Energy-efficient renewable scheme with variable cycle
TSP Traveling salesman problem
ECPM Energy consumption per mile
ti Charging duration of node i
Ptotal System total energy consumption
Dtotal Total distance traveled over all cycles
Ttotal Total time spent over all cycles
Wij, WiB Flow rate coefficient from node i to node j (or base station)
Vij, ViB Energy consumption for transmitting a unit of data from node i to node j or base station
ρ Constant coefficient
α Path loss index
dij Distance between sensor i and sensor j (or base station B)
β1 and β2 Constant coefficients in transmission energy modeling
(XB, YB) Coordinates of the base station
V Traveling speed of MCV
U Energy transfer rate of MCV
g The number of sets needing to be classified
Zk The defined set that needs to be classified
Fj The set of nodes that should be visited during the jth cycle
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