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Abstract: Parkinson’s disease (PD) is a progressive neurodegenerative disorder associated with
dysfunction of dopaminergic neurons in the brain, lack of dopamine and the formation of abnormal
Lewy body protein particles. PD is an idiopathic disease of the nervous system, characterized by
motor and nonmotor manifestations without a discrete onset of symptoms until a substantial loss of
neurons has already occurred, enabling early diagnosis very challenging. Sensor-based platforms
have gained much attention in clinical practice screening various biological signals simultaneously
and allowing researchers to quickly receive a huge number of biomarkers for diagnostic and prog-
nostic purposes. The integration of machine learning into medical systems provides the potential
for optimization of data collection, disease prediction through classification of symptoms and can
strongly support data-driven clinical decisions. This work attempts to examine some of the facts and
current situation of sensor-based approaches in PD diagnosis and discusses ensemble techniques
using sensor-based data for developing machine learning models for personalized risk prediction.
Additionally, a biosensing platform combined with clinical data processing and appropriate software
is proposed in order to implement a complete diagnostic system for PD monitoring.

Keywords: biosensors; Parkinson’s disease; wearable devices; machine learning

1. Introduction

The pathophysiology of Parkinson’s disease (PD) is characterized by gradual and
severe degeneration of the dopaminergic neurons of the substantia nigra. The accumulation
of certain symptoms in specific clusters (expressed by different phenotypic characteristics)
may reflect degeneration in different neural pathways, a pathophysiological change repre-
senting different expression and progression of the disease [1]. Most cases of the disorder
are likely to be caused by a complex interaction of environmental and genetic factors.
Many of these cases are classified as sporadic or idiopathic due to a lack of family history.
The underlying causes of such cases remain unknown. About 15% of patients with PD
have a family history of this disorder, which is caused by mutations in the LRRK2, SNCA,
PARK2, PARK7 or PINK1 genes [2]. Mutations in LRRK2 are more common in familial PD
with late onset. Many of the autosomal dominant gene mutations involve mitochondrial
dysfunction and accumulated or dysfunctional forms of gene products. Recently, mutations
in the transmembrane protein 230 (TREM230) gene have been linked to the familial form
of PD [3]. Mutations in the DJ-1 gene (PARK7) are associated with familial forms of PD
and therefore several studies have sought to measure DJ-1 protein in CNS and plasma
samples [4].

To date, no specific protocol has been developed that can lead to an accurate diagnosis
of the disease before the onset of motor symptoms. The clinical examination by a specialist
neurologist along with the precise mapping of the patient’s history and its response to
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medication is the proposed combination that ultimately leads to the clinical decision that a
patient suffers from the syndrome. New technologies such as electronic-Health (eHealth)
systems are undergoing a real technological revolution using sensing technologies to moni-
tor the biophysical parameters, radically changing how medical services are provided [5].
As part of this effort, accelerometers and other inertial sensors that are integrated into wear-
able and portable devices can be used for noninvasive vital signs monitoring of patients to
detect motor dysfunctions associated with PD. These approaches succeed at a satisfactory
rate to detect, in some specific movements, characteristics that identify an unusual tremor
during certain activities [6]. Technological development in wearable devices has offered
to the scientific community a colossal pool of sensor data for analysis and knowledge
mining. Such data are usually characterized by high volume due to their high frequency
of measurements and high dimensionality since multiple forms of data are traced and
transferred by several various sensors simultaneously [7]. Machine learning constitutes one
of the first choices to decipher such data identifying hidden patterns for their deeper and
more robust analysis. Such algorithms not only can deal with the limitations of these data
but also their performance is powered by large-scaled data, for example, the supervised
learning algorithms. Towards this direction, there is remarkable progress on machine
learning approaches for sensor-based PD data. However, as technologies and available
data grow in volume and dimensionality, we need more sensor-based frameworks using
machine learning processes.

2. Early Detection and the Need for Sensor-Based Approaches

Molecular diagnostics comprises a powerful tool of biomedical research providing
appropriate methodologies for the accurate detection of important biomarkers in various
diseases. Unfortunately, the monitoring progression of neurodegenerative diseases such as
PD is mainly based on clinical findings, which appear upon the extensive loss of dopamin-
ergic neurons of the substantia nigra; therefore, the clinical diagnosis is often achieved
when the disease has already progressed [8]. However, early detection of PD through
understanding the pathophysiology of the diseases is vital, as it could give the patient the
opportunity for an early treatment protocol, which can be valuable in eliminating further
disease progression. A feature that makes the discovery of a biomarker an even more
complex process is definitely the clinical heterogeneity of PD from the early preclinical
to the more advanced stages of the disease. Diagnostic markers may be useful prior to
the onset of motor characteristics as well as when symptoms are still insufficient to define
the disease (precursor phase) or even to detect an asymptomatic population at risk of
developing the disease (preclinical phase). This process could also help differentiate PD
from other Parkinson’s syndromes, as misdiagnosis often occurs early in the disease and
diagnostic confirmation requires autopsy [9]. The Unified Parkinson’s Disease Rating Scale
(UPDRS) is currently among the most common and reliable protocols used to monitor the
severity of the disease, although it remains a subjective and semiquantitative measure of
motor symptoms [10]. The UPDRS questionnaire consists of four different parts, the first
two of which consider active and nonmotor activities that occur in one’s daily life while
the last two are completed by the doctor after examination on specific exercises that control
motor functions. The third part of the questionnaire, which will henceforth be referred to
as UPDRS III or motor UPDRS, is what is considered to be the basic metric to determine
the stage of the patient’s disease in relation to the motor symptoms that appear. Imaging
has influenced the differential diagnosis in PD in clinical practice, while at the same time
genetic biomarkers contribute to the recognition of certain familial forms of the disease [11].
Therefore, there is a great need to increase the existing biomarkers available for PD and
to accelerate their detection and validation at distinct stages of the disease, including
molecules which can determine the patient’s transition from pre-motor to motor symptoms.
Biochemical biomarkers remain also in development and can provide diagnostic utility.
A-Synuclein is known to form agglomerates and is found in Lewy bodies in PD patients
and thus is an important candidate marker that can be detected in cerebrospinal fluid
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(CSF) and blood [12]. Various growth factors have also been investigated as biomarkers
of PD both diagnostically and prognostically. Low serum Brain Derived Neurotrophic
Factor (BDNF) levels are associated with dopaminergic neuron loss, the severity of PD
motor symptoms and cognitive symptoms [13]. Preclinical models suggest that insulin-like
growth factor-1 (IGF-1) is a neuroprotective of dopaminergic neurons. Serum IGF-1 levels
are elevated in patients with PD and are associated with motor function as determined
by the UPDRS scale [14]. Due to the complexity of the disease, combining more than one
individual biomarker from the different categories is probably the most efficient strategy
for accurately predicting and diagnosing the condition and progression of the disease,
including recording clinical symptoms (e.g., immunity, REM sleep behavioral disorder),
genetic mutations in key genes that translate regulatory proteins (SNCA, LRRK2), analysis
of biochemical parameters in biological samples (blood, CSF) and imaging techniques (PET,
MRI, SPECT) [15,16]. Digital biomarkers, on the other hand, consist a valuable pool of ap-
proaches which use appropriate biosensors and tools for data collection that are converted
by algorithms into a measurable result [17].

Rapid development of sensor-based systems has shown a significant increase in recent
decades (Table 1). A biosensor is an analytical tool that converts a biological response into
a quantifiable and editable signal [18]. The required parts comprising a typical biosensor
are a bioreceptor responsible for selective identification of the target being analyzed, an
interface architecture where a specific biological response takes place and generates the
signal and a signal converter which translates the biorecognition event, converts it to digital
and is then amplified by a circuit and sent for processing. Significant progress has been
made in the development of multiple biosensor platforms for quantitative analysis and
parameterization of biological signals. Simultaneous noninvasive detection of multiple
analyzers is extremely attractive but at the same time requires an accurate monitoring
system [19]. Additionally, the signal transfer is carried out with appropriate devices taking
advantage of the ability to monitor the target analyzers on suitable biological substrates.
Colorimetric analysis eliminates the need to power the sensor platform, which can facilitate
the development of small and easily portable devices, while requiring additional data read-
ers and data miners to perform sensitive measurements [20]. Real-time visual monitoring
of biological indicators can be achieved using a colorimetric detection system integrated in
a suitable microfluid while advanced devices allow advanced sampling and measurement
based on a suitable closed system capable of collecting the sample immediately and quickly
without sampling.

Sensors for neurochemical monitoring have been fabricated such as single-walled
carbon nanotubes or graphite electrodes for dopamine and uric acid determination through
entrapment of nanomaterials on the surface protein-coated magnetic particles [21,22]. Gold
nanoparticles and platinum and copper oxide particles have also been applied in probes for
monitoring of the electrocatalytic oxidation of dopamine [23,24]. Detection platforms with
continuous minimally invasive electrochemical monitoring of levodopa (L-Dopa) have
gained significant progress [25]. This multimodal microfiber detection platform is based on
parallel simultaneous independent enzymatic ammetric and nonenzymatic voltammetric
detection of the active substance using different microneedles in the same series of spot
sensors. Efforts to improve are also focused on the full integration of the wireless electronic
interface, wireless transmission and the investigation of effective protective coatings while
requiring clinical trials and validation in patients with PD. In this way, the researchers
hope to create a closed-loop system capable of containing an L-Dopa pump and a dose
automation algorithm that will replace intermittent oral administration by providing
individualized drug dosing and improved disease symptom management. A PD remote
monitoring system was developed based on the findings from the data collection process. It
is an observational case-control study that aims to collect a set of data from PD patients and
healthy volunteers by recording daytime movements, using portable sensors and detecting
changes in motor symptoms after receiving an appropriate dose of medication [26].
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A surface plasmon resonance-based biosensor was developed for a-synuclein au-
toantibody detection in undiluted blood serum using a PEGylated protein interfaces [27].
Semiconductor quantum dots such as CdSe/ZnS are generally considered suitable biocom-
patible fluorescence biosensors for mitochondrial complex I activity monitoring, which is
highly related with the loss of PD progression [28]. Furthermore, a DNA electrochemical
biosensor was utilized to determine specific nucleic acid degradation products such as
8-hydroxyguanine in urine PD samples through a molecularly imprinted polymer layer
fabricated on a gold electrode [29]. Development of antibody-based biosensors offers high
binding affinity and increased specificity. A monoclonal antibody fragment specific for
dopamine on gold nanorods was presented, which can cleave the disulfide bond linkages
and links to free thiols release [30]. Moreover, biotinylated aptamers immobilization was
performed using a dopamine-HRP conjugate for competitive binding [31].

Wearable biosensors and peripherals are of great interest due to their ability to provide
continuous and real-time information through dynamic, noninvasive measurements by
calculating specific biomarkers in biological fluids such as sweat, tears, saliva or intersti-
tial fluid (ISF). At the same time, they are distinguished for their high specialty, speed,
portability, low cost and low power requirements [20]. Recent developments focus on
electrochemical and optical biosensors, including noninvasive monitoring of specific bi-
ological molecules such as metabolites and hormones. Accurate and reliable extraction
of information in real time with the use of portable technologies (biosensors, peripherals)
has a wide impact on everyday life. Brain–Computer Interface (BCI) systems have been
developed with purpose to provide a real-time feedback based on electrophysiological
signals [32]. For example, Open-BCI offers electroencephalography (EEG), electrocardio-
graphy (ECG) and electromyography (EMG) capabilities to monitor the brain, muscles
and heart on a single platform. The hardware platform is open source and compatible
with Arduino [33]. A wide range of commercial portable motion monitoring devices and
simple sensor networks are also available including accelerometers, gyroscopes, tempera-
ture sensors and heart rate sensors being the main components of these peripherals [34].
Given the high availability of these sensors for platforms such as the Arduino and Rasp-
berry Pi, it is possible for researchers to easily combine a wireless portable device at very
low cost to control temperature, pressure and oxygen concentration or optical sensors for
heart rate and posture control. A wearable system for an objective assessment of motor
performance for PD diagnosis and monitoring is proposed, composed of inertial devices
for motion analysis of lower and upper limbs (two SensFoot and two SensHand) and
processing algorithms that can provide a useful tool for neurologists. The system was
tested on 40 healthy subjects and 40 PD patients by extracting multiple kinetic parameters
and achieving an excellent discrimination with all the classifiers and all the datasets [35].
A segmented double-integration algorithm was developed to estimate step length and
step time from wearable inertial measurement units. Using data from wearable inertial
measurement units (IMU) sensors, the approach provides reliably and accurately mea-
surements of spatiotemporal gait parameters that are in excellent agreement with those
from widely used laboratory-based systems [36]. A sensor-based system, using embedded
triaxial accelerometers from consumer smartwatches and multitask classification models,
was presented to assess the amplitude and constancy of resting tremor in PD. The system
was based on a deep learning multitask approach combined with the data acquired from
PD patients with results showing a high agreement between the amplitude and constancy
measurements obtained from a smartwatch in comparison with those obtained in a clinical
assessment [37]. A multimodal deep learning model for discriminating between people
with PD and without PD is shown using two data modalities, acquired from vision and
accelerometer sensors in a home environment to train variational autoencoder models [38].
In another study, a mobile health (mHealth) system for continuous and objective real-life
measures of patients’ health and functional mobility was tested in patients with a clinical
diagnosis of PD, indicating an apparently feasible and usable approach for continuous
and remote monitoring of PD patients’ functional mobility and global health status [39].
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Lanoni et al. investigated how to efficiently collect movement data using six flexible wear-
able sensors in twenty individuals with PD for detection of bradykinesia and tremor in the
upper extremities by training separate random forest classifiers and comparing the symp-
tom detection models based on them to symptoms derived from deep convolutional neural
networks [40]. Wearable technology in free-living environments could definitely help
people with PD offering potential advantages to accurately detect and measure clinically
relevant features and may be used in cases with a degree of confidence [41].

Table 1. Sensor-based approaches in PD monitoring.

Type of Sensor Targeting/Monitoring Ref.

Single-walled carbon nanotubes fabricated by sodium
dodecyl sulfate

Simultaneous electrocatalytic determination of ascorbic
acid (AA), dopamine (DA) and uric acid (UA) [21]

Nanosized copper oxide/multiwall carbon nanotubes Electrocatalytic oxidation of dopamine monitoring [23]

Microneedle sensing platform
Electrochemical monitoring of levodopa

(enzymatic–amperometric and nonenzymatic
voltammetric detection)

[25]

Electroanalytical assay using alpha-synuclein
modified electrodes a-synuclein detection through autoantibodies sampling [27]

Semiconductor quantum dots (CdSe/ZnS) Mitochondrial complex I activity
fluorescence monitoring [28]

DNA electrochemical biosensor through an imprinted
polymer layer fabricated on a gold electrode

Nucleic acid degradation products determination
(8-hydroxyguanine) [29]

Antibody-based biosensor on multiblock nanorods
(Au and Ag)/biotinylated aptamers immobilization Dopamine detection [30,31]

A segmented double-integration algorithm
Calculation of step length and step time from wearable

inertial measurement units, spatiotemporal gait
parameters measurement

[36]

Embedded triaxial accelerometers from consumer
smartwatches and multitask classification models

Assessment of the amplitude and constancy of
resting tremor [37]

MCPD-Net, a multimodal deep learning model using
visions accelerometer sensors

Effective representations of human
movements prediction [38]

mKinetikos, a mobile-based system (mHealth system) Continuous and remote monitoring of PD patients’
functional mobility and global clinical status [39]

Flexible wearable sensors attached to the hands, arms
and thighs

Detection of bradykinesia and tremor in the
upper extremities [40]

3. The Sensor Perspective

Herein, a framework for the design of an accurate and reliable system that can be
easily applied in clinical practice to monitor the diagnosis and management of PD is pre-
sented. The objective of the proposed integrative heterogeneous tool is to make the results
readily available and visible to users via a single workflow. Through the interconnection
and integration of systems, the homogenization of the pathway of extracting, correlating
and retrieving data can be achieved. The complete diagnostic platform consists of the
following building blocks, as depicted in Figure 1: (i) a biosensor properly designed for the
measurement of specific proteins in biological fluids, among of which could be α-synuclein,
total and phosphorylated tau, apolipoproteins A and E, β2-microglobulin and amyloid
Ab42; (ii) a microprocessor with the appropriate analog processing peripherals to amplify
and convert to digital the analog signal received from the biosensor (ADC—Analog to
Digital Converter); (iii) BITalino and Mysignals peripheral sensor platforms for monitoring
and measuring biometric parameters of examinees (electrocardiogram, electromyogram,
temperature, breathing rate, blood pressure, body scale parameters); (iv) central collec-
tion and management unit (Single Board Computer (SBC)—Raspberry Pi) that allows
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data management received from the connected peripheral platforms as well as from the
biosensor and (v) a server for storing, managing, viewing and processing data sent by the
SBC, which also hosts the decision support system and the user interface. The display
of the results to the end user (medical doctor) can be performed evenly with the help of
a central visual representation of processed data and data of the examinee (dashboard),
without the need to understand the process of collecting and converting data from dif-
ferent sources of the individual systems (biosensor or peripheral sensor platforms). The
collection of information can be executed by directly reading the corresponding database
(dynamic queries). In addition, to achieve the interconnection of systems and databases,
the appropriate Application Programming Interface (APIs) must be provided. One of the
main advantages of the API is that it allows information to be exported between systems.
If dynamic queries are used in the database, then an interface would be used between
the programming language and the database through which they communicate. To that
end, there is Open Database Connectivity (ODBC) (general application) and Java Database
Connectivity (JDBC) (for Java language). ODBC is a widely used API for accessing and ma-
nipulating databases. The aim for each application is to have access to any data, regardless
of the system. ODBC creates an intermediate layer (middle layer, database driver) between
the application and the database, which translates the application queries into commands
that the database can understand.
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In this perspective, the development of a suitable polymeric substrate for the biosen-
sor is necessary for accurate detection and quantification of the levels of the measured
biomarker [42] whereas the selection of specific application-development platforms for
medical devices such as MySignals platform, low-cost biosignal acquisition systems such as
BITalino platform together with a central unit for collecting and managing measurements
from the biosensor and the peripheral sensors of the platform plays a pivotal role. Specific
criteria should also be taken into account during the developmental process, such as rigor-
ous specifications and operation of a diagnostic device, the intermediate software along
with the interface completion, in which the interconnection of the diagnostic device with
all the sensors (peripheral and biosensor), along with the management units (Raspberry
Pi and server) [43]. Given the capabilities provided by the peripheral platforms for inter-
facing with other systems through API programming, the integration with the software
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applications and systems defined for the offered solution is easily achieved. Some available
options of APIs on offer include device management, functionality and call answering.
For example, the data in the proposed layout can be performed using the “OpenSignals
(r)evolution” software for the BITalino platform and each record can be stored via the
software framework in a text file, which will then be processed through a developed code
(e.g., in Python). Mysignals platform has a similar API.

Focusing on the design of the biochemical sensor as a critical part of the diagnostic
device, this stage requires a detailed development process to accomplish the required
functional milestones such as accuracy, linearity, selectivity and specific interaction with
the target. Signal detection and modification is basically electrochemical and based on
the measurement of the total conductivity of the system [44]. It detects alterations in the
number of ions, their charge and their mobility that depend on the biological response. The
glass slides are coated with the polymer substrate polyaniline and the surface is modified
accordingly to attach the selected proteins for bioidentification [45]. The activation step
at a certain temperature by the method of silanization is considered an important factor
for the formation of activation bonds on the surface of the glass. The polymerization
of the monomer imparts good mechanical properties, stability and conductivity to the
system. The operation principle of the proposed biochemical monitoring sensor is based
on the assumption that the interactions between polymer and protein can change the
density of the conductivity carriers. Conducting polymers have the potential to be used
for biosensor applications and the proposed template can act as a biomolecular sensor.
Similar polymer series and sensing devices have been developed, which incorporate a film
of polymer acid-doped polyaniline to respond to proteins at physiological pH and ionic
strength [46,47]. Recently, a capacitive field-effect sensor with a nanomaterial-modified
surface supported by a polyelectrolyte polyallylamine hydrochloride layer for bioreceptor
coupling was presented [48]. It should be noted that the emeraldine salt of polyaniline was
selected in our system, which presents a characterized conductivity alteration in response
to pH as previously identified [49].

In terms of peripheral sensor platforms, BITalino system has been exhibited as an
equivalent recording device for stationary ECG recordings in psychophysiological ex-
periments [50]. Furthermore, Ponciano et al. used this wearable device to identify the
mobility’s initiation [51], whereas the ECG and Galvanic Skin Response (GSR) signals were
collected with the BITalino (r)evolution kit platform trying to unravel the impact of using
personality assessments [52]. On the other hand, Mysignals was used to develop eHealth
embedded systems for monitoring elderly health based on the Internet of Things (IoT) and
Fog computing [53] for calculating specific biometric markers related to predictive analysis
in the field of eldercare, such as the connection between noncommunicable diseases and
cognitive impairments [54], and to generate vital signs and data for medical patients [55].
Lastly, many studies adopt Raspberry Pi, a low-cost computing platform that is profitably
applied in the field of IoT and embedded systems [56].

Herein, the BITalino R–IoT module can be proposed, which is based on the CC3200
SimpleLink Wi-Fi chip class that incorporates the ARM® Cortex®-M4 Core microcontroller
at 80 MHz in the BITalino R–IoT Barebone version. The CC3200 is a combination of two
ARM processors, one that controls the WiFi modem and the network stack and a second
one, which is the application processor that executes the user password. Moreover, it
can communicate via Bluetooth to collect and process data and can send it to the digital-
to-analog converter without delay. The Cortex-M4 processor, through the firmware, can
support the Thread or Handler modes, and can be run in Thumb or Debug modes. Addi-
tionally, the processor may restrict or block access to certain resources by executing code in
privileged or unprivileged mode while it is intended for high performance applications
and embedded applications that require fast shutdown features. The main reason for using
the ARM processor is the reduction of the total space required in memory. The Thumb2
command line is an upgrade of an existing 16-bit Thumb and allows 32-bit commands to
be converted from 16-bit commands to a single program. The additional 32-bit commands
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used by Thumb2 cover all the functionality required by ARM. Plugged version can also be
used where the sensors are not integrated in the board, but they can be connected with an
RJ-22 cable and a Molex Sherlock terminal (on the sensor side). This configuration offers
more flexibility and adaptability.

On the other hand, MySignals development board is based on the Libelium IoT Core
architecture with an 8-bit ATmega 2560 microcontroller. The high-performance, low-power
8-bit AVR microcontroller is based on RISC architecture. It combines a 256 KB ISP flash
memory, a 8 KB SRAM, an 4 KB EEPROM, a real-time meter, 6 flexible meters, PWM,
4 UARRTs and a 10-bit A/D transformer with 16 channels. It has an output of 16 MIPS at
16 MHz and its operating voltage is 4.5–5.5 V. Performing multiple commands in one clock
cycle can achieve a performance of 1 MIPS per MHz by balancing power consumption
and processing speed. Depending on the challenges that arise and to overcome potential
challenges, the idle mode, the ADC Noise reduction mode, the power-down mode, the
power-save mode or the standby mode can be chosen.

Lastly, we could summarize the proposed architectural representation as a clear
discrimination of the systems into three levels: the client level, the middleware level and
the diagnostic data base level. The role of middleware for collecting and forwarding
peripheral sensor data is performed by BITalino/MySignals software with Arm Cortex
M4/Atmega 2560 processor, while Raspberry Pi software wirelessly collects (Bluetooth
protocol) the signals of the various sensors from the two peripheral platforms, processes
them by forwarding them through the server (TCP/IP protocol) to the diagnostic database
in the appropriate format, recognizable by the database. The database, running queries and
applying the built-in identification algorithms, taking into account the installed knowledge
base and through the conclusion mechanism, leads to the decision on the sensor finding.
Then, the decision is forwarded through the server to the main portal/dashboard for
evaluation by the user (medical doctor).

Among the main limitations of the proposed framework during the development
process, note that the possible stereochemical interference leading to analyte inactivation
due to high density or denaturation process resulting from potent interactions with the
biochemical sensor’s surface, the sequential connection of contacts of the polymer film,
the appropriate measuring board through the ADC software, together with storage of the
measurements in the central management unit of the Raspberry Pi device. Under these
circumstances, the continuous control for communication between the different parts of the
framework should be performed for receiving accurate measurements from the biochemical
and the peripheral sensors, the central Raspberry Pi signal collection and the processing
unit. Moreover, a signal normalization process method is strongly recommended. Best
practices for clinical data collection should ensure that stakeholders have all the relevant
guidelines required both to understand their obligations and to submit the necessary
information. Appropriate installation of systems for data collection, organization and
recording is highly required, including the automation of the medical record, the provision
of decision support, the extraction of comparative results and the provision and utilization
of clinical guidelines. Apart from MySignals and BITalino, Shimmer can provide an
eHealth platform for the measurement of several signals such as ECG, EEG and EMG.
Clinical data of PD patients are mainly characterized by complexity in order to capture
them in an information system. Detailed analytical processes including targeted design
and complex structures are necessary. Data integration platforms and systems through
collection, storage and transmission of clinical information are widespread, such as p-
BioSPRE, which provides secure data sharing for personalized treatment, and STRIDE with
its applications in translation research that provides standardized information [57,58].

4. Recent Machine Learning Advancements in Sensor-Based Data

When aiming to gain a clinical understanding of wearable PD data, complex statistical
machine learning algorithms are usually required. Supposing that wearables are proven
practically valuable for clinical applications, many complications might obfuscate the
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process and should be avoided. Kubota et al.’s survey analyzes many of these issues and
examines how they can be managed [7]. The authors pose a question regarding achieving
the full potential of wearable sensor data in PD with the help of current technological
advances in this field. A set of significant steps can lead the way, such as data sharing,
clinical validation and open platform standardization and dissemination [59]. Healthcare
applications use wearable sensors and provide a large volume of time-series data that
present significant challenges in analysis. Analyzing gait disturbances in PD can be a very
challenging procedure as these sensors can produce time-stamped datasets.

Noninvasive approaches may have potential value as diagnostic support tools and
people can be monitored passively in their homes, which was indicated by a pilot study
measuring PD symptoms from 10 individuals with PD and 10 controls via a smartphone
and a remote visit by a specialist per week [60]. The validity of smartphone-based sensor
technologies in clinical trial setting and the smartphone-derived severity score for PD can
provide an adequate measure of motor symptoms, which was shown though a phase 1
PD clinical trail including 44 PD participants and 35 healthy controls [61], as well as using
smartphone sensor data from PD individuals and a novel machine learning approach [62].
Moreover, the Parkinson@Home validation study provided a new reference dataset for the
development of digital biomarkers to monitor persons with PD in daily life [63], whereas
wearable inertial systems such as a wearable sensor-based arm swing algorithm for patients
with PD has been developed and validated presenting high accuracy and showing great
potential to be used in a daily-living environment [64].

From the computational and mathematical perspective, the sensor-based biomedical
data are quite complex due to their high volume or/and their dimensionality. Even though
most of the PD wearable data seem to have high dimensionality because of an excessive
number of different measurements, there is a possibility that the intrinsic dimensionality
of the data is conspicuously small. Machine learning methods have gained ground in
recent years regarding the processing of wearable PD data. Artificial neural networks are
the first choice to manage this complexity, thus several approaches have been published
recently. Indicatively, the work in [65] proposes an application of a comprehensive empirical
assessment of Convolutional Neural Networks (CNNs) on a large-scale image classification
of gait signals. Its main goal was to assist clinicians and the general public in achieving
early disease diagnoses. According to the experimental findings, the suggested models
exceeded the performance of the existing state-of-the-art similar tools concerning the
degree of correctness. Deep learning approaches have shown remarkable results in early
detection of Parkinson’s disease [66]. For example, Jane et al. aimed to develop an efficient
clinical decision-making system (CDMS) that facilitates the ability for doctors to diagnose
the severity of gait disturbances of patients who suffer from PD [67]. Thus, the authors
demonstrate a classifier that creates a temporal classification model for CDMS prediction
and classification, called Q-Backpropagated Time-Delay Neural Network (Q-BTDNN).

While deep learning approaches have overtaken the scientific community in recent
years in the machine learning field, their inherent complexity is often characterized as black
box, which makes it difficult to interpret the results. To avoid this issue, approaches under
the perspective of ensemble learning relying on tree-based methods can be used, which
have shown promising results in PD studies. More specifically, the work of Hughes et al.
was motivated by the necessity of securing the efficacy of diagnosis and treatments using a
computational framework that monitors the patient’s gait [68]. In this study, the Extreme
Gradient Boosting (XGBoost) and Artificial Neural Network (ANN) models were applied.
XGBoost belongs to the ensemble classification category, which aims to create a robust
classifier by integrating the decisions from multiple individual classifiers. Al-Sarem et al.
proposed several set techniques for detecting PD, including random forest, XGBoost and
categorical boosting (CatBoost) [69]. They exploit the inherent feature of these tree-based
ensemble methods, which is to investigate the features (dimensions) that are dominant
in the case under study. A better interpretation can be achieved in various prediction
tasks for PD by identifying those features where a classifier can separate the classes in a



Sensors 2022, 22, 409 10 of 14

dataset. Almeida et al. attempted to use various feature extraction and machine learning
strategies to detect PD. In their research, the authors analyzed Multilayer Perceptron
(MLP), Support Vector Machines (SVM), Optimum Path Forest and K-Nearest Neighbors
(K-NN) according to their ability for effective classification. As a result, they found that
the most efficient activity for detecting PD is phonation [70]. Nahar et al. suggest a type of
detection of PD that relies on machine learning and uses feature selection and classification
techniques [71]. The feature selection procedure uses Recursive Feature Elimination (RFE),
Boruta and Random Forest (RF) classifier. Bagging, gradient boosting, XGBoost and Extra
Tree Classifier are four classification algorithms that were used to detect PD. Finally, the
technique that outperformed the other three was bagging with RFE.

Recent literature has a plethora of these approaches. However, the biological complex-
ity of PD and the continuous increase of sensor-based PD data create the impression that
this field is in its infancy. Such data open new challenges, and machine learning has the
potential to provide answers. Part of this challenge is provided by the ensemble supervising
learning techniques that, through hybrid models, can give promising results. Details for an
indicative workflow are given in the following section.

5. Ensemble Methods in Sensor-Based Data—Towards the Future Big Challenge

Ensemble methods combine multiple classification models for better predictive perfor-
mance compared to applying a single classifier. The models differ in the type of classifier
or the search space, increasing the diversity of a case under study. The rationale behind
using this strategy is that one specific algorithm in a particular dataset may not extract
reliable results for various reasons, such as when the algorithm does not fit or overfits this
dataset. We also need high diversity when dealing with data with noise, high complexity
and non-separable classes. Therefore, the classification process using multiple classifiers or
multiple subspaces can cover part of this complexity.

There are three main ensemble classification categories: stacking, bagging and boosting
methods [72]. The stacking methods apply different classifiers, which are applied in parallel,
creating a new classification model based on the predictions of the previous ones. Usually,
for a dataset, different classification algorithms are applied, and a voting scheme determines
each sample’s class. The intuition here is that each algorithm highlights different data
aspects, and if the majority is driven to a specific direction, this may be the correct one.

The bagging method combines many classification processes, where each classifier
uses a bootstrap sample of the original training set. The same algorithm is applied to
different datasets, which are subspaces of the original space. Similarly, a voting scheme
aggregates and defines the predicted class of a given sample. The various subspaces from
the original space increase the data diversity, offering more accurate results in complex
data with noise or data with dominant features. A typical example of a bagging algorithm
is the Random Forest classifier.

Boosting methods try to construct a strong classifier by integrating multiple weak
classifiers and focusing on their errors. Its training phase is an iterative process where each
model tries to correct the errors from the previous model until a given threshold related
to the train error of the number of added models is reached. An indicative traditional
boosting method is the AdaBoost algorithm, which boosts the performance of decision
trees on binary classification tasks.

In the ensemble techniques, we can also incorporate dimensionality reduction al-
gorithms, i.e., to apply several classification models on transformed data spaces (from
the original space) through dimensionality reduction methods (indicative workflow in
Figure 2). In this case, the nondeterministic dimensionality reduction algorithms operate
better, since we obtain different transformed data spaces through their stochastic pro-
cesses [73]. Thus, we achieve high diversity [74], a key point for a better classification
process in a complex dataset with noise and non-separable categories. The main advantage
here is utilizing lower-dimensional space in the feature space, avoiding limitations such as
managing the curse of dimensionality. A crucial point is that the dimensions are reduced
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without losing the initial data structure by keeping their pairwise distances within a given
allowable error [75]. Indicative methodologies under this perspective are the random
projection method, the autoencoders and the stochastic neighbor embeddings.
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We conclude that the increase in sensor-based data enhances the complexity we have
to manage, in terms of volume as in dimensionality. Dimensionality reduction methods can
address the high data dimensionality, while the ensemble methods have provided evidence
for their reliable results in supervised learning processes. Hence, the combination of these
two techniques can create a hybrid model able to manage the sensor-based data challenges.
Their integration offers a search space with high diversity, with reduced dimensions where
a classifier can operate better, a voting system that can determine the predominant sample’s
class, and many other advantages. Additionally, the ensemble methods are traditionally
slower than single classifiers. However, searching in a diminished space can cover this
weakness. The plethora of both ensemble and reduced dimensions can offer many reliable
tools for sensor-based data. We estimate the developments in this direction can clarify the
complex process posed by PD.
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