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Abstract: Wireless sensor networks (WSNs) are low-cost, special-purpose networks introduced to
resolve various daily life domestic, industrial, and strategic problems. These networks are deployed
in such places where the repairments, in most cases, become difficult. The nodes in WSNs, due to
their vulnerable nature, are always prone to various potential threats. The deployed environment
of WSNs is noncentral, unattended, and administrativeless; therefore, malicious attacks such as
distributed denial of service (DDoS) attacks can easily be commenced by the attackers. Most of the
DDoS detection systems rely on the analysis of the flow of traffic, ultimately with a conclusion that
high traffic may be due to the DDoS attack. On the other hand, legitimate users may produce a
larger amount of traffic known, as the flash crowd (FC). Both DDOS and FC are considered abnormal
traffic in communication networks. The detection of such abnormal traffic and then separation of
DDoS attacks from FC is also a focused challenge. This paper introduces a novel mechanism based
on a Bayesian model to detect abnormal data traffic and discriminate DDoS attacks from FC in
it. The simulation results prove the effectiveness of the proposed mechanism, compared with the
existing systems.

Keywords: WSNs; security; DDoS; flash crowd; Bayesian model

1. Introduction

During the last few decades, the sensor-based ad hoc network known as wireless
sensor network (WSN) has become popular in various fields. By deploying WSNs in
various fields, many real-world problems have been inexpensively and easily solved [1,2].
These networks are composed of thousands of interconnected low-cost nodes. Every node
has limited computational and communication power with some sensing capabilities [3].
The deployed sensor nodes gather targeted information from the area being monitored.
The collected data is then forwarded via intermediate sensor nodes to the base station
(BS) [4].

The primary objective of the routing protocols used in WSNs is to enable nodes to
send their data to the BS. Most of the routing protocols do not provide any mechanism
against malicious attacks. Due to the administrativeless, unattended environment and
insecure routing protocols, WSNs are vulnerable to various types of security attacks. These
attacks include eavesdropping, sinkhole, traffic analysis, camouflage, blackhole, and denial
of services (DoS) attacks.
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Among the common attacks, the DoS attack, which is carried out on the network
layer, is very popular. In this attack, the attacker tries to stop the victim’s ability to use
its bandwidth or respond to any request. DoS attack is obtained by transmitting bulky
requests to the victim in a short period of time. Upon receiving such requests in bulk,
the victim node becomes incapable of responding or processing the requests. During this
period, the legitimate request would also not be entertained by the victim node [5,6]. While
having such a scenario, the entire network’s performance is highly affected. The most
severe case of the DoS attack is the distributed DoS (DDoS) attack.

DDoS attacks are carried by a group of attackers, distributed in the network at various
positions. The distributed attackers combinedly launch a DoS attack against a single node
or the entire WSN. Usually, DDoS attacks are launched through some compromised nodes
with an objective to disturb the functionality of some nodes or the entire network [7]. The
detection of DDoS attacks obtains more importance when they happen simultaneously with
flash crowd (FC) traffic [8]. FC is actually the heavy traffic generated by legitimate users. An
FC event occurs due to the unexpected increase in traffic with some special events such as
an emergency alarm for severe heat situations. FC tries to access the server simultaneously,
resulting in unexpected overflowing [9]. As attackers use different techniques and tools to
generate DDoS attacks, it is very difficult to detect DDoS attacks. Both DDoS and FC are
forms of abnormal traffic. In both cases, the target nodes during communication obtain the
bulk of requests from various sources. In some special scenarios, the FC affects the network
performance in the same ways as the DDoS. However, the primary intention of the nodes
generating abnormal traffic is considered. The abnormal traffic with no malicious intention
cannot be treated as a DDoS attack. The detection and identification of abnormal traffic are
very essential and are a challenge in many wireless ad hoc networks.

Conversely, in DDoS attacks, the illegal users transmit a large number of request
packets with the purpose to stop the server from providing services. UDP flooding, HTTP
flooding, and TCP SYN flooding are well-known examples of DoS attacks. DDoS attacks
are launched through botnets; the group of compromised nodes is called a botnet. The bots
in a single botnet follow command directions from a botmaster. To initiate an attack session,
the botmaster gives instruction commands to all its concerned bots, resulting in the target
victim shutting down due to a large number of packets. Different detection mechanisms
can be applied to overcome a DDoS attack [10]. DDoS attacks and FC possess many
similar features and behaviors. In both cases, single or multiple nodes are overloaded,
and the network connection is congested due to heavy incoming traffic. In addition,
some differences exist between DDoS attacks and FC, i.e., variations in the incoming
traffic speeds, source IP addresses distributions, and their access intents. The behavioral
differences between FC traffic and DDoS attack must be analyzed to differentiate between
them [11,12].

The WSNs are highly vulnerable to DDoS attacks due to the diverse nature of these
networks. The tiny sensor nodes in such types of networks cannot be simply programmed
with bulky code or equipped with additional components to overcome DDoS attacks.
The sensor nodes are deployed in an unattended manner in the target fields. Therefore,
the attacker nodes can easily be deployed, and these intruder nodes can easily overhear
the broadcast transmission among the wireless sensor nodes. The nodes are unattended;
therefore, these nodes cannot be manually checked for ensuring that no unknown nodes
are added or replaced with some existing nodes in the network. Moreover, both the DDoS
and FC have similar appearances; therefore, identification of these is also a challenging
task. In WSNs, the presence of DDoS attacks can cause a variety of issues. The following
is a breakdown of the issues:

(a) The buffer space of a BS has been filled due to a large volume of traffic, and
communication between the BS and normal nodes has come to a halt.

(b) The fraction of often-missed packets is particularly high due to network
connection overload.
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(c) Due to network congestion, only a few packets from regular nodes make it to the
target BS, but not in a timely manner. As a result, network throughput suffers.

(d) DDoS attack is a form of abnormal traffic. The abnormal traffic can also be FC. A
mechanism merely blocking the abnormal traffic, assuming it is a DDoS attack, may
lose some important and legitimate users, too.

(e) A sophisticated and efficient mechanism for discriminating FC from DDoS is always
required to prevent sensor nodes from malicious attacks but not the FC-based
abnormal traffic.

In this paper, an intelligent detection mechanism based on the Bayesian model is
introduced to detect and discriminate DDoS attacks from FC traffic. To make the distinction
more efficient, different characteristics of DDoS attacks and FC traffic are analyzed. A
few basic parameters are recognized that are used for discriminating DDoS attacks from
FC. These parameters are the number of packets generated, or inflow, the packet payload
size, and packet interarrival time variances. The detection and discrimination are made by
using these three aforementioned parameters. The detection mechanism mainly focuses
on the received packets and traffic; therefore, it is deployed at the BS. The main overhead
is carried by the resourceful station. The nodes do not need any additional operations
while performing their regular tasks. The proposed mechanism does not affect the working
condition of the sensor nodes, as the main operations regarding the detection and dis-
crimination of FC from DDoS attack are performed at the BS. At the end, their results are
provided to show the effectiveness of our proposed work.

The rest of this paper is organized as follows: Section 2 discusses the background and
related work. Section 3 presents the proposed mechanism. In Sections 4 and 5, results
based on simulations and by using real datasets are given, respectively. Finally, the paper
is concluded in Section 6, and also future guidelines are provided for future research.

2. Background and Related Works

A lot of research efforts have been carried out to detect and mitigate DDoS attacks,
and various defense techniques have been proposed with different concepts. These attacks
mainly target the network layer, transmitting a large number of packets to exhaust the
victims’ resources. A wide range of defense techniques has been developed to overcome
DDoS attacks.

In a mechanism, proposed in [13], a naïve classifier is used to categorize the incoming
traffic into attack or normal traffic. According to the proposed work, the naïve classifier
gains an accuracy of up to 99%. Another mechanism, in [14], classifies the incoming
data and control packets into the attack and normal types by availing the algorithm of
statistical packet classification. For obtaining accuracy, the K-NN algorithm is used to
optimize the results generated by the statistical packet classification algorithm. Some
authors propose an abnormal event detection in WSN by observing the correlation among
various attributes [15]. A Bayesian network is designed based on the dependency model
of the observed attributes. Structure learning is used to acquire the dependence structure
of observed characteristics, while parameter learning is used to calculate the conditional
probability table of each node. The main objective is to distinguish the abnormal events
relating to sensor reading. The work has used the Bayesian network in a very good manner.
However, the work is targeting a different domain than DDoS and FC discrimination.

A naïve Bayesian classifier-based DDoS attack detection and mitigation mechanism is
proposed by Reddy and Thilagam [16]. In this work, an additional node authentication
system using RSA-1024 is also used. Five main network parameters are considered. These
are packet size, port number, source address, destination address, and jitter. The work
mainly focuses on the DDoS attack detection but does not consider the FC traffic.

In [17], an intelligent detection mechanism is proposed which applies the combination
of support vector mechanism (SVM) and radial basis function (RBF) to train the proposed
model for DDoS attack detection. With this approach, 98.7% accuracy is achieved under
some special cases.
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In the approach STONE [6], an online anomaly-based attack detection framework
is used. This approach has consisted of two major components: the detection control
center and the mitigation center. The first component is responsible for anomaly detection,
while the latter is used to filter out and block DDoS attacks. While considering the FC
versus DDoS distinguishment, there is limited work published. Normally, the existing
detection techniques are either heuristic-based defense techniques or statistical-based
defense techniques, which depend on header information of IP (internet protocol) packets to
separate valid nodes traffic from malicious nodes traffic. Nevertheless, in these techniques,
none of them is efficient when FC events occur because the genuine traffic flow and attack
flow share similar properties [8]. Therefore, payload size and arrival time-based detection
technique is more desirable when DDoS attacks and FC occur concurrently.

A novel mechanism for differentiating DDoS attacks from FC traffic is proposed in [18].
This mechanism is based on entropy variation. While using the entropy variations, a tracing
technique is designed to detect the actual sources of the attack. The network throughput,
packet delivery ratio, and traceback time are considered to assess the performance of
the proposed mechanism. The performance of the system gradually degrades with the
increased traffic rates. The authors have not supplied adequate simulation results.

Shui et al. [19], proposed another similar approach in the target domain. The similari-
ties in the data flow are considered in this mechanism. The calculation of flow similarities
is based on three defined metrics: Sibson distance, Jeffrey distance, and Hellinger distance.
The authors claimed that the Sibson distance discriminates DDoS attack flow from FC more
precisely than Jeffrey and Hellinger distances. This mechanism achieves 65% accuracy,
which cannot be considered an efficient solution. There are several things to be considered
for DDoS and FC discrimination than merely considering the flow similarity.

The authors in [11] consider the differences between the behavior of DDoS attacks
and FC traffic to recognize a set of appropriate parameters. These parameters are further
utilized to differentiate between the two classes of traffic flows. The selected parameters are
limited, and few simple calculations are performed during the entire mechanism. Therefore,
the approach does not obtain an adequate level of accuracy.

A probability metrics-based mechanism is proposed by W. Zhou et al. [20]. The
experimental scenarios with performed simulation results indicate that their mechanism
pointedly surges the sensitivity and declines the false-positive as well as false-negative
rates. The proposed mechanism works well in normal situations, but its performance highly
worsens with a sharp increase in the attack as well as flow traffic, while considering merely
the flow similarity cannot be suitable for discriminating DDoS attacks from FC traffic.

In [21], T. Thapngam et al. examine the correlation between different packet arrival
rates by calculating Pearson’s correlation coefficient to differentiate DDoS attacks from
FC traffic. The authors observe that there is a greater level of automation in DDoS attacks
with a transmission rate that can be predicted, while in the case of FC traffic, the rate of
request packets cannot be predictable. The limitations of the proposed approach are that
the botmaster can mislead this mechanism by forwarding mimic attack traffic, and they
only work for known patterns.

In [22], Thapngam et al. consider the prebuilt programs as the attack tools in botnets.
Therefore, due to prebuilt instructional sets, it is assumed that the flow trends in DDoS
attacks are similar, and the ratio of this similarity is higher than FC flows. The proposed
mechanism calculates the correlation coefficient of flows generated by various suspicious
nodes to distinguish FC traffic from DDoS attacks. However, due to the increased number
of bots, the performance of the proposed mechanism degrades. In particular situations,
the system fails where the bots’ traffic is very high, compared with the normal traffic by
legitimate nodes.

J. Gera et al., in [23], propose an approach based on cluster traffic randomness and
source address entropy to detect spoofing as well as nonspoofing DDoS attacks and differ-
entiate them from FC. Furthermore, the DDoS attack and flash crowd are classified into
their corresponding categories.
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A hybrid scheme is proposed by S. Daneshgadeh in [24]. The authors proposed
combining the three different approaches, i.e., Shannon entropy, Mahalanobis distance,
and kernel online anomaly detection. Shannon entropy is used based on machine learning
techniques to recognize uncommon traffic comprising FC traffic and DDoS attacks. Later on,
the Mahalanobis distance metric is used to differentiate FC traffic from DDoS attacks. The
performance of the proposed hybrid mechanism is evaluated by using simulation for real,
normal traffic, FC traffic, and DDoS attacks. The results show that the Mahalanobis distance
metric performed efficiently combined with machine learning techniques to identify and
efficiently identify FC traffic and DDoS attacks based on false alarm rates and detection
rates. The summary of the related articles is given in Table 1.

Table 1. Summary of related articles.

Article Details

Katiyar et al. [18] Parameters: IP and Port addresses of Source & Destination
Validation Technique: Simulation
Dataset: No dataset used
Detection Metrics: Entropy variation
Limitations: When the traffic increases the performance degrades low efficiency

Yu. et al. [22] Parameters: Source IPs distribution, access intent, traffic rate
Validation Technique: Simulation
Dataset: DDoS −→ MITLincoln&FC −→ HTTPlogs
Detection Metrics: Correlation coefficient total variation
Limitations: Degrade for high-rate DDoS attack
Only flow similarity is not suitable

Bathia et al. [11] Parameters:Variation in the source addresses and traffic rate, packets scattering among source
addresses
Validation Technique: Real-time
Dataset: DDoS −→ CAIDA2007&FC −→ 1998FIFAworld− cup
Detection Metrics: Statistical calculation
Limitations: Not have any accuracy

S.Renukadevi et al. [8] Parameters: Flow similarity, client legitimacy, page referred
Validation Technique: Simulation
Dataset: DDoS −→ CAIDA2007&FC −→ 1998FIFAworld− cup
Detection Metrics: Hellinger distance
Limitations: Accuracy is 91%.
Environment specific

J. Gera et al. [23] Parameters: Source entropy & traffic entropy
Validation Technique: Simulation
Dataset: No Dataset Used
Detection Metrics: Entropy

K. S. Sahoo et al. [25] Parameters: Source & destination IPs, source & destination port
Validation Technique: Simulation
Dataset: DDoS and FC datasets generate through Scapy tool
Detection Metrics: General entropy & generalized information distance

S. Daneshgadeh et al. [24] Parameters: Time interval, source/destination IPs
Validation Technique: Simulation
Dataset: CAIDA 2007 for DDoS attack & 1998 FIFA World Cup for FC
Detection Metrics: Shannon entropy, Mahalanobis distance, kernel online anomaly detection

Wang et al. 2017 [15] Parameters: Structural, such as temperature, humidity, light intensity, and voltage; Validation
technique: Simulation; Dataset: IBRL dataset with manual entries; Target: Detection of abnormal
structural events

Reddy and Thilagam, 2020 [16] Parameters: Packet size, port number, source address, destination address, and jitter; Validation
Technique: Simulation; Dataset: None; Target: DDoS detection and mitigation
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In the existing research, most of the mechanisms consider the data flow to detect
abnormal traffic. Most articles consider the abnormal traffic as the DDoS attack, while
the discrimination of DDoS from FC is limited in current literature. Some authors have
used mechanisms that may overload the tiny sensor nodes in WSNs. Many have not
used any procedure involving the testing and validation based on datasets. The proposed
work introduces a novel technique of a probabilistic model based on naïve classification,
which not only detects the abnormal traffic but also identifies it as a DDoS or an FC. For
validation of the work, two datasets having records for FC and DDoS are also used in the
proposed mechanism.

3. Proposed Detection Mechanism

The proposed mechanism, DDoDF, is an intelligent FC and DDoS detection system
based on a naïve Bayesian model. The main objective is to differentiate DDoS attacks from
FC in network traffic. The targeted type of network is WSN. While keeping the limitations
and features of WSNs, the proposed mechanism adapted an optimized procedure to avoid
any heavy overhead on the network nodes. To make the distinction more efficient, different
characteristics of DDoS attacks and FC traffic are analyzed, and a few basic parameters are
recognized that are used for discriminating DDoS attacks from FC. The key parameters used
are (a) the number of packets generated or inflow, (b) the size of the packet payload, which
is being transmitted or received at nodes, and (c) the packet interarrival time variances.

In most of the literature, these three parameters are considered or mentioned for
the detection of DDoS attacks in similar networks. Some examples are [2,5,9,12,18,19].
The sensor nodes in WSNs operate on very limited resources, and it is essential not to
deploy complex or bulky mechanisms, which may raise the processing and communication
overhead, causing the degradation of network performance. The proposed mechanism’s
main focus is to check the nature of packets and nodes’ transmission behavior. It is
assumed that considering port numbers while having IP addresses may place an additional
load on the nodes. Furthermore, the overloaded authentication mechanisms are always
discouraged in WSNs.

The first and the most important parameter is the analysis of the amount of packets
being received at a particular node(s). The number of packets generated in particular time
intervals can be used to identify the abnormality in the traffic. In general cases, a small
number of packets is generated from the sensor nodes upon sensing some environmental
change, while in the case of DDoS and FC, the nodes generate a large number of packets
either for malicious or nonmalicious purposes.

The second parameter considered is the size of the packet payload. The analysis of
payload size can be used to differentiate DDoS attacks from FC traffic. It is obvious that
DDoS attacks are initiated by using some attack tools or prebuilt programs. These tools
usually generate attack packets of the same sizes or same data patterns, while in the case of
FC, all the packets are generated from different legitimate users. Each node may require its
particular operation to be performed. Therefore, the packet sizes and their patterns will be
not similar in general cases.

The last parameter is the interarrival time variance that is used to differentiate DDoS
attacks from traffic. In DDoS attacks, the attack packets are generated from some pro-
grammed nodes; therefore, it is obvious that the interarrival time between the packets
will be constant or less. It is because the nodes frequently burst packets in a particular
pattern to consume the victims’ resources. However, the legitimate nodes transmit their
data packets in an unknown or random pattern. Therefore, it is obvious that the in-between
time-interval for packets arrival will be different.

There are two major phases in the proposed detection system, detection and discrim-
ination of DDoS Attack (DDoDF). These phases are the training phase and the testing
phase. The datasets are obtained and used during the training and testing phases. In this
work, 70% of data records from each dataset are used to train the proposed system. Upon
completion of the training phase, the testing phase starts. In this phase, the trained system
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is tested on the remaining 30% of the data from the dataset to check the working validity
of the proposed system. Various dimension datasets are used to experiment with the
proposed work. The datasets of size of around 10,000 input vectors give the best outcomes
in the proposed mechanism during training and testing phases. The input vectors in the
datasets are categorized as normal, DDoS attack, and FC traffic packets. In the training
phase, the system is provided with the incoming input vectors attached with their desired
labeled classes, while in the second phase of testing, the provided vectors are not labeled,
and the system performance is checked.

The Bayesian model is a key component in the structural design of the proposed
system. The Bayesian model is a mathematical probability-based model. This model
consists of three classes of probabilities: (a) prior probability, (b) likelihood probability, and
(c) posterior probability. The prior probability is merely the number of instances that go to
either a DDoS attack or flash class divided by the total number of instances in both classes.

In Bayesian statistical inference, prior probability is the likelihood of an event occur-
ring before fresh data is obtained. Before an experiment, this is the best rational judgment of
the probability of an outcome based on current knowledge. The likelihood of the sequences,
as well as each pair of values in the series, is expressed by the prior probability term. As
additional data or information becomes available, the prior probability of an event will be
altered to produce a more accurate measure of a probable outcome. The posterior proba-
bility is calculated using Bayes’ theorem based on the updated probability. The posterior
probability, in statistical terminology, is the likelihood of event A occurring after event
B has occurred. The prior probabilities can be computed by taking some data generated
from real-world scenarios or artificial experiments. These probabilities can be considered
as a tool for real-world forecasting values; however, the size of data for calculating these
probabilities also matters. The input data should be of an adequate size to cover most of
the possibilities that happen in the real world. Figure 1 shows the entire procedure of the
proposed work.

Figure 1. The proposed system model.

The proposed mechanism is divided into four major segment processes. These are
explained below as Section 3.1: Packets Capturing, Section 3.2: Traffic Categorization,
Section 3.3: Feature Extraction, and Section 3.4: Traffic Classification. Figure 2 shows the
structure of the proposed model.
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Figure 2. The overall structure of the proposed model.

The likelihood probability is the number of occurrences of each feature value for a
precise attack or flash class value divided by the total number of instances belonging to
that class. The posterior probability is the likelihood probability of an attack and normal
class when the provided data formerly became part of an attack or flash class. Ultimately,
the estimation is finalized by using the posterior probability. For computing, the posterior
probability of the targeted cases, i.e., DDoS attack and FC classes, are considered. The
posterior probability of a class instance is considered to belong in that particular class.

3.1. Packets Capturing

At the initial stage, the nodes are deployed in a network to form a WSN. These
nodes constantly sense the data by investigating changes in the environmental parameters.
These parameters can be air pressure, temperature, sound, heat, motion, etc. Once the
data is collected, these nodes send their sensed data to BS through various routes. The
data is sent in the form of packets. The sizes and number of packets depend on the size
and nature of the data to be transmitted. A particular time interval is used between the
transmission of data by each node. The BS captures the data in a time period that makes
it capable of not losing any packet transmitted by the network nodes. The data packets
received by the BS possess various properties such as the size, arrival time, source and
route information, interpacket arrival time difference, etc. All these records are maintained
by the BS for analysis.

3.2. Features Extraction

Once the data packets are captured by the BS, these are analyzed in the second stage.
The packet contents, the data about the nature and features of packets, are recorded. The
metadata about the packets is analyzed in this stage. The required parameters, i.e., IP
addresses of the source and destination nodes, the size of the payload, and time of reception,
are calculated and maintained by the BS.

3.3. Packets Categorization

The captured packets and the extracted features’ data are further categorized. The
main categories are normal traffic and abnormal traffic. These categories are designed by
taking some threshold values that are calculated by considering the dual median of the
records. While designing an adaptive and intelligent system, it is obvious that the threshold
value should not be a constant number. For this purpose, during the data capture, time
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slots, each having a minute, are made. Each time slot is further divided into twelve equal
intervals. The median number of received packets in each interval is computed, as shown
in Equation (1), where n is the number of packets in a particular time interval.

medianinterval =
[n + 1]

2
th item (1)

There are twelve intervals; therefore, twelve medians are obtained for each time slot
of one minute. The same equation is applied again to calculate the median of medians.
The value obtained from the median of the median is considered as the threshold value
TH, as shown in Equation (2). In this case, mean and mode values cannot be considered.
Because these values are highly susceptible when the data values have abnormal variations,
however, in the case of normal data distribution, mean, mode, and median may give similar
results and may be used interchangeably.

TH = medianslot[medianinterval ] (2)

In any time slot, if the number of packets is greater than the TH value, then it is
considered suspicious traffic.

3.4. Traffic Classification

The detected suspicious traffic can be either an attack or an FC. In both cases, DDoS
attack and FC, the mechanism detects abnormal traffic. Therefore, it is important to identify
the nature of abnormal traffic. The FC traffic and DDoS attacks have a somewhat similar
nature and disturb the network functionalities. However, the duration of FC might be
shorter in many cases. These two anomalies have their own intentions and must be
responded to separately. To classify these two types of anomalies, the Bayesian model is
used. In this model, the variance in the sizes of payload and the packet reception time
variance is considered. In the case of a DDoS attack, the time of each packet and its payload
are important, as these keep some detectable traces. In a DDoS attack, these values are
usually constant or equal to zero. However, in the case of FC, these values are random, or
keep high variations.

Using the Bayesian model, the posterior probabilities of both classes of abnormal
traffic are calculated. Each packet having the maximum posterior probability belongs to
its class. When the traffic is detected as FC, the flash nodes are not blocked by the BS.
The FC nodes, once identified, can access the network services continuously without any
intervention, while in the case of a detected DDoS attack, the mechanism can block the
involved nodes by taking their IP addresses into the block list. Some key operations in the
proposed mechanism are explained as follows:

(a) First, two different flows are captured at the BS node. The receiving time and
payload sizes are considered, and arithmetic mean µ and standard deviation σ are
calculated, as shown in Equations (3) and (4).

µ =
n

∑
i=1

hi
n

(3)

σ =

√
n

∑
i=1

(hi−µ)2

n
(4)

(b) After obtaining these values for two flows, the standard deviations of both are
checked. The flow with a higher standard deviation should be considered as a flash
flow, and the other one is marked as an attack flow.
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(c) Prior probabilities of both flows are computed by using Equations (5) and (6). In
this equation, a denotes the number of packets class in the attack class, while f c is
the total number of packets in the FC class.

p[a] =
[

a
f c + a

]
(5)

p[ f c] =
[

f c
f c + a

]
(6)

(d) Equations (7) and (8) are used to calculate the likelihood probability of a packet,
whether an attack or FC. This is based on the Gaussian probability density function.
By using this equation, the probabilities for the size of payload and reception time
are calculated.

p′
[

h
a

]
=

1√
2πσ2

ha

× e−
(hx− µ)2

2σ2
ha

(7)

p′
[

h
f c

]
=

1√
2πσ2

h f

× e−
(hx− µ)2

2σ2
h f

(8)

(e) The packet’s likelihood probability is obtained by taking multiplication of all the
computed likelihood probabilities in Equations (9) and (10).

p
[

h
a

]
=

n

∏
i=1

pi′
[

hi
a

]
(9)

p
[

h
f c

]
=

n

∏
i=1

pi′
[

hi
f c

]
(10)

(f) Finally, the posterior probabilities of both the classes, the DDoS attack and FC, are
computed by using Bayes theorem in Equations (8) and (9).

p
[

f c
h

]
=

p
[

h
f c

]
× p[ f c]

p
[

h
f c

]
× p[ f c] + p

[
h
a

]
× p[a]

(11)

p
[ a

h

]
=

p
[

h
a

]
× p[a]

p
[

h
f c

]
× p[ f c] + p

[
h
a

]
× p[a]

(12)

(g) In Equation (9), the computed posterior probabilities of both attack and FC are
compared to judge whether the receiving packets are associated with an attack
or FC.

p
[ a

h

]
> p

[
f
h

]
(13)

(h) In the class with a higher posterior probability, the packet is assumed to belong in
that class.

The procedure is explained by using Algorithms 1 and 2.
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Algorithm 1 Training

Require: Train Dataset

Ensure: Normal, DDoS, FC

1: Begin

2: Incoming Known Traffic;

3: for (i = 1; i < Dataset.Length; i ++) do

4: RL[i].IP←− Pk.IP // Assignment to receiving list

5: RL[i].RT ←− Pk.RT // RT-receiving time

6: RL[i].PLS←− Pk.PLS // Pls-payload size

7: RL[i].P←− Pk //Packet assigned

8: end for

9: for each i minute in RL.RT do

10: m(interval).[i]←− Med
( Nopkts

5secin1minute

)
11: end for

12: m(slot)←− Med(m(interval)) // Median of all intervals

13: TH ←− m(slot) // Setting Threshold value

14: if (Pkts < TH) then

15: Return “Normal Flow”

16: else

17: for (i = 1; i < 2; i ++) do

18: µFiPM←− ∑n
i=1

pkts[PLSi ]
n // mean calculation

19: σFiPS←−
√

∑n
i=1

(PLSi−µPLS)2

n // SD calculation

20: µFiRM←− ∑n
i=1

RTi
n

21: σFiRS←−
√

∑n
i=1

(RTi−µRT)2

n

22: end for

23: end if

24: classi ←− P
(

instanceo f classi
totalinstances

)
25: p′

[
h
a

]
= 1√

2πσ2
ha

× e− (hx−µ)2

2σ2
ha

26: p′
[

h
a

]
= 1√

2πσ2
h f

× e− (hx−µ)2

2σ2
h f

27: End

Algorithm 1 takes the train dataset for training the system. This algorithm takes
the records from the datasets by using a simple loop without any nested or complicated
pattern. Therefore, it has time complexity with O(n). Furthermore, it can also be said
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that this algorithm has a linear time complexity because the running time is dependent
upon the number of entries in the dataset. In this algorithm, up to step 8, the parameter
values are taken from the inputted dataset. The loop in step 8 calculates the median of the
number of packets for each minute. These are referred to as the medians of intervals. Step
12 calculates the median of all these computed medians. The ultimate median is considered
as the threshold value at step 13. As per step 14, if the number of packets is less than the
computed threshold value, it is considered as the normal flow. Otherwise, the means and
standard deviations are calculated from step 17 to step 22. From step 24 to step 26, the
classes are defined with the calculation of respective probabilities.

Algorithm 2 Testing

Require: Test Dataset

Ensure: Normal, DDoS, FC

1: Begin

2: Incoming Unknown Traffic;

3: if (Pkts < TH) then

4: Return “Normal Flow”

5: else

6: for (i = 1; i < Dataset.Length; i ++) do

7: RL[i].IP←− Pi.IP

8: RL[i].RT ←− Pi.RT

9: RL[i].PLS←− Pi.PLS

10: Apply Classifier

11: p
[ a

h
]
=

p[ h
a ]×p[a]

p
[

h
f c

]
×p[ f c]+p[ h

a ]×p[a]

12: p
[

f c
h

]
=

p
[

h
f c

]
×p[ f c]

p
[

h
f c

]
×p[ f c]+p[ h

a ]×p[a]

13: if (p
[ a

h
]
> p

[
f
h

]
) then

14: Return “DDoS”

15: else

16: Return "FC"

17: end if

18: end for

19: end if

20: End

Algorithm 2 is used for test data. This algorithm has a loop, but statements are
executed according to the number of records. Therefore, it has O(n) asymptotic time
complexity. Some statements of this algorithm are similar to the previous one. The
abnormal traffic is handled at step 5. The parameter values are taken at steps 7, 8, and 9.
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The probabilities are calculated at steps 11 and 12. As per the calculated probabilities, the
DDoS or FC traffic are distinguished.

4. Simulation Results

The proposed work is simulated in NS2 [26], under Red Hat 7. AODV protocol [27]
is taken as a base protocol. CAIDA—DDoS Attack 2007 and FIFA World Cup are two
real-world datasets used in this research. The CAIDA dataset contains around an hour of
anonymized traffic traces from a DDoS assault that occurred on 4 August 2007. This form
of denial-of-service attack tries to prevent users from accessing the targeted server by using
all of the server’s computational resources and all of the bandwidth on the network linking
the server to the Internet. To represent flash crowds, the World Cup 1998 dataset is used.
The World Cup 1998 data is a compilation of requests made to www.france98.com (accessed
on 3 March 2021) during the football tournament. In related studies, the World Cup 1998
dataset is used as a flash crowd dataset. While having these two datasets experimented
with, it is assumed that the proposed mechanism will also be similarly effective with other
types of real-world scenarios. There is no specific DDoS or FC related dataset seen that is
meant for WSNs only. Moreover, the chosen datasets are mainly processed on the BS that
has adequate resources and capable to perform similar to the nodes in the wired networks.

Additionally, various methods are utilized to create the dataset. Some fragments of
the dataset are created from simulations and then from the real traffic to train and test
the proposed system. The distribution of nodes in the dataset is designed as follows: (a)
attack nodes are 30%, (b) normal nodes are 40%, and (c) FC vectors are 30%. This section
is further divided as follows: In Section 4.1, calculation of threshold value is discussed.
The classification of normal and abnormal nodes is performed in the first experiment
discussed under Section 4.2. In Section 4.3, the abnormal nodes’ traffic is further analyzed
to determine the attack and flash traffic flows. In Sections 4.4 and 4.5, the same procedure
is repeated to obtain another set of results. The experimental results on the real dataset are
given in Section 5. The key parameters are listed in Table 2.

Table 2. Parameters for experimental simulation.

Parameter Values

Simulator NS-2.33
Duration of Simulation 60 s
Nodes’ Transmission range 250 m
Network Area 1000 × 1000 m
Base Protocol AODV
Number of Nodes 100–200
Nodes’ Distribution Random
Traffic source CBR
Maximum speed of node 10 m per second
Packet Size Random
Nodes’ Pause Times 10 to 60 s

4.1. Threshold Value

Different experiments were performed to obtain the threshold value for varying
numbers of nodes (30, 40, 50, 100, and 200). However, we obtained the optimal result for
30 nodes. For threshold value, 30 out of 100 nodes were selected to transmit packets with
different data rates varying from 10 kbps to 40 kbps. The total simulation time was set to
60 s, during which the nodes transmitted their data towards the BS. The simulation time
was then 12 intervals each having a slot of 5 s. According to the procedure, the median of
the received packets was computed for each interval. A total of 12 median values were
computed for the entire simulation time. Another median was computed of these obtained
12 median values. The ultimate value computed was 167 vectors per slot. This value is
considered as the threshold value.

www.france98.com
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4.2. First Experiment

The first experiment was performed based on 30 nodes to verify the performance of
the mechanism for abnormal and normal traffic categorization. According to the procedure,
10 nodes were identified as normal while the rest were abnormal. Table 3 shows the
number of packets generated by normal and abnormal nodes in 60 s. The same values are
graphically represented in Figure 3.

Table 3. Comparison of traffic.

Traffic Type Number of Packets per Second

Time (s) 10 20 30 40 50 60
Normal 24 26 32 34 36 38
Abnormal 37 38 48 58 64 64

 

Figure 3. Experiment 1 for categorization of traffic.

4.3. Classification of Traffic

The 20 suspicious nodes were further classified as attacker and flash nodes. The
attacker nodes frequently transmitted packets from 20 to 40 kbps with the same sized
packets with a constant timespan, while flash nodes frequently transmitted random-sized
packets with an irregular time span from 25 kbps to 45 kbps. The means and standard
deviations of receiving time and sizes of payload of both types of traffic were calculated.
The class with maximum standard deviation was labeled as FC, while the other one
was DDoS attack. The Bayesian model takes these means and standard deviations for
classification of irregular traffic further in attack and FC traffic. The proposed system
identified that 14 nodes are flash and 6 are attacker nodes in 20 suspicious nodes. Tables 4
and 5 show the discrimination of DDoS attack from FC traffic computed from interarrival
time variance and size of payload variance. The same are also represented by Figures 4
and 5. The dataset used for these two types of traffic is shown in Table 6 .

Table 4. DDoS attack versus FC based on IAT.

Traffic Type Interarrival Time

Received Packets 200 400 600 800 1000 1200 1400 1600
DDoS 0.00743 0.01135 0.01283 0.01600 0.01010 0.00643 0.01923 0.00889
FC 0.02215 0.05002 0.05999 0.03656 0.07009 0.04996 0.03533 0.02778
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Figure 4. Discrimination of DDoS attack from FC based on IAT.

Table 5. DDoS attack from FC based on the size of payload.

Traffic Type Payload Size (Bytes)

Received Packets 200 400 600 800 1000 1200 1400 1600
DDoS 512 512 512 480 480 490 490 490
FC 512 460 440 480 530 510 512 460

 
Figure 5. Discrimination of DDoS attack from FC based on the size of payload.

Table 6. DDoS and FC traffic classification.

Type IPs σ(PLsSize) σ(Time) µ(PLsSize) µ(Time)

FC 14 18.1818 0.0285 490.33 0.0472
DDoS 6 10.0484 0.00780 500.83 0.00742

4.4. Second Experiment

A second experiment was performed based on 40 nodes to evaluate the proposed
mechanism’s performance for abnormal and normal traffic categorization. The proposed
mechanism identified 15 as normal and 25 as suspicious nodes. Figure 6 shows the
categorization of traffic in normal and abnormal traffic.
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Figure 6. Experiment 2 for categorization of traffic.

4.5. Classification of Traffic

The suspicious nodes were further classified as attacker and flash nodes. Flash nodes
have data rates of 20 kbps to 40 kbps and attacker nodes’data rates vary from 25 kbps to
45 kbps. Means and standard deviations of payload size and receiving time of payload
size were calculated. The class with maximum standard deviation was labeled as FC while
the other one was DDoS attack. The Bayesian model takes these means and standard
deviations for classification. The proposed mechanism identified 15 nodes as flash and 10
as attacker nodes. Table 7 shows the dataset for these two types of traffic. The graphs in
Figures 7 and 8 show the classification of traffic based on interarrival time variance and
payload size variance.

Table 7. Parameters calculated for attack and FC.

Type IPs σ(PLsSize) σ(Time) µ(PLsSize) µ(Time)

FC 15 23.214 0.02973 483.33 0.037
DDoS 10 5.0484 0.00130 503.12 0.00432

 

Figure 7. Discrimination of DDoS attack from FC based on IAT.
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Figure 8. Discrimination based on the size of payload.

5. Simulation Results by Using Real Datasets

For further evaluation, two real-world datasets were also used. These datasets are
“1998 FIFA World-Cup” [28] for FC data and “CAIDA DDoS Attack 2007” [29] as DDoS
data. From the CAIDA dataset, one minute (4 August 2007 from 05:30 to 05:31) of traffic
data was selected. From the FIFA World cup dataset, one hour (10:06:1998; 15:00 to 16:00)
was selected. In one hour of the CAIDA attack dataset, 359,655,826 request packets were
generated, while in one minute, this value was 296,361. Similarly, in the FIFA World
Cup, 253,830 request packets were generated in one hour. In this dataset, the requests are
produced from legitimate web clients to the FIFA website. Table 8 shows the computed
parameters in this experiment.

Table 8. Parameters calculated for DDoS attack and FC traffic.

Type IPs σ(PLsSize) σ(Time) µ(PLsSize) µ(Time)

FIFA World Cup 8106 6130.3 0.3498 10,055.1 27.8181
CAIDA DDoS 5556 0.90 0.001123 60.8 0.0048

Figures 9 and 10 show the results for traffic classes from the two real datasets. It
is noted that the packets are almost the same sizes as in the case of the attack packets.
In addition, the arrival time for such packets is less. The dataset records show that the
attack packets are merely produced and transmitted. These data packets do not carry data
and do not need any time for transmission. In the case of the FIFA World Cup dataset,
the generated packets are of different sizes and their interarrival times are also not in the
same pattern.
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Figure 9. Discrimination of DDoS attack from FC based on IAT.

 

Figure 10. Discrimination of DDoS attack from FC based on the size of payload.

Furthermore, the performance of the proposed DDoDF is compared with the existing
mechanisms, Hellinger distance [8], Sibson distance [19], probability metric [20], Pearson
coefficient [21], and Mahalanobis distance [24], while having two real datasets taken. The
intensity of attack differs from 10% to 90%. Figures 11–13 show the comparative results
of the selected mechanisms with our mechanism. Varying attack intensities are taken.
The attack intensity is measured based on the data traffic rate. The normal traffic rate is
compared with the suspected abnormal traffic. If both are equal, then the attack intensity
is equal to 0%. The highest known difference between the two traffic rates is assumed to
be 100%.
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Figure 11. Attack intensity vs. false-positive rates.

Figure 12. Attack intensity vs. false-negative rates.

Figure 13. Attack intensity vs. detection accuracy.

The key terms calculated are false-positive rate (FPR), false-negative rate (FNR), and
rate of detection. In the beginning, DDoDF has lower values having higher false positives
and false negatives. With the passage of time, the proposed mechanism evolves and learns
from the data traffic based on the likelihood probability associated with receiving time and
payload size. Once the system is trained, it is fully configured and loaded to obtain a high
detection rate with low false-positive and false-negative rates.
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Figure 11 shows the FPR against the varying attack intensities. The results show that
the proposed protocol has the highest value, i.e., 14.93%, when the attack intensity is at
10%. However, as the intensity is increasing, the FPR value is inversely reduced. At 90%
of attack intensity, the value for FRP is 5.2%, which is the least among the competing
protocols. Mahalanobis distance has a somewhat similar performance in this test. The
proposed mechanism operates mainly on the probabilities. The naïve-based probabilistic
model performs much better with higher abnormal traffic, causing less values for FPR.

Figure 12 shows the FNR against the attack intensities starting from 10% to 90%.
Initially, with the low level of attack intensity, the proposed model does not perform well
if compared with other mechanisms. Initially, it gives 14.12% for 10% attack intensity.
However, the values for FNR drastically decline with higher attack intensities. For 90%
attack intensity, DDoDF gives 6.3% FNR, which is the lowest value among all the test
mechanisms. The main reason is similar to the previous case of FPR.

In Figure 13, the considered mechanisms are tested for detection rates with varying
attack intensities. With 10% attack intensity, Hellinger distance and Mahalanobis distance
give much better results. The proposed DDoDF gives moderate values in the beginning.
However, as the attack packets are increased, the detection rate of DDoDF is also increased.
After 40% attack intensity, the DDoDF gives a slightly better detection rate than Hellinger
distance and Mahalanobis distance. The proposed work has multiple levels for the detection
and identification of abnormal traffic. Therefore, it requires an adequate level of attack
traffic for better performance.

6. Conclusions and Future Work

In this research work, a novel detection and discrimination mechanism is introduced
to detect the abnormal traffic and discriminate DDoS attacks from FC. Both types of traffic
have common features in general; however, some key characteristics are different, and
can be used to distinguish them from each other. In this mechanism, various steps are
followed to obtain the target objective. The traffic is analyzed, and the analysis data is
further processed. The key parameters considered are the number of packets, size of the
payload, and interpacket arrival time variances. Ultimately, a naïve Bayesian model is
used to detect FC traffic and separate it from the DDoS attacks. Various simulations are
made to verify the performance of the system and are also compared with some existing
techniques. Our experimental and simulation results show that the proposed detection
system can differentiate DDoS attack traffic from FC with more than 93% accuracy, with 5.2
FPR and 6.3 FNR based on the two real datasets (1998 FIFA World-Cup and CAIDA DDoS
attack 2007). In the initial tests with the low level of attack intensity, the proposed work
does not perform well. With 10% attack intensity, it gives 14.12% FPR and 14.9%3 FNR,
which are not good among the competitors. This is because it operates on the naïve-based
probabilistic model with multilevel probabilities. Such types of models require an adequate
amount of data so that optimal and more accurate results are achieved. However, for attack
intensities of 40% to 90%, the proposed mechanism outperforms all the mechanisms. For
the highest attack intensity, DDoDF gives around 93% detection rate, 5% FPR, and 6% FNR,
which are the most optimal values in the experiments. The results are encouraging and
prove that the proposed mechanism performs well in the target domain.

In the future, the detection accuracy can be enhanced by combining some additional
parameters, such as payload patterns and hop count information, with the existing param-
eters to build a strong detection system. The proposed system can also be simulated on
multiple datasets, i.e., HTTP logs, NLANR, and MIT Lincoln, with additional parameters
for evaluation. This work can be implemented on other ad hoc networks with some alter-
ations. This work only detects and discriminates DDoS attack traffic from FC, and it does
not prevent the network from DDoS attacks. The prevention module can also be added to
the detection module to prevent all the attacker nodes in the network.
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List of Symbols
Symbol Description
n Number of packets
TH The threshold value of packets
µ Mean of a packet
µFiPM Flow fi payload mean
σFiPS Flow fi payload standard deviation
µFiRM Flow fi receiving time mean
σFiRS Flow fi receiving time standard deviation
hx Attribute x
M Network
p[h[/ f ]c] Likelihod probability of flash crowd
p[h/a] Likelihood probability of attack class
RL Receiving list
interval Period between two nodes
slot Combination of intervals
Pi Packets
σ Standard deviation
p[ f _(c)] Prior probability of flash crowd
p[a] Prior probability of attack class
p [ fc/h] Posterior probability of flash crowd
p[a/h] Posterior probability of DDoS attack
n Total number of nodes
classi Prior probability of class
PLS Payload size of packet
RT Received time of packet
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