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Abstract: Social distancing is crucial to restrain the spread of diseases such as COVID-19, but
complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass
surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless,
it is a labor-intensive task that is prone to human error and tainted with plausible breaches of
privacy. This paper presents a privacy-preserving adaptive social distance estimation and crowd
monitoring solution for camera surveillance systems. We develop a novel person localization strategy
through pose estimation, build a privacy-preserving adaptive smoothing and tracking model to
mitigate occlusions and noisy/missing measurements, compute inter-personal distances in the real-
world coordinates, detect social distance infractions, and identify overcrowded regions in a scene.
Performance evaluation is carried out by testing the system’s ability in person detection, localization,
density estimation, anomaly recognition, and high-risk areas identification. We compare the proposed
system to the latest techniques and examine the performance gain delivered by the localization and
smoothing/tracking algorithms. Experimental results indicate a considerable improvement, across
different metrics, when utilizing the developed system. In addition, they show its potential and
functionality for applications other than social distancing.

Keywords: COVID-19; social distancing; video surveillance; person detection and tracking; pose
estimation; crowd monitoring

1. Introduction

The rapid outbreak of the Coronavirus Disease 2019 (COVID-19) has imposed restric-
tions on people’s movement and daily life [1]. Reducing the spread of the virus mandates
constraining social interactions, traveling, and access to public areas and events [1]. These
limitations arise to mainly advocate social distancing; the practice of increasing physical
space among people to minimize virus transmission [2]. Monitoring and maintaining
social distancing is carried out by governmental bodies and agencies using mass surveil-
lance systems and closed-circuit television (CCTV) cameras [3]. Nonetheless, this task is
cumbersome and suffers from subjective interpretations and human error due to fatigue;
hence, computer vision and machine learning tools are convenient for automation [4]. In
addition, they enable crowd behavior to be monitored and anomalies such as congested re-
gions, curfew infractions, and illegal gatherings to be recognized. The widespread of mass
surveillance and its integration with Machine Learning is hindered by ethical concerns,
including possible breach of privacy and potential abuse [3]. Therefore, privacy-preserving
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surveillance and Machine Learning solutions are paramount to their ethical adoption and
application [5].

The design of vision-based social distance estimation and crowd monitoring system
deals with the following challenges [4]: (1) geometry understanding, in terms of ground
plane identification and homography estimation; (2) multiple people detection and local-
ization; and (3) statistical/temporal characterization for social distance infractions, e.g.,
short-term violations are irrelevant. Currently, Machine Learning-based solutions identify
social distance infringements using off-the-shelf person detection and tracking models [4].
In general, the models’ performance is conjoined with privacy; they yield high performance
by carrying and processing person-specific information to develop robustness against
occlusions and missing data [4]. In addition, they localize human subjects via bounding
boxes that can be over-sized or incomplete which results in significant distance estimation
errors [6]. Therefore, we propose a privacy-preserving adaptive social distance estimation
and crowd monitoring system that can be implemented on top of any existing CCTV
infrastructure. The main contributions of the paper are as follows: (1) Developing a robust
person localization strategy using pose estimation techniques; (2) Forming an adaptive
smoothing and tracking paradigm to mitigate the problem of occlusions and missing data
without compromising privacy; (3) Designing a real-time privacy-preserving social distance
estimation and crowd monitoring solution with potential to cover other application areas
and tasks.

The rest of this paper is organized as follows: Section 2 overviews the related work
and Section 3 describes our methodologies to build and evaluate the proposed system.
Afterwards, we present and discuss the system outcome and performance in Section 4.
Finally, Section 5 concludes the paper and suggests topics for future research.

2. Related Work

This section reviews state-of-the-art Machine Learning-based social distance estima-
tion and monitoring solutions and summarizes their advantages and limitations. First,
we analyze various person detection and localization strategies within the scope of so-
cial distancing. After that, we review different approaches to recognize social distancing
abnormalities. Finally, we discuss the latest vision-based crowd monitoring techniques.

2.1. Person Detection and Localization

Several methods exist in the literature and fall under two main categories: object
detectors and pose estimation techniques. The former identifies objects by bounding a
box around them, while the latter detects the human joints and connects them resulting
in pose estimates [7]. On the one hand, object detectors, such as YOLO models [8], are
more general-purpose than pose estimation techniques, but their utility for identifying
human subjects may require pruning and/or retraining. In addition, they do not offer
further information about the detected objects and their bounding boxes can be over-sized
or incomplete [6]. On the other hand, pose estimators are specialized models; hence, they
are more suitable to detect people in a scene. Specifically, they account for various body
orientations/actions such as standing, sitting, riding, and bending, when compared to
object detectors [9]. Moreover, their ability to work in dense crowds was verified in [10,11],
which is the very same setting social distance monitoring is dealing with. Nonetheless,
pose estimators are computationally more expensive than object detectors and their high
entropy output requires further processing [7].

In [12], a visual analysis technique is proposed to quantify and monitor contact tracing
for COVID-19. The detection and tracking of human subjects are performed by a YOLO
architecture and a Simple Online and Real-time Tracking model, respectively. In addi-
tion, each subject is localized by its bounding box bottom mid-point. Similar detection
and tracking approaches are proposed in [13,14], but the latter localizes the subjects by
their bounding box centroid. The aforementioned solutions, although accurate, are not
suitable, because they carry person-specific information which hinders their adoption for
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privacy-preserving applications. Nonetheless, privacy-preserving techniques are devel-
oped in [6,15] to monitor the evolution of social distancing patterns using CCTV cameras.
The first work utilizes YOLO-v3 to detect pedestrians and the bounding box centroid for
localization. Moreover, the second work explores two-person detectors and one end-to-end
model and provides evidence that the latter does not necessarily improve performance and
the bounding box bottom mid-point is the best for localization. Many variants of the YOLO
model and other neural network architectures are used to detect humans in videos and
the bounding box centroid, top left edge, or bottom center, is used for localization [16–25].
Lastly, the social distancing problem is tackled in [26] using a pose estimation model to de-
tect human subjects in videos and to infer their location using the predicted feet joints. The
same approach is employed in [27] to measure inter-personal distances but for still images.
This has motivated us to use pose estimation techniques to detect people because they offer
rich information about the localized subjects and mitigate the pitfalls of bounding boxes.

2.2. Anomaly Recognition

The scope of the social distancing problem defines an anomaly in a surveillance
video by the presence of social distance violations [4]. This task requires estimating inter-
personal distances among the localized subjects and comparing them to a predefined safety
threshold [4]. In [13,15], the localized subjects’ pair-wise distances are calculated in the real-
world coordinates and social distance violations are identified by a 2 m safety threshold;
however, the problem of occlusion is not tackled in [15]. Furthermore, in [12,18,20,23,24],
the localization results are morphed to the real-world top-view coordinates to calculate
the pair-wise distances. The social distance violations are identified by 1, 1.8, and 2 m
safety distances. However, the reported results focus on the person detection performance
and they illustrate identifying infractions by a few qualitative examples. Moreover, the
developed systems in [18,20,23,24] do not mitigate the problem of occlusion nor missing
detections. This is important because these are major limitations and tracking with privacy
preservation is an essential remedy [28]. In [21], a centroid tracking algorithm is used to
resolve occlusions [29], pair-wise distances are computed, and violations are identified by
a 1.8 m safety threshold. However, the performance evaluation is assessed using a single
video with only two people in it. This restricts generalizing the system’s efficacy and its
applicability to real-life scenarios. Moreover, inter-personal distances are computed in [6]
and the violations are identified at three safety levels; 1, 1.8, and 3.6 m. The study concludes
that incomplete or over-sized bounding boxes introduce significant errors to the distance
calculation; hence, selecting an appropriate person detector is paramount to the system’s
feasibility and success. Finally, in [26], pair-wise distances are approximated through the
estimated body joints and social distance infractions are identified by a 2 m threshold.

The reviewed literature shows a discrepancy in the safety distance selection for de-
tecting social distance violations. This inconsistency hinders fair comparisons, but it
has motivated us to test the proposed system applicability across a wide-range of safety
distances and to utilize various performance measures.

2.3. Crowd Monitoring

Crowd monitoring aims to attain a high-level understanding of crowd behavior by
processing the scene in a global or local manner [30]. Macroscopic methods such as
crowd density, crowd counting, and flow estimation, neglect the local features and focus
on the scene as a whole [31,32]. In contrast, microscopic techniques start by detecting
individual subjects and then group their statistics to summarize the crowd state [33].
These two approaches are complementary in terms of the efficiency/accuracy trade-off. In
other words, macroscopic techniques are efficient in handling high-density crowds, while
microscopic methods are accurate for sparse groups [31].

An approach to analyze the crowd and social distancing behavior from UAV captured
videos is proposed in [31]. Discrete density maps are generated to classify the crowd state
in each aerial frame patch as dense, medium, sparse, or empty. In addition, a microscopic
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technique is employed to detect, track, and compute inter-personal distances. In [34],
crowd counting and action recognition techniques are reviewed in the scope of social
distancing. The study suggests that density-based approaches are preferred due to their
inherent error suppression in which the contribution of faulty counts or missing detections
is insignificant to the long-term-averaged density map. Moreover, pedestrians’ spatial
patterns are captured in [6] by long-term occupancy and crowd density maps. The former
describes the spatial signature exerted by the subjects in the surveilled scene, while the
latter encodes the spatial impression of social distance infractions [35]. Similarly, heatmaps
are generated in [13,26,36] to represent the regions in which social distance violations are
frequent. These studies demonstrate that short and long-term occupancy/crowd density
maps are important to identify high-risk regions in the scene. In addition, they allow a
quantification for the pedestrians’ compliance with social distancing guidelines [6].

3. Methodology

The proposed social distance estimation and crowd monitoring system is depicted in
Figure 1. The model is comprised of the following stages:
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Figure 1. The proposed social distance estimation and crowd monitoring system model. The model
is comprised of the following stages: (1) Read a video frame; (2) Detect human subjects and localize
their positions; (3) Discard all positions outside the ROI; (4) Transform the remaining positions to the
real-world coordinates; (5) Smooth the noisy estimates and compensate for missing data by tracking;
(6) Estimate the subjects’ inter-personal distances and crowd density maps; (7) Recognize irregularities
in the crowd state in terms of social distance infringements and congestion; (8) Integrate the video
frame with the estimated parameters and identified anomalies; and (9) Display the integrated frame
and generate a dynamic top-view map for the scene.

1. Read a frame from the surveillance camera. This component can be adjusted to
skip/drop frames in case of using high-resolution and/or high-frame-rate cameras.

2. Detect human subjects in the input frame and compute their position. The position of
each detected subject is estimated as a single point.

3. Discard any localized positions outside a selected region of interest (ROI). The ROI is
defined by the user beforehand and typically encloses the ground plane.

4. Transform the localized positions from the image–pixel coordinates to the real-world
coordinates. This provides a top-view depiction of the subject’s position.

5. Smooth the noisy top-view positions and compensate for missing data due to occlu-
sion with tracking.

6. Estimate the inter-personal distances among the detected subjects and the occu-
pancy/crowd density maps.

7. Recognize social distance violations and identify congested or overcrowded regions
in the scene.
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8. Integrate the smoothed/tracked positions, estimated parameters, and detected anoma-
lies with the video frame.

9. View the integrated video frame and generate a dynamic top-view map for the scene.
This component allows adjusting the type and amount of appended information.

The proposed system design process is governed by the following requirements:

• High accuracy and reliability in terms of robustness to noise and missing data.
• Light weight for implementation and deployment.
• Modularity to facilitate maintenance, upgrades, decentralization, and to avoid resource

allocation bottlenecks.
• Privacy-preserving by not carrying nor processing person-specific features.
• Robustness against different vertical pose states and actions, e.g., standing, sitting,

bowing, bending, walking, and cycling.

The remaining subsections discuss and detail each stage in the proposed system. We
use an example video frame from the EPFL-MPV dataset to illustrate the outcome of each
stage—see Section 4.1 for more details on the dataset.

3.1. Person Detection and Localization

Given an input video frame, we detect and localize human subjects using a pose
estimation technique, because object detection models can yield incomplete or over-sized
bounding boxes and they do not offer rich information [6].

3.1.1. Detection

We utilize OpenPose to detect and estimate human poses in the input video frame.
Specifically, OpenPose estimates and connects the body joints using part affinity fields [37].
Let N and M be the total number of true and detected subjects in the video frame, re-
spectively, and

{
J m

}
m∈[1,M]

be the set of estimated joints for all detected subjects where

J m =
{

jj
m
}

j∈[1,25], jj
m =

[
uj

m, vj
m

]
, uj

m and vj
m define the horizontal and vertical coordinates

of the joint j, respectively—see Figure 2 for an example.
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Figure 2. An example pose estimation for three subjects with varying heights and spatial positions.
The OpenPose 25 estimated joints are indexed on the right (blue) skeleton. The remaining two subjects
have some undetected joints, but their joint indexing remains the same. The ground position of each
subject is estimated by the midpoint of their feet joints. The user-defined region of interest is depicted
in gray and includes all three ground positions.
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Ideally, OpenPose yields 25 joints for each detected subject, but we recognize that some
might not be detected due to various reasons. This results in some empty entries in J m,
but does not change the indexing scheme. Moreover, to model a realistic scenario, we
assume that N and M are not necessarily equal, i.e., the number of detected subjects can be
less, equal, or more than the true number of people in a frame. Finally, note that we select
OpenPose due to its simplicity and availability, but it can be replaced with any other pose
estimation model given the same body joints indexing scheme.

Figure 3 shows the pose estimation outcome for an example input frame with 5 people
moving freely in a room. OpenPose yields five detections shown in gray, red, orange, green,
and blue with 13, 22, 20, 17, and 8 total number of connected joints, respectively. The gray
and blue poses are incomplete because of partial occlusion and missing data.

Figure 3. The estimated poses in frame 1824 of the EPFL-MPV dataset scene 6p-c0. Three out of five
people are detected correctly (red, orange, and green poses) whereas the rest are not due to partial
occlusion and missing data (gray and blue poses).

3.1.2. Localization

We select the midpoint of the feet of each subject as the anchor to localize their
positions, also known as the ground position. The selected point offers reliable estimation
because: (1) it is independent of the subjects height, width, and orientation; (2) it lies on
the ground; thus, homography transformation is possible; (3) it has a clear definition when
compared to bounding boxes; (4) it carries no person-specific information; hence, privacy
is preserved.

In [26], given the non-empty set of feet joints
{

j12
m , j15

m , j20
m , j21

m , j22
m , j23

m , j24
m , j25

m
}

and the
condition #J m ≥ 13, the ground position of subject m is estimated as follows:

um =


∑
{

u1
m, u2

m, u9
m
}

#
{

u1
m, u2

m, u9
m
} :

{
u1

m, u2
m, u9

m
}
6= ∅

min(um) + max(um)

2
: otherwise

, (1)

vm =
∑
{

v12
m , v15

m , v20
m , v21

m , v22
m , v23

m , v24
m , v25

m
}

#
{

v12
m , v15

m , v20
m , v21

m , v22
m , v23

m , v24
m , v25

m
} , (2)

where um =
{

uj
m
}

, j ∈ [1, 25], and # denotes the number of non-empty elements in
the set. We call this approach the basic ground position estimation and argue that it is
inadequate because the constraints are quite restrictive. For instance, Equation (1) assumes
human subjects with perfect vertical orientation, which may not be the case. In addition, in
Equation (2), the sole reliance on detecting any foot joint and the required minimum number
of joints limits its applicability in real-life scenarios. In fact, this approach estimates the
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ground position only when information is abundant. Therefore, we propose a localization
strategy that eliminates the basic position pitfalls and relaxes its restrictions and constraints.

Algorithm 1 explains the proposed localization strategy. First, we eliminate the condi-
tions mandated by the basic approach and expand the search space to include the subject’s
feet, knees, hips, and torso. In particular, for the horizontal coordinate um, we leverage the
joints left/right symmetry by averaging the horizontal position of two opposing joints. For
instance, u2 and u3 in Figure 2 are computed by the 1st case (line 2), while u1 is found by the
7th case using the hip joints, i.e., u10

1 and u13
1 (line 8). Moreover, for the vertical coordinate

vm, we relax the requirement for detecting the feet joints by exploiting the human average
skeletal characteristics. More specifically, we use the ratio between the torso and lower
body lengths to infer the ground position vertical coordinate [26], i.e., (0.85/0.6) in line
15. Finally, regardless of the approach, we discard any estimated positions outside the
user-defined ROI—see Figure 2.

Algorithm 1 The proposed localization strategy.

Input:
{

uj
m
}

and
{

vj
m
}

where j ∈ [1, 25].
Output: um and vm.
Initialization: Left/right foot horizontal coordinates α/β and the feet vertical coordinate γ.

α =
∑
{

u15
m , u20

m , u21
m , u22

m
}

#
{

u15
m , u20

m , u21
m , u22

m
} β =

∑
{

u12
m , u23

m , u24
m , u25

m
}

#
{

u12
m , u23

m , u24
m , u25

m
} γ =

{
v12

m ,v15
m ,v20

m ,v21
m ,v22

m ,v23
m ,v24

m ,v25
m
}

1: switch true do

2: case α 6= ∅ ∧ β 6= ∅ then um =
1
2

(
∑ α

#α
+

∑ β

#β

)
and Fu

m = 1. . Both feet joints are available

3: case α 6= ∅ ∧ u11
m 6= ∅ then um =

1
2

(
∑ α

#α
+ u11

m

)
and Fu

m = 2. . Left foot and right knee joints are available

4: case u14
m 6= ∅ ∧ β 6= ∅ then um =

1
2

(
u14

m +
∑ β

#β

)
and Fu

m = 2. . Left knee and right foot joints are available

5: case u11
m 6= ∅ ∧ u14

m 6= ∅ then um =
1
2
(
u11

m + u14
m
)

and Fu
m = 2. . Both knees’ joints are available

6: case u10
m 6= ∅ ∧ u14

m 6= ∅ then um =
1
2
(
u10

m + u14
m
)

and Fu
m = 2. . Right hip and left knee joints are available

7: case u11
m 6= ∅ ∧ u13

m 6= ∅ then um =
1
2
(
u11

m + u13
m
)

and Fu
m = 2. . Right knee and left hip joints are available

8: case u10
m 6= ∅ ∧ u13

m 6= ∅ then um =
1
2
(
u10

m + u13
m
)

and Fu
m = 2. . Hip’s joints are available

9: case u2
m 6= ∅ ∧ u9

m 6= ∅ then um =
1
2
(
u2

m + u9
m
)

and Fu
m = 2. . Torso’s joints are available

10: case α 6= ∅ ∨ β 6= ∅ then um =
∑{α, β}
#{α, β} and Fu

m = 2. . Consider any available feet joints

11: otherwise um = ∅ and Fu
m = 0.

12: end switch
13: switch true do
14: case γ 6= ∅ then vm =

∑ γ

#γ
and F v

m = 1. . Consider any available feet joints

15: case v2
m 6= ∅ ∧ v9

m 6= ∅ then vm = v9
m + (0.85/0.6)

∣∣v2
m − v9

m
∣∣ and F v

m = 2. . Torso’s joints are available

16: otherwise vm = ∅ and F v
m = 0.

17: end switch

The proposed localization strategy is driven by the argument that noisy measurements
with known error states are more valuable than no measurements at all. In other words, if
we predict the subject’s ground position and supplement it with the state of available infor-
mation, we can append each prediction with a flag describing its integrity, or confidence
level. In this work, we coin this concept by forming the error state flags Fu

m and F v
m in the

following manner:

• Fu
m = ∅ (F v

m = ∅): subject is not detected.
• Fu

m = 0 (F v
m = 0): subject is detected but um (vm) is not available, regardless of

the reason.
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• Fu
m = 1 (F v

m = 1): subject is detected and um (vm) is directly estimated from the
feet joints.

• Fu
m = 2 (F v

m = 2): subject is detected and um (vm) is predicted using other joints.

Similarly, an overall localization error flag is constructed for each detected subject m
as follows:

Fm =


∅ : Fu

m = ∅ ∨ F v
m = ∅

0 : Fu
m = 0∨ F v

m = 0
1 : Fu

m = 1∧ F v
m = 1

2 : Fu
m = 2∨ F v

m = 2

. (3)

Figure 4a demonstrates the basic and proposed localization results using the estimated
poses in Figure 3. In addition, it shows the selected ROI in cyan, which encloses the floor
plane in the scene. By examining Figure 4a, one notes that both localization strategies yield
valid estimates when supplied with enough number of connected joints. However, the
proposed approach is more accurate since it does not assume perfect vertical orientation.
Moreover, it mitigates partial occlusion by inferring the position vertical coordinate using
the torso to lower body lengths ratio—see the estimated position in gray. Nonetheless, both
strategies are limited, because they cannot resolve the ground position when information is
scarce or completely missing. For instance, they cannot localize the fifth subject, the one
with the blue pose in Figure 3 because we only have a few joints.

3.2. Top-View Transformation

Let us assume that the surveillance camera is placed at height h and oriented with a
pan and tilt angles θp and θt, respectively. The transformation from a three-dimensional
position in the real-world coordinates to its corresponding two-dimensional (2D) position
in the image–pixel coordinates; [x, y, z]→ [u, v] is expressed as follows:

 u
v
1

 =
1
αs

K[R T0]


x
y
z
1

 , (4)

where αs is the image-to-real distance scale, K ∈ R3×3 is the camera intrinsic parameter
matrix which maps the camera coordinates to the image coordinates, [R T0] maps the
real-world coordinates to the camera coordinates, R ∈ R3×3 is a rotation matrix that
compensates for the camera orientation (θp and θt), and T0 ∈ R3×1 is a translation vector
which deals with the camera position and height. Since we are only concerned with
transforming the subjects’ ground positions from the image coordinates [um, vm] to the
real-world ground plane [xm, ym], Equation (4) simplifies to: xm

ym
1

 = αs H−1

 um
vm
1

 , (5)

where H ∈ R3×3 is the camera homography matrix. This transformation results in a
top-view depiction of the subject’s real-world positions—see Figure 4e.

In this work, we assume the homography matrix H and the image-to-real distance
scale αs to be known for simplicity; however, they can be obtained by GPS and accelerome-
ters [38–40], determined by calibration [41,42], inferred from the computed poses [26,27],
or estimated by a four-point perspective transformation [43].
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(a) Estimated ground positions. (b) Tracked and estimated ground
positions.

(c) Inter-personal distances and
instantaneous occupancy density
map.

(d) Instantaneous crowd density
map.

(e) Estimated ground positions. (f) Tracked and estimated ground
positions.

(g) Inter-personal distances and
instantaneous occupancy density
map.

(h) Instantaneous crowd density
map.

Figure 4. The proposed system outcome at each stage using the example input frame and the esti-
mated poses in Figure 3. (a–d) demonstrate the localized human subjects, smoothed/tracked ground
positions, inter-personal distances with the instantaneous occupancy map, and the instantaneous
crowd map along with the detected social distance violations in the image–pixel coordinates, respec-
tively. (e–h) present the same results as in (a–d), but in the real-world coordinates. The user-selected
ROI is shown in cyan and covers the floor plane in the scene. The basic and proposed localization
results are depicted by triangles and squares, respectively, while the smoothed/tracked ground
positions are visualized with circles. The distances among the subjects are visualized using lines
with varying thickness and darkness where thick/thin and dark/light lines indicate shorter/longer
distances. The instantaneous occupancy and crowd density maps are computed with a 1 m spatial
resolution (δ = 1) and 2 m social safety distance (r = 2), respectively. Note that the ground positions
in (a,b,e,f) are color-coded in accordance with the estimated poses in Figure 3. The color notion
is dropped in (c,d,g,h) to preserve privacy and to emphasize the recognition of a social distance
infringement; red/green indicates the presence/absence of subjects violating the defined social
safety distance.

3.3. Smoothing and Tracking

The top-view transformed ground positions are noisy and suffer from missing values.
The former is due to uncertainties and errors in the localization technique while the latter
comes from occlusions. In this section, we formulate the estimated positions temporal
evolution by a constant velocity model. Afterwards, we compensate for localization errors
and missing measurements by a linear Kalman filter (KF) and a global nearest neighbor
(GNN) tracker.

3.3.1. State and Measurement Models

Let xm,t = [xm,t, ẋm,t, ym,t, ẏm,t]T be the state vector of subject m that defines its ground
position and velocity at frame t. Assuming constant velocity, xm,t and its measured coun-
terpart ym,t are expressed as follows [44]:

xm,t = F xm,t−1 + ωm,t−1 , (6)
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ym,t = H xm,t + νm,t , (7)

where F is a constant state transition matrix from xm,t−1 to xm,t, H is a constant state-to-
measurement matrix, ωm,t∼N (0, Qm,t), and νm,t∼N (0, Rm,t).

3.3.2. The Linear Kalman Filter

The KF offers an optimal estimate for xm,t given the measurement ym,t by following
the process depicted in Figure 5. First, given a previous (or initial) posterior estimate x̂m,t−1
with error covariance Pm,t−1, the KF predicts a prior estimate x̃m,t and computes its error
covariance P̃m,t. Afterwards, it calculates the posterior estimate x̂m,t with error covariance
Pm,t using a Kalman filter gain Km,t. Finally, the process repeats using x̂m,t and Pm,t as
inputs to the state prediction stage.

 

Measurement Correction 

(1) Kalman gain: 
−1

 

(2) Update estimate:  

(3) Update error covariance:  

State Prediction 

(1) Project state vector:  

(2) Project error covariance:  

Figure 5. The linear Kalman filter process is comprised of two stages; state prediction and measure-
ment correction.

By examining the Kalman gain equation in the measurement correction stage in
Figure 5, one notes that increasing/decreasing Rm,t decreases/increases the reliance of
x̂m,t on the measurement ym,t. In this work, we control this mechanism by adjusting the
variance σ2

m,t in Rm,t according to the overall localization error flag Fm,t, i.e., [45]:

σ2
m,t =


σ2

1 : Fm,t = 0
σ2

2 : Fm,t = 1
σ2

3 : Fm,t = 2

. (8)

In other words, the measurement error variance is adapted to smooth the estimated posi-
tions according to their appended quality. Consequently, the KF reduces the localization
noise and can offer posterior estimates when the measurement is missing [45]. Nevertheless,
the KF equations require knowing the correspondence between the detections/predictions
at consecutive frames. This is generally tackled via multiple object tracking (MOT) ap-
proaches such as the global nearest neighbor (GNN) algorithm.

3.3.3. Global Nearest Neighbor Tracking

GNN is a real-time light-weight MOT solution that tracks objects by assigning de-
tections/predictions to tracks, and by maintaining its track record [46]. It solves the
assignment task by minimizing the following cost function:

min
αm,q

[
M

∑
m=1

Q

∑
q=1

Cm,q αm,q

]
s.t.

M

∑
m=1

αm,q = 1 ∀q and
Q

∑
q=1

αm,q = 1 ∀m , (9)

where M is the number of detected subjects, Q is the number of maintained (or initiated)
tracks, Cm,q is the cost of assigning detection m to track q and αm,q ∈ {0, 1} such that if
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detection m is assigned to track q, then αm,q = 1, otherwise αm,q = 0. The constraints in
Equation (9) ensure that each detection can be assigned to only one track and vice versa.

The GNN defines the assignment cost Cm,q in Equation (9) as follows:

Cm,q = D
(
ym,t, ŷq,t

)
+ log

∣∣∣HPq,tHT + Rq,t

∣∣∣ , (10)

D2(ym,t, ŷq,t
)
=
(
ym,t − ŷq,t

)T
(

HPm,tHT + Rm,t

)−1(
ym,t − ŷq,t

)
≤ γg , (11)

where ŷq,t = H x̂q,t is the estimated measurement with error covariance HPq,tHT + Rq,t,
D
(
ym,t, ŷq,t

)
is the Mahalanobis distance between ym,t and ŷq,t, log |X| is the natural log-

arithm of the determinant of X, and γg is a gating threshold that reduces unnecessary
computations; it selects detections that are close to predictions. In this work, we solve the
GNN assignment problem in Equation (9) using the optimal Munkres algorithm [47,48].

The GNN maintains its track record as follows [46]:

• Initiation: create new tentative tracks for unassigned detections; M > Q.
• Promotion: confirm a tentative track if its likelihood of being true is greater than γc.
• Demotion: demote a confirmed track to tentative if the subject leaves the ROI.
• Deletion: delete a confirmed track if its maximum likelihood decreases by γd.

Figures 4b and 4f present the smoothed/tracked ground positions in the image–pixel
and real-world coordinates, respectively. In addition, we overlay the plots with the original
localization results in Figures 4a and 4e to visualize the role of smoothing and tracking. By
examining the results, one notes that the KF corrects the predicted position in gray and
makes it closer to the subject’s actual location. In addition, the fifth subject’s unresolved
position, because of missing information, is now compensated for by GNN—see the
predicted position in blue. In summary, the smoothing and tracking stage lowers the
localization error through the KF and corrects for the missing measurements by GNN.
Note that this stage preserves privacy and it is intended for data correction rather than
conventional tracking; hence, we are not concerned with the re-identification problem nor
the subjects’ particular identities.

3.4. Parameter Estimation

The crowd state, in terms of social distancing behavior and congestion, is estimated
by computing the inter-personal distances and the occupancy/crowd density maps.

3.4.1. Inter-Personal Distance

The instantaneous pair-wise Euclidean distance between subjects i and j is expressed as:

di,j,t =
√(

xi,t − xj,t
)2

+
(
yi,t − yj,t

)2 . (12)

Given a social safety distance r, the instantaneous number of violations is computed by:

Vt =
N̂t

∑
i=1

N̂t

∑
j=i+1

vi,j,t , (13)

vi,j,t =

{
1 : di,j,t ≤ r
0 : di,j,t > r

, (14)

where N̂t is the number of estimated/tracked people in frame t and Vt counts the number
of subjects that are r or less apart from each other—see Figures 4d and 4h.

3.4.2. Occupancy and Crowd Density Maps

The occupancy density map (ODM) encodes the spatial patterns exerted by the subjects
in the surveilled environment [6]. It is formed by summing and averaging Gaussian
functions centered at the subjects’ ground positions, i.e.:
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O(x, y) =
1
T

∫ T

1

1
N̂t

N̂t

∑
i=1

G(x− xi,t, y− yi,t)dt , (15)

G(x, y) =

√
2

π δ2 exp
(

x2 + y2

−δ2/2

)
, (16)

where O(x, y) is the averaged ODM, T is the current frame number (or total number of
frames), G(x, y) is a 2D symmetric Gaussian function, and δ controls the spatial resolution
of the map. Similarly, the crowd density map (CDM) offers a spatial signature for the social
distance infringements in the scene [35]. It is formulated by imposing the safety distance
constraint as follows:

C(x, y) =
1
T

∫ T

1

1
N̂t

N̂t

∑
i=1

ψi,t G(x− xi,t, y− yi,t)dt , (17)

where C(x, y) is the averaged CDM and ψi,t is a binary mask that is 1 or 0 if subject i violates
or follows the social safety distance r, respectively.

Figures 4c and 4g show the instantaneous ODM in the image–pixel and real-world
coordinates, respectively. In addition, we superimpose the smoothed/tracked localization
results and the computed inter-personal distances in both domains. Moreover, Figures 4d
and 4h illustrate the instantaneous CDM in the image–pixel and real-world coordinates,
respectively.

3.5. Anomaly Recognition

We define an irregularity in the surveillance video by the presence of social distance
infractions and overcrowded, or congested, regions. We treat the first task as a classification
problem by forming the binary label St as follows:

St =

{
1 : Vt > 0
0 : otherwise

. (18)

Moreover, we consider the second task as a segmentation problem where we identify
overcrowded areas in the scene by thresholding the averaged CDM as follows:

R(x, y) =

{
1 : C(x, y) ≥ γm

0 : otherwise
, (19)

where γm is selected to keep 50% of the energy in C(x, y).

3.6. Performance Evaluation

The social distance estimation and crowd monitoring system is evaluated in terms of its
ability to detect human subjects, localize their positions, recognize social distance violations,
estimate crowd density maps, and to identify overcrowded regions in surveillance videos.

Let Nt and N̂t be the true and estimated/tracked number of people in frame t. The av-
eraged person detection rate (PDR) and localization relative error are calculated as follows:

PDR = 1− 1
T

∫ T

1

∣∣Nt − N̂t
∣∣

Nt + 1
dt , (20)

Error =
1
T

∫ T

1

√
(xi,t − x̂i,t)

2 + (yi,t − ŷi,t)
2√

x2
i,t + y2

i,t

+ ηt dt , (21)



Sensors 2022, 22, 418 13 of 21

ηt =


Nt : N̂t = 0
N̂t : Nt = 0∣∣Nt − N̂t

∣∣/Nt : otherwise

, (22)

where (xi,t, yi,t) and (x̂i,t, ŷi,t) are the true and estimated ground coordinates for subject i
at frame t, respectively. We associate the estimated positions with their true counterparts
using the optimal Munkres algorithm [47,48]. Moreover, given the true and predicted
binary outputs St and Ŝt, respectively, we assess the detection of social distance violations
by accuracy, precision, recall, and the F1-score, i.e.:

Accuracy =
TP + TN

TP + TN + FP + FN
, (23)

Precision =
TP

TP + FP
, (24)

Recall =
TP

TP + FN
, (25)

F1-score = 2× Precision× Recall
Precision + Recall

, (26)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and false
negatives, respectively. Furthermore, we complement the former evaluations by computing
the averaged violations count rate (VCR), i.e.:

VCR = 1− 1
T

∫ T

1

∣∣Vt − V̂t
∣∣

Vt + 1
dt , (27)

where Vt and V̂t are the true and predicted counts, respectively—see Equation (13).
Finally, we evaluate the quality of the averaged CDM by the Pearson’s correlation coefficient
(CORR) and assess the identified overcrowded regions using the intersection over union
(IOU), i.e.:

IOU =

∫∫
R(x, y) ∩ R̂(x, y)dx dy∫∫
R(x, y) ∪ R̂(x, y)dx dy

, (28)

whereR(x, y) and R̂(x, y) are the true and predicted thresholded averaged CDM, respectively
—see Equation (19).

4. Results and Discussions
4.1. Dataset

We utilize the EPFL-MPV, EPFL-Wildtrack, and OxTown public datasets along with
the pose estimations prepared in [26]. The EPFL-MPV is comprised of four sequences,
named 6p-c0, 6p-c1, 6p-c2, and 6p-c3, for six people moving freely in a room [49]. The
sequences are synchronized and view the same environment but from different perspectives.
Each sequence is recorded at 25 frames per second (fps) and has 2954 frames. The EPFL-
Wildtrack contains seven synchronized sequences, named C1-C7, with approximately
20 people moving outdoor [50]. The sequences view walking pedestrians outside the
main building of the ETH university in Switzerland. They are shot using seven cameras
positioned at different locations and each has a total number of 400 frames. Lastly, the
OxTown is a street surveillance video with 4501 frames shot with a single camera at 25 fps.
It oversees, on average, 16 people walking down a street in Oxford, London [51].

4.2. Preprocessing and Settings

The utilized datasets offer annotations in terms of bounding boxes that localize people
in the scene. Additionally, they provide the homography matrix and the image-to-real
distance scale of each recording camera. The EPFL-MPV and OxTown bounding boxes



Sensors 2022, 22, 418 14 of 21

are vertically over-sized and enclose more than the areas occupied by the human subjects.
Therefore, their bottom mid-points are lower than the subjects actual ground positions. In
this work, we correct for this by shifting the mid-points up a percentage of the bounding
box total height. In specific, we apply a 10% and 2% uplift to the EPFL-MPV and OxTown lo-
calization data, respectively. Moreover, the OxTown dataset annotation includes bounding
boxes for babies in strollers/prams accompanied by adults. This is outside the scope of our
work; hence, we discard them (This corresponds to the following subject IDs: 24, 42, 44, 45,
and 47). Finally, the ROI for each dataset/sequence is manually selected, in the image–pixel
domain, to cover the floor of the scene. The ROIs include most annotated positions, but we
discard the remaining few that are outside the selected area. This corresponds to excluding
2.38% (960 out of 40,393), 6.67% (4767 out of 71,460) and 15% (6403 out of 42,721) of the
EPFL-MPV, EPFL-Wildtrack, and OxTown annotations, respectively. The proposed system
smoothing and tracking parameters are found for every dataset/sequence by minimizing
the localization error in Equation (21) using the Bayesian optimization algorithm in MATLAB;
see Table 1. The optimization is executed for 500 iterations using the expected improvement
plus acquisition function and repeated five times for verification [52].

Table 1. The proposed system smoothing and tracking optimized parameters for each utilized
video sequence.

Sequence
Parameters

σ1 σ2 σ3 γg γc γd

6p-c0 6 × 10−9 0.204 2.01 398 76 −186

6p-c1 8.21 0.329 8.78 399 64 −71

6p-c2 0.216 0.278 0.271 52 52 −84

6p-c3 7 × 103 0.015 1.76 104 86 −106

OxTown 2 × 10−4 0.873 0.142 23 11 −26

C1 7 × 10−9 6 × 10−9 2 × 10−5 11 1 −92

C2 0.002 10−9 1.46 12 8 −181

C3 0.02 0.0078 6 × 10−8 139 2 −5

C4 429 0.022 0.062 81 3 −2

C5 10−8 2.05 3.79 15 3 −41

C6 9 × 103 10−7 4 × 10−8 15 9 −106

C7 5 × 10−7 0.0006 4 × 10−7 395 1 −2

4.3. System Integration

Figure 6 illustrates three examples for integrating the proposed system outputs and
displaying them on the user interface unit. These examples offer complementary interpre-
tations for the scene and serve different purposes depending on the intended application or
required analysis. For instance, in Figure 6a, the input video frame, depicted in Figure 4, is
overlaid with the localization and averaged ODM results. This type of display is important
when monitoring crowds in public areas or for analyzing customer’s browsing habits and
preferences in shops. Moreover, we show in Figure 6b that the former information can
be replaced with the detected social distance violations and the averaged thresholded
CDM. This example is directly intended for social distance monitoring applications and
can be used to oversee critical waiting areas, e.g., in airports and hospitals. Furthermore,
Figure 6c demonstrates a dynamic top-view map for the scene by plotting the localization,
inter-personal distances, and the averaged CDM in the real-world coordinates. This figure
serves as a footprint for redesigning congested areas and facilitates developing physical
interaction protocols and guidelines. Finally, apart from these applications, one can merge
and/or adjust the type and amount of displayed information. In addition, the user is able to
view one or multiple integrated frames, or top-view maps, simultaneously; hence, offering
valuable information about the scene and crowd state. The supplementary material of this
paper includes videos of the system integration outcome for other video sequences.
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(a) Integrated video frame with the subject local-
ization and averaged occupancy density map.

(b) Integrated video frame showing the detected
social distance violations and averaged thresh-
olded crowd density map.

(c) Dynamic top-view map showing the local-
ization, inter-personal distances, safety distance
violations, and averaged crowd density map.

Figure 6. The proposed system example integrated video frames and dynamic top-view maps
using frames 1 to 1824 of the EPFL-MPV dataset scene 6p-c0. The type and amount of displayed
information is adjustable and one can view multiple integrated frames and/or top-view maps
simultaneously. Note that the pair-wise lines in (c) are plotted only for distances between 0 and 3 m
to ease visualization.

4.4. Evaluations and Results

Figure 7 demonstrates the social distance violation detection performance of the basic
and proposed approaches in terms of accuracy, F1-score, and VCR. In addition, it shows
their IOU for identifying the overcrowded regions in the scene. The results are computed
for a range of safety distances and averaged across all video sequences. We vary the safety
distance from 1 to 2.5 m with a 0.05 step to cover a wide range of guidelines. Moreover,
Table 2 illustrates the system capacity to detect human subjects, localize their positions,
recognize social distance violations, estimate crowd density maps, and identify high-risk
areas in each video sequence; it summarizes the PDR, localization error, accuracy, F1-
score, precision, recall, VCR, CORR, and IOU. The results are averaged across the range of
safety distances and we assess the gain in performance delivered by the smoothing and
tracking stage.

1 1.5 2 2.5
Social distance (m)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Accuracy (Proposed)
F1-score (Proposed)
VCR (Proposed)
IOU (Proposed)

Accuracy (Basic)
F1-score (Basic)
VCR (Basic)
IOU (Basic)

Figure 7. The performance evaluation results in terms of accuracy, F1-score, VCR, and IOU averaged
across all video sequences and plotted for a range of social safety distances.
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Table 2. The performance evaluation results in terms of PDR, localization relative error, accuracy,
F1-score, precision, recall, VCR, CORR, and IOU averaged across the range of safety distances and
summarized for each video sequence. The proposed approach is evaluated with (3) and without
(5) the smoothing/tracking stage (S/T). Best results are in bold to ease interpretation and results
depicting highest gain are in brackets for comparison.

Measure Approach S/T
EPFL-MPV

OxTown
EPFL-Wildtrack

Overall
6p-c0 6p-c1 6p-c2 6p-c3 C1 C2 C3 C4 C5 C6 C7

PDR

Basic [26] - 90.9 90.7 87.5 87.3 85.7 59.2 56.6 74.2 87.3 78.2 (39.9) 91.3 85.4

Proposed
5 93.8 94.0 89.1 88.1 88.4 64.7 62.6 79.1 88.5 80.8 43.5 92.5 87.9

3 95.6 96.5 91.9 90.8 89.8 84.4 83.4 79.2 88.5 83.9 (82.9) 92.6 91.5

Error

Basic [26] - 17.0 17.2 23.0 21.9 24.0 51.3 52.8 49.0 41.3 33.8 (80.4) 15.4 24.7

Proposed
5 12.6 13.2 20.7 20.6 20.8 47.0 47.1 49.8 39.8 30.9 76.1 14.3 21.7

3 10.7 10.7 16.6 17.8 19.1 31.9 36.7 48.3 36.3 27.0 (42.0) 14.0 18.0

Accuracy

Basic [26] - 91.0 89.2 83.3 85.6 92.8 95.5 97.7 92.5 88.0 92.3 (82.7) 97.0 89.3

Proposed
5 94.1 92.7 86.5 88.2 94.5 96.5 98.6 93.5 88.5 93.0 87.0 96.9 91.8

3 94.9 94.6 88.2 89.8 95.6 99.4 99.7 93.5 88.1 92.7 (99.7) 96.9 93.3

F1-score

Basic [26] - 90.7 89.1 80.7 83.8 95.9 97.7 98.8 95.9 79.2 95.7 (90.2) 98.1 89.5

Proposed
5 94.4 92.9 85.0 87.5 96.9 98.2 99.3 96.5 81.2 96.0 92.9 98.1 92.3

3 95.2 94.9 87.0 89.5 97.5 99.7 99.8 96.5 80.0 95.9 (99.8) 98.1 93.6

Precision

Basic [26] - 98.2 98.1 98.4 95.6 97.4 100 100 98.7 88.8 100 100 99.0 97.6

Proposed
5 96.0 97.4 96.8 93.4 97.2 100 100 97.4 85.0 99.8 100 98.6 96.4

3 95.7 97.0 96.4 91.7 97.0 100 100 97.4 86.4 98.2 100 98.6 95.9

Recall

Basic [26] - 84.8 82.6 69.5 75.4 94.4 95.5 97.7 93.5 71.6 91.7 (82.7) 97.3 83.7

Proposed
5 92.8 89.3 76.5 82.6 96.6 96.5 98.6 95.8 77.9 92.6 86.9 97.6 89.0

3 94.6 93.0 79.8 87.5 98.1 99.4 99.7 95.7 74.7 93.7 (99.7) 97.6 91.8

VCR

Basic [26] - 81.3 78.5 78.1 78.7 64.8 33.5 36.5 46.1 86.7 72.6 (20.9) 86.8 72.2

Proposed
5 84.3 83.7 80.1 80.1 67.6 38.4 43.1 48.3 85.9 75.9 26.0 89.7 75.1

3 86.0 86.6 81.4 79.6 65.1 62.5 63.2 47.5 86.5 73.3 (59.8) 89.7 77.0

CORR

Basic [26] - 98.3 99.1 98.9 98.9 (85.3) 89.1 73.4 85.8 96.4 88.2 72.3 98.8 93.8

Proposed
5 99.2 99.4 99.2 99.3 89.4 90.0 72.5 86.0 96.8 90.7 72.3 98.6 95.1

3 99.4 99.2 99.2 99.2 (89.9) 89.3 77.3 86.3 97.1 91.1 72.8 98.6 95.3

IOU

Basic [26] - (74.7) 86.2 84.1 84.0 52.2 51.8 47.1 63.8 61.9 44.7 13.9 83.8 70.8

Proposed
5 83.4 89.6 85.3 86.1 61.0 55.7 51.3 61.5 66.9 47.3 14.4 83.4 75.6

3 (87.1) 89.2 86.3 85.7 63.8 55.3 55.2 61.6 68.2 50.7 22.3 83.4 77.1

The trends in Figure 7 indicate that the accuracy, F1-score, and IOU increase with the
safety distance, whereas the VCR is stable for the proposed approach and decreases for the
basic method. Additionally, they depict the gain in performance delivered by the proposed
system. Specifically, the boost in accuracy, F1-score, VCR, and IOU is up to 5.8%, 9.5%, 7.6%,
and 10.7%, respectively. Furthermore, by examining the results in Table 2, one notes a clear
advantage for utilizing the proposed system as it yields the best overall performance across
all measures, except precision to ensure balanced precision/recall trade-off. In specific,
it offers the highest person detection rates and lowest localization errors for all video
sequences with gains up to 43% and 38.3%, respectively. Similarly, it results in better social
distance violation recognition and raises the conventional method accuracy, F1-score, and
VCR by 17%, 9.6%, and 39%, respectively. Moreover, the quality of the estimated crowd
density maps, in terms of correlation, is high for both techniques, because the contribution
of faulty detections is insignificant to the long-term averaged estimation. However, it is not
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the case when identifying high-risk regions. The results highlight a growth in the IOU of
the proposed method up to 12.4%; hence, it is more reliable. Finally, Table 2 emphasizes
the smoothing and tracking role where it offers a considerable improvement due to its
treatment for occlusions and missing data. In particular, it balances the system efficacy, by
reducing the difference between precision and recall, and expands its functionality to cover
various tasks and application domains.

Table 3 shows a comparison between the proposed system, the basic pose-based ap-
proach from [26], and an object detection-based system developed in [15]. The comparison
focuses on the systems’ ability to detect social distance violations in the OxTown dataset
with a 2 m social safety distance. Note that since the compared solutions do not utilize track-
ing, we demonstrate the proposed system results with and without the smoothing/tracking
stage. In addition, we illustrate example results in Figure 8 to visualize the proposed system
outcomes. The results in Table 3 verify the proposed system applicability and the adequacy
of pose-based techniques to detect social distance infractions. They indicate a 4.6% and 3%
gain in accuracy and F1-score, respectively, when compared to the object detection-based
method in [15]. In addition, they affirm the smoothing and tracking stage role which pushes
the proposed system accuracy and F1-score by 0.9% and 0.5%, respectively.

Table 3. Comparison for the social distance violation detection performance using the OxTown
dataset with a 2 m social safety distance. The Yang et al. results are extracted from Table 6 in [15]. The
proposed approach is compared with (3) and without (5) the smoothing/tracking stage (S/T). Best
results are in bold to ease interpretation and results that are used in the discussion are in brackets.

Method Accuracy F1-Score Precision Recall

Yang et al. [15] (92.8) (95.6) 95.4 95.9

Basic [26] 96.0 97.9 98.9 96.8

Proposed, S/T: 5 (97.4) (98.6) 98.8 98.4

Proposed, S/T: 3 (98.3) (99.1) 98.7 99.5

(a) Results in the image–pixel coordinates. (b) Results in the real-world coordinates.

Figure 8. Example social distance violation detection results using frames 1 to 2005 of the OxTown
dataset with a 2 m social safety distance. (a,b) overlay the detection results with the averaged ODM
and CDM, respectively.

4.5. Computational Complexity Analysis

The complexity of the proposed system is measured by its frame rate; the number
of processed video frames per second, and processing rate; the amount of processing
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time per frame. The assessment is conducted by Monte-Carlo simulations where we run
the model depicted in Figure 1 using all video frames and repeat the process ten times
for validation. Note that we exclude the complexity of OpenPose since we use the pre-
computed poses in [26]. Nevertheless, OpenPose real-time operation on both CPU and
GPU machines was verified in [37,53]. In addition, we select OpenPose due to its simplicity
and availability, but it can be replaced with any other pose estimation model given the
same body joints indexing scheme described in Section 3.1.1. We use a desktop equipped
with 2 Intelr Xeonr E5-2697V2 x64-based processors, 192 GB of memory, and MATLAB

R2020b. Figure 9 demonstrates the developed system frame and processing rates with
respect to the number of detected/tracked subjects. The averaged results suggest that the
system is capable of running in real-time despite the smoothing/tracking stage additional
complexity. Specifically, it runs at 106.5 fps (9.9 ms/frame) when solely relying on the
proposed localization strategy and at 33.6 fps (44.5 ms/frame) when accommodating the
tracking algorithm. Moreover, the results indicate that the localization approach complexity
depends on the amount of occlusions present in the video frame—see Figure 9a. This
is shown by the drop in frame rate when 2–6 people are present and by its slow decline
when having more than 7 people in the scene. The first drop is caused by the EPFL-MPV
dataset where we have six subjects moving in a highly confined environment resulting in
many occlusions, while the second is due to the general increase in the number of people,
which escalates the chances of occlusion. Furthermore, the smoothing/tracking introduced
complexity is demonstrated by the frame rate rapid decay when increasing the number
of subjects—see Figure 9b. The trends reveal the system limited ability to resolve highly
dense crowds. In particular, the average frame rate drops below 25 fps (40 ms/frame) and
12 fps (83 ms/frame) when we have more than 10 and 17 people, respectively. Nevertheless,
these findings highlight a need to distribute the computational load across the surveillance
infrastructure. For instance, stages 1–4 in Figure 1 can be performed locally by the camera
or on edge devices, while stages 5–9 require more resources.
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(a) Without the smoothing/tracking stage.
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(b) With the smoothing/tracking stage.

Figure 9. The computational complexity analysis results in terms of frame and processing rates. The
proposed approach is tested with and without the smoothing/tracking stage. The results are grouped
by the number of detected/tracked subjects.

5. Conclusions

The COVID-19 pandemic has deemed social distancing a critical first line of defense
against its wide spread; nevertheless, safety distance guidelines are not always followed.
Monitoring social distancing is important to draw realistic mitigation plans and to structure
exit strategies. However, it is a labor-intensive task and suffers from subjective interpre-
tations; therefore, combining computer vision and machine learning models with mass
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surveillance is intuitive for automation, but it must preserve privacy to ensure ethical
adoption and application.

This work presented a privacy-preserving adaptive social distance estimation and
crowd monitoring system for surveillance cameras. We evaluated the system’s ability to
detect human subjects, localize their positions, recognize social distance violations, estimate
crowd density maps, and identify high-risk areas. Additionally, we analyzed its compu-
tational complexity in terms of processing time. The results indicated a clear advantage
for utilizing the proposed localization approach when compared to the latest techniques.
In addition, they showed a considerable improvement delivered by the adaptive smooth-
ing and tracking stage. Specifically, the system improves the PDR, localization relative
error, accuracy, F1-score, VCR, and IOU up to 43%, 38.3%, 17%, 9.6%, 39%, and 12.4%,
respectively. In addition, it runs at 33.6 fps (44.5 ms/frame) making it a real-time solution
for low to medium-dense crowds. The proposed system occupancy/crowd density map
functionality extends its application domain beyond the COVID-19 pandemic to cover
other areas. For instance, it can help re-configure or re-design common physical layouts and
relocate facilities in businesses to optimally reduce congestion. Additionally, it is capable
of facilitating the analysis of customer’s browsing habits in shops and quantifying the
effectiveness of marketing kiosks.

The developed system, although advantageous, is still limited and can be extended
in various ways such as: (1) estimating the body orientation to relax the assumption of
vertically oriented subjects; (2) fuse detections and estimations from multi-view cameras
to assess the environment state rather than the camera specific scenery; (3) develop an
automatic online training paradigm for the tracking algorithm parameters; (4) embed
regression techniques to estimate the crowd density maps; (5) detect other anomalies such
as fire, smoke, unattended objects in public places, and abnormal individual or crowd
behavior. These will be the topics of our future research.
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