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Abstract: The structured road is a scene with high interaction between vehicles, but due to the
high uncertainty of behavior, the prediction of vehicle interaction behavior is still a challenge. This
prediction is significant for controlling the ego-vehicle. We propose an interaction behavior prediction
model based on vehicle cluster (VC) by self-attention (VC-Attention) to improve the prediction
performance. Firstly, a five-vehicle based cluster structure is designed to extract the interactive
features between ego-vehicle and target vehicle, such as Deceleration Rate to Avoid a Crash (DRAC)
and the lane gap. In addition, the proposed model utilizes the sliding window algorithm to extract VC
behavior information. Then the temporal characteristics of the three interactive features mentioned
above will be caught by two layers of self-attention encoder with six heads respectively. Finally, target
vehicle’s future behavior will be predicted by a sub-network consists of a fully connected layer and
SoftMax module. The experimental results show that this method has achieved accuracy, precision,
recall, and F1 score of more than 92% and time to event of 2.9 s on a Next Generation Simulation
(NGSIM) dataset. It accurately predicts the interactive behaviors in class-imbalance prediction and
adapts to various driving scenarios.

Keywords: vehicle interaction behavior prediction; self-attention; vehicle cluster; end-to-end prediction;
class imbalance

1. Introduction

In the traffic scene, the perception technology of intelligent vehicles can help their
vehicles perceive the complex environment. The Society of Automotive Engineers (SAE) has
defined six different levels of driver assistance technology [1]. Higher-level autonomous
driving technology requires better environment perception capabilities, not only to detect
the relevant objectives of the current environment but also to predict the associated potential
risks of the ego-vehicle. For the ego-vehicle, both its behavior and surrounding objects may
cause potential risks. The prediction for the ego-vehicle is due to the driver’s predicted
intention, which is based on the vehicle manipulation signal of the On-Board Diagnostic
(OBD) and the in-vehicle camera. It also considers operating information and personal
driving style [2]. The objects around the ego-vehicle are composed of static objects and
dynamic objects. Real-time changes of dynamic objects require not only detecting the
object’s position but also predicting the intention of the object. As the most common traffic
participants in the driving environment, the surrounding vehicles can reduce the transfer
of control rights of the ego-vehicle system by predicting the change of the right of the way
relative to the ego-vehicle at an early stage [3].

There are different vehicle flows at different times in the traffic scene. If similar time
series occur when the traffic data is normally similar, future traffic value is likely to be
similar [4]. Therefore, the three traffic flow conditions, under the condition build-up, or the
transition between unconstrained and conditioned conditions, and full condition during the
peak period, cover various road environment data types. At the same time, traffic planning
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is committed to predicting future traffic conditions and using the information to optimize
vehicle routes to reduce traffic congestion and improve traffic mobility [5]. Therefore, in
the actual traffic environment, human drivers will also tend to avoid congestion. The
prediction of vehicle interaction behavior needs to adapt to different traffic flow conditions.

In response to the above problems, this paper proposes a novel prediction model, fo-
cusing on the target vehicle that significantly impacts the ego-vehicle. A five-vehicle cluster
is proposed to extract interactive information. In other studies, time-series information
is also used as the prediction input. To avoid recursion, achieve parallel computing, and
reduce the performance degradation caused by long-term dependence, this paper uses the
multi-head self-attention encoder to understand timing information. Furthermore, this
paper proposes a VC-Attention to improve vehicle interaction behavior prediction.

The remainder of this paper is organized as follows: Section 2 introduces the related
works and existing problems of vehicle behavior prediction. Section 3 briefly introduces
the construction of a five-vehicle cluster, the prediction model based on self-attention
encoder, and the extraction of interactive features and the optimization of prediction
models. Section 4 presents the experiments and an analysis of the results. The paper ends
with our conclusions.

2. Related Works

The field of advanced driver assistance systems (ADAS) has matured, and vehicle
interaction behavior prediction is essential [6]. Two sensor signals are widely used in lane
change prediction of surrounding vehicles, including driver behaviors and traffic context [7].
For instance, deep recurrent neural networks with driving maneuver behaviors and traffic
environment context predict drivers’ imminent maneuvers [8]. The traffic context is similar
to the observation information received by radar and camera. The intelligent cruise control
in the advanced driving assistance system uses the surround-view surveillance camera to
realize the blind-spot cut-in warning of the surrounding vehicles by combining with the
tire detection vehicle [9]. The novel vision data is used to predict modified lane change
prediction with object detector in multi-layer perceptron algorithms [10]. Based on the
video information, the Two-Stream Convolutional Networks, the Two-Stream Inflated
3D Convolutional Networks, the Spatiotemporal Multiplier Networks, and the SlowFast
Networks are used to identify and predict interactive behaviors by analyzing different
size areas around the vehicle [11]. The above method has insufficient advance time in
predicting vehicle right-of-way change, which poses a significant challenge to implementing
corresponding feedback for the ego-vehicle.

As for implementing lane changing actions, driver motivation, such as extracting
steering wheel angle, angular velocity, angular acceleration, is also used as a feature input
to identify the driver’s intention to change lanes in the early stage [12]. For instance, driver
behavior recognition based camera information is used in manifold learning to predict
lane-change behavior [13]. Further considering the driving habits, based on the Gaussian
distribution of the hybrid HMM, a driver’s lane changing intention recognition model is
constructed for each driver [14]. However, driver behavior identification may interfere
with driver behavior and even violate privacy.

There is a certain equivalence between vehicles’ lane change intention prediction
and driver lane change intention recognition. Because of the current sensing technology,
the ego-vehicle cannot directly detect driver behavior of the target vehicle but can only
obtain traffic context. The driver’s lane change intention is also affected by traffic context,
such as the slow leading vehicle, return lane, and merging vehicle, which can be used
as input for lane change reasoning [15]. Therefore, the vehicle interaction information
that affects the driver’s intention is used to predict the change of vehicle right-of-way.
Using the traffic context, the Support Vector Machine (SVM), Bayesian Net-work (BN),
Logistic Regression (LR) [16], Artificial Neural Network (ANN) [17], and eXtrem Gradient
Boosting (XGBoost) [18] present good performance in lane change prediction. As for traffic
context, there is a method of predicting the driver’s intention through uncertainty multi-
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modal trajectory prediction with trajectory history [19], using the Gaussian mixture model
to identify and predict lane change intentions through the context information on four
adjacent vehicles and the target vehicle [20]. To tackle time series prediction problems, an
intention inference model based on recurrent neural networks (RNNs) is proposed [21].
In highway interweaving areas, the long-short-term memory network (LSTM) is used to
predict the future trajectory of the lane-changing vehicle [22].

To process timing information, a RNN model is proposed such that the calculation of
this time step depends on the information of the previous time step. To solve the gradient
disappearance and obtain a longer-term information connection, memory, update and forget
gates are proposed in LSTM to capture deeper connections between timing information.
To avoid recursion, achieve parallel computing, and reduce the performance degradation
caused by long-term dependence, the timing information is processed through the self-
attention layer to obtain the previous time step information. Moreover, information on the
vehicle cluster is needed to obtain traffic context.

3. Model and Proposed Methods

The core of our system is a self-attention encoder with a two-layer structure, which
fully considers the predictive features and the relevance of continuous maneuvers, as
shown in Figure 1.
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Figure 1. Framework of proposed prediction approach.

Firstly, this paper determines the current lane and the target lane by the ego-vehicle
and the target vehicle to divide the five-vehicle clusters. Secondly, the vehicle cluster
information is extracted, which includes the interactive features of the target vehicle relative
to the ego-vehicle, the surrounding vehicles relative to the target vehicle, and the vehicle
cluster. Then, based on the time series information, the interactive features of the vehicle
cluster are extracted through the sliding window. Finally, the batch normalized features are
input into the self-attention encoder for subsequent vehicle right-of-way change prediction.

3.1. Intent Prediction Model

This paper aims to establish a lane change prediction model for surrounding vehicles,
focusing on the target vehicle that significantly impacts the ego-vehicle. In the general
lane change scenario, as shown in Figure 2, the gray vehicle is the ego-vehicle, and the
blue, green, and yellow vehicles are target vehicles driving in the right and left adjacent
lanes and the current lane, respectively. The scope of target vehicles is vehicles driving in
the adjacent lanes between the ego-vehicle and ego-vehicle’s front vehicle and the front
vehicle, as those target vehicles may change lanes and the change of right-of-way. This
paper establishes lane change prediction models for cut-in or cut-out of target vehicles. The
vehicle clusters around the ego-vehicle are divided into three five-vehicle clusters based on
the three target vehicles in the front left, front, and front right.
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Figure 2. Diagram of case division.

Under the driving situation, if there is no other vehicle blocking, lane-changing
behavior will be avoided as much as possible. If the front vehicle speed is too slow
or the driving space in the adjacent lane is sufficient, the timing of the lane change will be
judged according to the state of the surrounding vehicles, and the lane change behavior
will occur [23]. Our research assumes that sensors of the ego-vehicle could detect the state
of the vehicle cluster in their detection range. The interaction between the cluster and
the self-vehicle, the cluster and the target vehicle, and the clusters are used as time series
information to predict the intention of the target vehicle lane changing. At any time t,
extract the interactive features of the five-vehicle cluster, take t ∼ t− tobs as the observation
frames, and t + 1 ∼ t + tpre the prediction frames. The prediction result is a time series
one-hot coding matrix, which predicts three intentions of right-of-way encroachment (cut-
in), right-of-way release (cut-out), and no change of right-of-way (no-cut). The primary
neural network structure of this article is shown in Figure 3.
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Figure 3. The structure of the VC-Attention.

The structure proposed in this paper includes the feature extraction of vehicle clus-
ters with ego-vehicle and target vehicle as to the main body, and the processed fea-
tures obtain time-series information through pose embedding, which is coded through
two self-attention coding layers. The vehicle cluster information is encoded and inputs
into the decoding layer, which uses an end-to-end prediction method to predict vehicle
intentions to avoid error accumulation. If the prediction information relies on the previous
frame, the prediction error of the previous frame cumulatively affects the prediction results
of all subsequent frames.

3.2. Self-Attention Encoder

The processing of time-series information usually uses Recurrent Neural Network
(RNN), so that the calculation of this time step depends on the information of the previous
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time step. To solve the gradient disappearance of RNN, Gated Recurrent Unit (GRU) is
introduced to capture deep connections through memory gates and update gates. To obtain
a longer-term information connection, a forgetting gate is introduced based on GRU to
capture deeper connections between timing information through LSTM. The cyclic neural
network processes the timing information serially. To avoid recursion, achieve parallel
computing, and reduce the performance degradation caused by long-term dependence, the
timing information is processed through the self-attention layer to obtain the previous time
step information.

The self-attention mechanism disassembles the timing information so that the input
information has no timing dependence, which means the near-frame information and the
far-frame information have the same influence on the prediction. Therefore, it is necessary
to distinguish the near and far frame information by adding time sequence coding [24], as
shown in Equation (1).

Xembedding = Xembedding + Xpose, (1)

where Xpose is position information, and Xembedding is the information before and after
positional encoding. Since the length of the input time sequence is small, the time sequence
information is encoded into the input information through self-learning positional encoding
to add time sequence dependence.

Attention is a mapping relationship between a set of key-value pairs, for which the
corresponding value can be obtained by querying the corresponding key. The traditional
attention mechanism forms the corresponding relationship between query value and
key-value pair through the corresponding relationship between input and output [25],
while self-attention is to construct the mapping relationship between the query and key-
value pair based on the relationship between input sequence information. Obtain the
output value through weighted calculation. Multiply the input sequence information with
different conversion matrices to obtain query values and key-value pairs [26], as shown in
Equation (2).

Q = X×Wq
K = X×Wk
V = X×Wv

(2)

where Q is the query vector, K is the key vector of the correlation between the queried
information and other information, and V is the value vector of the queried vector. Through
the query vector and the key vector of the correlation between the queried information
and other information, the scaled inner product is used to obtain the correlation measure
between the input information, and the dot product self-attention is obtained, as shown in
Equation (3).

αi,j =
Qi·Kj√

d
, (3)

where αi,j is the dot product self-attention, and d is the dimension of the key vector.
The scaled dot-product attention is the dot product self-attention weight of each queried
information relative to the query vector. This method selectively obtains branch information
through the information relevance flag. If α̂ = 0, the branch information is not considered,
as shown in Equation (4).

α̂i,j =
exp αi,j

∑p exp αi,p
, (4)

where α̂i,j is the scaled dot-product attention. It can be equivalent to the weighted summa-
tion of the value vector of the query vector through the softmax layer as the information
relevance flag to obtain the timing feature, as shown in Equation (5).

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V, (5)
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where Attention is the result of self-attention encoder. Dot product self-attention is im-
plemented using highly optimized matrix multiplication codes, saving calculation time
and space.

A multi-head attention mechanism extracts multiple independent semantics to prevent
over-fitting. Use different linear projections to generate query vectors, key vectors, and
value vectors, perform dot product attention in parallel, and then connect them for re-
projection, as shown in Figure 4. Different linear projections focus on different subspace
information, and the total computational cost does not increase. After each layer, the
residual connection is used to prevent network degradation, and the activation value of
each layer is normalized.
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Figure 4. The structure of the multi-head attention.

In layer normalization, the input of neurons in the same layer has the same mean
and variance, and different input samples have different mean and variance. Compared
with batch normalization, it is necessary to calculate and save the mean and variance of
a certain layer of neural network batch. Statistical information is more suitable for time
series models with depth changes. Batch normalization is shown in Equation (6).

µl=
l
H ∑H

i=1 al
i

σl=

√
l
H ∑H

i=1 (al
i − µl)2

a−l
i =

gl

σl ·(al
i − µl) + b

(6)

where l is the lth hidden layer, H is the number of nodes in this layer, and a is the value
of a certain node before activation, that is, a = wx + b, where w is gain parameter and b is
bias parameter, which can be included in training and training with a group of samples. At
the same time, it contains a fully connected feedforward network as shown in Equation (7),
including two linear transformations, and the first layer uses the RELU activation function.

FNN(x) = max(0, xW1 + b1)W2 + b2, (7)

where FNN is the result of the feedforward network.
For the time series model, the input tokens are converted into tensors by positional

encoding, and multiple independent semantics are obtained through multi-head self-
attention splicing. Then the feedforward network is connected through residual connection
and layer normalization, and the encoded output is obtained through residual connection
and layer normalization. The whole constitutes a self-attention encoder, as shown in
Figure 5.
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3.3. Interactive Feature Extraction

Establish a coordinate system based on the ego-vehicle, which focuses on the front
vehicle of the current lane and the adjacent vehicles on both sides of the lane. Taking the
front vehicle in the current lane and the adjacent vehicle in the left and right lane as the
target vehicles, three-vehicle clusters focusing on the behavior of the target vehicles are
constructed. The five-vehicle cluster centered on the ego-vehicle and the target vehicle also
includes the front vehicle in the current lane and the front and behind vehicles in the target
lane to construct a dynamic environment of two adjacent lanes shown in Figure 6. If the
target vehicle and the ego-vehicle are in the same lane, the target lane is selected according
to the lateral speed direction of the target vehicle. In a complex traffic environment, the
change of vehicle’s trajectory coordinates cannot fully reflect the interaction between the
vehicles during the lane change and their neighbors. Therefore, the interactive information
between the cluster vehicles is introduced.
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The surrounding five-vehicle cluster features are divided into three types: the interac-
tive information of the target vehicle relative to the ego-vehicle, the interactive information
of surrounding vehicles relative to the target vehicle, and the interactive information of
the vehicle cluster. In the interactive information of surrounding vehicles relative to the
target vehicle, the Deceleration Rate to Avoid a Crash (DRAC), which characterizes the
driving risk, is introduced as an early warning study of dangerous driving behavior [27].
The collision avoidance deceleration refers to the minimum deceleration required by the
following vehicle to match the vehicle’s speed in front of its target lane and avoid a collision.
When the vehicle is ready to change lanes, it can be regarded as the potential risk degree
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of the vehicle and the vehicle in the same lane, the vehicle before and after the target lane,
then the DRAC value of the vehicle at time t is shown in Equation (8).

DRAC =

{
(v f ol(t)−vpre(t))

2

d v f ol(t) > vpre(t)
0 else

, (8)

where v f ol(t) is the speed of the following vehicle at time t, vpre(t) is the speed of the
preceding vehicle at time t, and d is the relative distance between the following vehicle and
the preceding vehicle. Among the three types of interactive information, the interactive
information of the target vehicle relative to the ego-vehicle and the interactive information
of surrounding vehicles relative to the target vehicle include the relative speeds, relative
accelerations, and relative positions. The interactive information of the vehicle cluster
includes relative positions and the gaps in the lanes—the DRAC and the gap supplement the
deficiencies of traditional trajectory information in the prediction. The specific interaction
characteristics are shown in Table 1.

Table 1. Interactive feature parameters.

Feature Type
(Interaction Information) Related Parameters Parameter Representation

Between the target vehicle and the ego-vehicle
Relative speed/(m/s) vX

Tar , vY
Tar

Relative acceleration/(m/s2) aX
Tar , aY

Tar
Relative position/(m) xTar , yTar

Between surrounding vehicles and the target vehicle

Relative speed/(m/s) vX
f , vY

f , vX
f 1, vY

f 1, vX
r1, vY

r1
Relative acceleration/(m/s2) aX

f , aY
f , aX

f 1, aY
f 1, aX

r1, aY
r1

Lateral distance/(m) xcur−tar , x f−tar , x f 1−tar , xr1−tar

Deceleration rate to avoid a crash/(m/s2)
DRACX

cur , DRACY
cur , DRACX

f , DRACY
f , DRACX

f 1,
DRACY

f 1, DRACX
r1, DRACY

r1

Vehicle cluster
Relative position/(m) xtar , ytar , x f , y f , x f 1, y f 1, xr1, yr1
Gap in the lane/(m) GAPcur , GAPtar

3.4. Model Optimization

Data normalization can effectively eliminate the influence of different indicators
corresponding to different dimensions and units, as shown in Equation (9). By uniforming
the range of different feature values, the gradient descent speed and the model accuracy
are improved, and the gradient explosion is prevented.

x∗ =
(x− µ)

σ
, (9)

where µ is the mean of the data, and σ is the standard deviation of the data. The multi-class
model adopts the cross-entropy loss function, as shown in Equation (10), to judge the
closeness of the actual output and the expected output, and the output value after softmax
is used to simplify the cross-entropy function.

H(p, q) = −∑
x
(p(x) log(q(x)), (10)

where p(x) is the true value, and q(x) is the predicted value.
Adaptive Momentum Estimation uses momentum and root mean square based on

gradient descent to improve the performance of sparse gradient problems and adjusts it
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according to the average value of the weight gradient. The back-propagation gradient d̂t at
time step t is shown in Equation (11).

Vdt = β1Vdt−1 + (1− β1)dt

Sdt = β2Sdt−1 + (1− β2)d2
t

d̂t=
Vdt/(1− βt

1)√
Sdt/(1− βt

2) + ε

(11)

where dt is the current time step gradient, Vdt is the one-order moments estimation of the
gradient at time step t, Sdt is the two-order moments estimation of the gradient at time
step t, ε is added to maintain numerical stability, mostly 1 × 10−8, β1 is the exponential
decay rate of the one-order moments, mostly 0.9, and β2 is the exponential decay rate of the
two-order moments, mostly 0.999. L2 regularization controls model complexity, reduces
overfitting, adds penalty items to the original loss function, and punishes models with high
complexity, as shown in Equation (12).

Ĵ(ω, x, y) = J(ω, x, y) + λ||ω||22, (12)

where x is the training sample, y is the training label, ω is the weight coefficient vector;
λ is the control of the regularization strength parameter, which default is 0.001. To solve
the obvious defect of Adam convergence proof [28], L2 regularization is combined with
Adam through scaling, as shown in Equation (13), so that the weight with large gradient
information will not decay like the decoupled weight, and the AdamW with decoupled
weight attenuation is obtained [29].

dt = ∇ f (θt−1) + λθt−1
θt = θt−1 − ηt(αd̂t + λθt−1)

(13)

where θt is the parameter vector of t, ∇ f (θt−1) is θt−1 corresponding gradient, λ is the
control regularization strength parameter of L2 regularization, ηt is the weight attenuation
rate, and α is the learning rate. The learning rate adopts the one-cycle strategy, which
increases from the initial learning rate to the maximum learning rate, and then decreases
from the maximum learning rate to the final learning rate. The learning rate changes with
training times, as shown in Figure 7, which can better match Adamw [30].
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Figure 7. The learning rate changes with the number of iterations.

Increasing the learning rate can help the loss function value escape the saddle point.
One-cycle adapting the learning rate ensures that values near the optimal learning rate are
used throughout the training process [31].
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4. Experiments and Result Analysis
4.1. Datasets

This paper uses the US101 and I80 highway datasets in NGSIM, each vehicle’s position,
speed, acceleration, and headway, at a frame rate of 10 fps, on US Highway 101 and Inter-
state Highway 80 [32]. The dataset includes vehicle trajectory data under the congestion
buildup, or the transition between uncongested and congested conditions, and full conges-
tion during the peak period. The US101 dataset is 640 m, with 5 main roads, 1 auxiliary lane,
and 2 ramps, and the I-80 dataset is about 500 m, with 6 main roads and 2 ramps, as shown
in Figure 8. The use of multi-road datasets can expand the amount of data, introduce the
information noise of vehicle clusters in different road environments simultaneously, and
improve the model’s generalization ability for different road conditions.
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This paper extracts the lane-changing vehicle and its surrounding vehicle information
from the NGSIM data set through a sliding window, a total of 14,552 data fragments. Based
on the interactive information of the surrounding 5 vehicle clusters in the first 10 frames,
the lane-change intention of the vehicles in the subsequent 10 frames is predicted. The
overall data is divided into the training and test sets at 8:2. 11,643 training segments and
2909 test segments are obtained. The starting point of the lane change intention is when
the vehicle’s lateral velocity is larger than 0.2 m/s in the first three consecutive frames.
The endpoint of the lane change intention is when the vehicle’s lateral velocity is less than
0.2 m/s in the last three consecutive frames.

4.2. Experimental Settings
4.2.1. Training Parameter Settings

In this model, the multi-headed self-attention encoder uses six heads. The feedforward
neural network dimension is 128, and Relu is set as the activation function. There is a two-
layer self-attention encoder when the dropout is 0.1. The input dimension is the number of
observation frames, and the number of features per frame is 42. The AdamW optimization
algorithm is used to decouple the weight attenuation and avoid gradient sparseness. The
exponential decay rate of the one-order moment is set to 0.9, the exponential decay rate
of the two-order moment is set to 0.999, and the attenuation weight is set to 0.0004. The
learning rate adopts a single-cycle strategy, and its maximum learning rate is 0.001. The
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input dimension of the fully connected layer is 42, and the output dimension is 3. All
models are trained through 35,000 iterations, and the loss results are shown in Figure 9.
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Figure 9. Loss during training.

After iterative training, the variance between the training set and the test set is the
smallest, and the accuracy of the test set stabilizes and no longer increases. In selection
of multi-head self-attention, multiple attention calculations extract multiple independent
features and then integrate them. In the self-attention model with 2 to 14 heads, the
prediction accuracy is shown in Figure 10.
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Figure 10. The prediction accuracy of different heads of self-attention.

The prediction accuracy first increased and then decreased with the number of self-
attention heads and reached a peak at 6 heads of self-attention. When the multi-head
self-attention exceeds 6 heads, too many independent features are extracted, making the
information dispersion too high. Redundant independent feature extraction increases the
original invisible connection in the data, and it is impossible to effectively obtain the
interactive information that affects the intention of changing lanes. At the same time, the
amount of calculation does not increase significantly as the number of self-attention heads
increases, so this paper selects 6 self-attention heads for feature extraction. In the lane
change intention data, in selecting the number of layers of the self-attention encoder, the
prediction accuracy is slightly improved from layer 2 to layer 6, as shown in Figure 11.
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Figure 11. The prediction accuracy of different self-attention encoder layers.

The prediction accuracy increases with the increase of the number of self-attention
layers. Each self-attention sub-layer realizes independent feature extraction and integration,
gives extra attention to different timing information through sequential understanding,
and obtains different features in end-to-end predictive decoding. However, the increase
of the number of self-attention layers makes the number of backpropagation calculations
significantly increase. Under the enormous computational cost, the prediction accuracy rate
only increased from 92.4% to 92.8% in the coding from 2 to 6 layers. Therefore, a lightweight
network with 2-layer coding is selected for prediction.

4.2.2. Evaluation Parameter Settings

The evaluation indicators in this paper are multi-class accuracy, precision, recall, and
F1 score, as well as TTE (Time To Event), as shown in Equations (14)–(18). The accuracy
represents the proportion of the overall data predicted to be correct, the precision represents
the proportion of the true positive in the predictions, and the recall represents the proportion
of the true positive. The F1 score takes into account precision and recall. When the category
proportions are not balanced, the precision, recall, and F1 score can evaluate the prediction
results more comprehensively than the accuracy.

Accuracy =
TP + TN

TP + TN + FP + TN
, (14)

Precision =
TP

TP + FN
, (15)

Recall =
TP

TP + TN
, (16)

F1 score = 2
P + R
P× R

, (17)

TTE = te − tp, (18)

where TP is the number of true positives, FP is the number of false positives, TN is the
number of true negatives, FN is the number of false negatives, te is the time when the
vehicle right of way change occurs, and tp is the earliest time to predict the intention of the
vehicle right of way change.

4.3. Results Analysis

There are 6380 frames with cut-in intention, 6780 frames with cut-out intention, and
15,930 frames with no-cut intention in the test set. The three-category behavior prediction
results are shown in Table 2.
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Table 2. Prediction results of VC-Attention.

Intention Precision Recall F1 Score

Cut-in 0.907 0.932 0.921
Cut-out 0.912 0.916 0.910
No-cut 0.938 0.925 0.931

Through the ablation experiment, the addition of the DRAC increases the prediction
accuracy, precision, recall, and F1 score by 2.8%, 2.9%, 2.6%, and 2.7%, respectively. The
addition of the lane gap makes the prediction accuracy, precision, recall, and F1 score
increase by 1.3%, 1.1%, 1.4%, 1.2%, respectively. Due to highway conditions, most of the
forced lane changing stations are caused by vehicle driving conditions. The DRAC between
vehicles can directly feedback the speed tolerance in the current lane and the target lane.
Under loose road conditions, drivers tend to drive in lanes with greater speed tolerances.
The lane gap can intuitively reflect the dense traffic of the current lane and the target lane.
When the speed is allowed, the driver tends to drive in the sparse lane of the vehicle.
Therefore, these two characteristics help the network predict vehicle interaction intentions
better based on data.

The method in this paper is compared with representative results from the same data
set in recent years. The behavior prediction results are compared with the prediction
accuracy of the feedforward neural network, logistic regression, Social-LSTM [33], and
support vector machine + artificial neural network [34], as shown in Figure 12. The wathet
line in the figure is the method in this paper.
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As shown in Figure 12, the designed method in this paper has improved accuracy in
all types of predictions. Notably, for cut-in and cut-out, two behavior that have a significant
impact on the driving status of ego-vehicle, our model achieves the best performance
compared to Social-LSTM and has increased by 6.2% and 6.9% respectively, and the overall
prediction accuracy has improved significantly. In the multi-parameter evaluation system,
it is compared with dynamic Bayesian networks [35], HSS based LSTM [36], attention-based
LSTM [37], and Bayesian networks [38], as shown in Table 3.

Table 3. Comparison of prediction and evaluation indicators by different methods.

Method VC-Attention DBN [35] HSS + LSTM [36] A-LSTM [37] BN [38]

F1 Score 0.924 0.795 0.868 0.802 0.61
Precision 0.925 0.705 0.884 0.790 0.53

Recall 0.924 0.94 0.862 0.814 0.72
Accuracy 0.924 0.675 0.965 0.799 0.57

Time to event/s 2.9 3.75 1.5 1.198 1.03
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As shown in Table 3, compared with the dynamic Bayesian network, the F1 score,
precision, and accuracy are increased by 16.2%, 31.2%, and 36.9%, respectively, and the
recall is slightly reduced by 8.8%. Among them, the F1 score can more comprehensively
reflect the prediction in the imbalanced category. This method is only 0.85 s shorter than
the dynamic Bayesian network prediction time while improving the prediction effect.
Under the premise of accurate prediction, the prediction time is guaranteed as much
as possible. Compared with the LSTM network, the F1 score, precision and recall have
increased by 6.5%, 4.6%, and 7.2%, respectively. The accuracy is slightly lower, but 1.4 s
advance the prediction time on average. Compared with A-LSTM, F1 score, precision,
recall, and accuracy are increased by 15.2%, 17.1%, 13.5%, and 15.6%, respectively, and the
prediction time is extended by 1.702 s. Compared with the Bayesian network, F1 score,
precision, recall, and accuracy are increased by 51.5%, 74.5%, 28.3%, and 62.1%, respectively.
The prediction time is 1.87 s earlier, and the overall performance is greatly improved. By
comparison, the advantages of the method proposed in this paper reflect that the time-
series interactive information of the vehicle interactive intentions of the vehicle cluster
can well reflect the vehicle state. Based on this information, the self-attention prediction
method is superior to the vehicle’s interactive behavior intention prediction. This article is
applied to two highways of US101 and I80 simultaneously. There are three road conditions:
the buildup of congestion, the transition between uncongested and congested conditions
and full congestion during the peak period. The congestion buildup period provides low
speed and minor gap conditions to improve robustness. In the case of dense presence of
vehicles, the prediction of the cut-out behavior of the front vehicle is helpful for the vehicle
to maintain the current right-of-way and drive smoothly. The interweaving area (shown in
Figure 13) and the main area have good generalization ability.
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In the interweaving area, which is not considered in SA-LATM [33] and SVM + ANN [34],
this paper realizes that it does not depend on the external environment information to
effectively predict the interaction intentions of the surrounding vehicles to the ego-vehicle.
The A-LSTM [37] uses the distance of the on-/off-ramp to solve the prediction in the inter-
weaving area. However, there are various forms of access ramps in the expressway scene.
The method in this paper, which is not based on map information, can adapt to different
high-speed traffic scenes. Vehicles in the interweaving area are different from the vehicle
cluster state in the traffic area due to the road itself. By exchanging information between the
vehicle clusters, part of the state information can be interpretably classified. For example,
when the vehicle entering the interweaving area is far away from the self-vehicle, it has
a greater acceleration relative to the ego-vehicle. At the same time, when the relative
acceleration is significant, it is still necessary to consider the DRAC, relative position, and
lane clearance to the front and rear vehicles in the current lane. Through the interactive
information between the vehicle clusters, the basis for the judgment of the right of way
change under different road conditions is supplemented. In order that the abnormal part
that affects the judgment of the interactive behavior does not affect the prediction result, the
robust performance of the prediction under different road conditions is increased through
feature extraction of the vehicle clusters.
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5. Conclusions and Future Work

Prediction of vehicle interaction behavior is essential for planning and decision-making
in autonomous driving vehicles. This paper proposes a target vehicle road-right change
intention prediction method based on the interactive information of a five-vehicle cluster
based on the ego-vehicle and the target vehicle. By extracting the interactive information of
the target vehicle relative to the ego-vehicle, the interactive information of surrounding
vehicles relative to the target vehicle, and the interactive information of vehicle clusters,
a two-layer six-head self-attention encoder can be used to predict the intent of the target
vehicle end-to-end. The Deceleration Rate to Avoid a Crash (DRAC) and the lane gap
effectively complement the cluster information. Accuracy, precision, recall, and F1 score
of the proposed model all exceeds 92% and time to event is up to 2.9s on the testing
highway datasets, that includes three traffic flow situations and interweaving and main
areas. Therefore, the model realizes the lane change prediction with class-imbalance data.
In intelligent transportation, the intention prediction of target vehicles can effectively ensure
the ride comfort of ego-vehicle, provide a basis and response time for decision-making and
planning, and effectively reduce traffic accidents.

Since our proposed method is based on deep learning, there are some general limita-
tions. First, the interpretability of deep learning is poor. It learns the implicit relationship
between input and output features but not the causal relationship. Secondly, the neural
network has many parameters. This paper uses edge calculation for a significant amount
of time and relatively large computing power. Finally, the performance of deep-learning-
based model dramatically relies on the collected data. In future research, we will consider
more complicated urban traffic scenarios, including more intersections. Moreover, we will
improve the interpretability of deep learning to fit more scenarios.
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