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Abstract: Wearable health monitoring devices allow for measuring physiological parameters without
restricting individuals’ daily activities, providing information that is reflective of an individual’s
health and well-being. However, these systems need to be accurate, power-efficient, unobtrusive
and simple to use to enable a reliable, convenient, automatic and ubiquitous means of long-term
health monitoring. One such system can be embedded in an insole to obtain physiological data from
the plantar aspect of the foot that can be analyzed to gain insight into an individual’s health. This
manuscript provides a comprehensive review of insole-based sensor systems that measure a variety
of parameters useful for overall health monitoring, with a focus on insole-based PPD measurement
systems developed in recent years. Existing solutions are reviewed, and several open issues are
presented and discussed. The concept of a fully integrated insole-based health monitoring system and
considerations for future work are described. By developing a system that is capable of measuring
parameters such as PPD, gait characteristics, foot temperature and heart rate, a holistic understanding
of an individual’s health and well-being can be obtained without interrupting day-to-day activities.
The proposed device can have a multitude of applications, such as for pathology detection, tracking
medical conditions and analyzing gait characteristics.

Keywords: health monitoring; plantar pressure distribution; gait analysis; wearable sensors; medical
device; smart insole; pressure sensor; IMU

1. Introduction

There is a growing demand for low-cost, unobtrusive and reliable wearable healthcare
solutions to meet the increasing demand for healthcare services that are progressively more
expensive due to soaring costs of diagnostic tools, in-clinic care, and prescription drugs [1].
Such wearable solutions may enable long-term telemonitoring of individuals with limited
access to healthcare services or living under fixed budget conditions. These solutions can
potentially enable early diagnoses and interventions of diseases and reduce the frequency
of visits to or long-term stays at expensive healthcare facilities [2,3]. Economical and smart
devices for healthcare were largely made possible due to recent progress with miniaturized
sensors and actuators as well as advances in wireless communication, computing and
information technologies [3–5]. An insole-based foot health monitoring system is such a
solution that can allow for the overall status of an individual’s health to be monitored in a
cost-effective and simple manner during day-to-day life.

The foot is used in locomotion activities, bears an individual’s weight and provides
balance and support to an individual, which requires proper functioning of the neuromus-
cular system. In order to maintain healthy and normal gait, it is essential for organ systems
such as the cardiovascular, respiratory, nervous and musculoskeletal systems to function
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properly [3,6]. Thus, it is recognizable that gait and foot health is related to the overall
condition of an individual’s health [3,7]. For example, people with diabetic peripheral
neuropathy (DPN) tend to have a higher foot plantar pressure [8], thus resulting in a higher
risk for plantar ulceration [9]. On the other hand, individuals with early-stage Parkinson’s
disease were shown to have smaller, shuffling steps [5,10]. Additionally, these individuals
periodically have trouble with starting, stopping, turning and picking up their feet while
walking [3,11,12]. Thus, a device for monitoring and quantitatively assessing foot health
can be of immense use for identifying anomalies in plantar pressure, activity and gait
characteristics, particularly at early stages of disease or during rehabilitation of lower-limb
illnesses or injuries.

Accelerated progress in micro-electro-mechanical systems (MEMS) technologies has
allowed for the development of sensors and actuators that have high sensitivities, are
miniaturized and inexpensive. Wearable solutions which incorporate pressure sensors
can greatly enhance health monitoring applications while also ameliorating interactions
between humans and technology [13]. In addition, inertial measurement devices which
are MEMS–based, such as accelerometers and gyroscopes, are being incorporated into
numerous applications such as trackers for fitness, smartphones and vehicles [3,14,15]. In
fact, in the era of the internet-of-things (IoT) and internet-of-everything (IoE) it is anticipated
that such small-sized actuators and sensors will have a crucial role in smart systems and
smart devices [6,16]. Therefore, wearable pressure sensors and inertial measurement
units (IMUs), coupled with the high-speed communication and computing technologies of
current smart devices can be used for real-time monitoring of plantar pressure, activity and
gait pattern, and for performing a quantitative assessment of foot health in the day-to-day
activities of the individuals. Furthermore, insole-based and related systems can potentially
be used to realize a comprehensive health monitoring tool by integrating additional sensors
for monitoring heart rate [17,18], temperature [19], and muscle activity [20]. The non-
obtrusive nature of such a system also results in gait being minimally impacted, allowing
for the measurements obtained to be more reflective of our natural gait.

To transmit data to a computing platform in close proximity, such smart insoles can
employ a range of short-range technologies. For instance, near field communication (NFC),
ANT protocol, Bluetooth, Bluetooth low energy (BLE) or ZigBee can be used [2,11,20,21].
Furthermore, a smart insole, when coupled with modern-day long-range wireless commu-
nication technologies such as high-speed packet access (HSPA), and long-term evolution
(LTE) services, is able to provide uninterrupted and high-speed internet connectivity to any
location [1,3,9]. Such a smart insole can potentially create a pathway towards unobtrusive
remote health monitoring, which can allow for healthcare professionals such as clinicians,
physicians and formal caregivers, to oversee and evaluate a person’s health data, even from
distant locations.

In this article, we present a detailed review of the current state of research and devel-
opment in the insole-based systems for monitoring plantar pressure, activity and gait, in
addition to addressing associated challenges and examining how current solutions can
be improved (Figure 1). After the Introduction (Section 1), the anatomical background
for plantar pressure distribution (PPD) measurements and the motivation behind using
insole-based sensor systems for monitoring PPD, activity and gait are described in Section 2.
In Section 3, an overview of insole-based health monitoring systems is provided. This
section includes research systems from the recent literature including triboelectric sensors,
as well as commercial systems. Although, particular attention was on gait, activity and
plantar pressure monitoring aspects of insole-based systems, we also discussed several
other systems that reported monitoring of other health parameters such as heart rate (HR),
muscle activity and body temperature. Then in Section 4, a discussion on different engi-
neering considerations in terms of signal integrity, signal processing, data analysis, pattern
recognition and prediction is presented. In Section 5, the challenges associated with the
development of such systems and their potential solutions, as well as a discussion on future
research perspectives is given. In future perspectives, we included a proposed insole-based
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sensor system for holistic health monitoring, in addition to outlining other considerations
that should be taken to improve the smart insole development and the user experience.
Then in Section 6, we summarize the major benefits and potential applications of using
insole-based sensor systems for health monitoring.
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2. Motivation

Continuous monitoring of physiological parameters in a nonobtrusive and automatic
manner during daily living allows for potential pathologies to be detected at the very
onset, and thus can be immensely beneficial in improving an individual’s quality of life.
Comprehensive health monitoring in our home environment also has important benefits
over lab-based testing, as the measurements are reflective of our health in natural living
conditions. In addition, measurements can be obtained continuously or repeatedly at
different times of the day, thus further facilitating long-term tracking of medical condition,
diseases progression and rehabilitation. Such a monitoring system, when embedded in
the insole can be immensely beneficial in obtaining information regarding an individual’s
PPD (PPD), gait characteristics, heart rate and foot temperature. These parameters can
provide insights into an individual’s overall health and indicate the presence or onset of a
particular pathology for further investigations. Furthermore, measuring these parameters
synchronously in a single system can allow for more meaningful assessment of an individ-
ual’s health as associations and assessment relationships between different parameters can
be determined.

2.1. Plantar Pressure Distribution

In 2020, 18% of Canadians were over the age of 65 [22] and this number continues
to rise. There has also been nearly a 12% increase in the number of Canadians above the
age of 12 who have diabetes, from 2018 to 2019 [23]. From 2018 to 2019, the prevalence of
obesity and arthritis have also increased in Canada [24]. As the aging population continues
to rise, the prevalence of pathologies present in individuals worldwide is also increasing.
Foot and associated pathologies and consequently mobility disability, have an increasing
prevalence [25,26]. Several medical conditions are also related to changes in foot health,
particularly relating to an individual’s PPD [27,28]. The proportion of individuals who
may develop foot problems is growing, and this can have tremendous social and economic
impacts. In 2010, it was determined that 15% of Canadians with diabetes were likely
to develop a diabetic foot ulcer at some point in their lifetime [29]. With the incidence
of diabetes on the rise, the number of individuals with diabetic foot ulcers and other
foot complications is also expected to rise. As individuals engage in various activities
and more hectic lifestyles, the distribution of pressure across the foot, and foot health in
general, may not be appropriately monitored. Small changes in an individual’s posture and
deviations in an individual’s foot structure or PPD can both be indicative of pathologies
as well contribute to pathologies, such as lower limb joint and muscle problems. Groups
of individuals which have characteristic PPD patterns include older adults, individuals
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with pes cavus and pes planus, diabetes, hip and knee osteoarthritis, obesity, autism and
those who engage in athletic activities. A visual depiction of the regions of the foot that are
typically investigated in PPD studies is shown in Figure 2.
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Monitoring of foot PPD can be beneficial in improving health and treating physiologi-
cal conditions, including foot deformities such as pes cavus and pes planus. This is often
done through the use of custom orthotics or addressing the cause that leads to abnormal
gait, such as having hip pain which may impact walking or foot health. Information
regarding PPD can be particularly useful for designing custom orthotics in order to better
support specific regions of the foot, which can reduce the risk of falling or developing
adverse foot or lower extremity pathologies. Abnormalities in the distribution of plantar
pressure or gait has been associated with adverse long-term health effects, such as having
an increased slip and fall risk [30,31], diabetes [32], or neurodegenerative diseases [33,34],
as well as anxiety and depression [35], and thus can be used as a diagnostic indicator
to signal for such physiological or psychological abnormalities [35]. For instance, indi-
viduals with hip osteoarthritis tend to exert less pressure on the heel than those without
hip osteoarthritis [36]. Observations as such prove to be beneficial for the indication of
physiological issues which can be further investigated and addressed to prevent further
damage to other body parts, such as muscles and joints. Differences in PPD have also
been observed in the gait characteristics of autistic children compared to their non-autistic
counterparts [37,38]. Therefore, foot pathologies and associated medical conditions can
potentially be detected at their early onset through regular monitoring of an individual’s
PPD, thereby reducing the long-term impacts of abnormal gait and PPD. Further, the
benefits of analyzing an individual’s PPD can span beyond improving foot health. In fact,
having an improved gait was shown to be associated with improved overall health [31].
Additionally, correcting PPD to be closer to healthier values can reduce muscle pain [39].
Identifying abnormal gait patterns and attempting to correct or adjust for deviations from
normal can be used to improve the quality of life and the health of individuals, and of older
adults in particular [40].

Common gait analysis methods include using force platforms [41] and motion capture
technology [42]. Although such technologies provide detailed information regarding an
individual’s PPD or gait characteristics, respectively, they also have some limitations. Such
limitations include the extensive set-up of equipment, using the technology in laboratory-
based environments which are not in the user’s natural setting, having shorter durations of
measurements taken, and potential inconveniences to users who must arrange a separate
time to have measurements taken. On the other hand, insole-based sensor systems allow for
non-obtrusively monitoring an individual’s PPD during their daily activities, allowing one
to maintain their natural gait during measurements. These systems are gaining prevalence
due to their low development cost and high measurement accuracies of various step
phases [43,44]. Such systems can be used in diverse environments and conditions, including
during the user’s daily activities and in their natural setting, and can allow for monitoring
an individual’s PPD for extended time periods, such as when used in all-day wear. It
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can further facilitate measuring ground reaction force and ankle moment that are highly
correlated with gait balance and stability [41].

2.2. Gait and Activity Monitoring

For humans, walking is the main method of locomotion and a critical aspect of physical
activity. Walking is a periodic-type movement that includes complicated cyclic motions of
the lower limbs and requires proper functioning and coordination of the nervous, muscu-
loskeletal and cardiorespiratory systems [45]. The word “gait” describes an individual’s
way of walking, and the gait pattern is highly associated with the overall health condi-
tion [46]. Furthermore, gait patterns vary among individuals of different demographic and
physical characteristics. For example, elderly individuals with abnormal gait were shown
to have an increased fall risk [47], and gait speeds below 60 cm/s is associated with poor
mobility and health [31]. Gait analysis allows for assessing stability and balance during
walking and is employed extensively in several health and mobility-related applications
such as orthopedics, rehabilitation, health diagnostics, and sports. In addition, gait anal-
ysis can potentially be used in the early detection of neurodegenerative diseases such as
Parkinson’s and Alzheimer’s [48].

Currently, there are several gait analysis techniques and devices available that can
monitor and record information related to gait. Based on the analysis techniques and
sensor technologies, these gait analysis methods can be divided into three categories:
(1) Image processing (IP)-based [49–54]; (2) floor sensors (FS)-based [55–58]; and (3) wear-
able sensors (WS)-based [12–21] which are worn and carried by the user [59]. The IP-based
system captures image data of the subject’s gait through one or multiple optical sensors
and extracts gait information through digital image processing [49–54]. Digital cameras
are the most commonly used devices in such systems. However, other types of optical
sensors such as time-of-flight (TOF) cameras [60,61], infrared (IR) sensors [62], and laser
range scanners (LRS) [63] are also used. On the other hand, in FS-based systems, force
or pressure sensors are placed on the floor [55–58]. These types of systems are known as
force platforms or instrumented walkways where gait is measured by pressure or force
sensors and moment transducers when a person walks on them. Although both systems are
considered reliable and widely used for gait analysis, they require complex and expensive
infrastructures, pre-equipped environment and setup that restricts users’ usual movements
and makes the system incompatible for real-time or regular gait and activity analysis [59].
In addition, FS-systems are unable to provide any information during the swing phase of
the gait cycle, thus they only have limited application.

In order to overcome these limitations, researchers have been focusing on wearable
sensors (WS)-based gait and activity monitoring systems [12–21]. Modern miniature and
lightweight wearable sensors with wireless connectivity have made it possible to develop
user-friendly gait analysis systems and to obtain real-time gait data without hindering
the user’s regular day-to-day activities. These sensors are mounted on different body
parts, such as the feet, knee, thigh, waist, or shoulder, to measure the movements of the
human body. Different types of wearable sensors are used to capture gait signals such as
flexible goniometers, ultrasonic sensors, electromyography (EMG) sensors, inertial mea-
surement units (IMUs), textile-based force sensors, acoustic sensors, and optical sensors.
Among the wearable sensor technologies, IMUs are the most promising sensor systems
for analyzing movements during gait because of their small size and capability to measure
three-dimensional motion and orientation with high precision and accuracy [64–68]. There-
fore, a combination of pressure sensors and IMUs embedded in the insole may potentially
enable comprehensive gait analyses by detecting simultaneous motion and plantar pressure
during walking.
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3. Insole-Based Monitoring Systems
3.1. Research Systems

Several insole-based health monitoring systems were proposed in the literature. How-
ever, based on the application and sensing mechanism, these monitoring systems can be
broadly categorized into two types (Figure 3)—foot pressure monitoring systems and gait
monitoring systems. The systems for foot pressure measurements use pressure sensors
to measure gait event/characteristic or detailed information regarding PPD. On the other
hand, the systems for gait monitoring mainly rely on IMUs to measure gait dynamics and
to monitor gait pattern and activities. In this section, we present a brief discussion on some
published insole-based lower-limb health monitoring systems.
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3.1.1. Foot Pressure Monitoring

A wireless insole device in [69] was developed to measure plantar pressure during
daily activity, particularly when standing and walking. There, they integrated piezoelectric
sensors at 24 points into an insole, with three sensors placed at each of the eight mea-
suring points. Each of the three sensors at a measuring point accounted for the x, y or
z axes, in order to take 3-dimensional measurements. The lightweight (10 g) and small
size (10 × 20 × 8 mm3) of the pressure measurement unit can potentially make it conve-
nient to use with any shoe. In addition, the device is reportedly capable of recording
data for over 24 h, making it ideal for full-day use. However, more measuring points
along with additional sensors could potentially allow for obtaining the detailed measure-
ment of PPD of the entire foot. It was recommended in [70] to use one sensor at each of
15 anatomically relevant regions of the foot (placed beneath the toes, metatarsals, mid-
foot and hindfoot that can potentially provide the PPD with sufficient resolution. Three
measuring points were at the heel and five were at the forefoot. Additional measuring
points placed at the toes, particularly the hallux, in addition to the midfoot, can allow for
obtaining more holistic measurements of the foot. There, they used piezoelectric sensors
to achieve high sensitivity, high signal-to-noise ratio (SNR), and increased stability with
temperature. However, the system was validated on only three males, all 20 years and
of similar body weight. It is indeed important to test for repeatability among a specific
group of individuals, yet ensuring the measurement consistency of such a device in other
members of the general population, such as females and older adults is also critical. Fur-
thermore, pressure distribution at the foot changes with age and differs between males
and females due to morphological differences in foot structure. Thus, it is important to
identify the optimal location and number of sensors to ensure the accuracy and consistency
of plantar pressure measurements in a wide cross-section of individuals.

A soft-strain sensor was developed in [71] to detect pressure-induced deformation that
can potentially be used in insole-based systems to monitor various gait parameters such as
ground reaction force and calf muscle activity, and several physiological parameters such
as respiratory rate (by detecting chest expansion), and heart rate (by detecting pressure
changes with arterial blood flow). The sensor was fabricated by incorporating carbon black
and carbon fiber conductive particles on a non-conductive silicone matrix. The flexible
nature of the soft-strain sensors can provide wearing comfort for an extended period of
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time, thus making them ideal for long-term monitoring. The researchers reported an error
of 1% and 2.5% during walking and running, respectively, when the sensor was used for
gait sensing (recording number of steps taken). However, experiments were conducted only
on two individuals, and therefore, further research is required to investigate the accuracy
of the sensor and its applications. For instance, pressure values at the foot during certain
activities (such as when jumping) are much higher than the deformation of the device
caused by pressure exerted when breathing. Nevertheless, the base resistance of the sensor
can be tailored for the application by changing the amount of carbon fiber and carbon
black. The three-dimensional shape of the insole (if used for in-shoe pressure sensing), can
be altered by changing the mold as well. Such a system may be particularly useful when
designing insoles for diverse individuals as the system’s sensitivity, resistance and shape
can be customized to the user.

A graphene-based flexible pressure sensor was developed in [72] to measure plantar
pressure and analyze gait. The graphene layers surround individual polyester fibers that
show a piezoresistive effect upon deformation with pressure. This sensor is able to measure
up to 800 kPa of pressure, thus making it suitable for an insole-based system to measure
PPD during daily-life activities such as walking or higher-impact activities. In addition,
the sensor showed a linear response and had a fast response time, making it a promising
candidate for flexible pressure sensors to be able to sense pressure accurately and quickly
in a comfortable and reliable manner.

To sense plantar pressure, a rubber insole involving capacitive sensors and poly-
dimethylsiloxane (PDMS) was created in [73]. It that work, it was indicated that piezoresis-
tive sensors used for in-shoe plantar pressure measurements have higher dependence on
temperature and lower sensitivity compared to capacitive sensors. As a result, this team
used printed capacitive pressure sensors integrated in a rubber insole. Specific benefits of
the interdigitated capacitor (IDC) used in this system include its low weight, small size
and appropriate sensitivities (67 pF/MPa or 4.30 V/MPa) required for such systems. The
elastic rubber that the printed interdigitated capacitors are embedded into is PDMS. The
use of PDMS in this insole serves two functions: for the encapsulation of the IDCs and
as a dielectric medium. The 3D-printed mold of the insole is filled with PDMS and the
interfacing circuits, which are cured for two hours at 60 degrees Celsius. The device allows
for the capacitance variation to be obtained from the pressure applied. The encapsulation
of the sensors by PDMS does have an effect on the capacitance values obtained. Compared
to when exposed to air, the sensors encapsulated in PDMS show increased capacitance,
which results from an increase in relative permittivity. However, this study found only a 3%
difference in the values obtained, likely attributable to air bubbles being present around the
capacitors. It is also indicated that such air gaps are important to the sensing capability of
this device, as the sensitivity depends on the relative permittivity change, which is affected
by the dielectric medium surrounding the sensors. However, the quantity of air gaps
present may not necessarily be consistent among different insoles, and such a difference
may not be large enough to meaningfully alter the plantar pressure measurements obtained.
Although such a sensor can be very useful in developing insoles tailored to specific foot
morphologies, one drawback is that only three areas of the foot were investigated: the fore-
foot, midfoot and hindfoot. One sensor is placed in each of these three regions, which are
important to sense and because they show the most variation when engaging in different
activities. However, including more sensors would allow for more specific regions of the
foot to be investigated. However, this insole device [73] showed differences in pressure
among the three regions of the foot when engaging in various postures such as leaning
forward, leaning backward, or standing in a natural position. Therefore, it can also be used
for gait analysis, or components from this sensor system can be integrated into a more
complex in-shoe plantar pressure monitoring system to obtain accurate values for more
specific regions of the foot.

In [74], PPD measurements and gait monitoring were accomplished using piezoelectric
sensors combined with an IMU in an insole. A firm base was used for the insole, onto
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which ceramic piezoelectric discs were placed in five locations. An IMU was also placed in
the base of the insole at the midfoot region. Using low-cost sensors, this piezo-insole was
able to successfully detect key gait events based on pressure distributions at five points
on the foot, in addition to the IMU data. In situations where cost is a major factor in
providing care, such systems that provide a more affordable solution can be used for gait
analysis. However, for more in-depth analysis of PPD, fifteen sensing points should ideally
be used [70]. The integration of an IMU can also provide further information in addition to
detailed information regarding pressure when the foot contacts the ground. In particular,
the IMU data can be used for analysis during the swing phase of the gait cycle, whereas
the pressure data can be used for the stance phase. Incorporating IMUs with insole-based
systems for plantar pressure measurements can provide important information regarding
an individual’s gait patterns and overall health.

An insole-based system containing optoelectronic sensors designed for assessing gait,
particularly for estimating gait phases and recognizing discrete events, such as toe-off
and heel-strike, was developed in [75]. The sensors used in this device [75] are based on
optoelectronic technology, with each sensor having a light-emitting diode (LED) along
with a silicone cover that may be deformed. When pressure is applied to the surface of
the sensor, the silicone deforms and reduces the light that passes from the LED emission
area to where the light is received. This causes the output voltage to be altered. The device
developed in this study had the aim of being simple and low-cost, in order to obtain the
minimum information necessary to determine gait events. The system was designed to
reduce unnecessary complexity that would otherwise be found in a device with the aim
of obtaining detailed information regarding PPD. Fifteen sensors is the ideal number of
sensors to be used in an insole-based device, if the sensors cover the 15 key areas of the
foot to be included in measurements [70]. Based on this information, 16 sensors were used
in the device presented in [75], and these sensors were placed according to the subjects’
walking patterns on a treadmill. While some sensors were clustered in some areas, others
were placed at points of the foot where the plantar pressure is highest. Such placement has
its advantages and disadvantages, which also depend on the application. An advantage of
clustering the sensors is that there is redundancy, which allows for improved reliability of
the data obtained. If one sensor becomes damaged or malfunctions, other sensors in the
same area can compensate and provide results. Clustering of sensors is particularly useful
in devices that are to be used for extended duration (such as for full-day wear) and that
are used repeatedly (such as over several weeks or months), as sensor degradation may
occur over this time. Although a large number of sensors were used (in accordance with
the number of sensors recommended in [70], the placement of the sensors in this study
did not necessarily reflect the 15 key anatomical regions of the foot for plantar pressure
measurements. For the particular application of recognizing gait events in this study, the
limited areas of the foot examined was sufficient. However, for systems that aim to measure
plantar pressure in greater detail, additional sensors should be placed at other anatomically
relevant areas of the foot. Ultimately, to account for the 15 anatomically relevant areas of the
foot and use sensor clustering, more sensors would have to be implemented in the design
of the insole. However, drawbacks of this include greater battery power consumption and
increasing the cost of the device. As a result, the particular application to be investigated
and the amount of redundancy desired should carefully be considered when designing an
insole-based system to measure PPD.

The insole developed in [76] had seven conductive rubber sensors which are sensitive
to pressure. This system also used wireless data transmission for nonobtrusive, portable
monitoring of daily activities. A particular advantage of this device is that the wireless
data transmission unit is small in size (25 × 15 × 8.5 mm3) and lightweight (12 g), and the
sensors used in this device were 15 × 10 × 0.8 mm3 in size. This is particularly important
as the smaller and thinner the device is, the less it will impact an individual’s natural gait.
The seven insole sensors were placed strategically to obtain values from key points such
as the hallux, central and lateral midfoot, central and lateral forefoot, the first metatarsal
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and the heel. The sensors were also suitable for stimuli between 25 to 250 kPa. Although
this may be ideal to monitor walking, it may not be suitable for other physical activities
where parts of the foot may exert higher pressures. Furthermore, this device requires
the users to calibrate the sensors prior to use due to the sensor performance degrading
with time. This device was validated using three subjects, all of whom were female.
However, two subjects were 89 years old, and one was 22 years old. An advantage of this
sample is that the system was shown to be usable and accurate for both young and older
individuals. However, including male subjects to account for foot morphology differences
and using a larger sample size, would allow for the device’s usability to be generalized
to the general population. Another merit of this device is its long battery life, capable of
taking measurements for 20 h continuously. Although such a device appears to overcome
several challenges such as the need for creating a thin sensor system that has a prolonged
run-time, the cost of this device exceeded USD 1000.

A sensorized insole prototype for pressure distribution measurements was developed
in [77]. A large number (336) of tactile capacitive sensors in a mesh was used in this work.
Each insole had 336 capacitive sensors, arranged among 28 triangular regions and covered
most of the insole. Of the 336 sensors, 56 sensed temperature, and 280 sensed pressures. The
capacitive transduction electronic portion is covered by a deformable dielectric material,
on top of which is a conductive lycra fabric. This increase in spatial resolution can allow for
an improved understanding of the PPD under the entire foot. However, this prototype did
not support wireless transmission as yet. This device also includes a variety of components,
such as the electronics, soft fabric for user comfort and plastic support for protection.
However, the authors indicated that the comfort can be further improved, using stretchable
electronics or adding softer supports for the electronic portion.

Insoles based on PPD that are customizable to the user were created in [78]. Although
this system does not measure PPD itself, it makes use of predetermined plantar pressure
measurements to create a highly customized insole. This insole is created using 3D printing
to obtain a customized shape for the insole, in addition to using a variety of infilling
densities specific to the user. In order to create such an insole, PPDs were first obtained
using a piezoelectric sensor array. Based on this information and processing of the data, the
densities of the infill were determined, and this information was collectively used to create
the 3D-printed model. This work highlights the feasibility of creating custom orthotics
that are precisely tailored to the wearer. However, this technology can be taken further to
include in-built pressure sensors within the custom insole, particularly for individuals who
would use monitoring devices for extended durations and over the long-term. The elderly
population would greatly benefit from a highly customized insole which also measures
their plantar pressure. Individuals in this age group are at an increased risk of falling, and
thus, it is important to monitor PPD and gait characteristics in order to predict a person’s
risk of falling.

The aforementioned insole-based systems [69,71–78] have varying merits and limita-
tions. Developing a device with several beneficial characteristics is ideal, but difficult. This
is because attaining some desired characteristics often results in compromises of others.
For example, increasing the number of sensors to obtain more detailed measurements
also increases the power usage, which in turn reduces the battery life. Figure 4 lists some
hardware and software characteristics of an ideal insole-based health monitoring system.
Future insole-based systems should attempt to incorporate these ideal characteristics as
appropriate for the intended application. A summary of key points pertaining to the
aforementioned systems [69,71–77] is presented in Table 1.
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Table 1. Key points pertaining to various existing insole-based sensor systems used for plantar pressure measurements and gait analysis.

Author(s)
(Year)
[Ref]

Sensor Types Number of Sensors Sensor Placement Performance Characteristics Strengths Limitations

Guo et al.
(2012)
[69]

Ceramic piezoelectric
pressure sensors 24

8 measuring points:
Heel: 3
Forefoot: 5

• Wireless data transmission
• 24 h operation
• Linear output
• 100 m maximum transmission distance

• 3D measurements
• Small size and mass
• 24 h data recording

• Sample size for validation not
large or diverse (3 males)

Hughes et al.
(2018)
[71]

Soft-strain
(conductive silicon)
pressure sensor

Variable
(application-dependent)

Variable
(application-dependent)

• Wireless data transmission
• Range of sensitivity: variable
• Breathing rate sensor accuracy: 1 bpm

(beat per minute)
• Gait sensor accuracy deemed comparable

to existing devices
• 2.5% error during running and 1% error

during walking (750 steps)

• Versatile (can measure
various parameters)

• Flexible sensors
• Low error
• Fast fabrication (4 h)
• Customizable

• Small sample size
• Further testing required for

sensor under varying
circumstances (e.g., with
changes in activity or posture)

Lou et al.
(2017)
[72]

Piezoresistive
pressure sensors
(Flexible,
Graphene-based)

14

Toes: 5
Metatarsals: 5
Lateral midfoot: 1
Heel: 3

• Wireless data transmission
• Measures up to 800 kPa pressure
• 150 m transmission distance

• Flexible
• Measures up to 800 kPa
• Linear response
• Rapid response time

• Variability of supporting
materials’ shape affects
graphene sensor structure

Motha et al.
(2015)
[73]

Interdigitated
capacitive pressure
sensors
encapsulated in
PDMS

3 Forefoot, Midfoot, and Hindfoot • Wired data transmission • Lightweight

• Limited regions of foot
investigated

• Wired data transmission
• Pressure range not suitable (too

low and narrow) for plantar
pressure applications

Chandel et al.
(2019)
[74]

Piezoelectric pressure
sensors & IMU

5 piezoelectric
+ 1 IMU

Interphalangeal joint,
Metatarso-phalangeal joint, Heel,
Lateral calcaneus, Distal
metatarso-phalangeal joint;
IMU at midfoot

• Wireless data transmission
• 94.5% accuracy for calculating duration

of swing/stance phases
• 2.8 cm error in stride length calculation

• Includes IMU
• 3D stride

trajectory tracking

• Limited number of foot
regions investigated

Martini et al.
(2020)
[75]

Optoelectronic
pressure sensors 16

Forefoot: 8
Midfoot: 3
Hindfoot: 5

• Wireless data transmission
• Accuracy comparable to other

existing devices
• Insole’s overall mean absolute error of

heelstrike = 6.47%; toe-off = 4.32%.;
stance duration = 2.02%

• Clustering of sensors:
redundancy • Limited areas of foot examined
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Table 1. Cont.

Author(s)
(Year)
[Ref]

Sensor Types Number of Sensors Sensor Placement Performance Characteristics Strengths Limitations

Saito et al.
(2011)
[76]

Pressure-Sensitive
Conductive Rubber
(PSCR) sensors

7

Hallux, Heel,
Central midfoot, Lateral midfoot,
Central forefoot,
Lateral forefoot,
First metatarsal

• Wireless data transmission
• 25 to 250 kPa range
• 20 h battery life
• Maximum error across measurement

range: 15%

• Smaller data
transmission unit than
is typical

• 20 h battery life

• Pressure range may not be
suitable for
high-impact activities

• User-specific calibration
required

• Small sample size for validation
• High cost
• 10 m maximum

transmission distance

Sorrentino et al.
(2020)
[77]

Capacitive pressure
sensors (grouped into
modular units)

336
Pressure:280
Temp:56
Grouped into 28 modules

Nearly entire foot
(arranged in triangular
modular units)

• Wired data transmission
• Similar accuracy as commercial

force-torque sensors

• Large number of sensors
• High spatial resolution • Wired data transmission
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3.1.2. Triboelectric Sensors for PPD and Related Applications

Recent investigations on self-powered devices have allowed for advances in smart
insole-based and related systems. In particular, triboelectric nanogenerators (TENG) were
used to allow for devices to generate power for sensors. Triboelectric sensors were created
for the purpose of energy harvesting [79] and have since been used for a variety of applica-
tions [80]. A few examples of these diverse applications include detection and monitoring
of airflow, vibration, pressure, gait, temperature and pulse [79,81]. Regarding insole-related
wearable applications, triboelectric sensors have been incorporated on insoles, embedded
in the sole, engineered into the sole, integrated into the sole as well as beneath the sole [82]
to generate electricity.

At the surface of two materials that are contact with one another, but which differ in
their ability to attract electrons, opposite charges are generated. Once these two materials
are separated or displaced, a potential is created, which leads to the flow of electrons [79].
The result of the force applied is the generation of electricity, resulting in self-powering
capabilities. TENG can be divided into four main types which are “contact-separation”,
“linear-sliding”, “single-electrode” and “freestanding triboelectric-layer” [79].

In “contact separation”, the physical contact between the two materials is removed due
to an external force, resulting in a potential created in the interfacial gap of the materials.
In “linear sliding”, sliding causes the contact areas of the two surfaces to be altered. In this
case, the sliding may disturb the electrostatic stability and create a potential. The “single-
electrode” mode has a freely movable dielectric portion that is not physically connected to
an electric component. The transfer of charge occurs as the dielectric moves to and from a
stationary electrode. The “freestanding triboelectric layer” mode has two electrodes that are
ground-free. When a dielectric moves between both electrodes, induction results in a charge
distribution that is not symmetrical [79]. In addition to self-powering capabilities, other
characteristics of TENG include its low cost, light weight and stability [79], which make
this technology particularly useful for smart insole-based applications. Several researched
systems which have incorporated TENG are summarized in Table 2 below.
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Table 2. Key points pertaining to various insole-based and related sensor systems which have incorporated triboelectric nanogenerators.

Author(s)
(Year)
[Ref]

Application Sensor Types Number of Sensors Sensor Placement Performance Characteristics and Other Information

Lin et al.
(2019)
[83]

Gait monitoring
(distinguish activities such as
jump, walk, run)

Triboelectric sensor
[Two parts: convex TENG portion +
elastic air chamber (EAC)]

Two At forefoot (beneath medial
metatarsal heads) and hindfoot

• Real-time gait monitoring
• Fast response time (less than 56 ms)
• Durable
• Mechanically robust
• Negligible decrease in electrical output over 1000 cycles
• Layers:

- Convex rubber film (20 mm diameter) at top
- Integrated copper layer (shields against

environmental interference)
- Additional copper film (bottom layer of TENG)
- Supporting acrylic layer
- Stretchable latex film for Elastic air chamber (to

temporarily retain air from TENG)

Huang et al.
(2021)
[84]

Plantar Pressure Monitoring Piezoresistive and
Triboelectric nanogenerator

31 piezoresistive
(each sensor’s size: 7.5mm × 7.5 mm)
TENG included in shoe-pad

Across entire foot

• Fast acquisition of data from pressure matrix
• High-speed communication
• Pressure sensing range: 20 pa to 1.2 MPa
• 100 ms response time
• 0.5 Hz to 2.0 Hz frequency range
• 500 s for TENG to charge 4.4 uF capacitance
• Wireless data transmission
• Continuous operation
• Self-powered
• TENG provides continuous power supply
• Lightweight
• Low power data acquisition
• Frequency range encompasses normal walking frequency
• Real-time data
• Low cost
• Limited testing on human subjects reported

Deng et al.
(2018)
[85]

Plantar Pressure Mapping
Piezoelectric nanogenerators
Triboelectric-electromagnetic
nanogenerator

32 (PVDF-based PENG
pressure sensors)
Hybridized triboelectric
electromagnetics nanogenerator
included

Sensors placed at forefoot, lateral
midfoot and hindfoot

• Wireless data transmission
• Real-time pressure mapping
• Self-powered
• Low cost
• Pressure range up to 200 kPa
• Pressure sensitivity reflected by free charges: 23.4 pC N−1

• Low current required for data acquisition system
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Table 2. Cont.

Author(s)
(Year)
[Ref]

Application Sensor Types Number of Sensors Sensor Placement Performance Characteristics and Other Information

Tao et al.
(2021)
[86]

Plantar pressure mapping and
Small aerial vehicle flap motion
energy harvesting

Honeycomb-inspired triboelectric
nanogenerator (h-TENG)
Arch-shaped capacitors in
parallel-connected array

Ten h-TENG devices (bound to
flexible printed circuit board)
Each h-TENG unit’s volume =
20mm × 15mm × 10 mm (for
insole application)

Across sole

• h-TENG instantaneously produces:

- Open-circuit voltage: 1207 V
- Short-circuit current: 68.5 µA
- Output power: 12.4 mW

• Peak power density: 2.48 mW g−1

• Flexible
• Lightweight
• Porous honeycomb structure allows for several energy

generation units
• Elastic and self-rebounding properties of

honeycomb structure

Somkuwar et al.
(2020)
[87]

Textile-based applications Woven TENG Varying woven TENG unit structures Part of fabric (e.g., sock material
at plantar aspect of foot)

• Greatest average power density = 12.84 µW/cm2 (using
5/1 twill)

• Higher electrical output using 2/2 matt and 3/1 twill weave
(compared to 1/1 plain weave)

• Foldable, twistable, stretchable
• Flexible
• Fabricated from basic weaving (no treatments)
• Increasing contact area led to greater charge induced

on triboelectric

Zhu et al.
(2019)
[88]

Gait sensing, Motion tracking,
Walking pattern recognition,
Sweat sensing

TENG textile integrated with lead
zirconate titanate (PZT) piezoelectric
sensor coated with PEDOT:PSS
(poly(3,4-ethylenedioxythiophene)
polystyrene- sulfonate)

Five coated sensing areas
Coated sensing areas:
hallux, forefoot, heel, left instep,
right instep

• Self-powered
• Wireless
• Cotton sock
• PZT chips used (20 µm PZT chip laser cut to 5mmx5mm)
• Sensitivity: 0.06 V/N
• Triboelectric output power: 1.71 mW

(power density = µW/cm2)
• PZT piezoelectric power density is 128 µW/cm2

• As 0.9g sweat absorbed, 80% decrement of output
voltage obtained

Zhang et al.
(2020)
[89]

Gait analysis and Virtual
reality applications T-TENG (textile-based TENGs) 1 (similar size of user’s foot) Beneath entire plantar aspect of

foot

• Self-powered
• from 1 Hz walking on load of 44.4 MΩ, 0.32 mW output

power generated
• from running (2Hz) on 21.3 MΩ load, maximum output

power = 3.18 mW
• Pressure sensing range beyond 200 kPa (acceptable for

plantar pressure detection)
• Sock can charge up to 27 µF in 3–4 min
• Deep learning model optimized for gait analysis
• 96.67% accuracy of human activity detection (among

5 activities and 13 participants)
• Low cost
• Wireless
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3.1.3. Gait and Activity Monitoring

In recent years, insole-based human gait and activity monitoring systems are gaining
prominence because of their ability to combine different wearable sensors such as IMUs,
pressure sensors and temperature sensors, and to unobtrusively measure important gait
parameters [90–96]. Although, the sensor types used to develop these insole-based systems
are quite similar (except the number and placement of the sensors), the main differences
reside in sensor fusion and data analysis algorithms used for human gait feature identifica-
tion, activity recognition as well as fall detection and prevention. In this section, several
developed insole-based systems for gait and activity monitoring are presented.

Several researchers have developed insole-based gait analysis systems integrating
pressure and inertial motion sensors. “FreeWalker” was such a gait analysis tool [90]
that comprised of eight pressure sensors and two IMUs to measure under-foot pressure
distribution and to detect motion sequences during gait. An onboard SD card and inte-
grated wireless data transmission enabled this system to have continuous monitoring and
real-time gait data analysis. Another smart insole was proposed in [91] for ambulatory
gait assessment. This system consisted of a sensor layer with 32 discrete pressure sensing
points (piezo sensors) and a circuit layer with the processing unit as well as an IMU and a
temperature sensor. Similar types of smart insoles were also reported in [92–94]. In [92],
the researchers used an array of electronic textile-based pressure sensors. All these systems
were able to measure the plantar pressure and motion characteristics of feet during walking.
In [93,94], the developed insole systems were validated against the gold standard GaitRite
(CIR Systems Inc. Clifton, NJ, USA) and showed adequate accuracy while measuring
important spatiotemporal gait parameters such as stride time, stance time, swing time, step
time, initial double support time and terminal double support time. GaitRite is an electronic
walkway with built-in pressure sensors, and it can provide standard spatiotemporal gait
parameters using its software application.

Insole-based gait monitoring is also effective for gait balance and dynamic stability
estimation by measuring the center of mass (COM) and margin of stability (MOS) of
the human body during walking [95,96]. In [95], the researchers used an existing Pedar
insole and a newly-developed piezoresistive smart insole to estimate the center of pressure
(COP) during gait and compared the results with a force plate. For both insoles, the
accuracy of estimated COP was lower in the mediolateral direction in comparison with the
anteroposterior direction. In order to estimate accurate COM and MOS during gait, Xsens
Technologies developed force- and motion-measuring shoes named “ForceShoe” [97]. This
shoe consists of two IMUs and two 3D force and moment (F&M) sensors to measure 3D
forces and moments as well as foot positions during walking. However, this shoe is large
and bulky. Therefore, as an alternative, researchers in [96] evaluated 1D plantar pressure
sensing and developed participant-specific linear regression models to estimate 3D F&M.
Then they combined the estimated 3D F&M with foot positions (measured using IMUs and
an ultrasound range estimator) to compute the COM and MOS during gait. Overall, the
study showed satisfactory results for straight walking.

A human motion capture system was reported in [98] based on multiple IMUs and
smart shoes. The IMUs placed on different body segments were used to estimate the
posture of the whole body, while the smart shoes with pneumatic pressure sensors were
used to detect the phase of the motion during gait and other activities. The smart shoes
were continuously measuring the ground reaction forces to update the reference point
of motion. A frequency-adaptive sensor fusion technique and a kinematic model were
applied in this system to improve the precision of the measurements and to track real-time
whole-body motion.

Besides estimating important gait parameters, smart insole-based gait analysis is also
used for gait classification and user identification [99–105]. Various classification algorithms
have been proposed in different literatures to classify the gait data collected from smart
insoles. For example, the support vector machine (SVM) algorithm was applied in [99]
to distinguish three types of walking. In [100,101], principal component analysis (PCA)
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was used to analyze the gait data and identify abnormal gait patterns. Researchers in [102]
used a commercial “FootLogger” smart insole to collect data from seven different types of
gait such as normal walking, fast walking, running, stair ascending, stair descending, hill
climbing, and hill descending. They applied null-space linear discriminant analysis (NLDA)
to classify the data and obtained good classification performance. They also observed that
the classification performance becomes better with a larger number of steps in the sample.
Similar seven gait types were also classified in [103] using Deep Convolution Neural
Network (DCNN) and presented high accuracy of more than 90%. Another automatic
smart insole-based gait recognition method named “BoostSole” was proposed in [105], and
an adaptive multi-boost classification algorithm was employed to classify three different
gait patterns: normal walk, shuffle walk and toe walking with a very high accuracy of 97%.

Finally, there are several other studies where researchers proposed different smart
insole-based gait analyses to evaluate human gait patterns in different health conditions
and rehabilitation processes. For instance, the FeetMe Monitor insole was used in [106]
to evaluate after-stroke gait of 29 subjects (over 6 months since stroke) and showed high
accuracy and reliability (Intra-class Correlation Coefficient—ICC: 0.73–0.98) while measur-
ing gait velocity, stride length, cadence, and stance time in chronic hemiparesis. In [107],
the authors introduced an insole-based gait analysis system (PediaSole) for toddlers and
children with neurodevelopmental disorder (NDD) and/or autism spectrum disorders
(ASD). Children with NDD and/or ASD usually suffer from motor impairments and pre-
cise gait analysis can play a vital role in early diagnosis and effective treatment strategies.
Therefore, PediaSole was used to measure gait parameters of child subjects with these
disorders and showed high accuracy (mean absolute errors—MAEs were below 5.2% for
all gait parameters) in comparison with the gold-standard equipment. This study also
found high correlations between three measured gait parameters (normalized stride veloc-
ity, stride time, and stance percentage) and a well-established clinical measure of motor
function (GMFM-88—E) which indicates the potential of the insole-based system for similar
clinical applications. In addition, a few other studies used smart insole-based gait analysis
for monitoring post-surgery effects [108] and for the identification of fall hazards [109].
Thus, smart insole-based gait monitoring systems coupled with efficient processing and
analysis techniques can be more widely used for remote health monitoring, rehabilitation
processes as well as different clinical applications such as detection of diabetic neuropathy
and prevention of ulceration in the insensate foot [110]. A summary of the aforementioned
insole-based gait and activity monitoring systems is presented in Table 3.
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Table 3. Key points pertaining to various existing insole-based sensor systems used for gait and activity monitoring.

Author(s)
(Year)
[Ref]

Sensor Types Number of
Sensors

Sensor
Placement

Performance
Characteristics Strengths Limitations

Jung et al.
(2013)
[98]

Pneumatic pressure
sensors and IMU

5
(Pressure: 4,
IMU: 1)

• Pressure sensors: Toe: 1;
Metatarsals: 2; Heel: 1

• IMU: behind the foot

• Wireless data transmission
• Data sample rate: 100 Hz

• Ground reaction force (GRF) and foot
orientation measurement

• Wireless data transmission

• Limited regions of
foot investigated

• Sufficient experimental data
are not reported

Wang et al.
(2015)
[90]

Resistive pressure sensors
and IMU

10
(Pressure: 8,
IMU: 1)

• Pressure sensors: Toe: 1;
Metatarsals: 3; Lateral
midfoot: 1; Heel: 3

• IMU: on top

• Wireless data transmission
• Over 24 h operation
• Force range: 0–100 lbs.

• 3D measurements
• Long data transmission range (>20 m)
• High data sampling rate (>1 KHz for

pressure sensors and ~100 Hz for
accelerometer and gyroscope)

• Long recording time (24 h) with on-board
SD card

• Limited regions of
foot investigated

• Sampling frequency of the
IMU is limited to 100 Hz

Mustufa et al.
(2015)
[91]

Piezoelectric sensors, IMU,
temperature sensor and
force sensor

35
(Pressure: 32,
IMU: 1,
Temp: 1,
Force: 1)

• Pressure sensors:
uniformly distributed at
32 points across the
insole area

• IMU at Heel

• Wireless (Bluetooth)
data transmission

• 120 min of continuous operation
(280 mAh Li-ion battery)

• Pressure range of 15 kPa–1000 kPa
• Temperature sensor records

ambient temperature of
smart insole

• Force sensor is used for automatic
activation of the insole

• 3D motion capture (can support up to ±6 g)
• High sensitivity of the pressure sensors

(0.5% of the full-scale range)
• low cost and scalable (200 nodes can be

accommodated in pressure sensor array)
• Can measure ambient temperature

• Limited operation time
(continuously operate for
only 120 min)

Lin et al.
(2016)
[92]

Piezoelectric sensors, IMU
49
(Pressure: 48,
IMU: 1)

• Pressure sensors
uniformly distributed 48
sensors array across the
insole area

• IMU at Heel

• Wireless (BLE) data transmission
• 24 h operation
• Range of pressure: 30–1200 kPa
• Range: Accelerometer: ±16 g,

Gyroscope: ±2000 ◦/s
• 256-kB in-system programmable

flash memory

• Low-cost, lightweight, thin, and
comfortable to wear

• 3D measurements
• Wireless data transmission
• 24 h working duration
• High pressure range (30–1200 kPa) with low

response lag (<5%)

• A robust computational
model is required for energy
expenditure calculation

• A larger cohort study is
needed to prove wearability
and usability of the system

Jagos et al.
(2017)
[93]

Resistive pressure sensors
and IMU

5
(Pressure: 4,
IMU: 1)

• Pressure sensors: Toe: 1;
Metatarsals: 2; Heel: 1

• IMU at midfoot

• Wireless (Bluetooth)
data transmission

• Pressure sensor range up to
31,138 N (7000 lb)

• Li-Po battery (150 mAh)

• 3D motion capture
• Wireless data transmission
• On-board microSD memory card

• Limited regions of
foot investigated

• Small battery life (150 mAh)

Roth et al.
(2018)
[94]

Resistive pressure sensors
and IMU

4
(Pressure: 3,
IMU: 1)

• Pressure sensors:
Metatarsals: 2; Heel: 1

• IMU at midfoot

• Wireless (BLE) transmission
• Pressure range: 0.1–100 N
• Li-po battery (120 mAh) with

40h run-time
• Sample logging frequency: 200 Hz

• 3D motion capture
• Wireless data transmission
• On-board flash memory (4 Gbit)

• Limited regions of
foot investigated

• Small battery life (40 h)
• Mean error: 0.064 ± 0.06

(Double support time),
3.89 ± 2.61 (% of
Double support)
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Table 3. Cont.

Author(s)
(Year)
[Ref]

Sensor Types Number of
Sensors

Sensor
Placement

Performance
Characteristics Strengths Limitations

Refai et al.
(2018)
[96]

Resistive pressure
sensors, 3-D
forces and moments (F&M)
sensors, IMU and
ultrasound sensors

156
(Pressure: 151,
F&M: 2,
IMU: 2,
Ultrasound: 1)

• Pressure sensors:
uniformly distributed
across the insole area

• F&M sensors: Forefoot: 1;
Hindfoot: 1

• IMU: Forefoot: 1;
Hindfoot: 1

• Ultrasound at toe

• Wireless (Bluetooth) transmission
• Sensors were synchronized
• Data sample rate: 50 Hz

• 3D motion capture
• Wireless data transmission
• Synchronized data collection

• External wireless transmitters
need to be worn as a belt
around the waist.

• Heavy and Bulky. The shoe
weight was almost 1kg with
increased sole height by
2.5 cm

• Mean abs. rms error of
extrapolated CoM (XCoM):
2.2 ± 0.3 cm

Choi et al.
(2018)
[102]

Pressure sensors,
accelerometer and
Gyroscope

10
(Pressure: 8,
Accelerometer: 1,
Gyroscope: 1)

• Pressure sensors: Toe: 1;
Metatarsals: 5; Heel: 2

• IMU at midfoot

• Wireless (BLE) transmission
• Data sample rate: 100 Hz
• Flash memory
• Wireless charging

• 3D motion capture
• Wireless data transmission
• On-board flash memory
• Wireless charging
• Personal mobile gait analysis system

named “fGait”

• Limited regions of foot
investigated

• For stair ascending (SA) and
stair descending (SD) only
1-min data was collected

Djamaa et al.
(2020)
[105]

Resistive pressure sensors,
Resistive bend (flex)
sensors, and IMU

5
(Pressure: 3,
Flex: 1,
IMU: 1)

• Pressure sensors: Toe: 1;
Metatarsals: 1; Heel: 1

• Flex sensor at midfoot
• IMU: behind the foot

• Wireless (BLE) transmission
• The prototype was made using

Arduino UNO

• Low-cost and lightweight
• 3D measurements
• Wireless data transmission

• Limited regions of
foot investigated

Farid et al.
(2021)
[106]

Pressure sensors and IMU
5
(Pressure: 18,
IMU: 1)

• Pressure sensors:
Forefoot: 14; Heel: 4

• IMU at midfoot

• Wireless (Bluetooth) transmission
• Wireless (inductive) charging
• Internal data storage (up to

26 days movement data)
• 12 sizes

• Thin, lightweight and comfortable
• 3D motion capture
• Store up to 26 days movement data
• Wireless data transmission
• Wireless charging
• Medical CE/FDA approved
• Various sizes are available

• Plantar pressure of midfoot
region cannot be investigated

• Large charging time (180 min
for full charging)

• Small battery life (110 mAh)
• Home use was not evaluated
• Error: 3.1–4.7% in comparison

to an odometer

Duong et al.
(2020)
[107]

Resistive pressure sensors
and IMU

9
(Pressure: 8,
IMU: 1)

• Pressure sensors: hallux,
toe, first/third/fifth
metatarsals, lateral arch,
and medial/lateral
calcaneous

• IMU at midfoot

• Wireless (Wi-Fi) transmission
• Data transmission rate: 500 Hz
• Insole thickness: ~5.5 mm
• Total weight: ~50g

• Thin, lightweight, and comfortable
• 3D motion capture
• Wireless data transmission
• Various sizes (4) are available

• Designed for only toddlers’
and children’s shoes
(3 to 12 years)

Chen et al.
(2020)
[109]

Piezoresistive pressure
sensors and IMU

97
(Pressure: 96,
IMU: 1)

• Pressure sensors:
uniformly distributed
across insole

• IMU at midfoot

• Wireless (Bluetooth) transmission
• Data sampling rate: 30 Hz
• Built-in Li-ion battery (3.7 V,

1000 mAh)

• 3D motion capture
• Wireless data transmission
• Large rechargeable battery
• shows the visualization of the plantar

pressure on the smartphone application

• Low sampling frequency
(30 Hz)

• Complex real-world
conditions are not analyzed.
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3.1.4. Other Physiological Parameters
Heart Rate Detection

In [111], the estimation of heart rate using photoplethysmography sensors worn at the
foot was investigated. This system was particularly used to estimate heart rate during fast
biking exercise. Heart rate measured by wearable sensors was typically done using sensors
placed at the wrist. However, this system is an alternative approach which also provides
the potential for energy harvesting, a benefit unique to this type of design. However, the
fast motion during fast bike exercise also causes the heart rate measurements to be more
difficult to obtain. Eight participants were used to verify the heart rate determined by
the system. This system was capable of estimating average heart rate with a 9-bpm error.
Although the results indicated that more work is required for such a device to be used for
accurate clinical measurements, this unique concept of utilizing foot-worn sensors can be
applied to insole-based systems to measure a variety of physiological parameters. The noise
may be reduced by using the device in activities requiring less motion (such as walking
instead of running). However, this would compromise the energy harvesting benefit of
these devices. Improving the algorithms used to remove motion artifacts can also help
improve such a device for practical purposes.

Heart rate was also aimed to be detected in [112], but by using a weighing scale. As
opposed to the traditional method of using electrodes and having current passing through
both feet, this work provided an alternative where only one foot is required to detect heart
rate using impedance plethysmography (IPG). It is indicated that this system is particularly
beneficial for individuals who may have an amputated limb, pacemaker users, electronic
implant users and pregnant women. This system allows for an individual to stand on
a weighing scale for the measurements to be obtained from a single foot (as opposed to
traditionally using both feet). In particular, the pulsatile component from the measured
plantar bioimpedance is used to detect the heart rate. It is also reported that the recorded
signal contains information regarding respiratory rate. The ability of such a system to
provide a variety of physiological parameters may be useful in developing future devices
for monitoring vital signs, or monitoring and reporting several physiological parameters,
including heart rate and respiratory rate, through a single system.

Ballistocardiography (BCG) was also used to determine heart rate in an insole-based
setting. An insole with piezoelectric films to measure heart rate was developed in [16].
In the initial stages, the signals obtained were weak. However, when the participants
exercised, the signals were enhanced due the greater cardiac output as a result of exercising.
Ballistocardiography is a possible option to consider for measuring heart rate in an insole-
based format, but may be limited to certain situations such as measuring heart rate during
or after physical activities.

A wearable system for the foot which is able to detect changes in muscle activity in
addition to detecting the pedal pulse at the dorsal aspect of the foot was developed in [113].
The device, called “FeetBeat”, has sensors at the tongue of the shoe to detect the pulse from
the dorsal pedal artery. This artery may be ideal to target for measuring pedal pulse if a
device such as a shoe were being designed. However, it may not be feasible to target the
dorsal pedal artery in an insole-based system taking measurements at the plantar aspect of
the foot (the sole).

In [17], heart rate was determined from the sole of the foot by obtaining signals
from the lateral plantar artery at the plantar aspect of the foot. A major challenge with
obtaining heart rate measurements from the sole of the foot is that fat pads exist for the
protection of the foot and for distributing an individual’s weight. However, these fat pads
are additional layers of biological tissue which increase the distance between the target
artery and the proposed location of the sensor. The fat pads are particularly prominent
under the metatarsal heads of the foot and the heel. However, in [17] it was found that the
midfoot was the optimal location to obtain heart rate measurement using PPG sensors. In
fact, the lateral plantar artery can possibly be targeted at the midfoot, particularly at the
lateral midfoot at the plantar arch.
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Muscle Activity Detection

A system which measures lower-leg muscle activity in a sock-type wearable sensor
system was developed in [19]. This system uses distal EMG signals to determine muscle
activity. Electrodes placed at the surface of the skin are able to detect the biopotential signals
which result from muscle activations. Some benefits of using electrodes in a sock include
the tightness of the sock fabric, and preventing the electrodes from sliding out of their
appropriate placements. In this design, electrodes were placed at the lower leg (at the calf
and near the ankle), as opposed to the foot. The conductive fabric electrodes make contact
with the skin on one side and with the sock fabric on the other side. The muscles’ activities
measured in this design include the tibialis, gastrocnemius, soleus and peroneus. This is
accomplished using six sensors positioned on each leg. To gain more holistic measurements
of foot plantar pressure and lower limb muscle activation, an insole-based system with a
wearable sock that extends up to the lower leg can be useful to obtain measurements of
muscle activity, in addition to parameters such as heart rate, temperature, plantar pressure
and gait characteristics.

Temperature Measurement

A flexible smart insole based on PDMS/CNT (polydimethylsiloxane/carbon nanotube)
was developed in [114] that is capable of measuring and mapping temperature and pressure
of the foot. This system uses pressure sensors and thermistors placed the hallux, 3rd toe,
forefoot, lateral midfoot and heel. Twelve pressure sensors and four thermistors were
placed in the aforementioned regions. Electrodes were printed on a highly compliant
flexible substrate. Such compliance is ideal for use in insole-based systems as the insole
can adjust its shape along with the movement of the foot, without damaging the insole
while maintaining the capability to record measurements. Using a scalable mesh-molding
process, the pressure sensing microstructures were fabricated. It is indicated that using
printed side-by-side electrodes allows for sensor arrays to easily be created, in addition
to having an increased sensitivity and greater working range than top-bottom electrodes.
In fact, the working range of this sensor system is from 7.4 Pa to 1 million Pa. The
change in pressure results in a resistance change between the two electrodes because the
conductive microstructures change. Insole-based sensor systems that are highly compliant
and can withstand a broad range of applied pressure can be highly beneficial for a variety
of activities where the foot shape and applied pressure may vary greatly. Furthermore,
being able to measure temperature along with pressure can serve two purposes. First, for
sensor systems which work within a specific temperature range, temperature sensors can
ensure the readings obtained are reliable based on the temperature at which those pressure
measurements were obtained. Second, temperature at the foot may also be a physiological
parameter of interest to be periodically measured, such as for individuals who may suffer
from Grierson-Gopalan syndrome (also known as “Burning Feet syndrome”), or if an
individual may suffer from Raynaud’s phenomenon (where toes and fingers drastically
decrease in temperature) as well as for the detection of diabetic foot ulcer risk, which is
associated with an increase in temperature at specific points at the foot sole [18]. Early
detection of the onset of such phenomena may help reduce the adverse physiological
effects one experiences, by taking measures to reduce the effects based on early readings of
temperature changes from such an insole-based system.

In summary, several insole-based or related systems were reported in the literature
that can measure a number of parameters from the foot or near the foot. The parameters for
gait and health monitoring which were investigated include PPD, inertial measurements,
muscle activity, heart rate and temperature, as shown in Table 4 and Figure 5.
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Table 4. Key points pertaining to various existing sensor systems measuring physiological parameters at or near the foot.

Author(s)
(Year)
[Ref]

Focus of Work Sensor Type/System Number of Sensors Per
Foot/Leg

Sensor
Placement

Other Useful
Information

Jarchi and Casson
(2016)
[111]

Heart Rate Photoplethysmography 1 PPG sensor At ankle Energy harvesting capabilities
9 bpm error

Diaz et al.
(2010)
[112]

Heart Rate Impedance Plethysmography—IPG 7 (injecting and detecting)
electrodes

Beneath plantar aspect of foot (in
weighing scale)

Impedance suitable for leg amputees, pregnant
women, electronic implant users and
pacemaker users

Liu et al.
(2017)
[16]

Heart Rate
Ballistocardiography—BCG
(polyvinylidene fluoride
film sensor)

1

Beneath plantar aspect of foot (in
insole-based system) and in seat
cushion (at thighs)

Weak signals obtained unless cardiac output
enhanced following exercise

Zhang et al.
(2019)
[113]

Heart Rate
and Muscle Activity Iontronic capacitive pressure 5 sensing channels Dorsal aspect of foot (dorsalis

pedis arterial pulse)

Device capable of detecting both heart rate and
muscle activity from dorsal aspect of foot

Hong and Park
(2018)
[17]

Heart Rate Photoplethysmography—PPG 4 LEDs and 30 photodetectors

Beneath plantar aspect of foot (in
insole-based system)
Targeting lateral plantar artery Stable signals obtained only when standing still

Isezaki et al.
(2019)
[19]

Muscle Activity EMG electrodes 10 conductive-fabric electrodes At calf (in sock system)
Sock-based system allows for electrodes to avoid
slipping from appropriate position

Wu et al.
(2020)
[114]

Temperature
and Pressure

Temperature: Thermistors
Pressure: printed side-by-side electrodes

4 thermistors
12 pressure sensors

Beneath plantar aspect of foot (in
insole-based system) Pressure range: 7.4 Pa to 1 million Pa
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3.2. Commercially Available Systems

Certain insole-based sensor systems, which measure parameters such as foot pressure
distribution, are currently commercially available. These “smart insole” systems typically
aim to be a supplementary device used for activity monitoring, particularly for those who
engage in athletic activities.

An insole system developed by Salted [115] measures foot pressure, gait patterns
and bodyweight distribution. The insole contains four sensors and has benefits of being
trimmable (to be customized to an individual’s particular foot or shoe shape) and is
waterproof. This device is typically used for pressure analysis when golfing, and provides
wireless data transmission over Bluetooth to a smart device (such as a phone) in real time.
The Salted insole is also capable of providing vibratory feedback through an individual’s
phone to indicate when the individual achieves their desired weight distribution during
the golf swing, based on the pressure data obtained [116]. Features such as trimming the
insole and using a waterproof material or coating are beneficial to improve all day use and
account for foot morphology differences.

The “UniverSole” by IPPINKA [117] is a commercially available insole with pressure
sensors. IPPINKA pairs the insole with a mobile or computer app which can show images
of pressure mapping to indicate the pressure distribution across the feet, in addition
to displaying what percent of body weight each foot is bearing. The mobile app also
provides notifications indicative of which foot is receiving more weight and provides
progress updates regarding achieving an individual’s daily step count goal. Graphical user
interfaces such as the one used with the “UniverSole” can provide an easy way for users to
monitor their fitness goals and foot pressure distribution, while obtaining feedback in an
easy-to-understand manner.

Another insole-based system was developed by Arion [118]. This company created
an insole which contains eight pressure sensors distributed throughout each sole. These
insoles are described as being thin and flexible, with a thickness of only 2 mm. This insole
is also available in four sizes, which can accommodate several, but not all potential users.
This insole system works with a “sensor packed footpod” which is a device that connects
to the wired portion of the insole. This “pod” is able to be attached to the side of an
individual’s shoe and has a gyroscope, accelerometer, global positioning system (GPS) and
Bluetooth for wireless data transmission. An additional benefit of this “pod” is the LED
lights which change to various colors to indicate when measurements are being taken, if it
is improperly connected, or the device is charging properly, etc. It is described as being
small and lightweight, with seven hours of battery life. This battery run-time is ideal for
the intended application of this device, which is geared towards tracking activity during
running.

The Arion device maps the run path, pace and duration of an individual’s run. It
also identifies which part of the foot strikes the ground first, in addition to an individual’s
step length, cadence, foot contact time (indicating the gait cycle’s stance phase duration),
and time spent with the foot in the air (indicating the swing phase duration). The device
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is also able to provide information regarding an individual’s balance based on weight
distribution in both feet, and stability of the foot. The parameters measured by Arion’s
device can be very useful for applications in a variety of populations. One such population
that would benefit from the measured variables include older adults, as the system can
be used for gait characteristic monitoring and for improvements in health. Although the
Arion device is not intended for all-day wear, this device measures a multitude of variables,
which would particularly be beneficial for monitoring activity and gait characteristics of
elderly individuals. For instance, the inertial measurement units can be used to detect
falls or slips, and information regarding the frequency of falls or severity of falls can be
beneficial to clinicians. Gait characteristics can also be used to predict fall risk, which is
also an indicator of overall well-being [31]. Activity monitoring and relaying the acquired
information in an app-based format can also encourage older adults to be more active and
reach certain fitness goals (such as engaging in a certain duration of exercise or achieving
a predetermined number of steps). Embedding GPS trackers in an insole-based system
may also have additional benefits. One use of a GPS is to modify walking routes based on
previous taken routes, in order to enrich sensory stimuli of the individual. Exposing one
to new sensory stimuli, such as nature during outdoor walks, may also improve mental
health. Being exposed to varying sensory stimuli can help improve the quality of life of
older adults in addition to having fulfilling experiences outside of their home. Furthermore,
several older adults with dementia are under constant supervision by caregivers [119].
However, tracking an individual using a GPS, such as during their outdoor walks, can
allow for older adults to have more independence in their daily activities, as well as reduce
anxiety and worry for caregivers. However, the privacy concerns of GPS tracking would
have to be mitigated if data is accessible by individuals other than the user of the insole.

Commercially available smart insoles are typically designed for athletic activities to
monitor and improve performance. Although such systems provide useful information
regarding an individual’s plantar pressure and characteristics related to gait, a greater
number of sensors can be used to improve the pressure data obtained. However, several
characteristics of the currently available smart insoles are admirable and highly beneficial,
and future insole-based health monitoring devices should incorporate such characteristics
when and where possible. Such characteristics found in commercially available smart
insoles are outlined in Figure 6.
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4. Design Aspects and Considerations
4.1. Sensor Selection

Insole-based sensors systems can enable an unobtrusive means of health monitoring
by incorporating a variety of sensors. For example, plantar pressure can be measured by
integrating a set of resistive, capacitive, piezo-resistive, or piezoelectric pressure sensors in
the insole [41]. Other sensors that were also used in the literature for pressure detection
include optical sensors [75] and MEMS (micro-electromechanical systems) sensors [120].
These sensors detect changes in pressure and convert it to an electrical value corresponding
to the applied force. IMUs can further be integrated into the insole that can potentially
enable analysis and assessment of gait in a wearable platform.

However, selection of appropriate sensors is critical in order to ensure the accuracy
and clinical relevance of the measured signals. For example, pressure values vary widely
across the foot plantar from about 157 kPa in the third metatarsal region to as high as
631 kPa in the entire forefoot region [121] and can reach up to 1900 kPa over the entire
foot [41]. Therefore, the number, sensing area, and location of the sensors as well as the
intended resolution of plantar pressure distribution are some key factors that must be taken
into account while selecting the sensors [41].

In addition, the ambient temperature inside the shoe can vary widely [122], which can
in turn affect the performance of the system. It was reported that the temperature inside the
shoe can increase by 6 ◦C in 90 min when worn, even without any physical activity [122]
and by about 8 ◦C in 45 min when walked at a speed of 0.7 ms−1. Since the temperature
within the shoe can change significantly within a short amount of time with little to no
physical activity by the user, pressure sensors embedded in the insole must have a low
temperature sensitivity, particularly in the range of 20 to 37 ◦C [123]

On the other hand, IMUs are robust enough to withstand a wide range of temperature.
Therefore, change in the ambient temperature is not a key concern for IMU selection. The
key selection criteria of the IMUs for gait monitoring and analysis purposes are their
dynamic range (DR), resolution and sampling rate. Higher DR, resolution and sampling
rate of the IMUs enable measurements of gait dynamics with higher precision; but the
penalty is reduced battery life and large storage requirement of the system [124]. Therefore,
the selection criteria of IMUs may vary based on the application. For a system to capture gait
dynamics during the day-to-day activities such as walking, and running, an accelerometer
with a DR of ±8 g [124,125] and a gyroscope with a DR of ±2000 deg/s are generally
adequate [125,126].

4.2. Data Acquisition Rate

When acquiring a variety of signals, it is important to consider the optimal frequency
or rate for collecting the signals. This data acquisition rate needs to be sufficiently high for
an accurate, reliable and clinically relevant representation of bio-signals, while minimizing
the power consumption for the portable systems to facilitate extended battery life.

In the case of a smart insole device, the main purpose is to obtain data related to foot
health, activity and gait characteristics. Therefore, it is critical for pressure and inertial
measurements to be obtained consistently. By ensuring signals are collected continuously
at an adequate rate while the insole is in use, a more holistic view of an individual’s PPD
and gait characteristics can be obtained from the larger volume of data acquired over longer
periods of time. For the purposes of PPD measurements, a sampling rate of 50 Hz should
suffice while walking [127]. However, a sampling rate of at least 200 Hz is required during
running [41]. Similarly, while a sampling rate of 50–100 Hz is sufficient for IMUs to measure
gait movement (acceleration and angular velocity) during different pace of walking [2,128],
a higher sampling rate (>250 Hz) is required to capture the detailed aspects of gait patterns
during running [129,130].

In addition to PPD and gait monitoring, a smart insole can incorporate sensors for
monitoring pulse rate [17] and temperature [18]. Daily measurement of pulse rate can
provide insight regarding an individual’s cardiovascular and overall health. The smart
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insole can facilitate monitoring pulse rate (PR) and pulse rate variability (PRV) continuously
for longer periods of time or at rest, or before and after exercise, as demanded by the user.
Although a lower sampling frequency is acceptable for measuring the PR, a sampling
frequency of at least 100 Hz is required for time-domain analysis of PRV [131]. Temperature
sensors used in such an insole-based system serve multiple functions. For the purpose of
detecting diabetic foot ulcers, it was determined that monitoring foot temperature once
a day can be an effective preventative measure for individuals who have a higher risk of
foot pathologies related to diabetes [132]. To ensure sensors are able to accurately operate
within the specified temperature range, temperature measurements should be taken more
frequently to account for the temperature changes of the foot within the insole or footwear
environment.

4.3. Data Analysis: Sensor Fusion, Prediction, and Decision Making

A system consisting of different types of sensors allows for collecting multimodal
information and performing comprehensive analysis. The information from multiple sen-
sors embedded in an insole can be combined or fused to perform more complex analysis,
overcome respective limitations of each sensor and achieve better results with improved res-
olution, high reliability, larger spatial–temporal coverage, reduced ambiguity, and greater
precision in measurements [133,134]. In addition, by combining the information from
different sensors, the context and perspective of the circumstances can be assessed, thus
facilitating a better understanding and assessment of the health and wellbeing of the users.

The sensor fusion can be performed at three levels: signal level [135,136], feature
level [103,104] and decision level [103,104]. In signal level fusion, preprocessed signals
from different sensors are combined using several techniques such as weighted averages,
complementary filter, Kalman filter and particle filtering to obtain usable features for
further analysis. At the feature level, sensor fusion is performed by combining the feature
vectors extracted from the sensors’ data. This fusion level can be used for dimensionality
reduction of feature space, and it results in a higher-level feature representation of the
sensor data [137]. Principal component analysis (PCA), k-nearest neighbor (k-NN), decision
trees (DT), support vector machines (SVM), Gaussian mixture model (GMM), k-means,
artificial neural network (ANN) and deep learning are the most commonly used methods
to perform sensor fusion at the feature level. Decision level is the highest level of fusion
that is used for recognition and decision-making purposes. The input to this level can be
the outputs of the previous two levels and/or the raw data from the sensors. Probabilistic
techniques (e.g., Bayesian inference) are generally used at this level due to having high level
of uncertainty [134]. However, other algorithms such as fuzzy logic, weighted decision,
artificial intelligence, and genetic algorithms are also frequently used for decision-making.
An overall process flow of sensor fusion technique is presented in Figure 7.
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Several researchers have proposed different multimodal insole-based monitoring
systems and used machine-learning approaches to fuse multi-modal data/information in
an attempt to evaluate human gait [103]. In [104], a pressure sensor array, and an array of
accelerometers and gyroscopes were used to develop a smart insole. A deep convolution
neural network (DCNN) was employed to classify different gait types. There, they extracted
gait features from individual sensor arrays and then generated a fully connected network
by combining the features. The team was able to distinguish seven different types of
gait (including walking, running, stair climbing, etc.) with an accuracy of over 90%.
The team also indicated that such a system can be used for earlier diagnoses of diseases,
such as for knee osteoarthritis and neurological disorders such as Parkinson’s disease.
In [124], the researchers used the null-space linear discriminant analysis (NLDA) algorithm
to extract single-modal features from the gait data obtained from an accelerometer and
pressure sensors embedded in an insole for gait pattern identification. The information
from three sensing modalities (acceleration, pressure, and a combination of both) were
used separately and their performances were compared. The authors reported achieving
a gait identification accuracy of more than 95% with the multi-modal features. A textile-
based insole sensor system was proposed in [136] to measure planter pressure and wetness
during walking, with pressure and wetness sensors. The researchers used this multi-modal
design for long-term monitoring and analyzing of dynamic skin interface environments to
facilitate highly-customized orthotic/orthopedic solutions. Gait type classification using
pressure and gyroscope sensors was also used to identify walking paths (curved or straight
walking) [138]. Another study identified gait cycle events such as swing and heel-strike
based on ankle-mounted IMU data from treadmill usage [139].

Machine learning techniques are now widely used in recognition and classification
processes, as well as for identifying various physical and movement disorders during daily
activities [140–155]. Machine learning is a method of automation that includes different
mathematical functions and algorithms, and it has the capability to learn and generate
estimations based on the provided data [156]. A machine learning technique usually works
by building a data-driven mathematical model to make estimations and produce decisions
based on sample inputs rather than strictly following static program instructions. Machine
learning techniques can be divided into three types: supervised learning, unsupervised
learning, and reinforcement learning [157]. In supervised learning algorithms, the feature
vectors include the labelled data in order to explain better relationship between input
feature vectors and their corresponding labels. The commonly used supervised algorithms
in activity and gait analysis are support vector machine (SVM), random forest (RF), neural
network (NN), k-nearest neighbor (kNN), decision trees (DTs), hidden Markov model
(HMM), and ensemble learning. In contrast, in unsupervised learning methods, no labels
are provided. The algorithm itself formulates the relationship between various inputs
to estimate an output. These techniques are mostly used when the correlation between
different observations is unknown, and they are capable of identifying distinct patterns
for particular disorders. Therefore, unsupervised learning techniques are often used for
clustering of abnormalities and detecting asymmetries in the gait data. A reinforcement
learning model is capable of considering and interpreting its environment, generating
actions (reward or penalty) and learning through trial and error. Due to its ability to rec-
ognize data heterogeneity and simplify according to a particular condition, reinforcement
learning and deep neural networks (DNNs) are now very popular in rehabilitation studies
and recovery devices such as walking assistive devices and exoskeletons. Studies related to
activity and gait analysis using advanced machine learning techniques are summarized in
Table 5.
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Table 5. Key points pertaining to various activity and gait analysis systems using advanced machine learning techniques.

Author(s)
(Year)
[Ref]

Objectives of
the Study Sensor Types Methods of Analysis Measured Parameters and Outcomes

Muniz et al.
(2006)
[140]

Determining the feasibility of PCA in the
ground reaction force (GRF) data to
distinguish the normal and abnormal gait
patterns for the rehabilitation treatment

• Instrumented treadmill Gaitway®

model 9819S1 with force platform PCA, LR

• PCA is useful to categorise (scatter diagram of first two
coefficients) between normal and abnormal gait.
However, only 48.9% data variance was reported in this
study between controlled and patient groups

Lai et al.
(2007)
[141]

Classification of gait patterns between
patients with patellofemoral pain syndrome
(PFPS) and healthy group using SVM

• Four video cameras (Panasonic
WV-CL830/G colour CCTV)

• 10 m walkway with an embedded
force platform

SVM

• Classification accuracy (using polynomial kernel) was
85.19% for 14 GRF feature set while for 16 kinematics
features the accuracy was 74.07%

• Using optimal feature set (six) from both GRF and
kinematic data, SVM achieved the highest accuracy
of 88.89%

Lau and Tong
(2008)
[142]

Evaluation of accelerometer and
gyroscope-based system for gait
event identification

• 3 Sensor units (accelerometer and
gyroscope) at thigh, shank, and foot

• 4 FSRs at 2nd middle phalanx, 1st and
5th metatarsal head, and heel

Threshold detection method
• Turning points (maximum/minimum)
• Classification of the detected turning points
• Identification of gait events

Alaqtash et al.
(2011)
[143]

Classification of gait patterns of healthy,
cerebral palsy (CP) and multiple sclerosis
participants using 3D GRFs data

• Instrumented treadmill with two
independent force plates mounted
underneath the belts

DWT, ANOVA, NNC, and ANN

• GRF parameters using NNC achieved higher accuracy
rate than DWT

• Both NNC and ANN achieved the same range of
classification accuracy: 85% without feature selection
and 95% with optimal feature set (six features)

Jung et al.
(2012)
[144]

Detection of stroke patients’ intention (desire
to move and time) for exoskeleton robots
during rehabilitation

• Ground reaction force sensor
• Joint angles measurement unit

(not specified)
NN

• Classification of one stride into seven sub-phases using
binary representation.

• Gait pattern generation for the affected leg.

Guo et al.
(2017)
[145]

Classification of normal and
pathology-related changes in gait using foot
pressure data in young children

• GAITRite Electronic Walkway PCA, Discriminative mapping,
SVM, and RF

• SVM achieved 94.36% and and RF achieved 97.50%
classification accuracy based on age information and
other spatiotemporal features.

• Demonstrated the possibility to distinguish minimal
variations during early stages of gait development such
as changes in foot shape in young children



Sensors 2022, 22, 438 28 of 46

Table 5. Cont.

Author(s)
(Year)
[Ref]

Objectives of
the Study Sensor Types Methods of Analysis Measured Parameters and Outcomes

Jiang et al.
(2018)
[146]

Gait patterns recognition for
rehabilitation therapy

• Insole-based graphene porous network
structure pressure sensors (GPNSPS)

Ensemble learning
framework

- SVM + RF + LR

• Detection of different gait patterns (accuracy)

- Normal gait (94.3%)
- Toe in (83.1%)
- Toe out (94.2%)
- Lame (93.6%)
- Heel (96.8%)

Nazmi et al.
(2018)
[147]

Classification of gait phases such as stance
and swing using surface EMG (sEMG)

• sEmg attached on tibialis anterior (TA)
and medial gastrocnemius
(mGAS) muscles

• Two FSRs placed at the hallux and heel
under the sole of foot

ANN with LM

• Classification of stance and swing phase with accuracy:

- 87.5% (learned data)
- 77% (unlearned data)

Souza and Stemmer
(2018)
[148]

Different movement patterns extraction for
gait analysis and a comparative study of
different pattern recognition techniques for
human identification

• Microsoft Kinect sensor SVM, MLP, RF, PNN, Naive
Bayes, LVQ, kNN, and DNN

• PNN, DNN, and kNN presented the highest
classification accuracy in the 99% range

- DNN had the highest training time of 99.51 s
while kNN had the lowest of 0.63 s

• SVM, MLP, NB, and RF had the accuracy in the
97% range

• LVQ showed the lowest accuracy of 36%

Huang et al.
(2018)
[149]

Modeling the control system of lower
exoskeleton for hemiplegia patient with a
Leader-Follower Multi-Agent System
(LF-MAS) applying reinforcement
learning framework

• Joint actuators
• IMU sensors
• Plantar sensors placed in soles

PI-ADP algorithm
• LF-MAS based on a lower exoskeleton system (AIDER)

presented good performance with healthy subjects

Zhang and Ma
(2018)
[150]

Evaluation of supervised machine learning
algorithms to classify sagittal gait patterns of
cerebral palsy (CP) children with spastic
diplegia

• Eight camera-based motion analysis
system (Vicon MX, Oxford Metrics,
UK)

• Three force platforms

ANN, discriminant analysis,
Naive Bayes, decision tree, kNN,
SVM, and RF

• Predictive accuracy and resubstitution error:

- ANN: 93.5%, 5.8%
- SVM: 85%, 5.7%
- Decision tree: 84.3%, 5.7%
- Discriminant analysis: 84.3%, 14.3%
- RF: 83.6%, 6.4%
- Naive Bayes: 72.1%, 13.6%
- kNN: 77.9%, 0%
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Table 5. Cont.

Author(s)
(Year)
[Ref]

Objectives of
the Study Sensor Types Methods of Analysis Measured Parameters and Outcomes

Cui et al.
(2018)
[151]

Development of an automatic gait analysis
system to recognize and evaluate abnormal
gait among the post-stroke
hemiparetic patients

• A six camera-based Qualisys motion
capture system

• Two Bertec force plates
• Eight channels of surface EMG

SVM, NN, RF, Naive Bayes,
and KNN
Fusion algorithms: AR and MR

• Classification performance:

- Single modal—RF: 92.26% (based on GRF data)
- Two modal—SVM: 95.83% (based on marker

trajectory and GRF data)
- Three modal—SVM: 98.21% (based on marker

trajectory, GRF, and EMG data)

• Proposed walking ability mean score (WAMS) has the
potential in clinical application to quantify the
differences between pathological and normal gait

Sobral et al.
(2018)
[152]

Development of gait indices—NGI and AGI
(normal and abnormal gait index) to evaluate
the recovery status after anterior cruciate
ligament (ACL) Reconstruction

• Eight insole-based force sensors ELM

• Developed gait indices discriminated healthy and
impaired gait patterns based on symmetry and
measured Gait error (calculated from deviations
between 16 parameters from Vertical GRF)

• Ideal gait is supposed to have Gait error and symmetry
index equal to zero

Thongsook et al.
(2019)
[153]

Gait phases (Stance, swing, and push)
recognition for lower limb exoskeleton

• Two IMU sensors at hip and knee joints
• Two FSRs placed at toe and heel

C4.5 decision tree, MLP,
and NARX

• In gait phase recognition, C4.5 decision tree performs
better (100% accuracy) than MLP (94.79%) and NARX
(98.76%) with larger training dataset (≤10,000)

Zhang et al.
(2020)
[154]

Extraction of fundamental gait parameters
such as stride length, velocity, and foot
clearance accurately during walking and
running tasks

• A multi-cell piezo-resistive sensor
• IMU SVR

• 2-step calibration method

- zero velocity update and velocity
drift compensation

- SVR-based gait parameter estimation based on
intraclass correlation coefficients (ICC)

Tong et al.
(2021)
[155]

Development of a method based on
permutation-variable importance (PVI) and
persistent entropy to classify the severity
classification of Parkinson’s disease
(PD) patients

• 16 Insole-based force sensors (eight
sensors under each foot) RF, SVM

• RF was used to separate the leading factors
distinguishing the gait of patients at different severity
levels

• SVM classification achieved an accuracy of 98.08% by
10-fold cross-validation

NN: neural network; SVM: support vector machine; RF: random forest; LR: logistic regression; ANN: artificial neural network; LM: Levenberg–Marquardt; MLP: multilayer perceptron
neural network; PNN: probabilistic neural networks; LVQ: learning vector quantization; kNN: k-nearest neighbors; DNN: deep neural networks; PI-ADP: policy iteration adaptive
dynamic programming; NARX: nonlinear autoregressive with exogenous variable; PCA: principal component analysis; DWT: discrete wavelet transform; ANOVA: analysis of variance;
NNC: nearest neighbor classifier; AR: average rule; MR: max rule; ELM: extreme learning machine; SVR: support vector regression.
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4.4. Information Dissemination, Interaction and Feedback

Another important aspect of an insole-based health monitoring system is the handling
of the data acquired. For instance, the data needs to be presented in a simple and easy to
understand manner to the user; whereas, the detailed data may be of interest to medical
professionals such as the user’s physician for health assessment purposes. The user may
also want to receive feedback about their health and make interaction with the system
through a user-friendly graphical user interface (GUI). An effective method of sharing
data acquired from a smart insole was proposed in [158]. There, they exploited an internet
of things (IoT) framework to collect, monitor and distribute the data to the authorized
individuals, along with using a smart insole. Such an IoT system can enable tele-monitoring
of health, thus improving the efficiency of health care by allowing physicians to have remote
access to data reflective of physiological parameters.

Another system that allows for gait patterns based on accelerometer data to be ana-
lyzed and displayed is iGAIT [159]. As a software developed in MATLAB, iGAIT allows for
extracting gait parameters that include spatio-temporal, spectral, regularity and symmetry
features. This system aims to be interactive, as the extracted features are also displayed
to the user, in addition to storing the information for later use. The software also enables
users to alter how their gait is analyzed based on their specific needs.

A mobile companion robot that can be used in conjunction with an insole-based sensor
system was developed in [160]. This system used IMUs and force sensors in the in-shoe
based system, and the red–blue–green-depth (RBG-D) sensors on the robot (Kinect v2).
The robot serves several roles, including monitoring an individual’s gait and facilitating
socialization. The latter is done by having the robot act as a companion for individuals
such as older adults who may be socially isolated, and enabling teleconferencing calls for
socialization in a virtual manner. These mobile robots were developed to guide walking
sessions, and to monitor gait and provide corrective warnings and feedback to the user.
The robot exploited the data from the in-shoe system and the sensors on-board the robot
to interact with the older adults and to navigate. The insole-based system has a faster
sampling rate than the robot system (500 Hz and 30 Hz, respectively). The robot’s Kinect
system can also obtain information such as the step length without drift. The insole system
on the other hand is able to provide detailed information regarding gait characteristics
such as foot pressure. The synergistic effect obtained from using information from both
the in-shoe system and the robot allowed for more detailed information to be obtained.
This results in greater estimation accuracy of gait parameters such as foot clearance, stride
velocity and stride length, compared to using only one of the systems. Although this system
is able to provide useful measurements and data, there still exist certain limitations. For
instance, the distance between the user and the robot was reported to affect the accuracy
of the data measured by the robot sensors. The robot also used markers to estimate gait
events that may not be accurately measured in environments that differ in lighting, or
when the subject’s distance from the robot increases and may not be practical in day-to-day
use. Nevertheless, this robot-insole combination can potentially increase the independence
of older adults as their reliance on caregivers decreases, since the system takes over the task
of constant monitoring. Furthermore, the use of artificial intelligence (AI) can enable the
robot to make intelligent decisions about the overall wellbeing and safety of the user.

5. Research Challenges and Future Perspectives
5.1. Research Challenges

There are several challenges associated with the development and use of insole-based
devices to improve their performance and usability. Ten challenges are summarized in
Figure 8 and are described below.
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a. Sensor Placement

Unlike force platforms which have an array of sensors that allow them to measure
pressure across the entire foot, the insoles use discrete sensors at particular regions of the
foot. It was observed that the placement and size of the sensors can affect the measurements
accuracy [41]. It was indicated in [41] that the sensors should not be placed directly at
the area of maximum pressure but rather positioned close to this area. In addition, the
surfaces of the sensors must be at least 5 × 5 mm in size, but not too large as they would
provide lower values corresponding to the average pressure of the areas of interest. As a
result, if sensors are not placed in optimal positions in the insole-based system, accurate
measurement of plantar pressure may not be obtained.

b. System Integration

An insole-based system aims to take measurements in the user’s natural setting
or during daily activities for an extended period of time. Such systems should have
wireless data transmission capability coupled with extended battery life to enable long-
term monitoring of gait. Important characteristics of long-term monitoring systems also
include having an increased energy efficiency to minimize power consumption. The use of
highly efficient batteries, incorporating energy harvesting techniques and using low power
components can contribute to achieving low power. The ‘sleep and wake up’ operation of
sensors, i.e., sensors being in an inactive stage unless required, can also improve battery
life while maintaining the required frequency for measurements [2]. Nevertheless, the
integration of several sensors and other electronic components in the insole while ensuring
signal integrity and maintaining users’ wearing comfort can be challenging, as more
components may cause the device to be heavier or more obtrusive for the user.

c. Signal Error, Drift and Calibration

Insole-based systems have unique challenges in terms of calibration. For example,
there may be changes in the shoe environment such as humidity and temperature [75],
resulting in measurement drift, thus potentially requiring frequent re-calibrations. In
addition, activity-specific and user-specific calibrations may be necessary. Non-linearity
of a sensor is another factor that may lead to the need for sensor calibration. For pressure
sensors, calibration tables can be used to translate voltage values into the corresponding
pressure values to compensate for the non-linearity of the sensor [161]. However, some
sensors do not require additional calibration if used within the specified pressure range and
within the specified lifetime of the sensor and shoe environment. For instance, OpenGo
wearable insole pressure sensors are able to operate up to 400 kPa without the need for
re-calibration [162]. Nevertheless, the placement of such a sensor and its sensing area must
be carefully considered when used in an insole-based system. When designing insoles for
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full-day wear and long-term use, frequent calibration may deter users from using such
devices. Therefore, it is important to reduce the number of calibrations for better user
convenience.

In addition, the orientations of the IMUs in the insole are arbitrary. Therefore, it is
critical to estimate and correct the sensor’s orientation to make an accurate assessment
of gait. Ideally, a tri-axis accelerometer can be used to obtain the roll and pitch from its
position with respect to the gravity vector, whereas the yaw can be obtained by measuring
the geomagnetic field with a tri-axis magnetometer. Furthermore, the three-dimensional
orientation can ideally be obtained by integrating the angular velocity measured by a
tri-axis gyroscope.

However, an accelerometer’s signals are very sensitive to external noise and can get
contaminated with vibrations associated with gait anomalies, scar and adipose tissue,
that altogether can introduce large errors to the estimated roll and pitch. In addition, the
ambient ferromagnetic materials can introduce larger errors to the measurement of the
relatively weak geomagnetic field, and thereby in the estimated orientation. Furthermore,
orientation estimated through integration of gyroscope data are contaminated with drift.

Typically, measurement from all three sensors, such as accelerometer, gyroscope and
magnetometer are used to estimate the device’s orientation. Many researchers exploited
Kalman filter-based approaches to estimate the device orientation [163–167]. However,
Kalman filter-based approaches generally use complicated and non-linear equations of the
process model and the observation model, thus making these methods computationally
intensive for real-time applications. Some researchers used linear models of the human mus-
culoskeletal system and the measurement equations to reduce the overall computational
cost for real-time systems. However, linearization of the model may result into a system
which is sensitive to initial conditions and may have issues associated with convergence
and stability, especially at lower sampling rates [68,168].

Regardless, Kalman filter-based methods are widely used in applications such as motion
tracking, signal filtering, and sensor fusion due to their high accuracy and speed [169,170].
However, the covariance matrices of the Kalman filter’s process noise and measurement
noise need to be determined experimentally. Furthermore, Kalman filter requires inversion
of large matrices that increases the computational complexity of the algorithm, and thereby
can potentially affect the computing time and the battery life of portable and wearable
systems [68,171].

To get around the problems associated with the Kalman filter-based approaches, some
researchers used complementary filter (CF)-based estimation approaches [68,128,172,173].
CF-based methods exploit and fuse information from the gyroscope, accelerometer, and/or
magnetometer and thus overcome the limitations of each source. CF-based estimation ap-
proaches have the advantage over Kalman filter-based methods for reduced computational
complexity, requiring only a few tuning parameters and thus making them suitable for
real-time systems.

d. Signal Synchronization

One of the major challenges of using multiple types and numbers of sensors in one
system is associated with the timing or alignment accuracy of the signals. In a multi-sensor
system, it is necessary to synchronize the signals, particularly those varying with time.
For signals that do not vary with time—for example, PPD measured at standstill—precise
synchronization of the pressure sensor signals may not be critical. However, for signals
measured during an activity such as walking and running, where both PPD, as well as gait
acceleration and angular velocity change with time, accurate interpretation of the signals
may not be possible without precise time-synchronization of the sensors. Synchronization
of signals from multiple sources further allows for investigating the associations among
different physiological parameters and events, thus enabling a more holistic understanding
of an individual’s health. For instance, information such as how an individual’s gait
characteristics is associated with an individual’s cardiovascular health may allow for
the prediction or indication of more complex physiological conditions based on simple
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measurements. However, sensors differ in operating principles, output type (analog vs.
digital) and output voltage range, response time and sampling frequency, thus often making
on-board time-synchronization difficult.

e. System Validation

Most insole-based systems reported in the literature were tested on a small group of
individuals of same gender, ethnicity and/or age. This poses a problem as individuals of
different genders and ethnicities are known to have different in foot morphologies [174,175].
As a result, a standard placement of sensors may not be suitable for all users of the device.
Therefore, ensuring the system’s compatibility with a broader group of individuals can
be challenging. Furthermore, force platforms are generally used to compare and validate
the plantar pressure measured by the insole-based system [176]. However, the contexts
in which the insole can be compared to the force platforms is limited. In particular, force
platforms are used in a laboratory setting whereas insole-based systems are designed
for use in a variety of natural day-to-day settings. For instance, an individual’s gait
characteristics may (intentionally or not) be altered when walking on a treadmill or force
platform in a laboratory setting compared to their natural walking patterns. Regarding
gait pattern analysis, new systems are typically validated against laboratory-based motion
capture systems [177]. Although force platforms and motion capture systems are useful for
validation, they may result in measurements that do not reflect an individual’s natural gait,
causing validation of the new systems in other activities to be more difficult.

f. User Comfort

As insole-based systems aim to measure PPD during an individual’s daily activities, it
is crucial for the sensor to be non-obtrusive to ensure that an individual’s natural gait is
not affected by the use of the insole system. This can be achieved by using flexible sensors,
comfortable materials for the construction of the insole, lightweight materials and wireless
data transmission, in addition to using a battery which is capable of operating during
all-day wear. In fact, Bamberg and colleagues indicated that attachments to footwear which
are 300 g or less do not significantly impact an individual’s gait [126]. Ensuring the system
is in a plug-and-play format also allows for the easy use of the insole-based system, which
would in turn encourage the continued use of the product.

g. Compatibility with Footwear Types

An insole-based system is expected to be a ready-to-go wearable device that is com-
patible with various footwear types. However, achieving ubiquitous compatibility can be
a challenge as different footwear types can affect the in-shoe environment (temperature
and humidity) and user experience. Due to differences in ventilation capabilities of the
materials, the temperature and humidity inside the shoe may vary widely depending
on the footwear types and can potentially affect both the performance and calibration
requirements of the sensors. Furthermore, the presence of an additional layer of fabric such
as socks between the sole of the foot and the sensor system, may affect the accuracy of some
parameters, particularly when measuring physiological parameters such as PPD, pulse and
temperature.

h. Usability in Diverse Conditions

An insole-based health-monitor is intended for day-to-day use in different activities,
environments, weather conditions, temperatures and on varying surfaces. Therefore, the
sensors and base materials of the insole should be rugged enough to withstand different
conditions and activities. Appropriate ventilation or insulation of the insole (or footwear)
should also be considered. In addition, weather conditions such as rain or snow may
affect sensors’ performance, so incorporating waterproof or water-resistant aspects into
the design can allow for use in such conditions. Surface compliance can also affect the
measurements obtained, particularly those of PPD. Furthermore, a stable insole base is
critical to pick up ground reaction force consistently and accurately, regardless of the
underlying floor compliance type and walking environments.
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i. Inter-System Consistency

There exist various insole-based sensor systems reported in the literature and available
commercially. However, these systems can vary in measurement capability, range and
accuracy due to the different designs. Particularly, the placement and number of pressure
sensors on the insole vary widely among the systems that can potentially affect the con-
sistency across devices. For instance, an insole with fifteen sensors located in the optimal
positions [70] will provide a drastically different measurement of PPD compared to an
insole with only three sensors located at the major foot regions defined as forefoot, midfoot
and hindfoot. As a result, clinicians and physicians may find it difficult to compare and
assess PPD measurements obtained from different systems with varying placement and
number of sensors.

j. Data Security and Privacy

Although wearable wireless systems enhance ease of use and data sharing, they
come with risks associated with information security and privacy. As an individual uses
the device in varying activities, locations and situations, sensitive personal and medical
information are prone to malicious interception. Similarly, as an insole-based system
gathers, processes, and transmits a user’s personal and health information, it is important
to maintain anonymity and privacy of the collected data. Furthermore, strong encryption
is required to ensure data security. However, ensuring secured and reliable communication
channels in a low-power platform such as an insole-based system is challenging. The scope
of security and ethical requirements of the system has to be clearly defined and specified,
and must comply with ethical guidelines recommenced by responsible regulation bodies.

In summary, although certain challenges and limitations currently exist regarding
the development of insole-based sensor systems and obtaining PPD measurements, great
progress has been made to date, and future research appears to be promising.

5.2. Future Perspectives

An ideal insole-based system would incorporate all desired features in terms of
wearing comfort, signal integrity, data accuracy, energy efficiency and extended battery life.
In addition, current challenges must be taken into account to design a high-performance
and efficient insole-based sensor system. However, based on the discussion presented
above, four future perspectives regarding the smart-insole are now described.

5.2.1. Multi-Sensor Monitoring System

The insole can incorporate the capability to measure a variety of health parameters
such as plantar pressure, pulse rate, gait pattern and temperature that may potentially
enable in-home continuous monitoring of activity, mobility and general wellbeing of the
user. One of the key design considerations for a smart-insole is to optimize the placement
and number of pressure sensors, as this can affect the accuracy, reliability, and power
requirement of the system. In [70], an optimal number of 15 pressure sensors (Figure 9) was
recommended for such systems. There, the authors recommended the sensors be placed
at the toes, metatarsals, midfoot and heel as these regions of the foot support the majority
of the body’s weight and are areas associated with greater variations in pressure [41].
However, depending on the required resolution of the pressure distribution measurements
or the application, the number and placements of the pressure sensors may vary. For
instance, to determine the relative difference in pressure between the forefoot and hindfoot,
three sensors at each of the main foot regions (forefoot, midfoot and hindfoot) can be
sufficient. Additional pressure sensors may also allow for detailed insights about foot
plantar such as identifying pes cavus or pes planus and deviation in foot arch from normal.
However, there is no general recommendation for the placement of IMUs in the insoles,
although, IMUs have been placed at the midfoot or on top of the shoe in most prototypes
as these locations are generally less obtrusive. Within an insole, a possible placement for
this sensor could be at the medial midfoot, as the arch of the foot is typically raised at this
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location. However, for individuals with pes planus, an alternative placement of the IMU
may be necessary, for instance, at the space between the first and second toes [66].
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Measurement of the pulse rate from the sole of the foot is difficult due to the presence
of fat pads below the arteries of the foot and thus is rarely reported in the literature.
However, the midfoot can be an ideal location for a pulse sensor [17], as the lateral plantar
artery is close to the skin at this location. In particular, a photoplethysmography (PPG)
sensor placed in the insole at a point along the lateral midfoot may potentially enable pulse
measurements. Furthermore, embedding temperature sensors in the insole can enable
monitoring the temperature of the insole environment to ensure proper functioning of
the system in the appropriate range and can also monitor the temperature of foot regions
linked to a particular pathology. The temperature sensor placed in Figure 9 is at a location
where 52% of diabetic individuals have experienced a foot ulcer [18]. The alternative
locations in the figure are other regions that diabetic individuals have experienced foot
ulcers. Detecting abnormal temperatures from sensors placed at one or more of these
locations may be indicative of diabetic foot ulcer risk.

An insole with multiple sensors embedded in it can potentially allow for more efficient
monitoring of activity, mobility, and physiological parameters as well as provide physicians
and caregivers information that is reflective of an individual’s health during their daily
life, as opposed to occasional checkups and laboratory test settings. In addition, different
perspectives of an individual’s health can be investigated by measuring, monitoring and
combining a variety of parameters as shown in Figure 10.

However, there remain several challenges and considerations (Figure 11) that must be
addressed while developing such systems. For instance, in existing publications, sensors
such as IMUs, temperature sensors and heart rate sensors were not consistently placed.
Considerations must be made to determine the ideal location of sensors to provide the
most physiologically relevant information. Additionally, the application that the sensor
will be used for (e.g., based on activity level and force impact for pressure sensors) should
be taken into account in the system design. Further, barriers to sensor placements such as
fat pads at the sole of the foot that may impact PPG measurements, must also be overcome.
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5.2.2. Intelligent Feedback System

An intelligent biofeedback system (Figure 12) in tandem with a smart insole can
potentially be useful in improving the gait and foot health as well as the general wellbeing
of older adults, athletes, and individuals recovering from injuries to the lower limbs.
Such systems can also be used to assess fall risk by analyzing various gait characteristics
including variability in stride length, speed, minimum foot clearance, and double-support
stance time [178]. Greater variability in gait is generally indicative of reduced stability and
balance that potentially leads to an increased risk for falling. The intelligent system can
exploit traditional machine-learning techniques or advanced algorithms such as cognitive
dynamic systems [179–181] to learn the baseline information about an individual’s gait
pattern, activities of daily life, PPD and other physiological parameters. This can allow
for trend and predictive analyses of gait, mobility and cardiac health to be performed as
well as enable automatic detection of anomalous health patterns such as abnormal gait
or cardiovascular abnormalities. The system can monitor an individual’s gait to identify
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health risks such as an individual’s risk for falling or slipping. Upon the identification of
gait anomalies, recommendations can be made to the use to adjust their walking pattern,
with the ultimate goal of reducing slips or risk of falls. Such a system can also automatically
notify the user and caregivers of anomalies detected, as well as alert if a medical emergency
such as a fall was identified. The system can combine the data acquired from sensors with
the user’s input to recommend customized and relevant actions to the user. For example, if
the system knows the user’s blood glucose level and BMI, it could suggest the number of
steps and walking speed required for the user to normalize the blood glucose level based
on their historical data. Therefore, such intelligent systems can potentially have a profound
impact in transforming the traditional approach of patient monitoring.
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The proposed intelligent feedback system can track the user’s gait and PPD in real-
time and suggest corrective measures to improve gait and foot health. This system can
use a graphical user interface on a smartphone or tactile stimuli such as the vibration of a
phone to provide user feedback. The user can then use the feedback to correct themselves
or modify behaviors that would otherwise increase their fall risk. Such an intelligent
biofeedback system can also decrease an individual’s fear of falling by providing older
adults with a sense of ease when engaging in daily activities.

The biofeedback system can be very useful for athletes to minimize the risk for injury as
well as to improve their athletic performance. Monitoring the gait of a runner can provide
insight into healthy running patterns, while also allowing the runner to monitor their
physical performance and physiological data, such as step count or heart rate, respectively.
Figure 13 outlines some key parameters which may be useful to a runner to reduce the
risk of injuries and improve running efficiency. These parameters can be monitored using
an insole-based sensor system, and the biofeedback system can be used to allow a runner
to monitor and assess their performance and health, while taking corrective actions as
appropriate. These various parameters can be measured using a variety of sensors such as
pressure sensors, inertial measurement units and heart rate sensors.

Additionally, the data should be easily viewable and understandable to the users
of the device and other authorized individuals such as caregivers and physicians. As
such, it is important to develop a user-friendly GUI for insole-based systems to facilitate
real-time feedback to users. The GUI may be further customized to serve the targeted
user. For instance, a simple GUI, with larger fonts and greater contrasts can present a
summary report to the users of the older age group. In addition, a detailed report along
with measurements can be relayed to and displayed on the interface at the physician’s end.
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5.2.3. Use of Smart Textiles

Textile-based sensors or smart textiles have great potential in realizing unobtrusive
insole-based monitoring systems. For example, textile-based electrodes and temperature
sensors can be used for measuring pulse and insole temperature, respectively. Furthermore,
textile-based strain sensors can be exploited for monitoring pulse, foot plantar pressure,
gait pattern as well as activities of daily living. Smart textiles can be used to develop smart-
socks that would ensure a superior and more stable sensor-skin contact and potentially
enable measurement of gait dynamics, plantar pressure, pulse and temperature with higher
accuracy. Nonetheless, challenges for a textile-based system include ensuring there is high
sensitivity, SNR, signal accuracy and stability. Further research is also needed regarding
ideal embedding techniques and the choice of ideal sensing materials to ensure a stable
and good sensor performance. In addition, over time and after washing the material,
the integrity of the signal and durability of the sensors are also areas in need of further
improvement prior to using smart textiles in insole-based systems.

5.2.4. Interdisciplinary Collaboration

A fully functional insole-based monitoring system will ideally be able to analyze,
interpret and evaluate the incoming signals and monitor the user’s health in terms of
mobility, cardiac activity, and PPD. Therefore, the design of an unobtrusive insole-based
monitoring system would understandably require expertise both in software design as well
as designing electronic and mechanical hardware. However, expert opinions from health
professionals and kinesiologists would be indispensable during the development phase
to interpret the sensor signals and validate the effectiveness and accuracy of the system’s
assessment. Furthermore, collaborations with hospitals, long-term care centers, and clinics
may be useful in receiving feedback about the ease of use and effectiveness of such systems.
In addition, collaborations with local shoe manufactures may enable rapid penetration of
such systems in the market.

6. Conclusions

In this paper, we have presented a state-of-the-art survey on insole-based lower-limb
health monitoring systems. The main purpose of such a system is to allow people to
remain physically active in their natural day-to-day settings while ensuring continuous
and unobtrusive monitoring of lower-limb health. The enormous advancement in sensor
technology, coupled with present-day high speed and low-power communication and
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computing technologies have paved the way to realizing an affordable and non-obtrusive
wearable monitoring tool in an insole.

Insole-based systems can facilitate measuring several parameters associated with
lower-limb health such as foot plantar pressure, temperature, pulse rate, and gait dynamics.
Continuous monitoring of these parameters may potentially have significant implications in
enabling remote monitoring of lower-limb health, which is a key health concern particularly
for the aging demographic that affects their mobility, activities of daily living, and overall
well-being. Such wearable systems would allow monitoring lower-limb health in an
individual’s day-to-day activities, thus allowing the user and healthcare providers to obtain
and assess information that is reflective of an individual’s health and well-being in their
natural settings. Such systems coupled with present-day computing and machine-learning
technology can enable early detection of diseases or abnormal gait patterns that can have
profound effects on an individual’s health and lifestyle.

By developing a device that is capable of measuring PPD, inertial motion, foot tem-
perature and heart rate, a holistic understanding of an individual’s health and well-being
during daily activities can be obtained. Such a multi-sensor monitoring tool can be further
coupled with an intelligent system that can exploit machine-learning techniques to perform
trend and predictive analysis of health parameters, as well as enable automatic detection of
anomalous health patterns. The system can also assess gait patterns for potential health
risks such as slips or falls, and make recommendations to the users so as to reduce the fall
risk and can automatically raise an alarm in the form of text messages or voice call to alert
the user or caregivers in case of an anomaly or medical emergency such as when a fall is
detected. However, further research and technology development is required to address
the challenges associated with the insole-based health monitoring system that includes
determining the optimal number of sensors and their placements, ensuring user comfort
and ease-of-use, power efficiency and data privacy and security.
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