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Abstract: Analyzing data related to the conditions of city streets and avenues could help to make
better decisions about public spending on mobility. Generally, streets and avenues are fixed as soon as
they have a citizen report or when a major incident occurs. However, it is uncommon for cities to have
real-time reactive systems that detect the different problems they have to fix on the pavement. This
work proposes a solution to detect anomalies in streets through state analysis using sensors within
the vehicles that travel daily and connecting them to a fog-computing architecture on a V2I network.
The system detects and classifies the main road problems or abnormal conditions in streets and
avenues using Machine Learning Algorithms (MLA), comparing roughness against a flat reference.
An instrumented vehicle obtained the reference through accelerometry sensors and then sent the
data through a mid-range communication system. With these data, the system compared an Artificial
Neural Network (supervised MLA) and a K-Nearest Neighbor (Supervised MLA) to select the best
option to handle the acquired data. This system makes it desirable to visualize the streets’ quality
and map the areas with the most significant anomalies.

Keywords: smart mobility; V2I; fog computing; smart cities; intelligent transport systems

1. Introduction

Not all cities have the same problems, the same technological capacity or the same
economic resources. That is why there are no concrete methods to solve the mobility of
every urban environment, or there vehicle infrastructure problems. It is imperative to solve
the city’s problems in the same context in which they occur and adapt the solution to the
city’s resources and possibilities.

Mexico’s capital, Mexico City, as of 2020, is the home of 9,209,944 people [1]. With
a city this enormous and territorially extensive, problems regarding mobility arise daily.
Public transport inefficiencies, heavy traffic, and a deterioration of the urban landscape
are just a few of the issues that millions of people must face every time they want to move
through the city. These problems grow exponentially due to the poor city planning, and
its accelerated growth rate, which limit emerging solutions. In the context of the available
technology, the possibilities of implementation, and significant areas for improvement
within the city, the current research aims to answer the long list of city problems under the
specific scope of intelligent urban mobility. Furthermore, the proposed solution is aligned
with affordability, effectiveness, attractiveness, and sustainability principles.
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As our knowledge about mobility in the city increases, better proposals can solve the
main issues. By measuring and intelligently gathering information regarding mobility and
the condition of the vehicular infrastructures, we could provide a way to find areas of op-
portunity and implement efficient and effective solutions that could solve problems related
to modern urban mobility in Mexico City. This work focuses on developing a platform that
the government and road users can integrate into a sizeable vehicular network.

As we know it today, the Internet of Vehicles (IoV) focuses on the intelligent integration
of humans, vehicles, things, and environments. It is a more extensive network that provides
services for large cities or even a whole country. The IoV is an open, integrated network
system with high manageability, controllability, operationalization, and credibility. It is
composed of multiple users, vehicles, infrastructure, and networks [2,3].

Multiple applications arise from this technology. For instance, safety applications
have been proposed in the past, such as notifying vehicles about dangerous situations
within the roads ahead or identifying possible parking locations before the car arrives at
the destination. The expectation is that vehicles can provide data about vehicle sensors, the
environment, the driver, and passengers. A Road-Side Unit (RSU), or generally speaking,
Road-Side Equipment (RSE), can exchange context-aware information with an On-Board
Unit (OBU) or On-Board Equipment (OBE) installed inside any of the vehicles in the
network. Context-aware information exchange between RSU/RSE and cars can help
generate real-time information, e.g., traffic information [4].

Fog Computing is a highly virtualized platform that provides compute, storage, and
networking services between end devices and traditional Cloud Computing Data Centers,
typically but not exclusively located at the edge of the network. The defining characteristics
of the Fog are: (a) low latency and location awareness, (b) widespread geographical
distribution, (c) mobility, (d) a vast number of nodes, (e) the predominant role of wireless
access, (f) strong presence of streaming and real-time applications, (g) heterogeneity [5].

There are many reasons why a fog computing architecture can benefit IoV communica-
tions, especially in V2I networks and infrastructures: The RSU can be physically damaged
by some malicious activity or other harsh environments. With appliances exposed to
weather, traffic, and all kinds of conditions, the cluster nodes will eventually go down.

The network connectivity during V2I and I2I communications may be temporarily cut
off, affecting immediate data communication. The vehicular network should be sufficiently
scalable to adapt to the increasing number of vehicles. As more and more people adopt
vehicles with OBU capacities, or intelligent vehicles go out to market, the amount of nodes
within clusters, and clusters themselves, must scale accordingly.

Based on this type of computing network, the architecture layer in the Figure 1 de-
scribes its need to separate data, communication, and fog cloud.

The evolution from local Vehicular Ad-Hoc Networks (VANETs), cloud-computing
VANETS (VCC), and IoV to Vehicular Edge Computing (VEC), to, finally, Vehicular Fog
Computing (VFC) has come a long way in the past two decades. A comparison of these
architectures can be seen in Table 1.

With the enormous scalability of vehicular-fog-computing architectures, it is necessary
to consider how to scale, create clusters, and take advantage of all the computing processing
abilities acquired through these types of networks. While Edge Computing needs one
suitable computing device at the border, Fog computing can be built with several low-cost
computing devices as cluster nodes, making it more scalable. However, to surpass edge
computing in terms of benefits, it must be built with the proper amount of nodes and clus-
ters. The following section describes some state-of-the-art technologies that demonstrate
the real benefits of such networks.

This work presents the context in which Mexico City currently operates regarding
urbanism and mobility-related problems, technology, and communications. Moreover,
an intelligent urban mobility approach is proposed to solve mobility problems using a
V2I-fog computing architecture with data visualization tools on the cloud. At the same
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time, the solution aligns with the principles of affordability, effectiveness, attractiveness,
and sustainability.

The technical goal of this work is to make possible the implementation of a solution
focused on the identification and classification of road conditions and anomalies, such as
potholes. With this architecture, it is possible to obtain a solution that integrates different
sensors in vehicles, processes information at the edge of the network and detects problems
in the streets through fog computing. Furthermore, data visualization through the cloud
can provide valuable information to the city’s decision-makers.

Figure 1. Fog Computing conceptualized architecture.

Table 1. Comparison between VCC, VEC, and VFC architectures.

Features VCC VEC VFC

Location Remote location User’s proximity User’s proximity and remote location
Latency High Low Low

Mobility support Limited Higher Highest
Decision Making Remote Local Remote & local
Communication Constraints in Bandwidth Real-Time Real-time and asynchronous
Storage Capacity Highly scalable Limited Highly scalable, both locally and remotely

Context Awareness No Yes Yes
Device Heterogeneity Limited Highly supported Highly supported
Computing Capability High Medium High
Cost of Development High Low Medium

2. Background
2.1. Smart Mobility and V2I Applications

When talking about smart mobility, the literature generally refers specifically to smart
urban mobility. This distinction is essential because technology is completely city-oriented
since most V2X networks rely heavily on QoS replication and are designed for high data
transfer/processing volumes.
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Even though multiple definitions frequently arise, this dissertation will take the one
proposed by [6] as a reference, defining smart (urban) mobility as connectivity in towns
and cities that are affordable, effective, attractive, and sustainable. These features are of
particular value in the context of the following chapters; if for some reason a user cannot
afford to connect to the infrastructure, the proposed infrastructure will not be smart enough.

Connectivity is only a means to an end. This end should be affordable, effective,
attractive, and sustainable. However, this end should by no means strictly be on the
high-end technological side, especially if it does not comply with any of the previous
definitions of smart mobility. Several authors have condensed all the properties that
a smart city should have to compare the smart mobility progress in a city. The Smart
Mobility Indicator (SMI) proposed by [7] is an indicator based on technical infrastructure,
information infrastructure, mobility methods, and vehicles used for this purpose and
legislation. The technical infrastructure must be able to communicate with different kinds
of transport. The quality of those communications and the implemented applications
considerably impact the “smartness” of the city.

Main V2I applications found in the literature revolve around: traffic solutions, secure
communications for data privacy, and data processing. Traffic signal algorithms to control
flow traffic have been studied [8], where simulations have shown a decrease in waiting
time to almost 80% and reductions in travel time of 15%, compared to non-connected
vehicle scenarios.

B. LV et al. developed an LiDAR-Enhanced Connected Infrastructure to provide
high-resolution traffic information to both smart vehicles, autonomous or not, and a central
computer, providing up to 8 MB of data on real-time traffic in no more than 200 ms [9].
Communication security varies from safeguarding communications in the physical layer
through mathematical models and algorithms with encoded transmissions [10], using
blockchain technology as a way to secure information through V2I communications, with
blockchain handling vehicle’s authorization [11,12].

Processing data with this type of architecture takes advantage of artificial intelligence.
For example, autonomous vehicles platooning for time reduction using directional posi-
tioning algorithms in a platooning decision-making process with multiple communications
technologies and sensors have been tested. Long Short-Term Memory (LSTM) models to
reduce interference and enhance data streaming and performance can also be carried out in
this type of network [13].

Multiple applications can depend on this type of technology, from secure safety data
sharing [11] to enhance passenger user experience using deep reinforcement learning [14].
However, with the growing quantity of data generated at the edge, the speed of data trans-
portation is becoming the bottleneck for the Edge-Cloud-based computing paradigm [15].
Since only one Gateway and processing node generally exist in edge computing networks,
most of the computing goes to the cloud for further processing. VEC is an improvement
from vehicular cloud computing networks. However, Fog Computing Networks (FCN)
can be a better solution.

Some of the applications of short-range technologies vary from localization to warning
signaling. One example of application in short-range ultra-wideband (UWB) technologies
provides estimated ranges to track the vehicle’s position in an outdoor environment. Mar-
tin et al. built an accurate and reliable positioning solution based on the combination of
UWB varying estimates and inertial and odometry data of the vehicle [16]. As it has a low
cost and a long battery life, ZigBee technology Vehicle Identification is possible. One pro-
posed application is the classification of vehicles and communication through the 802.15.4
protocol. In addition, Zigbee technologies can be useful in V2V communications under
certain conditions for Collision warnings [15,17]. Other applications could include the
communication of sensors in Wireless Personal Area Networks (WPAN) and low-energy,
BLE-based fingerprint localization [18].
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The applications of mid-range technologies are generally in the V2I-V2X spectrum,
where data safety, management, and non-maximum security data processing are bet-
ter suited.

Vehicle-to-vehicle communication in highways was tested in simulation with DSRC,
but with high latency and packet error rates, proving the difficulties these technologies have
with this communication type [19]. Other tested applications are vehicle communications in
platooning scenarios [20] and maintaining lane distances with vehicle communications [21].
However, the results were never as promising, with higher latencies and packet error rates.

Pedestrian recognition, detection, and informing can also be considered within this
range of applications [22], integrating human–vehicle classification through Support Vec-
tor Machines (SVM) and radar systems to the infrastructure while communicating this
information to cars, bicycles, or even other pedestrians.

One sustainability application in the literature revolves around eco-driving with fuel
optimization with traffic status and v2i communications [23]. The IEEE 802.11 family
can disseminate the information and provide Internet access; however, if the goal of the
network is to enhance complete autonomous driving, the integration of other technologies
into the system is required [24]. Studies have been made about the support of applications
over Wi-Fi in smart cities, testing access to the internet, or voice over IP (VoIP) applications,
which can upgrade the user experience of passengers [25].

The applications of long-range technologies can achieve complete secure and low
latency V2V and general V2X applications. Long-range technologies can make V2X service
negotiation and location-aware scheduling possible to provide the network with insights
into the vehicular equipment’s mobility pattern and application requirements, enabling the
network to optimize the availability and scalability of automotive applications [26].

Another important benefit provided by 5G and C-V2X communications is a better
Quality of Service (QoS). 5G offers a unique provision of computational resources and
storage at the network edge, enabling the network to host applications closer to vehicles,
reducing latency greatly. Multi-Access Edge Computing (MEC) efficiently utilizes the
network core and backhaul, reducing the latency requirement of autonomous cars [27].
Since vehicular users are highly mobile, The system can support frequent handovers via
resource management at the edge of the access network [26].

Most of these communications technologies operate within the IP protocol. Jeong et al.
conducted a survey focused on different IP-based vehicular networks [28], discussing and
comparing several protocols, architectures, and mobility handling techniques. An IP ap-
proach to vehicular communications is essential in a a cloud or fog computing environment
to interconnect vehicles with the rest of the internet, combining all software applications.

2.2. Anomaly Detection within Smart Vehicles

The combination of communication technologies, fog computing, and different types of
vehicular communications in a smart urban mobility environment provides the possibility
of integrating with multiple kinds of Artificial Intelligence. Analyzing and classifying
road conditions using Artificial Neural Networks (ANN) is not new, but these algorithms’
accuracy has improved.

One impressive feature that AI enables is driver’s behavior detection, including the
detection of driving under the influence of alcohol [29] and detecting the driver’s emotional
state through sentiment analysis [30], potentially saving drivers from accidents caused by
their temporal inability to drive.

Besides the driver or passenger inside vehicles in V2X networks, artificial intelligence
can detect other anomalies, i.e., pothole detection can be achieved using Convolutional
Neural Networks (CNN) such as the AlexNet [31] or the YOLO CNN algorithm [32].
Furthermore, a combination of Long Short-Term Memory (LSTM) Neural Networks and
CNN’s can detect data anomalies caused by faults or errors in the vehicle’s sensors, or even
cyberattacks [33].
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There are many approaches to detect anomalies in the streets via image recognition,
and there are multiple approaches to sentiment analysis and behavioral classification and
prediction. However, there was no literature on pothole detection through the sensors of an
intelligent vehicle, or, vice-versa, sentiment analysis through image processing and CNN.
While the latter could result in invasions of privacy, the former could potentially be a useful
application for pothole mapping throughout the city.

Several investigations have been developed to identify and classify road conditions
and their anomalies in technological systems. The research approach mainly differs in
three points: acquisition of data, series of road anomalies and disorders due to detection or
classification, and the algorithms applied to accomplish such tasks. Table 2 surveys and
defines the main principles that guided the solutions in the last decade.

Table 2. Main research approaches for the detection of road anomalies.

Authors Data Acquisition
Technique

Anomalies and
Conditions

Data Analysis
Technique Results

Bhat et al., 2017 [34]

Gyroscope and
accelerometer data,
speed, and GPS
location of the vehicle,
using two iOS
applications.

Classify “pothole” and
“non-pothole”, as well
as the good or bad road
conditions.

Data are grouped into
intervals to reduce
noise.

Use of SVM model to
classify good-bad roads
and predict potholes.

Road condition:
93.4% accuracy

Pothole detection:
78% accuracy and
42% recall

Models deployed on a
cloud-based web server

Zheng et al., 2019 [35]
Legacy datasets,
simulated data through
Carsim®

Detect potholes, speed
bumps, and metal
bumps.

QF-COTE. Threshold
detection and sliding
window algorithm.

Method fitted to be
used under an edge
computing schema.

Pawar et al., 2020 [36]

Accelerometer and
gyroscope data from
smartphone mounted
on the windshield

Pothole occurrences

Use of a Neural
network based on
ReLU activation
function.

94% of accuracy and
81% of recall were
reported.

Suitable for real-time
systems.

Wu et al., 2020 [37]

Accelerometer and GPS
data obtained through
a purpose-built mobile
application.

Classify the general
condition of the road:
“normal road” and
“pothole”

Training of various
machine learning
classification models.
Wavelet, time and
frecuency domain data
used as input.

Precision and recall rate
excede 95%

Wang et al., 2015 [38]
Mobile sensing,
through accelerometer
data normalization

Pothole detection

Implementation of an
algorithm based on
dynamic threshold
detection, using
three-axis
accelerometer data.

100% accuracy, limited
by the sample size used
in the research.

Mednis et al., 2011 [39]

Preliminary data
gathered from a
modified LynxNet
collar device.

Large and small
potholes, clusters of
potholes, gaps,
drain pits.

Set of algorithms based
on accelerometer data
and threshold
definition: Z-THRESH,
Z-DIFF, STDEV(Z),
G-ZERO

Algorithms deployed
on limited
hardware/software
devices.

True positive rates as
high as 90%
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Table 2. Cont.

Authors Data Acquisition
Technique

Anomalies and
Conditions

Data Analysis
Technique Results

El-Wakeel et al., 2018
[40]

Multiple IMUs, GPS
receivers, smart
devices, low-cost
MEMS, mounted on
a testbed.

Potholes, maintenance
holes, transverse cracks,
longitudinal cracks,
railroad tracks,
speedbumps,
deceleration strips,
paved roads, and
road dents.

The obtained signals
were de-noised using
wavelets, and data sets
are “time windowed”,
The algorithm applied
feature extraction
techniques.

Multi-level SVM
classifier, average TPR
performance of 90%

The proposed solution is that a V2I-Fog computing architecture that integrates differ-
ent sensors in vehicles, and through fog computing and machine learning, detects problems
in the state of the streets, will boost smart urban mobility solutions in terms of afford-
ability, effectiveness, attractiveness, and sustainability. This solution needs to be broken
down into several parts: Communications, RSU-OBU system, Machine Learning, and
data visualization.

Several access points were distributed and connected through vendor-specific proto-
cols to ensure communication between an OBU and an RSU. The OBU has three sensors
and an external antenna device to acquire data from its surroundings and the data’s po-
sition. Then, through socket communications, it can send information to the RSU device.
Thus, the RSU device handled both the server-side of the communication channel and the
data preprocessing.

The third part corresponds to classification through Machine Learning. Machine learn-
ing algorithms have been proven to be the best alternative to usefully process information.
Therefore, it is necessary to develop useful models that correctly classify the data obtained
via the OBU. The last part corresponds to the visualization of the processed data, showing
useful information regarding the conditions of the city’s streets and avenues. Once both
MLAs have been tested and implemented, the algorithms will quantatively compare two
streets to determine which road is the most troubled in terms of anomalies.

3. Experimentation
3.1. Communications & RSU

To test medium-range communications, several APs were wirelessly interconnected to
form multiple LANs via WiFi. An RSU was connected via ethernet to the AP infrastructure
to receive information from any potential OBU connected to the network. Each Access
Point, OBU, and RSU was assigned a static IP Address, and the communication between
the RSU and OBU was established using web Sockets with TCP protocol. Figure 2 shows a
simple diagram of the network topology.

The RSU was built using a raspberry Pi, with the server’s software built-in with
Python. Before the data were processed, they were saved in CSV format, with the latitude
and longitude of each packet and a timestamp for future reference.
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Figure 2. Full Network topology with Raspberry Pi as RSU and TP-Links as APs.

3.2. OBU

The OBU device was integrated with a Raspberry Pi 3B + as core, an MPU6050 ac-
celerometer and gyroscope, a neo 6M GPS sensor, a camera module, and an external 6 dBm
antenna for greater distance in communications. In addition, we completely programmed
the system with Python 3.6, establishing a static IP socket communication to send the
information from the OBU to any RSU device whenever there was a connection.

We carried out concurrent programming to ensure a better data-collection rate, and
a buffer was implemented to obtain a significant amount of data while handovers or a
wireless disconnection occurred.

The camera was only used for visual aid purposes, sending images every 200 data-
points to obtain a street-level photograph of the nearby location of an anomaly.

3.3. General Architecture

With every component of the solution described above, a general graphic summary can
be seen in Figure 3. The whole solution is divided into four sections, and each technology
that was used for this fog computing architecture is mentioned in brief.

Figure 3. Fog Computing—V2I network proposed solution for Anomaly Detection.
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This architecture should be replicated throughout the city, with multiple nodes for
each RSU and more OBUs to collect enough data mapping every street. This solution
should be considered a cell, excluding all the processed and correctly classified data from
the cloud database.

3.4. Experiment Setup

The team selected two routes within the same avenue, called “Prolongación Canal de
Miramontes”, in Mexico City. The total distance for the first route consisted of more than
1.1 km, while the second route was about 1 km long. The satellite view of both routes can
be seen in Figure 4.

Figure 4. APs marks on the first route of the experiment.

The experiment took place on a Friday afternoon, from 12 p.m. to 3 p.m., with light
traffic on a sunny day, without any communication interference caused by the weather.
This avenue had not been paved or maintained in more than ten years, and was full of
anomalies. These included multiple potholes, unpainted speedbumps, defective traffic
lights, and multiple U-turns and crosswalks. The speed limit for any vehicle is 40 kmph.

3.5. Data Acquisition for Reference

The experiment took place in different stages. First, for every route, the Access Points
and RSU were placed according to Figure 4, respectively, and multiple laps were run for
each route. Table 3 shows the summary of the data obtained by each experiment and the
percentage of the route covered by the APs reached. This data were stored in the RSU for
further processing.

Table 3. Experiment routes specifications.

Route Laps Sent Packets Total Distance [m] Route Coverage [%]

First route 5 2182 1120 92.6%
Second route 3 1414 997 50%

The packet error rate of the proposed V2I network resulted in results of an average
2.47% PER, with a maximum of 8% in the worst configuration possible and unexpected
anomalies in the communications, including interference, partial or complete obstruction
in the line of sight, or unexpected weather conditions.

Additional data were acquired since the ANN model needs labeled data for training.
This also obtained data for comparison. With new data on a less troubled street, the
algorithms’ manual labeling of the anomalies and cleaner training data can be provided to
the algorithm for a better performance.

The street used as a reference had very few anomalies, was recently paved, and was
mostly flat in all its extensions. “Transmisiones” street is located in front of a section of the
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Tecnologico de Monterrey—Mexico City campus. Therefore, it was a suitable candidate
because it contained the aforementioned characteristics, and its proximity to the campus
is a great advantage. In this whole street, we found three uneven drains, several speed
bumps, and one steep curve; therefore, these were the labeled anomalies and were used
as a reference in the training and classification of the visualization system. The Figure 5
shows a satellite view of the street.

Figure 5. Satellite view of the reference street.

“Transmisiones” street was traveled multiple times in order to read all the elements
and anomalies in the street; eight unique physical anomalies were identified in the 0.7
km route, as seen in Figure 5. The pavement anomalies were detected at three different
approximate average speeds: 20, 25, and 30 km per hour. Two access points were installed
along the route, since we controlled the traveled and always measured within the coverage
area; data acquisition was guaranteed along the route.

All samples were subsequently labeled by type of anomaly. For each of the 24 detected
elements, a review of the event window was carried out. The definition of the window
size was based on a graphical analysis of the time series plot of the measurements. The
proposed windows consider a mean duration of each type of anomaly; a specific number
of acceleration input samples was defined:

• Pothole: 60 samples
• Speed Bump: 95 samples
• Curve: 54 samples
• Plain: 84 samples

This was an effective method to label each one of the samples, by defining a “window
size” for each one of the anomaly type. Given the number of detected anomalies and their
corresponding window size, the resulting dataset contained 12,000 data points. Table 4
summarizes the classification of the acquired data.

Table 4. Classification of acquired data.

Type Unique Physical
Anomaly

Total Physical
Samples

Total Individual
Sensor Samples

pothole 3 9 3000
speed bump 2 6 4800

curve 1 3 2700
plain 2 6 4200
Sum 8 24 12,000

We used these different datasets for model training. Nevertheless, before that, data
processing was needed for performance reasons.
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3.6. Machine Learning Classification Algorithms

Two models were proposed for the classification system, based on the type of data
provided by the accelerometer: the K-nearest neighbor algorithm and an Artificial Neural
Network. Even though both algorithms classify data, they are opposite approaches. The
KNN algorithm is more practical and easier to train than the ANN, and ANN is a more
sophisticated and likely better approach. However, considering the amount of experimental
data obtained, the KNN could be better suited.

3.6.1. KNN Algorithm and Architecture

Nearest Neighbor algorithms are among the simplest of all machine learning algo-
rithms. The idea is to memorize the training set and then to predict the label of any new
instance on the basis of the labels of its closest neighbors in the training set. The rationale
behind such a method is based on the assumption that the features that are used to describe
the domain points are relevant to their labels in a way that makes nearby points likely to
have the same label [41].

The KNN algorithm is a classifier that considered N different kinds of neighbors
to the sample, with a uniform weight consideration. This means that all points in each
neighborhood are weighted equally. For this work, we built a KNN algorithm using
Python’s library Sci-Kit Learn, considering four neighbors to our data input and receiving
four output classes.

3.6.2. ANN Algorithm and Architecture

An artificial neural network (ANN) is a model of computation inspired by the structure
of neural networks in the brain. A neural network can be described as a directed graph
whose nodes correspond to neurons and edges correspond to links between them. Each
neuron receives as input a weighted sum of the outputs of the neurons connected to its
incoming edges [41].

The ANN was built using the TensorFlow library for Python. It is a sequential model
with four hidden layers, and three dense hidden layers with five, ten, and five neurons,
respectively. A dropout layer is used to reduce overfitting and improve the generalization
of the network, and a Softmax layer is used to generate the four outputs. All fully connected
layers used the Rectified Linear Unit (ReLU) activation function. The Figure 6 shows the
full architecture of the neural network.

Figure 6. ANN network architecture.

The team found that the neural network was rapidly overfitting the data after several
training and testing routines. Therefore, we reduced the original number of neurons and
added a Dropout Layer with a 0.15 rate in response to that behavior. This process ensured
that the model behaved more accurately when presented with unknown data.
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Data were divided into batches with sizes of 50 to train the network, and 15 epochs
were set for backpropagation. While the batch size was arbitrary and iterated for perfor-
mance reasons, a low number of epochs was set, given that the signals were identifiable,
the training dataset was small, and overfitting was to be avoided. For the same reason as
the small dataset, the validation data were not provided to the model. Two optimizers
were tested to improve performance. The gradient descent with momentum, the Adam
optimizer, and the differences were abysmal. The Gradient descent with momentum was
unable to create an accurate model and, thus, was discarded.

ADAM is an algorithm for a first-order, gradient-based optimization of stochastic
objective functions based on adaptive estimates of lower-order moments. The method is
appropriate for non-stationary objectives and problems with very noisy and/or sparse
gradients. Previous empirical results demonstrate that Adam works well in practice and
compares favorably to other stochastic optimization methods. Given the nature of the data,
a Categorical Cross-Entropy loss was used as the parameter that needs to be optimized.

3.7. Data Preprocessing Methodology

Processing was carried out for every 50 datapoints that were obtained. For example,
the Figure 7 shows an example of one signal containing one pothole, detected while driving
at an average speed of 20 kmph.

Figure 7. Street with pothole at 20 kmph on average.
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In the example shown in Figure 7, from datapoint numbers 100 to 150, we conducted
a process involving offset removal, Fast Fourier Transform, Power Spectrum calculation,
low pass filtering, and, depending on the model, an extra step for scaling, and matrix
transformation from 151 × 3 to 453 × 1. The Figure 8 shows a flow diagram of the
entire process.

Figure 8. Data processing flow diagram.

1. Offset removal. Given the nature of the sensors and the practically constant gravita-
tional force in the accelerometer’s z-axis, we decided to eliminate the signal’s offset by
subtracting the mean in every axis. Thus, even though a DC component in a frequency
spectrum analysis is irrelevant, as it represents a peak around 0 Hz, it represents noise
in the input of both models. Therefore, we decided to remove it.

2. Time-domain to frequency-domain transformation. Based on the power spectrum algo-
rithm via an FFT transform, the signal of every axis was transformed into a power
spectrum, and every frequency superior to the 500 Hz threshold was ignored, since
the sample rate of the sensor was 1 kHz.

3. Data were scaling. In the case of the artificial neural network, additional scaling was
performed to improve the training process using a min–max scaler from 0 to 1. This
process is because scaled data tend to improve training, given the high number of
matrix multiplications by the nature of the artificial neural network. This characteristic
is the main difference between the input of both models. On the other hand, the KNN
algorithm classifies information based on different types of distances: Euclidean
distance, cosine squared distance, etc. Moreover, the scaling of data does not represent
any difference.

4. Input shape transformation. For every 50 × 3 datapoints provided by the OBU, the
signal was repeated five times before any further processing to more easily show the
power peaks in the signal. Finally, we removed the offset, the power spectrum was
obtained, and a single sample with 453 total features was set as the neural network’s
input and the KNN ML algorithm.

After this process, the signal Figure 7 finally transformed into a Figure 9, where the
energy contained in different peaks throughout the signal can be seen.

All the data obtained during the experimentation phases underwent this treatment
before moving on to the training and testing phase of the machine learning algorithms.
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Figure 9. Power spectrum of a pothole.

4. Results

Both algorithms were trained, with highly acceptable results. Both algorithms had
over 90% accuracy during training, with the KNN having 95.55% accuracy and the ANN
scoring 96.79% over the training data.

Figures 10 and 11 show the confusion matrices generated with the test data. While
the KNN algorithm did have minor errors in classifying non-anomalous data and curves,
the ANN had trouble classifying only curves. Thus, the number 0 represents healthy data;
number 1 represents possible potholes, number 2 speed bumps, and number 3 harsh curves.

Figure 10. KNN Confusion Matrix over Test Data.

Figure 11. ANN Confusion Matrix over Test Data.
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Lastly, both algorithms were given 85% of the whole dataset to train and 15% to
test. These tests consisted of accuracy for training, and F1-Score for test data, as well as a
confusion Matrix, to determine the specific classifications in which they did not perform
well enough.

The other measurement was the F1 score, which measures complete accuracy using
both precision and recall. The score reaches its best value at one and its worst at 0. The
precision refers to the number of true positives per true positive and false positive, while
the recall measures the number of true positives per true positives and false negatives.

Precision =
TruePositives

TruePositives + FalsePositives

Recall =
TruePositives

TruePositives + FalseNegatives

F1score = 2 × Precision × Recall
Precision + Recall

The results on the test data were coherent with the results of the training. For exam-
ple, the KNN algorithm scored 97.80%, while the ANN scored 93.33%. To visualize the
presented data, we made 3D scatter plots with the labeled test data. Figure 12 shows both
scatter plots, with the mean power of the frequencies for the three axes of the sensor data.
The label is the same as the confusion matrices, with four different colors. It can be seen in
the 2D plot of a particular case in Figure 9. Both results have a complete similarity, and
the types of anomalies that differ the most within these visualizations are speed bumps
and good road data. The dataset was randomized from the rule of 85% for training and
15% test; thus, each algorithm received different test datapoints. That is why the points
are different in each scatter plot, but we can correctly observe the color classification of the
output of each algorithm.

Figure 12. KNN 3D scatter plot (left) vs ANN 3D scatter plot (right).

4.1. Street Anomaly Comparison

There were two different streets in which we collected data. On the first street, with
fewer anomalies, the KNN algorithm classified the various abnormalities correctly com-
pared with human observations. Figure 13a,b shows the visual representation of the
anomalies, while Figure 13c,d shows a barplot of the percentage of each category.
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Figure 13. Geo spatial representation of the different anomalies by the KNN algorithm. (a) KNN
(b) ANN. Barchart of the various anomalies classified by the ANN algorithm by percentage (c) KNN
(d) ANN.

On the other hand, the ANN algorithm somehow failed to correctly classify the
different anomalies on the street. As a result, there are many misclassified potholes on the
road, and the number of healthy and anomalous streets is not coherent. Figure 13b shows
the map with the classified anomalies by the ANN, while Figure 13d shows the bar chart.

The second street has a lot more anomalies and troubles. Since there are many anoma-
lies in a bigger proportion and magnitude, these data are more prone to error. However, it
is important to compare the amount of healthy street distance versus data containing one
or more anomalies.

4.2. Visualization

We carried out the same preprocessing for each model with two different datasets:
one composed exclusively of random sections of the reference dataset and another with
multiple laps from the experiment. The idea is to completely visualize how the streets
would look and be classified with these models.

The KNN classifier worked in a very acceptable way, as Figure 13a. While the system
correctly detected the reference avenue, all the data obtained from the experiment seem
approximately correct. The red zones Figure 13a results are coherent with the observations,
and we specifically chose that avenue because of the number of anomalies presented.

The ANN, on the other hand, incorrectly lebeled the street where the model was trained
and seemed to mislabel some of the information of the experiment’s data. Figure 13b shows
significant differences with the KNN classifier.

Geospatial data with color-based anomaly representation were programmed with the
help of Python’s library Folium. These maps were made to compare the streets within
Mexico City and were not implemented in a web application.

Geospatial visualization was carried out to compare and choose a better model for
classifying anomalies on the city’s streets. The main reason why KNN was a better fit was
that it did not require data scaling for its inputs. Thus, the KNN accurately handled a street
with deep potholes, speed bumps without any paint or signaling, and a generally more
chaotic avenue that generated bigger sensor signals.

Maps generated with the folium library can be exported. Since they run a technology
called leaflet as the underlying software, they can be exported or even developed with
front-end technologies, libraries, and frameworks such as React, Angular, Vue, or any
technology that runs with the Node runtime environment.
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The KNN classifier’s most common issue was mislabeling other classes, or neighbors,
into curves. However, with only one physical example, data with a more varied power
spectrum were more likely to fall into that category. The ANN classifier failed to accurately
detect much of the data without distinction. One of the main problems of the classifier
could be the sensitivity to scaling.

The ANN showed an unconvincing probability for each of the classes in most cases,
and scaling could potentially be the main issue in the classification. Since the anomalies
were more frequent, greater, and different from the training dataset, the amplitude of the
bigger anomalies was likely difficult to translate into correctly scaled signals for the ANN
to recognize.

Even though both algorithms were trained in a completely similar form, and the
test of both algorithms resulted in great performance results, the data obtained from the
street reference were not completely identical to the experiment’s data, as shown in the
classification result. A deeper analysis of this situation is presented in Section 5, but
there are several reasons why this happened, including labeling, human error, and lack of
training data.

5. Discussion

Three factors heavily influenced the experiment, and can substantially improve the
prediction in real scenarios. The first factor is the amount of data collected, the second
is the quality of the road, and the third is the different road characteristics that exist in
real scenarios.

For a low-complexity MLA, the data may be sufficient to obtain an acceptable pre-
diction. However, for any DeepLearning solution, the data are frankly insufficient to
take advantage of this type of algorithm. In addition, the number of anomalies is very
limited due to the lack of a classification of anomalies and healthy streets’ data and the
volume of data that are necessary to define clear differences between each of them from the
spectral footprints.

During the data acquisition process, the vehicle did not experience unevenness with
great height differences, nor did it pass through tunnels, bridges, traffic lights, or other
typical situations for a city road. Thus, this limited its ability to differentiate common cases
of healthy streets and anomalies such as bumps, potholes, or any other type. Therefore, it
is necessary to include all kinds of daily situations that do not represent a problem for the
road in the training.

In addition to these situations, it is possible to find deeper details within the same
anomalies, such as potholes of different depths, speedbumps of various types, etc. There-
fore, the anomalies can be subclassified to obtain a clearer representation of the data.

This system also has limitations related to the dynamics of the vehicles, since the
oscillations generated by the vehicle at a movement greater than 35 km/h generated enough
noise to make the anomalies undetectable. This very low maximum speed significantly
limits the use cases of the system.

6. Conclusions and Future Work

This system proved to detect anomalies and create geospatial data visualization to
represent the condition of the streets on two tested avenues. While the proposed research
hypothesis proved true, this project has vast areas of opportunity, potential improvements,
and further research to scale a system to a whole-city level. One of the new aspects of
this project is the cloud solution. The design and implementation of cloud services to
host the website are needed for the visualization tools and the creation and maintenance
of a database, relational or not, as well as the complementary systems necessary for the
operation of the proposed data recovery and analysis platform.

More data should be acquired and more datasets generated, with more labels and
more precise labels for anomaly detection, including more anomalies, such as culverts,
transverse and longitudinal cracks, stoplights, speed bumps, and dents, etc. The acquisition
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could be made in the periphery of Tecnologico de Monterrey Mexico City Campus before
being expanded to other neighborhoods or counties.

Experiments, training, and more tests are required for the MLA proposed in this dis-
sertation, with more data, better labeling, and a fog-cloud solution. This project proposed a
simple geospatial visualization tool for anomaly detection. However, the most appropriate,
efficient, and useful visualizations for observing relevant information on detected anoma-
lies and areas of opportunity found in the data that were retrieved by the OBUs have yet to
be determined.

Finally, this project could automatically express recommendations and conclusions re-
garding urban mobility to the corresponding authorities, instead of only showing visualization.

Other recommendations for further research include the analysis of the deployment
of 5G in upcoming years, joining different network alternatives for different types of
traffic, software-defined networks, and research into other virtualization tools for better
V2I network scalability.
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The following abbreviations are used in this manuscript:
5G Fifth Generation Technology Standard for Broadband networks
AI Artificial Intelligence
ANN Artificial Neural Network
AP Access Point
CNN Convolutional Neural Network
C-V2X Cellular-V2X
DSRC Dedicated Short Range Communications
FCN Fog Computing Networks
FFT Fast Fourier Transform
IEEE Institute of Electrical and Electronics Engineers
IoV Internet of Vehicles
IP Internet Protocol
KNN K-nearest neighbors
LSTM Long Short-Term Memory
MEC Multi-access Edge Computing
MLA Machine Learning Algorithm
OBU Onboard Unit
QoS Quality of Service
RSU Roadside Unit
SVM Support Vector Machines
VANET Vehicular Ad-Hoc Network
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V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
VCC Vehicular Cloud Computing
VEC Vehicular Edge Computing
VFC Vehicular Fog Computing
VoIP Voice over IP
Wi-Fi Wireless Fidelity
YOLO You Only Look Once
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