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Abstract: Generating high-quality panorama is a key element in promoting the development of VR
content. The panoramas generated by the traditional image stitching algorithm have some limitations,
such as artifacts and irregular shapes. We consider solving this problem from the perspective of view
synthesis. We propose a view synthesis approach based on optical flow to generate a high-quality
omnidirectional panorama. In the first stage, we present a novel optical flow estimation algorithm to
establish a dense correspondence between the overlapping areas of the left and right views. The result
obtained can be approximated as the parallax of the scene. In the second stage, the reconstructed
version of the left and the right views is generated by warping the pixels under the guidance of optical
flow, and the alpha blending algorithm is used to synthesize the final novel view. Experimental results
demonstrate that the subjective experience obtained by our approach is better than the comparison
algorithm without cracks or artifacts. Besides the commonly used image quality assessment PSNR
and SSIM, we also calculate MP-PSNR, which can provide accurate high-quality predictions for
synthesized views. Our approach can achieve an improvement of about 1 dB in MP-PSNR and PSNR
and 25% in SSIM, respectively.

Keywords: panorama stitching; view synthesis; optical flow

1. Introduction

Panoramas have been around for more than one hundred years. Their ability to render
a scene in all directions has made them popular in the field of scene visualization and
photography. With the rise of the VR (Virtual Reality) industry and the popularity of VR
headsets, one of the key enabling elements in creating immersive VR content is panorama,
which can provide a compact representation of the scene and more abundant information.
Creating a panorama involves a special image stitching task. Image stitching aims at
stitching the overlapping region of multiple views collected by multiple cameras with
limited angles of view into a wide-angle seamless image, and the panorama requires a
viewing coverage of 360◦.

Classical image stitching involves the following steps. Starting with image prepro-
cessing, including geometric alignment and photometric correction, the projected transfor-
mation model (a homography matrix, generally) between a pair of images is established
after feature extraction and feature matching. Then, the projected transformation model is
utilized to align one image to another. Finally, the blending algorithm is used to provide
the final results. Brown et al.’s AutoStitch [1] was the core algorithm used in commercial
software. This used a global homography matric to project the image onto a cylindrical or
spherical surface, then synthesized the images using a multi-resolution fusion algorithm.
The global homography projection assumed that the overlapping area of the images lay in
the same depth plane. Otherwise, the global homography matrix could not align points
on different depth planes, which is also the cause of artifacts. Therefore, the APAP [2] of
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Zaragoza et al. divided the image into dense grids. Each grid was mapped to the canvas
of the final stitched image by using the local projection transformation., but this was only
suitable for scenes with small parallax. Similar works, such as SPHP [3] by Chang et al., pro-
posed a shape-preserving method from the perspective of shape correction and combined
homography warp and spatial similarity to achieve perfect alignment in the overlapping
area while maintaining the original viewing angle in non-overlapping areas. Lin et al.’s
AANAP [4] also aimed at the shape correction problem of grid distortion, but discarded the
constraint term and used global similarity transformation to correct the shape, improving
the naturalness and viewing experience of the stitched image. Some methods attempted
post-processing in order to eliminate structural distortions such as ghosting or truncation
(structural discontinuity) in the overlap area caused by inaccurate registration parameters.
The seam-guided [5] of Lin et al. tried to find an optimal seam to partially align the area
near the seam to mitigate the distortion caused by unnatural fusion. However, seam-cutting
has a huge impact on moving objects. When moving objects pass through the seam, their
structures will be broken easily or ghosts will appear around them.

Completely different from traditional stitching methods, since VR capture devices are
well-designed (with a regularly arranged camera array), regarding the stitching problem as
a viewpoint synthesis problem is more suitable for the generation of high-quality panorama.
In previous works on view synthesis, Thatte et al. [6] established a probability model of
possible missing points to minimize the disocclusion holes in synthesizing novel views
in order to solve the missing areas in the output image of the depth-based view synthesis
method. In ref. [7], Zhang et al. addressed view synthesis from a single image. They
reorganized the pixels of input view and learned the stereoscopic structure in the multi-
scale feature map to synthesize the target view through the learning framework of structure
awareness without information about the scene structure, such as depth. The authors of [8]
proposed a view-dependent flow-based blending method to generate panoramas with
motion parallax in real time.

Motivated by existing works, we propose an omnidirectional view synthesis approach
based on optical flow to generate panoramas. In addition to necessary geometric correction
and exposure adjustment, our method only relies on the pair of inputs to obtain a synthetic
view without scene information or camera parameters. As for feature matching methods,
camera intrinsics and extrinsics need to be accurate as they will affect the quality of
the stitching. Theoretically, the flow-based method of stitching actually forms a unique
projection model for each pixel located in the overlapping area. Therefore, even if the
ratio of the overlapping area is insufficient, it will neither affect the novel view results nor
destroy the structure of the non-overlapping area.

In this paper, we systematically review existing methods of image stitching and
analyze their limitations with respect to panorama generation. According to this goal, we
propose a method of panorama generation that is based on optical flow estimation and
view synthesis. In detail: (1) we propose a novel optical flow estimation algorithm to obtain
translation between views. The obtained flow is essential for subsequence reconstruction
and blending. (2) We use the optical flow field to reconstruct the left and right views and
combine distance weights and flows with the alpha blending algorithm to synthesize the
novel view, which ensures high-quality panorama construction. (3) In the experiments, we
show that the proposed approach outperforms previous methods in subjective experience
and image quality assessment with the stitched panoramas generated by our method.

2. Related Work
2.1. Panorama Stitching

Panorama stitching is a technology that stitches images taken from different perspec-
tives together to form a panorama. As for the stitching of an image pair, some homography-
based methods [9,10] have been proposed. In these methods, a homography matrix is
mainly designed to solve the problems of perspective distortion and shape distortion. In
addition, the content-preserving warping is introduced to improve the poor correspon-
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dences of low-texture regions in some studies [3,11]. In these studies, the images are first
divided into a uniform dense grid mesh. Then, mesh-based warping and optimization are
conducted by adding global similarity prior or local similarity transformation to obtain
a more accurate alignment. Finally, the overlapping regions of the warped images are
blended to obtain a smooth seamless stitched image.

Compared with traditional image pair stitching technologies, panorama stitching
improves stereoscopic perception. Therefore, the challenging problem we need to address
is that the stitched method can achieve artifact-free within reasonable parallax range to
ensure the final panorama is more realistic. In ref. [12], a solution for generating stereo
panoramas at a mega pixel resolution was presented and a flow-based up-sampling method
was used to resolve the issue of stitching artifacts. Peleg et al. [13] proposed two optical
omni-stereo panorama systems to capture images from different perspectives. The left and
right panoramas could be spliced by obtaining multiple strips from the camera. While
these works also focus on the perception of stitched panorama, flow estimation is at the
root of solving parallax and artifacts.

2.2. Image-Based Rendering

Image-based rendering aims to synthesize a new viewpoint image of a scene from an
input image sequence. Different methods can be used to obtain the information of the target
view from the input in different ways. MPEG (Moving Picture Experts Group) divides
view synthesis into two categories and gives the official solution VSRS [14]. One of these
categories is image-based rendering (IBR), which refers to images from multiple viewpoints.
Using 3D-Warping projection, view fusion, interpolation, and other technologies, images
from virtual viewpoints can be directly generated [15–18]. Another method is model-based
rendering (MBR), which needs to build an accurate 3D model of a real scene. If a model is
built successfully, images can be obtained from any viewpoint [19–22].

The view synthesis method based on images [15] does not need scene geometry
information, but the acquisition equipment of its inputs requires a regular and dense
camera grid and the generation of the target view is usually a linear blend of inputs.
Chaurasia et al. [16] estimated the depth of each view, mapped the color information
and blending weight to the target view according to the depth, and compensated for
the inaccuracy of the depth map by the super-pixel method. Zhou et al. [17] introduced
a multi-plane image representation that was estimated by a convolutional network for
stereo magnification. The image was represented over multiple RGB-α planes, where each
plane was related to a certain depth. Novel views can be rendered using back-to-front
composition based on this given representation. Flynn et al. [18] used a plane-sweep
volume within a network architecture for image-based rendering. A color branch predicted
the color values for each depth plane in the target view and another branch predicted
the probability.

Some view synthesis methods need to rely on the proxy geometry structure of the
scene. Kopf et al. [19] generated 3D proxy geometry by structure-from-motion (SfM) and
multi-view stereo (MVS) and achieved a view of the target viewpoint by optimizing Markov
Random Field. Aliev et al. [20] described Neural Point-Based Graphics, in which each
3D point was associated with a learned feature vector. These features were segmented
into a target view and transformed through a rendering network to synthesize a novel
view. However, the feature extractor needed to be re-trained when it was applied to a
new scene. Thies et al. [21] used mesh instead of 3D points to embed feature vectors.
Sitzmann et al. [22] avoided explicit proxy geometry and projected source images into a
neural voxel grid, where each voxel was associated with a trainable feature vector.

In this paper, an optical flow-based view synthesis method is proposed for panorama
stitching. In the proposed method, an optical flow estimation algorithm is designed by
considering the consistency between pixels of the same world point, and the flow-adjusted
version of the left and right views is reconstructed to reduce vertical disparity. Furthermore,
we combine optical flow with an alpha-based blending algorithm to synthesize the target
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view, which ensures a smooth seamless stitched image. Experimental results show that the
proposed method performs better in terms of the visual experience.

3. The Proposed Method
3.1. System Overview

Our method starts with captured data. We use images collected by two products on the
market—i.e., Insta360 pro and Facebook surround 360 [23]—to generate our experimental
datasets. First of all, because the captured images are affected by the lens of cameras,
distortion correction is a necessary pre-processing step in stitching. Then, we need to
roughly estimate the overlapping area of the left and right images based on the camera
structure. Secondly, we propose a novel optical flow algorithm to calculate the dense
optical flow in the overlapping area to achieve pixel-level image matching and use this to
reconstruct the left and right views used in the subsequent blending phase. Finally, we
combine the flow-based weight with the alpha blending algorithm to synthesize the novel
view. We illustrate the steps of our approach in Figure 1, some details will be given in
Sections 3.2 and 3.3.
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same scene point and map it to the corresponding position of the novel view and how to 

Figure 1. Overview of our approach. (a) Capture: experimental data are acquired by these two
devices. (b) Processing and optical flow estimation: we divide the approximate projection area
according to the angular space and calculate the optical flow of each pair of adjacent cameras to
establish a dense correspondence (in Section 3.2). (c) Rendering: a blending algorithm combining an
optical flow and alpha map is proposed to synthesize the view of novel viewpoints (in Section 3.3).

3.2. Optical Flow Estimation

Image-based rendering (IBR) aims to enable the synthesis of novel views of a scene
directly from a set of input images. In this process, there are two factors that determine
the quality of the synthetic view. First, a center pixel and a small block around it will be
mapped to a new position along with the displacement vector of the center pixel, and the
mapping error of pixels will cause cracks, holes, or noise. Secondly, due to the occlusion,
the background that was originally occluded by the foreground becomes visible in the
target view. The question of how to accurately calculate the displacement vector of the same
scene point and map it to the corresponding position of the novel view and how to sample
the left and right views to make the synthesized view perceptually indistinguishable from
reality are two issues that need to be solved. In this paper, we utilize ab optical flow to
synthesize the novel view.

Optical flow can detect the pixel motion of moving objects and can be widely used in
the field of moving object detection and tracking. There are objects with different depth
values in the scene described by a set of input images, which makes the relative position of
objects in the same spatial position different in various views. We can use optical flow to
describe this change. From the two input images IL and IR, we synthesize the image ID
of the desired view relying on optical flow. We use the optical flow field to approximate
the displacement between two views, and the flow field can be well approximated as the
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inverse depth (parallax) of the scene. Optical flow estimation can be regarded as point-by-
point per-pixel matching. It returns a displacement vector for each pixel of the original
image and maps it to a new position in the reference images. The pixel matching process is
depicted in Figure 2.
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Figure 2. The patch search process in optical flow estimation. The best match is determined by
minimizing the Perror of a small block around the pixel, and the pixel (x, y) in the current view is
mapped to the (x′, y′) pixel position of the adjacent view.

First, we separate the gray components and alpha components of the input images
(.png format images contain alpha channels; other formats need to be converted into
.png). The alpha maps of two images are used to adjust the intensity of the image (gray
components) to further alleviate the spatial gray difference between the two images after
exposure adjustment. Additionally, this process is explained by Equation (1). Next, we
downsample the images by scaling the image height and width by a factor of 2 as the inputs
of the image pyramid structure to make this process faster and more stable. By gradually
downscaling the image, the basic assumption of optical flow with small displacement is
satisfied so as to deal with the large motion of objects in the scene. Finally, we perform
patch searching for both gray and alpha pyramids at the same time from the top level of the
pyramids with the lowest resolution. Here, we set the size of the patch to 2 N +1, setting N
to 2. We calculate the intensity error of the pixel value in the patch recorded as Perror, as
depicted in Equations (2)–(4):

IR = IR( x, y )× ∑ IL(x, y)× αL(x, y)× αR(x, y)
∑ IR(x, y)× αL(x, y)× αR(x, y)

(1)

Iabs =
N

∑
v=−N

N

∑
u=−N

|IL(xL + u, yL + v)− IR(xR + u, yR + v)| (2)

α =
N

∑
v=−N

N

∑
u=−N

αL(xL + u, yL + v)× αR(xR + u, yR + v) (3)

Perror =
Iabs
α
·[1 + 2× L2(xR − xL, yR − yL)] (4)

Iabs is calculated as the sum of absolute differences (SAD) of intensity in the search
box; α is the dot product of alpha values in the patch; Perror is calculated as the second
norm of displacement vector in the x direction and y direction plus the ratio of SAD to
alpha, which matches the pixel characteristics in the patch more accurately.

Taking the occlusion caused by parallax and the different orientation of the image
into account, only searching within the 5 × 5 tile does not enable us to obtain the correct
correspondence for nearby objects. We expand the search box as a rectangle to update the
initial match. The rectangle extends ortho to each side of the search direction (left or right),
and the scope around IL(x, y) is limited to:

Rect
(
−k,−

(
k

kRatio
+

1
2

)
, k + 1, 2

(
k

kRatio
+ 1
))

(5)
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In Equation (5), the four items of Rect are the coordinates of the upper left point, width,
and height of the searchbox, respectively. Here, k is a constant ranging from 0 to 1 that
determines the degree of expansion and kRatio determines the aspect ratio of the search
box. Rectangular search considers the depth varies with scene content, which is of benefit
to the foreground content (as seen in Figure 3). We use the best match with the smallest
error in the expanded box, which signifies the best correspondence. The displacement
vector of the point (x, y) is described as (u, v), which is treated as flow.
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Figure 3. Rectangular search can better detect the foreground and keep its outline. The upper are the
optical flows obtained by a 5 × 5 patch, and the lower are the results of the extended rectangular
search box. A color wheel is used to color the gray version of the flow to give an obvious effect.

After patch searching, we obtain the primary matching of pixels depending on the
similarity of the gray neighborhood. However, the gray variation is not obvious for the
smooth areas (there may be some silhouettes and sloped surfaces) in the image. In order
to maintain this edge information, more advanced features besides gray information are
added in the process of calculating the matching error to improve the primary flow field.
Gradient norm errors in the x and y directions of images are considered. We sweep the flow
from two directions to obtain the final optical flow field F. The description of the details is
given in Algorithm 1. In this step, we introduce the adjacent points at the four positions
of up, down, left, and right to finally determine whether the current displacement vector
indicates the optimal pixel correspondence. When obtaining the final optical flow field F,
the transparency information of images is used to weight the flow and its gaussian blur
version so as to improve the robustness of the optical flow estimation.

Algorithm 1. Calculate the optical flow field.

Input: IL, IR—the grayscale images of the left and the right views
αL, αR—the alpha maps of the left and the right views
dxL, dyL, dxR, dyR—gradients in two directions
f low, blow f low—the flow and its gaussian blur version
Output: F—the final optical flow field

1. function errorfunction(x, y, f low.at(x, y))
2. (x′, y′)← (x, y) + f low.at(x, y)
3. (iLx, iLy)← (dxL.at(x, y), dyL.at(x, y))
4. (iRx, iRy)← (dxR.at(x′, y′), dyR.at(x′, y′))
5. di f f ← blur f low.at(x, y)− f low.at(x, y)
6. error = ‖(iLx− iRx, iLy− iRy)‖2 +

√
di f f � di f f
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7. end function
8. for x from 0 to IL.width do
9. for y from 0 to IL.height do
10. currentError← errorfunction(x, y, f low.at(x, y))
11. (0, 1), (0,−1), (−1, 0), (1, 0) successively assign to (i, j)
12. error ← min[errorfunction(x, y, f low.at(x + i, y + j))]
13. while error < currentError do
14. f low.at(x, y)← f low.at(x + i, y + j)
15. end while
16. end for
17. end for
18. k = 1− αL.at(x, y)× αR.at(x, y)
19. F(x, y)← (1− k)× f low.at(x, y) + k× blur f low.at(x, y)

Algorithm 1 describes the calculation of the optical flow from the left view to the right
view. Taking IL as a reference, we need to find the correspondence in IR and convert it
accordingly to obtain the optical flow in the other direction. Figure 4 shows the result of
our optical flow calculation. From the left to right are the left view, FLR, FRL, and the right
view. We use colorwheel to color the displacement vector because the optical flow field
describes the displacement vectors from two opposite directions and shows the difference
in the color temperature.
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Figure 4. The optical flow approximates the inverse depth of the scene. A color bar of the optical
flow field is shown below, and the value represents disparity in the x direction.

3.3. Reconstructed View-Based Blending Algorithm

Due to parallax and camera orientation, the overlapping areas of the left and the right
images are not perfectly matched and blending directly based on distance weights will
cause artifacts. By calculating the optical flow, we obtain the displacement between the
overlapping area on the 2-dimensional plane. In order to synthesize the image of the target
viewpoint, we consider obtaining an intermediate pattern depending on the optical flow to
improve the corresponding accuracy of the overlapping area. Based on the intermediate
pattern, we can synthesize the image of the target view ID by using the spatial position
relationship and image transparency; the geometric model is described in Figure 5.

The world point X projects to xL and xR in the left and the right views, respectively.
We interpolate a novel viewpoint D and synthesize its imaged view ID, where xD is the
scene point X projected in ID. The dotted blue and yellow lines on the left in Figure 5 depict
the plane-induced depth mismatch. We use optical flow fields FLR and FRL to reconstruct
the left and the right views to compensate for the truncation and artifacts caused by this
mismatch. We adjust the optical flow amplitude based on the position information to
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determine the coordinates of sampling points x∗L and x∗R, which are needed for image
reconstruction. The amplitude adjustment parameter δ is as follows:

δ = sigmod
(

scale
W
×
(

pos− W
2

))
(6)

where scale is an adjustable parameter that controls the degree of change in the linear
region of the sigmoid function curve. The larger the scale is, the more the displacement of
the optical flow field plays a role in the sampling coordinates. W refers to the pixel width
of the image, and pos refers to the column position of the pixel. For the left view, the left
part is only slightly tuned by the FLR according to the value range of the sigmoid function
and is almost the same as the left side of the original image. Additionally, the right part is
tuned a lot dependent on FLR. The coordinates of the left and the right views warped by
optical flow are:

x∗L = xL + δ× FLR(xL) (7)

x∗R = xR + (1− δ)× FRL(xR) (8)

1 
 

 

Figure 5. Get the reconstructed views by warping pixels depending on optical flow.

Figure 6 shows the left and the right views after optical flow adjustment. The top
and the bottom of the first column are the original left and right views, and the second
column is the value map of the adjustment function according to amplitude adjustment
parameter. The brighter part indicates that the original view is adjusted a lot by the optical
flow. The third column is the reconstructed left and right viewpoint images, depicting that
the vertical distortion with red line is corrected after the optical flow adjustment. The last
column is the synthesized view.

Sensors 2022, 22, 470 9 of 15 
 

 
Figure 6. Optical flow adjustment and the synthesis of the novel viewpoint. 

Vertical distortion is most noticeable for nearby scene objects and affects the viewing 
experience of users. Additionally, the synthesized image combines views from multiple 
perspectives, which leads to distorted scene objects in novel viewpoints. We use the alpha 
value, which indicates the transparency of the pixel, to blend the reconstructed views 
which can tolerate a certain degree of parallax. If the transparency is effectively controlled, 
the artifacts can be suppressed to a certain extent. 

The alpha values of the left and the right images are represented by 𝛼 and 𝛼ோ, re-
spectively. Here, we take 𝐿ଵ = 𝛿 and 𝑅ଵ = 1 − 𝛿 as the optical flow weights. In fact, 𝐿ଵ, 𝑅ଵ, and the alpha value of the pixel are employed to obtain the base 𝐾 and 𝐾ோ of the 
transparency weight value represented by 𝐿ଶ and 𝑅ଶ, as shown in Equations (9) and (10): 𝐾 = 𝑒(∗భ∗ఈಽ) (9)𝐾ோ = 𝑒(∗ோభ∗ఈೃ) (10)

where 𝑘 is an adjustable coefficient. According to the alpha blending algorithm, the sum 
of the transparency weights of the two images is 1. Therefore, 𝐿ଶ and 𝑅ଶ are obtained 
according to Equations (11) and (12): 𝐿ଶ = 𝐾𝐾 + 𝐾ோ + 𝜀 (11)

𝑅ଶ = 𝐾ோ𝐾 + 𝐾ோ + 𝜀 (12)

where ε is an extremely small positive number. 
Finally, we use the difference in the absolute value of the pixel at the same position, 

which is referred as 𝑑, to evaluate the importance of these two weights. Additionally, we 
use 𝑟𝑎𝑡𝑖𝑜 to express this importance: 𝑟𝑎𝑡𝑖𝑜 = tanh (𝑑) (13)

where tanh ensures that when the difference of pixel values is large, the transparency 
weights of the image play a leading role in the process of blending, and we are able to 
obtain a compromise between the optical flow weight and alpha weight. Then, we obtain 
the final blending weights of the reconstructed left and right images according to Equa-
tions (14) and (15) 𝑤 = 𝐿ଵ(1 − 𝑟𝑎𝑡𝑖𝑜) + 𝐿ଶ ∗ 𝑟𝑎𝑡𝑖𝑜 (14)𝑤ோ = 𝑅ଵ(1 − 𝑟𝑎𝑡𝑖𝑜) + 𝑅ଶ ∗ 𝑟𝑎𝑡𝑖𝑜 (15)

To synthesize the novel view 𝐼, we combine the pixels sampled at 𝑥∗ and 𝑥ோ∗  from 𝐼 and 𝐼ோ, respectively. Additionally, we perform a convex combination: 

Figure 6. Optical flow adjustment and the synthesis of the novel viewpoint.



Sensors 2022, 22, 470 9 of 15

Vertical distortion is most noticeable for nearby scene objects and affects the viewing
experience of users. Additionally, the synthesized image combines views from multiple
perspectives, which leads to distorted scene objects in novel viewpoints. We use the alpha
value, which indicates the transparency of the pixel, to blend the reconstructed views which
can tolerate a certain degree of parallax. If the transparency is effectively controlled, the
artifacts can be suppressed to a certain extent.

The alpha values of the left and the right images are represented by αL and αR,
respectively. Here, we take L1 = δ and R1 = 1− δ as the optical flow weights. In fact,
L1, R1, and the alpha value of the pixel are employed to obtain the base KL and KR of the
transparency weight value represented by L2 and R2, as shown in Equations (9) and (10):

KL = e(k×L1×αL) (9)

KR = e(k×R1×αR) (10)

where k is an adjustable coefficient. According to the alpha blending algorithm, the sum
of the transparency weights of the two images is 1. Therefore, L2 and R2 are obtained
according to Equations (11) and (12):

L2 =
KL

KL + KR + ε
(11)

R2 =
KR

KL + KR + ε
(12)

where ε is an extremely small positive number.
Finally, we use the difference in the absolute value of the pixel at the same position,

which is referred as d, to evaluate the importance of these two weights. Additionally, we
use ratio to express this importance:

ratio = tanh(d) (13)

where tanh ensures that when the difference of pixel values is large, the transparency
weights of the image play a leading role in the process of blending, and we are able
to obtain a compromise between the optical flow weight and alpha weight. Then, we
obtain the final blending weights of the reconstructed left and right images according to
Equations (14) and (15)

wL = L1(1− ratio) + L2 × ratio (14)

wR = R1(1− ratio) + R2 × ratio (15)

To synthesize the novel view ID, we combine the pixels sampled at x∗L and x∗R from IL
and IR, respectively. Additionally, we perform a convex combination:

ID(xD) = wL × IL(x∗L) + wR × IR(x∗R) (16)

Note that wL + wR = 1 according to the fusion rule of alpha blending.

4. Experimental Results
4.1. Datasets

Since there is no benchmark dataset in the field of panorama stitching, we use real
image datasets ‘scene1’ and ‘scene2’ captured by the Facebook surround360 device and
‘fisheye’ from the Insta360 device to build a panorama and use the public light field datasets
HCI and ‘Teddy’ from Middlebury [24,25] to conduct the comparison between methods. In
the ablation experiments, the stereo/flow 2012 dataset of KITTI [26] is used to evaluate each
component of the algorithm. The camera array of Surround360 is composed of 14 cameras
on the fixed camera rig with the same intrinsics at equal intervals. The optical centers of
the cameras are in the same horizontal plane. The resolution of the images is 2048 × 2048.



Sensors 2022, 22, 470 10 of 15

The Insta360 camera rig is arranged by 6 fisheye cameras. We expand the fisheye images
and extract the central area as the inputs according to the Equi-Rectangular Projection
(ERP) projection theory, where the size of images is 1360 × 2042. Each scene of the HCI
light field dataset is composed of 81 images by a 9 × 9 camera array with a resolution of
768 × 768. Each scene in the Middlebury dataset is composed of 6 views, and the resolution
is larger than 600 × 500. The KITTI dataset contains stereo pairs and is from the real scene
of autonomous driving, which is commonly used to evaluate vision algorithms.

Scene1 is a building interior scene that does not contain many complex textures but
rather quantities of vertical or horizontal object edges. A good method should keep the
original structure in the vertical direction. Scene 2 is a spacious outdoor scene with complex
texture objects such as grass and branches. This kind of texture is prone to unsatisfactory
stitching distortion artifacts, which poses a great challenge to the effectiveness of the
methods. Moreover, Insta360 is an indoor scene with varying depth, and the images are in
the ERP projection format, which means that the scene is deformed. Light field data [24]
are acquired by a structured camera array and can be seen as a narrow baseline image pair.
On the contrary, ‘TEDDY’ is an image pair with a wide baseline. KITTI data are collected
by self-driving vehicles, usually including buildings, vehicles, roads, and trees. These
real scenes have covered most of the complex textures to evaluate the performance of our
method comprehensively.

4.2. Ablation Study

Flow Estimation (FE): The first step of our approach is optical flow estimation, which
represents the correspondence between the left and right views. To verify the importance of
this module, we compare the performance in the case of ‘w/o FE’ with ‘Ours’ in Table 1 and
Figure 7. Concretely, we implement the optical flow part of surround360 [23] to calculate
optical flow and replace our proposed optical flow estimation in the ‘w/o FE’. From the
comparison of the subjective results, it can be seen that the two are close. However, our
method keeps the shape at the vertical and horizontal edges of the second scene. Therefore,
‘Ours’ can achieve a higher peak signal to noise ratio (PSNR) and structural similarity
(SSIM), which means that our results have a lower noise error and higher structural
similarity, as shown in Table 1.

Table 1. Ablation studies on flow estimation by Surround 360 [23], flow-based reconstruction, and
flow-based blending.

Pipeline MP-PSNR PSNR SSIM

w/o FE 26.7732 21.5039 0.6301
w/o FR 24.6985 18.4631 0.5833
w/o FB 25.9854 18.7952 0.5711

Ours 28.0473 23.2075 0.7027
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shown in Figure 7. 

4.3. Viewing and Analysis 
For datasets that cannot form a panorama, subjective synthetic view results are dis-

played to ensure the rationality of the experiment in Figure 8. For the datasets that can 
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sessment metrics over the image sequence in addition, as shown in Table 2 and Figure 9. 
We compare our algorithm with other methods, such as APAP [2], AANAP [4], and the 
view synthesis method SM [17], from the left to the right in Figure 8. The first two rows 
are the contents of scene1, the next row is scene2, and the last scene is fisheye data. The 
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bury datasets [25]. The values under the figures are PSNR and SSIM, respectively. 

Figure 7. Taking the right view as the reference view for the ablation experiments to verify the
effectiveness of flow estimation (FE), flow-based reconstruction (FR), and flow-based blending (FB).

Flow-based reconstruction (FR): Due to parallax, the baseline and rough estimation of
the overlapping area, blending directly based on distance will lead to bad results. Note
that we have calculated the displacement between pixels through optical flow estimation.

We first adjust the optical filed depending on the positional information and then
fine-tune the two views using the adjusted flow field to obtain an intermediate pattern
between the left and right views that can reduce artifacts in subsequent blending. To verify
the necessity of this process, we eliminate the process of flow adjustment in the case of
‘w/o FR’. As illustrated in Figure 7, ‘w/o FR’ shows a discontinuity of structure in the part
circled in red.

Flow-based blending (FB): In this work, we utilize the alpha value to design our
blending algorithm. The alpha map represents the visibility of each pixel of an image and
is widely used in view synthesis. In this paper, a dual-weight blending algorithm based on
optical flow is designed to determine the weights of the left and the right views in the final
sampling. Comparing our method with the traditional alpha blending algorithm ‘w/o FB’,
we find that the results of ‘w/o FB’ and ‘Ours’ are almost similar in some local parts. While
there is a certain degree of deformation in the parts circled in blue in the first scene and red
of the second scene in ‘w/o FB’, this can be controlled by our method, as shown in Figure 7.

4.3. Viewing and Analysis

For datasets that cannot form a panorama, subjective synthetic view results are dis-
played to ensure the rationality of the experiment in Figure 8. For the datasets that can form
the panorama, we show the formed panoramas and calculate the image quality assessment
metrics over the image sequence in addition, as shown in Table 2 and Figure 9. We compare
our algorithm with other methods, such as APAP [2], AANAP [4], and the view synthesis
method SM [17], from the left to the right in Figure 8. The first two rows are the contents
of scene1, the next row is scene2, and the last scene is fisheye data. The next scene is HCI
light-field data from [24], and the last scene is TEDDY from the Middlebury datasets [25].
The values under the figures are PSNR and SSIM, respectively.

In scene1, our method achieves better performance on the vertical edges of the building,
while other methods show ghost and stitching distortions. In the fisheye scene, the contrast
methods have artifacts and truncation effects on the green baffle and the black cable.
On complex textures such as tree branches, our approach can also perform well without
artifacts. While SM [17] obtains the best performance on TEDDY, our approach shows
an irregular edge due to the large parallax that optical flow adjustment cannot overcome.
Figure 1 shows the panoramas generated by our approach on three panoramic datasets.

We also calculate image quality assessment metrics on scene1, scene2, and fisheye
data, as shown in Table 2. The difference between the values of a single image pair may be
relatively large, so we evaluate the metrics on the whole dataset. The result of the single
image pair is shown below the picture because it cannot form a complete panorama. We
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calculate MP-PSNR [27], PSNR, and SSIM to evaluate these approaches. The SSIM value
gain of our method is close to 0.1 in scene1, while the MP-PSNR and PSNR gains are close
to 1dB in the fisheye scene. Experimental results show that our results are better than the
comparison methods to a certain extent in terms of both subjective visual perception and
objective assessment metrics.
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Table 2. MP-PSNR [27], PSNR, and SSIM comparison of the proposed method and [2,4,17]. The bold
items indicate which method gets the better performance in each scene.

Datasets/
Models

APAP [2] AANAP [4] SM [17] Proposed

scene1 scene2 fisheye scene1 scene2 fisheye scene1 scene2 fisheye scene1 scene2 fisheye

MP-PSNR [27] 25.0831 24.1017 24.1743 25.9847 24.1833 24.5380 27.1593 25.0037 24.0649 27.1482 25.1794 24.5882

PSNR 17.3444 20.1031 20.1295 18.8771 18.1437 18.1437 21.2529 19.5766 20.7835 21.0021 20.1295 21.2200

SSIM 0.4015 0.6100 0.6218 0.4275 0.6463 0.7078 0.4979 0.7167 0.5732 0.5518 0.7411 0.7914
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Figure 9. ‘Ours’ panoramic images. (a) scene1; (b) scene2; (c) fisheye. 
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images that had a certain robustness with overlapping and non-overlapping areas. Sec-
ondly, the obtained optical flow field was used to warp the left and right views to obtain 
the reconstructed views for the subsequent blending stage. We showed that the recon-
struction version of views could reduce the vertical distortion of the original image. In the 
rendering process, we considered the optical flow and the alpha value of pixels to inter-
polate each pixel in the novel view. Compared with existing methods, our flow-based 
view synthesized method was able to eliminate most artifacts and structural distortions. 

Figure 9. ‘Ours’ panoramic images. (a) scene1; (b) scene2; (c) fisheye.

5. Conclusions

In this paper, we proposed a view synthesis approach based on optical flow to solve the
problem of panorama stitching. First, we estimated the optical flow field to match images
that had a certain robustness with overlapping and non-overlapping areas. Secondly,
the obtained optical flow field was used to warp the left and right views to obtain the
reconstructed views for the subsequent blending stage. We showed that the reconstruction
version of views could reduce the vertical distortion of the original image. In the rendering
process, we considered the optical flow and the alpha value of pixels to interpolate each
pixel in the novel view. Compared with existing methods, our flow-based view synthesized
method was able to eliminate most artifacts and structural distortions.

Author Contributions: Conceptualization, W.Z.; methodology, Y.W. and Y.L.; software, W.Z.; val-
idation, W.Z.; formal analysis, Y.W.; investigation, Y.L. and Y.W.; resources, Y.L. and Y.W.; data
curation, W.Z.; writing—original draft preparation, W.Z.; writing—review and editing, Y.W. and Y.L.,
visualization, W.Z.; supervision, Y.W.; project administration, Y.W. and Y.L.; funding acquisition, Y.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China (No.2018YFB1800501
and No.2019YFB1803103).

Institutional Review Board Statement: Not applicable.



Sensors 2022, 22, 470 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brown, M.; Lowe, D.G. Automatic Panoramic Image Stitching using Invariant Features. Int. J. Comput. Vis. 2007, 74, 59–73.

[CrossRef]
2. Zaragoza, J.; Chin, T.-J.; Brown, M.S.; Suter, D. As-projective-as-possible image stitching with moving dlt. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2339–2346.
3. Chang, C.-H.; Sato, Y.; Chuang, Y.-Y. Shape preserving half-projective warps for image stitching. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3254–3261.
4. Lin, C.-C.; Pankanti, S.U.; Ramamurthy, K.N.; Aravkin, A.Y. Adaptive as-natural-as-possible image stitching. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1155–1163.
5. Lin, K.; Jiang, N.; Cheong, L.-F.; Do, M.; Lu, J. Seagull: Seam-guided local alignment for parallax-tolerant image stitching. In

Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 370–385.

6. Thatte, J.; Girod, B. A statistical model for disocclusions in depth-based novel view synthesis. In Proceedings of the 2019 IEEE
Visual Communications and Image Processing (VCIP), Sydney, Australia, 1–4 December 2019; pp. 1–4.

7. Zhang, Y.; Zou, D.; Ren, J.S.; Jiang, Z.; Chen, X. Structure-preserving stereoscopic view synthesis with multi-scale adversarial
correlation matching. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 5853–5862.

8. Bertel, T.; Campbell, N.D.F.; Richardt, C. MegaParallax: Casual 360◦ Panoramas with Motion Parallax. IEEE Trans. Vis. Comput.
Graph. 2019, 25, 1828–1835. [CrossRef] [PubMed]

9. Xu, B.; Jia, Y. Wide-angle image stitching using multihomography warping. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1467–1471.

10. Chai, Q.; Liu, S. Shape-optimizing hybrid warping for image stitching. In Proceedings of the 2016 IEEE International Conference
on Multimedia and Expo (ICME), Seattle, WA, USA, 11–15 June 2016; pp. 1–6.

11. Fan, X.; Lei, J.; Fang, Y.; Huang, Q.; Ling, N.; Hou, C. Stereoscopic Image Stitching via Disparity-Constrained Warping and
Blending. IEEE Trans. Multimed. 2019, 22, 655–665. [CrossRef]

12. Richardt, C.; Pritch, Y.; Zimmer, H.; Sorkine-Hornung, A. Megastereo: Constructing high resolution stereo panoramas. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 1256–1263.

13. Peleg, S.; Ben-Ezra, M.; Pritch, Y. Omnistereo: Panoramic stereo imaging. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 279–290.
[CrossRef]

14. Stankiewicz, O.; Wegner, K.; Tanimoto, M.; Doma’nski, M. Enhanced View Synthesis Reference Software (VSRS) for Free-
VIEWPOINT Television. 2013. Available online: https://svn.multimedia.edu.pl/vsrs (accessed on 7 June 2021).

15. Kalantari, N.K.; Wang, T.-C.; Ramamoorthi, R. Learning-based view synthesis for light field cameras. ACM Trans. Graph. 2016, 35,
1–10. [CrossRef]

16. Chaurasia, G.; Duchene, S.; Sorkine-Hornung, O.; Drettakis, G. Depth synthesis and local warps for plausible image-based
navigation. ACM Trans. Graph. 2013, 32, 1–12. [CrossRef]

17. Zhou, T.; Tucker, R.; Flynn, J.; Fyffe, G.; Snavely, N. Stereo magnification: Learning view synthesis using multiplane images. ACM
Trans. Graph. (TOG) 2018, 37, 1–12. [CrossRef]

18. Flynn, J.; Neulander, I.; Philbin, J.; Snavely, N. Deepstereo: Learning to predict new views from the world’s imagery. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 5515–5524.

19. Kopf, J.; Cohen, M.F.; Szeliski, R. First-person hyper-lapse videos. ACM Trans. Graph. 2014, 33, 1–10. [CrossRef]
20. Aliev, K.-A.; Sevastopolsky, A.; Kolos, M.; Ulyanov, D.; Lempitsky, V. Neural point-based graphics. In Computer Vision–ECCV

2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 696–712.
21. Thies, J.; Zollhöfer, M.; Nießner, M. Deferred neural rendering: Image synthesis using neural textures. ACM Trans. Graph. (TOG)

2019, 38, 1–12. [CrossRef]
22. Sitzmann, V.; Thies, J.; Heide, F.; NieBner, M.; Wetzstein, G.; Zollhofer, M. Deepvoxels: Learning persistent 3d feature embeddings.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 2437–2446.

23. Facebook. Surround360 System, Surround360 Website. 2019. Available online: https://github.com/facebook/Surround360
(accessed on 4 January 2022).

24. Honauer, K.; Johannsen, O.; Kondermann, D.; Goldluecke, B. A dataset and evaluation methodology for depth estimation on 4d
light fields. In Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; Springer: Berlin/Heidelberg, Germany,
2016; pp. 19–34.

http://doi.org/10.1007/s11263-006-0002-3
http://doi.org/10.1109/TVCG.2019.2898799
http://www.ncbi.nlm.nih.gov/pubmed/30802864
http://doi.org/10.1109/TMM.2019.2932573
http://doi.org/10.1109/34.910880
https://svn.multimedia.edu.pl/vsrs
http://doi.org/10.1145/2980179.2980251
http://doi.org/10.1145/2487228.2487238
http://doi.org/10.1145/3197517.3201323
http://doi.org/10.1145/2601097.2601195
http://doi.org/10.1145/3306346.3323035
https://github.com/facebook/Surround360


Sensors 2022, 22, 470 15 of 15

25. Scharstein, D.; Szeliski, R. High-accuracy stereo depth maps using structured light. In Proceedings of the 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 1, pp. 195–202.

26. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012.

27. Sandic-Stankovic, D.; Kukolj, D.; Le Callet, P. Dibr synthesized image quality assessment based on morphological pyramids.
In Proceedings of the 2015 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video (3DTVCON),
Lisbon, Portugal, 8–10 July 2015; pp. 1–4.


	Introduction 
	Related Work 
	Panorama Stitching 
	Image-Based Rendering 

	The Proposed Method 
	System Overview 
	Optical Flow Estimation 
	Reconstructed View-Based Blending Algorithm 

	Experimental Results 
	Datasets 
	Ablation Study 
	Viewing and Analysis 

	Conclusions 
	References

