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Abstract: Digitalization has impacted agricultural and food production systems, and makes applica-
tion of technologies and advanced data processing techniques in agricultural field possible. Digital
farming aims to use available information from agricultural assets to solve several existing challenges
for addressing food security, climate protection, and resource management. However, the agricultural
sector is complex, dynamic, and requires sophisticated management systems. The digital approaches
are expected to provide more optimization and further decision-making supports. Digital twin in
agriculture is a virtual representation of a farm with great potential for enhancing productivity and
efficiency while declining energy usage and losses. This review describes the state-of-the-art of
digital twin concepts along with different digital technologies and techniques in agricultural con-
texts. It presents a general framework of digital twins in soil, irrigation, robotics, farm machineries,
and food post-harvest processing in agricultural field. Data recording, modeling including artificial
intelligence, big data, simulation, analysis, prediction, and communication aspects (e.g., Internet
of Things, wireless technologies) of digital twin in agriculture are discussed. Digital twin systems
can support farmers as a next generation of digitalization paradigm by continuous and real-time
monitoring of physical world (farm) and updating the state of virtual world.

Keywords: digital twin; digitalization; digital farming; farm management; smart farming

1. Introduction

One of the main global challenges is how to ensure food security for the world’s
growing population whilst ensuring long-term sustainable development. According to the
Food and Agriculture Organization, agricultural and food productions will need to grow
to feed the world population, which will reach around 10 billion by 2050 [1]. Due to the
increase in world population and market demand for higher product quantity and quality
standards, the issue of food security, sustainability, productivity, and profitability becomes
more important. Furthermore, the economic pressure on the agricultural sector, labor,
environmental, and climate change issues are increasing [2,3]. Therefore, the enhancement
of efficiency through effective integrated smart technologies and techniques has been
widely considered in recent years.

In this context, digital agriculture (also known as smart farming or smart agriculture)
tools can support the deeper understanding of interrelations within the agricultural pro-
duction system and the consequent effects on the performance of farm production while
balancing human health and well-being, social and environmental aspects, and sustain-
ability associated with agricultural system [4–6]. Due to advances in data generation, data
processing and human-computer interactions, digital farming has progressed in recent
years [7]. One of the main features of digitalization in agriculture is the introduction of inno-
vative Information and Communication Technology (ICT), Internet of Things (IoT), big data
analytics and interpretation techniques, machine learning and Artificial Intelligence (AI).

Data acquisition and analysis in digital farming by means of smart technologies are
supporting complex decision-making approaches [8,9]. They enhance final productivity,
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reduce costs, and optimize the decision-making process. Furthermore, ICT tools present
advantages for on-farm management, efficiency, quality control, and the food supply chain
as well as decision support tools [10]. The AI and big data support better and precise
farm monitoring, data acquisition and analytics, improve information extraction from
sensors as well as farm management [11]. For instance, crop health and productivity can
be monitored and controlled using advanced AI and deep learning techniques [12]. Data-
driven approaches augment on-farm decision-making capabilities, improve crop yield,
reduce losses, and therefore, benefit farmers. The IoT and wireless technologies enable
real-time data transferring and monitoring in digital farming [13,14]. The IoT, along with
cloud computing systems, can facilitate communication between software platforms and
sensors, pieces of machinery, crops, and animals in digital farming. However, by increasing
the number of sensors and generating large amounts of data in digital farming could cause
high load on the cloud server and reduce the response speed [15]. In this context, in may
be impractical to always store and process data in the cloud systems [16]. An alternative
technology which has been recently introduced to the smart farming is edge-computing
that enables computation at the edge of the network [17]. It helps to reduce network load
and supports real-time data processing in agricultural fields. Furthermore, cyber-physical
systems have been introduced through smart farming systems to develop hardware and
software, improve adaptability, and safety and security of computer-based algorithms
and systems [18]. It enables adaptability, practicality, security, and safety of collected
information in agricultural field e.g., climate, irrigation, soil, nutrition, and yield for
better management.

According to ref. [19], digital farming approaches can provide farmers with useful
information about (I) the use of fertilizers, chemicals, seeds, and irrigation management
strategies, (II) the environment protection, (III) pest, climate, and crop monitoring man-
agement solutions, (IV) market demands and business conditions. However, agricultural
production systems are complex, dynamic, and require sophisticated management [20].
Digitalization approaches are expected to provide more monitoring, data analysis and
optimization capabilities, and further decision-making supports.

To enhance the efficiency of these systems, an emerging paradigm has been proposed
and implemented in digital agriculture, that is, digital twin. The digital twin was firstly
presented by NASA for monitoring of spacecraft behavior and can be defined as a virtual
or digital representation of physical systems to simulate the behavior of the physical
system [21,22]. There are different definitions for digital twin available in the literature
which have been reviewed by [23–25]. Based on the reported definitions, the component
of digital twin can be characterized by physical and virtual objects, as well as a set of
connections between physical and digital assets [26].

The physical system or physical world in agriculture is a complex and dynamic
environment and includes basic information and features of the object or device such
as shape, position, cooler, material, and live objects [27]. The physical system is one
of the key components, and a digital twin without a physical world is a model [28],
and system boundaries of a digital twin are identified based on the real physical world [29].
The physical system can be a single component of an object or the whole object with sub-
components located in a physical environment [28]. The physical world in agriculture can
be an animal itself or located in a farm including building, feeding strategies, number of
animals [30], or a crop with different soil, climate, and irrigation conditions [22], robots
and agricultural pieces of machinery, e.g., tractors, harvesters and fertilizers, as well as
operators. The physical world can include a whole object (e.g., whole machine) or sub-part
of the object, or a single asset of the object connected with other objects. In an agricultural
context, the physical system may be some aspects of the crop, soil, and irrigation systems,
or animal body. The physical world requires measurement technologies and sensors to
collect and receive data from the physical object. Examples of digital twins in smart
agriculture include optical sensors for plant canopy and disease [31,32], soil and weather
sensors for crop [33], barn sensors such as temperature, humidity, ammonia for animals [34],
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Global Positioning System (GPS) and Real-Time Kinematic-Global Navigation Satellite for
tracking of agricultural robots [35], and food supply chain.

The connection between physical and virtual worlds depends on the developed digital
twin. This component enables data transmission between virtual and physical systems.
It interprets the collected data from the physical system and updates the state of the
virtual system, and transfers feedbacks from the virtual system to the physical world [25].
The connection components can be varied depending on the source, type and volume of
data, data transfer rate and speed, as well as the minimum delay between data acquisition
and feedbacks. Wireless and IoT techniques have been used in digital twins of agricultural
concepts to connect between physical and virtual worlds (such as [34,36,37]).

The models and data of the physical world are represented in a virtual system.
The virtual world may also include different processing and simulation concepts, software,
machine learning, data mining, and AI models. In this context, data processing and analyt-
ics by means of AI techniques to support decision-making and feedback to the physical
system were suggested by some researchers [38,39]. The virtual twin may simulate and
control the physical system, optimize a process, and predict unseen issues in the physical
system. For example, an application layer of a digital twin reported by [22] provides
real-time monitoring of weeds, crop growth, and expected yield via cloud dashboards for
farmers. A schematic of the digital twin concept in agriculture is shown in Figure 1.
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Figure 1. Schematic of digital twin concept for agriculture.

Although digital twin concepts in smart farming are in their infancy and early demon-
stration stages [22,30], there are ongoing interests in implementing this technique in the
agricultural context. There are some reviews available in the literature describing digital
twin concepts in the agriculture context (listed in Table 1), however, to the best of our
knowledge, these works have focused on a specific part of the digital twin, and no com-
prehensive studies have yet been done to address the application of digital twins in soil,
irrigation, agricultural farm pieces of machinery, robots, and post-harvest food processing.
Therefore, this review summarizes digital twin concepts as a next-generation paradigm
for digitalization in agriculture. This paper is structured in 6 sections. Section 2 illustrates
the digital twin of soil and irrigation systems in smart agriculture. Section 3 covers the use
of digital twin concepts for crop technologies. Section 4 illustrates digital twin concepts
during post-harvest processing. Challenges and future research needs for digital twin are
presented in Section 5. Finally, conclusions are discussed in Section 6.
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Table 1. Previous review studies on digital twin in agriculture.

Concept Sources

Agriculture-farm management [40]
Smart farming—Hydroponics [41]
Food processing [42]
Food losses—supply chain of fresh products [43]
Agri-food—societal and ethical aspects [44]
Food processing—fresh horticulture supply chain [45]
Agri-food supply chain [46]
Smart farming—definition and concept [22]
Agriculture—general application and adoption [47]

2. Digital Twin in Soil and Irrigation

Monitoring and evaluation of soil quality to sustain plant productivity is the basis of
land-use strategies in agricultural farms [48]. Crop health and productivity depends on
the quality and properties of the soil. More detailed information about the agricultural
soil may reduce the potential use of chemical fertilizer and pesticide dosages, therefore
improving the underground water, protecting the environment and human health. It also
supports defining plant density in a more efficient way. Digital technologies are supporting
scientists to better understand and study soil in agriculture. Soil monitoring sensors such
as moisture, temperature, organic matter, and soil pollutant sensors are playing critical
roles in digital agriculture [49]. For instance, soil moisture information can be used to
assess irrigation efficiency in agricultural fields [50]. Furthermore, to support the decision-
making process of smart farming, digital soil mapping is an essential paradigm that can be
defined as spatial soil information based on field and laboratory investigations coupled
with soil inference systems [51]. Digital soil assessment approaches have a direct impact on
crop yield and performance by identifying zones that may cause low crop yield. Digital
alternative methodologies for soil survey and identifying key soil characteristics could
have the possibility to quantify the trend of agricultural soil conditions [52].

The advancement of knowledge and technology (e.g., wireless sensors, IoT, AI) in
digital agriculture could lead to digital twin paradigms of soil in agriculture. The recent
development of digital soil mapping techniques may support digital twins by digital
representation of knowledge obtained from the soil in virtual entrainment [53]. For in-
stance, digital soil mapping could be used to describe soil variation in digital twins using
information from complex soil variation at a specific depth, time, and special locations [52].

Additionally, the decision about crop management depends directly on the crop water
requirements, soil properties, and availability of water. In order to manage soil and crop
requirements in smart farming, digital technologies have been used to meet the requirement
of smart or precise water management strategies. Wireless system networks, IoT, edge-
computing, local weather-based controllers, and soil sensors are some of the digital tools
based on smart irrigation systems. The mentioned tools can be used in the digital twin of
soil and irrigation systems. For example, ref. [37] developed a digital twin concept for smart
water management in the agricultural domain. Information of air and ground temperature,
and humidity sensors, soil moisture, and ambient light as well as geospatial position
sensors were collected. An IoT system was used to connect the cloud and the physical
system. A virtual environment including decision-making tools and models was designed
to inform the data collected by connection device (the IoT system) and to send feedback
to the physical system. They also presented a digital twin system architecture including
monitoring devices (i.e., soil probe, weather information, irrigation system, machines,
and other equipment) in a physical system (farm) with could serve as a connection between
the physical and virtual systems to visualize satellite and drone images.

In another study, to evaluate and forecast plants’ irrigation requirements, and support
irrigation and water distribution planning, a digital twin for a smart water management
system was developed by [54]. Data of the physical world (agriculture field) such as



Sensors 2022, 22, 498 5 of 16

weather, fertilizer, and soil type as well as information from developed models that simulate
the behavior of soil and crops were considered as input data for the digital twin. The digital
twin concept also consisted of a Soil Agent (includes hydrological models and soil data),
Crop Agent (includes crop models and evaporation data), and a Field Avatar, which is a
digital representation of the field such as geological models and weather data [54]. In their
developed digital twin concept, the information from Soil Avatar and Crop Avatar feed
into the Field Avatar, and an IoT system was used for data transformation and connection
between the physical and virtual worlds.

Due to increase in world population, water and energy management, storage, and proper
distribution of water become more essential for water users in agricultural sectors, which can
be managed through a collective irrigation system [55]. A digital twin of water systems
coupled with big data can reduce risk and uncertainty of water management, explore
consumption patterns, and optimize operation planning [56]. Furthermore, in a collective
irrigation system, improvement of water efficiency could help to reduce water losses. In this
context, a digital twin concept was created using field and laboratory tests of a collective
irrigation system network to evaluate energy, pumping facilities, water losses and water use
efficiencies [57]. The developed digital twin methodology was based on information from
the physical system, i.e., infrastructure data, acquired information through telemetry, data
analytics from laboratory tests and field measurements, IoT data transferring as connection,
energy balance, water balance, and hydraulic model in the virtual system. It was found
that the digital twin of the irrigation management system made it possible to understand
system processes, maintenance, and management strategies [57].

A digital twin of soil and irrigation systems in smart farming enables digital repre-
sentation of information from agricultural soil, and provides prediction and fundamental
understanding of water requirement and soil components for crop farming. Exchanging
information from the soil as a physical system to a virtual system using IoT, cloud, fog,
and edge-computing technologies in digital twin may allow evaluating the state of soil and
irrigation systems. In particular, the edge-computing technique that saves and performs
the data processing near the soil monitoring and irrigation devices can improve the perfor-
mance and overcome issues of cloud-based system in digital twin concepts. Furthermore,
it could offer different irrigation recommendations based on crop requirements which are
not solved yet by the researchers.

3. Digital Twin in Crop Production

The use of digital and ICT tools in crop production technologies, in particular agri-
cultural machineries, e.g., tractors, combine harvesters, fertilizers, and sprayers, plays an
important role in the improvement of overall efficiency by reducing the cost of fuel, fertiliz-
ers, human labor, and parameters which affect production efficiency and sustainability [58].
Digitalization has modernized agricultural machinery application and management policies
using collected information and advanced data analytics approaches. It allows to optimize
the performance and enhance the use of advanced tools in manufacturing. For instance,
based on the European Agricultural Machinery Association, a digital farm machine should
be able to assist and support drivers by sending and receiving data via sensors and ICT
tools, enable the best and optimal use of machinery, and the technology should facilitate
the automated operation of the devices [59]. The application of AI, big data analytics,
and wireless and IoT technologies have led to significant changes in farm technology roles
towards the development of autonomous systems. The role of agricultural machinery in
the implementation of digital agriculture was stated by [58] as data collected from sensors
mounted on typical and autonomous agricultural machinery and transferred via an IoT
platform. Then, the information was analyzed by data analytics such as AI, fuzzy logic,
and big data analysis to support farmers, consumers, and markets [58]. In this context,
combining digital tools with autonomous machines and robots could help farmers to do
more effective practices and improve the quality of products [60]. Nowadays, with ad-
vancements in digital technology, the real-time visualization of smart farm equipment
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conditions is possible through digital twin approaches [40]. It allows contact to the system
(e.g., machinery and robots), simulates the condition of the system, and monitors the
behavior and operation as well as the maintenance situation of the machines (Figure 2).
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Digital twin in design and manufacturing of products (e.g., farm machinery) re-
quires (I) geometric (e.g., size, shape) and physical properties of an object, (II) in the
detailed information of the product which can illustrate dynamic processing of the object,
(III) integration of geometric, physical, and process information [61]. Digital twin ap-
proaches make it possible to model, design, simulate, and develop agricultural machinery
that would yield more productive machines in terms of energy and power efficiencies.
For instance, it was shown that overall energy consumption of machinery could be mod-
eled in digital twin concepts, and the effect of different factors on energy consumption can
also be explored there [62]. In the agricultural context, ref. [40] reported that a commercially
available digital twin platform for agricultural machinery is able to track the machines
in real-time, monitor the energy consumption, economic efficiency of crop management,
and trajectories of tractors by considering the specific conditions of the farm. It has also
been reported that using digital twins could potentially impact the training of unskilled
harvester operators and lead to high macro-economic benefits [63].

Within the digital farming technologies, robotics, as an important technology in crop
production, has played an essential role in digitalization and has been drawing more
attention in recent years. To optimize the robotic application process, reduce costs, and in-
crease the quality and efficiency of the product, the digital twin concepts can be used for
virtualization of the robot environment by introducing a remote operating system [64].
By providing simulation and remote operation possibilities and modeling various inter-
actions between robot and environment in digital twin concepts, accuracy, performance,
and flexibility may enhance, and the final product cost may decline. Ref. [65] analyzed
the human-robot interactive behaviors using a digital twin platform. Their developed
digital twin helps to improve operational productivity and comfort. In another study,
a digital twin approach was proposed to assist the remote programming of a robot [66].
The developed digital twin system consists of a robot (as a physical object), and a gaming
platform (as a virtual system) which was able to observe the motion of the robot, ease
programming for complex environments as well as introduce a remote operating system
for communication across different platforms [66]. In the agricultural context, an approach
was recommended by [35] that the development of a digital twin paradigm for agricultural
robots may improve predictive emulation of the vehicles, operational scheduling, digital-
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ization, economic, environmental, and social sustainability in agriculture. Furthermore,
the digital twin paradigm makes it possible to overcome common challenges in the control
of robot components in the agriculture field. In this context, a research group demonstrated
the possibility of a digital twin concept for a desktop version of an agricultural robot [67] to
control the motor and indoor localization capabilities of the robot. Besides, the digital twin
concept was used to predict movement and monitor the safety mechanism of the robot [67].
However, their developed digital twin concept needs different kinds of calibrations to be
applicable in different environmental conditions.

In another study, to simulate complexity of the crop production process, variability of
plant, soil, environment, and technologies in the agricultural field, digital twin concepts
were developed [68]. Three field robots for different agricultural applications were used to
develop different digital twin concepts and optimize sensor-based autonomous navigation.
It is reported that the developed concepts could provide considerable information in prepar-
ing field experiments, and better evaluation for the use and positioning of sensor systems
towards demonstrating and implementation of the developed robotic technologies [68].

Integration of the digital twin systems with technologies and management strategies
in crop production can provide a new phenomenon for digitalization in agricultural field.
Management strategies can be improved and optimized by providing reliable forecasts of
the key parameters in digital twins [69]. The digital twin systems can not only act as a man-
agement system, but it may also be used to revolutionize agricultural farm management
strategies [40]. For instance, a digital twin concept was applied in a greenhouse to discover,
analyze, and extract behavior of farmers [70]. Sensor data were analyzed using deep learn-
ing techniques to establish decision-making models to replicate expert famers’ experience
for transferring to young farmers. It was found that the developed digital twin module
could improve control and management strategies in crop farming [70]. In this context,
the use of distributed architecture in digital twin may increase efficiency and reliability
of the module by proper resource handling [71]. A distributed digital twin concept was
developed to handle resources over different stakeholders and platforms in agricultural
landscape [72]. It consists of different components, i.e., stakeholders, applications in agri-
culture and farm management, sensor data, analytics and simulation tools, virtual model,
IoT, and resource registry which makes interoperable and cross-scale management possible
in agricultural landscape [71].

In addition, the use of digital twin system as a decision support system can benefit and
be adopted for crop farming applications, and optimization of products and farm system
performance. A digital twin model was implemented by [36] in sustainable agriculture
for monitoring and control of product qualities, adjustment of environmental conditions,
identification of forecasting, and decision support scenarios. In addition, a novel approach
based on digital twin paradigms was developed to forecast yield, vegetation quality,
and duration of plant development [33]. Consequently, the quality of crop production
could be improved due to detailed analysis and control of plant growth, and the efficiency
of farms could be improved due to automation of decision support processes through
the developed digital twin concept. Digital twin along with forecasting models were able
to provide feedback to farmers for a better decision-making scenario in a reported study
by [73]. Their proposed digital twin system consists of a monitoring system to collect
environmental condition data from an underground farm, as well as data analysis and
modeling techniques to identify key parameters, critical trends, and forecast operational
scenarios. Furthermore, digital twin was able to optimize productivity of crops in a
greenhouse environment through climate control strategies and treatments related to
crop management [74].

Information from crop production machineries (e.g., tractors, harvesters, robots) have
been used in smart farming to optimize the performance and efficiency, and reduce the fuel
and energy consumption. However, the digital twin concepts collect real-time data from
the devices and characterize the states of the physical object continuously. This capability
makes it possible to predict and prescribe solutions using the collected information from
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the farm machineries. Hence, big data analytics coupled with AI models are able to detect
failures in the machines before or in the early stage of when breakdowns happen. In this
context, the use of state-of-the-art edge-computing systems may reduce latency by the
limited amount of transmitted data and provide information from the crop production
machineries such as autonomous robot, harvesters, and tractors to the digital twin concepts.
The digital twin paradigm in crop farming can change production productivity, farm man-
agement, and sustainability at farm level. Advanced statistical models, machine learning
and data analytic approaches can provide farmers with more precise information to make
better decisions that were not possible previously. Based on the past (historical) and current
continuous knowledge from crop (sensors deployed at farm) and environment data, the dig-
ital twin systems provide information about future states of the farm, and offer solutions
for turning the collected information into useful and actionable on-farm knowledge.

4. Digital Twin in Post-Harvest Process

Post-harvest process is a stage of agricultural products after harvesting until consum-
ing the products, which may include transportation, drying, cooling, storage, and market-
ing. Through digital farming approaches, the post-harvest processes could benefit from loss
reduction, improvement of monitoring and optimization of food processing, storage condi-
tions, marketing, and transportation. Digital solutions allow monitoring real-time agri-food
supply chain to increase robustness and resilience of the chain [75], and lower food waste
and losses. The IoT platform supports the reduction of food losses in post-harvest pro-
cessing [76], and tracking of the product through the food supply chain. To achieve food
security AI and big data analytics enable data processing, optimization, and management
in food and crop post-harvest stages [77], also reducing waste and improving overall prof-
itability [78]. The ICT offers solutions to monitor and control quality criteria of food and
agricultural products during post-harvest processing [43]. However, different environmen-
tal conditions, processing factors, and dynamic features of agricultural product (e.g., shape,
size), environmental parameters (e.g., temperature, humidity), handling, transportation,
and storage of the products influence the quality of post-harvest process [79].

To overcome these issues and increase the efficiency of the system, digital twin ap-
proaches have been used in post-harvest processing to continuously monitor the products
and update the processing stages [80]. Digital twins, as an expanding family of digital
farming could strengthen agri-food systems, affect knowledge and skills of farm manage-
ment [44]. Digital twin in post-harvest processes can be defined as a digital representation
of harvested agricultural products based on the information collected from the products.
In this context, ref. [42] reported the digital twin concept of food processing may include:
(I) data collected from a physical system (food process operation) by means of sensors that
measure properties and variables of products and environmental parameters, (II) an IoT
platform to provide sensor communication, data storage and big data analytics, high-
performance computing, and link to the digital twin assets, (III) a simulation platform that
uses input data from physical system for optimization, testing and validation of models,
and provides decision supports in the virtual world. In order to benefit food process-
ing by developing digital twin models, it is important to include accurate information
representing production processes of the product, e.g., equipment, labor, and to create
realistic models with all existing boundaries and barriers [81]. In a study reported by [82],
a digital twin of mango fruit was developed to simulate and qualify thermal and associ-
ated bio-chemical behavior of the fruit through a post-harvest supply chain. In order to
develop the digital twin concept, environmental air temperature as input was considered,
and the actual supply chain conditions were mimicked within mechanistic finite element
models [82]. Moreover, the impact of higher air speed on storage life, cold chain length,
and delivery air temperature on the fruit quality were considered in the digital twin. It was
reported that the digital twin allows to monitor and predict temperature-dependent fruit
quality losses, improve refrigeration and logistic processes, consequently, it can reduce
food losses [82]. Furthermore, it is reported that the digital twin can help horticultural
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products along with the post-harvest life, and can be used to forecast the shelf-life of
agricultural products through the cold chain [45]. It can support food consumers as well
as food business owners for tracking of the products, logistics, and marketing decisions;
however, the existing digital twin concept needs to be enhanced by considering more bio-
chemical and physical features [45]. Ref. [83] proposed a digital twin concept food supply
chain analysis. Their developed digital twin includes: (I) a network based on knowledge
from, e.g., customers, suppliers, and factories, (II) some parameters, e.g., in production,
transportation, warehouses, sourcing, shipment costs, and policies, (III) various operational
parameters, e.g., demand, quality, target inventory, and vehicle capacity. It was found
that the developed digital twin can be used for optimization, simulation, and analysis of
operation and performance changes in the food supply chain [83].

According to [43], digital twin in post-harvest can be considered as mechanistic,
statistical, and intelligent models; however, it was found that the physics-based mechanistic
digital twin concepts can evaluate the quality of fresh agricultural products better than
the others. Physics-based digital twins were developed on 331 cold chain shipments of
four fruits (i.e., cucumber, eggplant, strawberry, raspberry) by [84]. Based on digital twin
concepts, it was found that the quality of fruits may be affected (around 43–85%) before
being delivered to stores.

The post-harvest processing has improved through the application of digital solutions
over the last several years. However, the use of the digital twin paradigm is receiving more
attention in post-harvest food processing due to the future product quality prediction and
cost reduction. The digital twin of post-harvest processes may be developed to model,
optimize, represent, and characterize the design and operational parameters such as quality,
safety, ingredients, shelf-life, and product status, which need to be considered by researchers
in future studies.

5. Challenges and Future Needs

Summary of the digital twin concepts developed in the literature for different purposes
in agricultural fields, including soil, irrigation, crop monitoring, robotics, farm machinery,
and post-harvest processing, is presented in Tables 2–4. These tables show that the digital
twin paradigm is in the early stage of research and development in the agricultural context,
and future studies in terms of knowledge, technological, system development, and application
aspects of digital twin concepts in different fields of agriculture should be considered.

Table 2. Summary of soil and irrigation digital twin concepts.

Concept Key Components and Benefits Source

Soil–water Supporting precision irrigation in agriculture, better irrigation planning
and water distribution, reduce crop yield losses [54]

Soil–water IoT-based water management platform, monitoring water pattern in soil [37]

Water Analyze and optimization of aquaponic systems, minimize water waste [85]

Irrigation Urban-integrated hydroponic system, integration of forecasting models for
better decision-making assistance [73]

Irrigation
System management and irrigation decision-making integration, water use,
global energy and pumping facilities efficiency evaluation, understanding
of irrigation system process

[57]

Water Development of decision support system, enhancement of cyber-physical
implementation in aquaponics [86]
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Table 3. Summary of the digital twin in crop production.

Concept Key Components and Benefits Source

Vertical farming Environmental conditions assessment, identification of forecasting and decision
support models, monitoring and optimization of agri-food lifecycle [36]

Plant/tree Plant condition monitoring including structure, health, stress, and quality of fruit [31]

Robot Analysis and performance evaluation, robot selection, and navigation [35]

Robot Simulation of field environment, autonomous robot navigation [68]

Agricultural machinery Development and advantages of business models for potato harvesting [59]

Agricultural landscape Resource distribution management over different stakeholders in agriculture [72]

Crop Forecasting yield and duration of plant development [33]

Agricultural machinery Development of three-dimensional geometric models, drawings of devices,
mechanisms, and the attributive data [87]

Plant Detection of plant diseases and nutrient efficiency [32]

Crop/hydroponic farm Identification of crop growth parameters such as lighting, external temperature, and
ventilation systems [73]

Crop Optimize productivity, climate control strategies, and crop treatment management in
controlled environment agriculture [74]

Robot Co-simulation of robot environment, prediction of robot movement, and safety monitoring [67]

Table 4. Summary of digital twin for post-harvest process.

Concept Key Components and Benefits Source

Food supply chain Thermophysical behavior of fruit during supply chain, storage at different airflow rate,
understanding, recording, and predicting losses of temperature-based fruit quality [82]

Beverage Predicting possible anomalies and preventing safety issues for employees [88]

Food Machine learning-based models for real-time response and quality predictions,
maintenance, and data collection [80]

Food supply chain Development of practical implementation strategies, enhancing resilience food retail,
and capacity management [83]

Food Challenges, methodologies, and opportunities for implementation of digital twin in
food processing, importance of realistic and accurate models in food processing [81]

Food Modeling of equipment, humans, and space for fast-food producing, management of
production chain, and performance evaluation [89]

Post-harvest Monitoring of retail stores and detection of fruit quality lost [84]

With rapid technological and sensor development, digital twin of the agricultural
soil by considering the soil quality and properties may accommodate plant productivity,
health, and yield, save water, and reduce chemical usage. Many elements of the soil,
irrigation, and environmental parameters in agricultural land can be continuously mon-
itored, analyzed, and their management strategies optimized using big data analytics,
machine learning models, and decision support systems embedded in the digital twin
concepts. The combination of soil and irrigation digital twin approaches to record, monitor,
and analyze agricultural land changes may lead to improved performance of crop farming.
For instance, simulation of soil structure along with data-driven updating models could
connect farmers to the farm using the IoT technology and present, in detail, pictures of
parameters that impact the soil, irrigation, and crop yield. However, few studies focus on
the development of digital twin concepts of agriculture soil with higher degree of flexibility
as well as considering a wider range of operation than existing simulation models. Soil
sensors could constantly measure and record the dynamic condition of arable soil, e.g.,
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water holding capacity, moisture, temperature [53]. These data, along with information
from soil structure and simulation techniques, can be transferred to digital twin concepts,
and constant feedback from the digital world may advise real-time responses for soil and
water management as well as control systems. In recent years, there has been rapid growth
in the digital farming scenarios, use of remote sensing, digital soil mapping, and develop-
ment of software platforms. However, researches needed to fuse the developed techniques
along with the IoT, edge-computing, AI, data analytics, and simulation techniques that
could lead to development of a digital twin paradigm is in an early stage and needs to
be addressed in future studies. Furthermore, researchers need to consider the practical
challenges of digital twin-based systems in soil and irrigation as digital twins are multi-
and interdisciplinary techniques and require systems engineering perspectives [90].

Digital twin offers real-time simulation of farm machinery and robots that can benefit
optimal design of the products, interaction with the environment, energy usage, and main-
tenance strategies. Digital twin concepts have the possibility to predict failures in farm
machinery and support decision-making scenarios in plant production. Farm owners can
be able to connect to the machines through virtual world for monitoring and tracking of the
devices in agricultural farms. Digital twin systems are accompanied by recording a large
amount of data and exchanging information between different assets; hence compiling
and analyzing these data is a challenge facing farms, particularly in some rural areas with
poor internet and technological infrastructures [91]. Other alternatives, e.g., Long Range
technology based on wireless sensor networks communication and edge-computing could
be used to mitigate internet access problems in rural areas for the connection part of the
digital twin concepts [32,92]. Future opportunities for the implementation of digital twin
systems in crop farm technologies could lie in the development of standards as well as data
transferring and communication strategies in this context.

The digital twin of crop production using big data collected from crop and farm ma-
chinery as well as robots, analytical and AI models, IoT, and satellite and drone information
could allow simulating crop, environmental, and farm conditions in the digital world to
determine unknown and unseen issues before happening in the physical world. Agricul-
tural objects (crops in particular) need frequent updates in data to support information
analysis and decision-making processes [93] which in turn can promote sustainable farming
practices and save energy usage in crop productions. In this context, greater effort should
be focused in the future on characterization and development of frameworks for more effec-
tive practical digital twin paradigms. In crop farming, all information may not be recorded
and tracked using digital sensors; however, combining data from different sources could
improve the virtual representation of the farm operation and environment [73]. Continuous
monitoring of crops in digital twin systems by simulating the dynamic farm conditions
and considering the effect of management, climate, and environmental conditions on the
plant growth and use of data-driven models along with sensor fusion techniques could
help to identify deviations from the normal conditions of the plant, and forecast growth
stages to reduce risk of environmental and management effects. In future, different digital
twin concepts might be applied to copy the complex physical system of crop farming in
the digital world and incorporate variable sensors, data collecting strategies, modeling,
forecasting, and simulation approaches in crop farming.

In addition, digital twin concepts can support monitoring, tracking, and analysis of
food through the entire supply chain. Development of a digital copy of an agricultural
product to monitor post-harvest processing could be used to optimize the process, reduce
energy use, labor, and food losses based on information from different sensors and simula-
tion models. Future studies need to be carried out to consider more environmental and
post-harvest product features for the development of robust digital twins [45]. Another
major challenge in the development of digital twin for post-harvest processing to minimize
quality losses and improve the shelf-life of the product is considering the value chain of
agricultural products from farm to fork [43], which has not been addressed yet. In post-
harvest processing to reduce uncertainty in digital twins and enable the consumer to trust
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the output of digital twin concepts, detailed experimental and data collection approaches
along with numerical modeling and validation techniques need be considered.

6. Conclusions

Employing digital technology has helped agricultural farm managers to improve
efficiency, yield, and reduce losses. There are different types of digital farming paradigms
in the literature that could be used in digital twin concepts as the next generation of
digitalization in the agricultural field. The results of this review show that the digital twin
concepts in agriculture and food processing have, so far, been little exploited in research.
There are several research challenges and opportunities in different stages of digital farming.
Digital twin paradigms can be meaningfully utilized for soil and irrigation, crop, robots and
farm machinery, and post-harvest food processing in the agricultural field. In this context,
most of the studies have focused on the development of digital twins by considering some
limited parameters in agricultural sectors. Deploying of state-of-the-art technologies, e.g.,
AI, advanced statistical and optimization models, big data analytics, and three-dimensional
simulation, offer further possibilities for improvement in farm management. With real-
time and continuous information about agricultural assets, virtual models can predict
and address unseen issues in the fields. It may support farmers to decline the economic
pressure on the agricultural sector and labor issues, and help policy makers responsible for
food security and environmental protection, towards strengthening the agriculture sector.
In addition, it facilitates the work of researchers exploring methods to track and monitor
crop farm machinery, agricultural and post-harvest products or reduce water, chemicals,
and energy usage in digital farming. Although many digital twin systems in engineering,
manufacturing, and health contexts have been developed, further attempts need to be
considered in the agricultural context towards the development of digital twin systems
that can monitor, record, and analyze data, to predict and prescribe the best decision for
digital farming management.
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