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Abstract: Research studies on EEG-based mental workload detection for a passive BCI generally
focus on classifying cognitive states associated with the performance of tasks at different levels of
difficulty, with no other aspects of the user’s mental state considered. However, in real-life situations,
different aspects of the user’s state such as their cognitive (e.g., level of mental workload) and
affective (e.g., level of stress/anxiety) states will often change simultaneously, and performance of
a BCI system designed considering just one state may be unreliable. Moreover, multiple mental
states may be relevant to the purposes of the BCI—for example both mental workload and stress
level might be related to an aircraft pilot’s risk of error—and the simultaneous prediction of states
may be critical in maximizing the practical effectiveness of real-life online BCI systems. In this
study we investigated the feasibility of performing simultaneous classification of mental workload
and stress level in an online passive BCI. We investigated both subject-specific and cross-subject
classification approaches, the latter with and without the application of a transfer learning technique
to align the distributions of data from the training and test subjects. Using cross-subject classification
with transfer learning in a simulated online analysis, we obtained accuracies of 77.5 ± 6.9% and
84.1 ± 5.9%, across 18 participants for mental workload and stress level detection, respectively.

Keywords: passive brain–computer interface; online BCI; electroencephalography (EEG); mental
workload; stress; transfer learning; classification

1. Introduction

Passive brain–computer interfaces (BCI) are systems that aim to monitor the mental
state (either cognitive or affective) of a user and exploit this information to adapt an ongoing
human–machine interaction in some useful way [1,2]. For example, a passive BCI could
improve road safety by first detecting states of extreme fatigue or drowsiness in the driver
of a car or transport truck and then using this information to initiate alarms or other safety
measures to help avoid an accident. In passive BCI systems, information on the user’s
state is extracted from neural signals collected using an appropriate functional imaging
modality. Electroencephalography (EEG), which measures the electrical activity of the
brain, is considered as perhaps the most promising modality given its portability, high
temporal resolution, non-invasiveness, and relatively low cost [3].

One highly impactful potential application of passive BCI is the monitoring of men-
tal workload in high-risk and safety-critical occupations such as air traffic controllers,
pilots, and other industrial operators, where incidents of human error can have severe
consequences. Such a system would detect potentially dangerous states of high cognitive
demand or overload and initiate measures to help mitigate the risk of error (e.g., have the
system temporarily automate some tasks). Mental workload detection also has potential
value in other domains, including gaming [4], adaptive training/learning [5–7], and user

Sensors 2022, 22, 535. https://doi.org/10.3390/s22020535 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020535
https://doi.org/10.3390/s22020535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3291-3803
https://orcid.org/0000-0001-5132-2753
https://doi.org/10.3390/s22020535
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020535?type=check_update&version=1


Sensors 2022, 22, 535 2 of 17

interface design applications [8], to enhance and personalize user experience. Because of
its potential usefulness in a range of applications, mental workload detection via EEG is a
very active and expanding field, with a large number of published studies (e.g., [9–27]).

Mental workload is defined as the perceived relationship between an individual’s
total mental processing capability and the amount required by the task at hand; perceived
workload is higher when the task requirements are closer to the individual’s capability [28].
Mental workload is influenced by a number of factors including the properties of the
task being performed (e.g., difficulty), the task environment (e.g., noisy, distracting), and
the characteristics of the individual performing the task (e.g., cognitive capacity, level
of training in the task, mood) [29]. Despite this, studies of EEG-based mental workload
detection generally consider workload exclusively in terms of the task demands as manip-
ulated through the variation in task difficulty and do not consider any other factors. We
argue that consideration of the user’s affective state, and specifically their stress/anxiety
level, is of particular importance. Stress is known to negatively impact cognitive efficiency
and performance [30] as well as decision making, especially when performing unfamiliar
tasks [31]. Thus, a more complete picture of the user’s cognitive state as it relates to their
potential task performance and risk for error would include a combination of both the
difficulty of the task they are performing and their level of anxiety/stress. An individual
performing a difficult task very calmly as opposed to performing the task while experi-
encing a significant amount of anxiety are two very different scenarios with very different
associated risks, and the environmental adaptation strategies implemented by the passive
BCI should be very different in these cases. Thus, we argue that it is very important to
develop a passive BCI that is able to detect both the difficulty of the task the individual is
performing and their stress/anxiety level simultaneously, in a sort of “two-dimensional”
measure of cognitive load. Detecting two mental states simultaneously via EEG, with
each state confounding the other, is a challenge that had not previously been addressed in
the literature.

In our previous work, we found that while both states (i.e., stress, and mental workload
due to task difficulty) could indeed be simultaneously classified at levels significantly
exceeding chance, variation in each state negatively affected the classification of the other
by EEG [25]. Expanding on this work, we aimed to improve the classification of each of
the two states in the presence of variation in the other state; we proposed a majority vote-
based approach that modestly but significantly increased the classification accuracy of each
state [26]. While the results of these studies were promising, the preliminary analyses were
conducted offline and not in a manner suitable for real-time classification. It is therefore
not clear how the results will translate to a practical, online passive BCI system for the
simultaneous monitoring of mental workload level and stress.

In this paper, we advance our previous work by implementing simultaneous classifi-
cation of mental workload level and stress using analysis techniques entirely compatible
with online classification. We investigate both entirely subject-specific and cross-subject
(i.e., using training data from subjects other than the test subject) classification approaches.
In the latter case, a transfer learning technique recently proposed by [32] is employed to
improve classification accuracy. Because of restrictions on research involving human partic-
ipants arising due to the COVID-19 global pandemic, we were unable to conduct a separate
experiment for this work, and instead used the data previously collected and reported
in [25,26]. While the analysis for the current paper was by necessity performed offline, the
methods used simulate exactly an online classification scenario and are completely suitable
for direct online implementation.

In the following sections we describe our experimental methods, provide more details
about the classification approaches investigated, and report and discuss our findings.
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2. Materials and Methods
2.1. Participants

Eighteen right-handed subjects (mean age: 26 ± 8 years: 11 men) were recruited for
the experiment. Participants had to be between the ages of 18 and 65 years, have normal
or corrected-to-normal vision and hearing, and have no history of neurological disease,
disorder or injury, or cognitive impairment. Subjects were asked to refrain from smoking,
ingesting alcohol or caffeine, or exercising within 4 h of the start of the experimental session.

At the start of the session, participants were first fully informed about the details
of the experiment, and then signed a consent form freely indicating their willingness to
participate. The study was conducted in accordance with the Declaration of Helsinki,
and the protocol was approved by the Interdisciplinary Committee on Ethics in Human
Research at Memorial University of Newfoundland (approval #20190461-EN).

2.2. Physiological Signal Acquisition

A 64-channel electrode system (ActiCHamp, Brain Products, GmBH, Gilching, Germany)
was used to collect the EEG data. The position of the electrodes on the scalp was based
on the standardized International 10-10 System for EEG electrode placement. FCz served
as the reference electrode. The impedance of recording electrodes was kept below 10 kΩ
to ensure signal quality. Three-lead electrocardiogram (ECG) was used to capture cardiac
activity. The sampling frequency for both the EEG and ECG data was 500 Hz.

2.3. Experimental Procedure

The experimental protocol described in this section has been previously reported
in [25,26] and is described again here for the convenience of the reader. In the experiment,
different levels of mental workload (Easy and Difficult) were induced simultaneously with
different affective states (Relaxed and Stressed) to produce four different mental state
conditions: low workload/relaxed, low workload/stressed, high workload/relaxed, and
high workload/stressed.

2.3.1. Structure of Experimental Session

Participants first completed a one-minute eyes-closed baseline trial at the beginning of
the experiment. Then, they were asked to complete four blocks of tasks alternating between
a Relaxed (R) and a Stressed (S) state. Half of the participants started the experiment with a
Relaxed block (i.e., block order was R1-S1-R2-S2), while the other half began the experiment
with a Stressed block (i.e., block order was S1-R1-S2-R2). The Relaxed and Stressed states
were induced at the beginning of each block (see Sections 2.3.2 and 2.3.3 for state induction
protocols). Each block then comprised ten trials: four eyes-open baseline trials, three “Easy”
arithmetic trials (low workload), and three “Difficult” arithmetic trials (high workload).
Trial order was different for each of the four blocks. In all cases, no two consecutive trials
were of the same difficulty level. The structure of the experimental session is depicted
in Figure 1.

2.3.2. Mental Workload Induction

The different levels of mental workload were induced using mental arithmetic trials
of varying difficulty. The arithmetic trials involved solving arithmetic problems in the form

A modulus B = C (1)

where A, B, and C were positive integers. A single equation in this form appeared on
the screen at the beginning of each trial, and participants had to indicate if the equation
was correct or incorrect by pressing either the right arrow button or the left arrow button,
respectively, on a standard keyboard. The equation remained on the screen until the
participant responded with a key press, then the next equation would appear. The subject’s
performance in the task (i.e., % correct = # correct/# completed) appeared in the right corner
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of the screen and was updated after each response. The number of equations completed
varied from trial to trial depending on the pace of the participant’s responses.
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Participants completed arithmetic trials at two levels of difficulty, “Easy” (i.e., low
workload) and “Difficult” (i.e., high workload). Since divisibility rules for 2, 5, and 10
are relatively simple, B in Equation (1) was restricted to either of these numbers for the
“Easy” trials (e.g., “35 mod 2 = 1” which would be correct, “46 mod 5 = 3” which would
be incorrect). On the other hand, there are not simple divisibility rules for 3, 4, 6 and 9;
therefore, B in Equation (1) was restricted to either 3, 4, 6 or 9 for the “Difficult” trials
(e.g., “77 mod 9 = 5” which would be correct, “32 mod 6 = 4” which would be incorrect).
For all trials, A in Equation (1) was a two digit positive integer.

Note that it was a priority in this work that the induction of the two states—mental
workload (as related to task difficulty) and stress/anxiety—was conducted as indepen-
dently as possible. Therefore, the arithmetic task was carefully designed with the objective
that distinct levels of mental workload would be produced in the low and high conditions,
but that the difficulty of the high condition would not be so extreme that it would itself
induce stress/anxiety in the participants. Following each arithmetic trial, the participant
was asked to rate their perceived level of mental effort during the trial using a modified
version of the Rating Scale of Mental Effort (RSME) [33] (see Figure 1).

Along with the arithmetic trials, baseline trials were also conducted in which partic-
ipants were asked to sit quietly for the duration of the trial with their eyes focused on a
cross that displayed in the center of the screen.



Sensors 2022, 22, 535 5 of 17

2.3.3. Affective State Induction

In order to induce a relaxed state for the Relaxed blocks, a 2-min video with relaxing
imagery and music was played at the beginning of the block. Participants then completed a
block of arithmetic trials. They were instructed to try their best in completing the arithmetic
trials while knowing their performance would not be saved or compared to others.

In order to induce a stressed state for the Stressed blocks, the participants were told
that they would first have to complete a set of arithmetic trials of varying difficulty, followed
by a 10-min public speaking presentation that would be judged by a panel consisting of
colleagues of the principal investigator (SP). They were told that they would have 10 min to
prepare the presentation, on a topic chosen by the experimenter, and that the presentation
would be recorded for future analysis. The stress induction protocol was based on the Trier
Social Stress Task (TSST) [34], but in this case it is the anticipation of the public speaking
task that is used to induce stress during the arithmetic trials. To further induce stress during
the trials, the participants were also told that their performance was very important and
would be recorded and compared to the other participants. In the first stressed block (S1),
after completing the arithmetic trials the participants were told that they were not required
to do the public speaking task after all “due to their performance and the physiological
data obtained during the arithmetic trials”. This caused them to return to a relaxed state
for the next Relaxed block. For the second Stressed block (S2), participants were again told
that they would have to perform arithmetic trials followed by a public speaking task, but
that this time they would be required to do the public speaking task regardless of their
performance in the arithmetic task. To remove any doubt the participant may have had
about this, they were allowed to overhear a phone call made prior to the arithmetic trials by
the experimenter to the principal investigator asking the judging panel to arrive in 15 min,
in time for the public speaking task. After the completion of the arithmetic trials of the
second Stressed block, the participants were again told that the public speaking would not
be necessary. At this point, the participants were told why the deception regarding the
public speaking task was used, as a tool to induce stress during the arithmetic trials.

Immediately before and after the arithmetic trials in each block, form Y-1 of the State-
Trait Anxiety Inventory (STAI) questionnaire [35] was completed by participants to capture
self-reported stress levels. Note that for the Stressed blocks, the form was completed
immediately after participants were told about the public speaking task, and then again
just before they were told they did not actually have to do it.

When the participant had completed all four blocks, the EEG and ECG electrodes were
removed, and the session ended.

2.4. Validation of Stress and Workload Induction

The detailed results of the analysis performed to validate the stress and workload
induction protocols were first reported in [25]; a summary of the most relevant results is
given here.

To validate the affective state induction protocol, we analyzed both objective (heart
rate) and subjective (STAI questionnaire ratings) measures of stress. Two-way repeated
measures ANOVAs with two within-subject factors (workload level and stress condition)
revealed that both heart rate (F(1,17) = 4.43; p = 0.05) and STAI rating (F(1,17) = 14.66;
p = 0.001) were significantly lower in the “Relaxed” state as compared to the “Stressed”
state [25]. Furthermore, a separate two-way repeated measure ANOVA with two within-
subject factors (stress condition and block number) showed no significant effect of “Block”
on STAI scores (F(1,17) = 3.63; p = 0.07). Together, these results suggest that our affective
state induction protocol was effective in inducing stressed and relaxed states in both the
first and second blocks of each condition [25]. Moreover, it is noteworthy that there was
no significant effect of workload level (F(1,17) = 0.3; p = 0.58) and no interaction effect of
workload level and affective state (F(1,17) = 0.25; p = 0.62) on heart rate, indicating that,
as desired, stress/anxiety was not induced due to the Difficult task condition.
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To validate the mental workload induction protocol, we analyzed both objective (task
response accuracy and response time) and subjective (RSME ratings) measures of workload
level. Two-way repeated measures ANOVAs with two within-subject factors (workload
level and stress condition) indicated that both the RSME score (F(1,17) = 82.14; p < 0.001)
and the average response time (F(1,17) = 21.33; p < 0.001) were significantly lower, and
the response accuracy was significantly higher (F(1,17) = 16.07; p ≤ 0.001), in the Easy
condition than the Difficult condition, indicating that the protocol was effective in inducing
distinct levels of perceived mental workload/effort in the “Easy” versus the “Difficult”
task conditions [25]. As desired, there was no significant main effect of affective state on
any of the three workload measures (F(1,17) < 2.54; p ≥ 0.13) [25].

It is worth noting that even though care was taken to induce mental workload and
stress as independently of one another as possible, and the data suggests that in general we
were successful in this goal, we cannot be sure that the two states are not mixed up to a
certain point in some subjects due to the individual differences between people.

3. Data Analysis
3.1. EEG-Based Classification of Mental Workload Level and Affective State

In this paper, we performed simultaneous EEG-based classification of mental workload
level (i.e., “Easy” vs. “Difficult”) and affective state (i.e., “Relaxed” vs. “Stressed”) using
methods directly transferable to an online BCI. The classification was performed separately
on each participant’s data.

An entirely subject-specific as well as two cross-subject methods were investigated.
In the entirely subject-specific case, the training data consisted of the first two blocks of
data (one Relaxed and one Stressed) from the test participant, and the test data consisted of
their final two blocks of data (one Relaxed and one Stressed). In the cross-subject cases, the
training data consisted of the first two blocks of data from the test participant as well as all
data from the 17 other subjects, while the test data again consisted of the final two blocks
of data from the test participant. In the second cross-subject case, a transfer learning (TL)
method recently proposed by [32] was used to match the distributions of the training and
test data. In all cases, the “baseline” trials were omitted from analysis.

Prior to classification, the following preprocessing and feature extraction steps were
applied to the training and test data.

3.2. EEG Preprocessing

First, a band-pass filter was employed with low and high cut-off frequencies of
1 Hz and 50 Hz. The data were then downsampled from 500 Hz to 256 Hz, and Arti-
fact Subspace Reconstruction (ASR) was used to reject signal segments containing EMG
and motion artifacts.

To simulate an online application of the system, these preprocessing steps were applied
to individual windowed segments (4 s length, 50% overlap) of the test data, in the order in
which they were collected (i.e., chronological order). Specifically, each raw segment passed
through all steps of the preprocessing, feature calculation, and classification, and predictions
for both mental workload and stress level were made for that segment, before the next
segment was processed. This is different from offline processing, where, typically, each step
of the analysis (preprocessing, feature calculation, and classification) are performed on all
test samples before proceeding to the next step. The analysis was performed on the same
PC on which the pre-recorded EEG data were stored.

3.3. EEG Signal Feature Calculation

Frequency domain features were computed to represent the characteristics of the
EEG signals. Power signals in seven common frequency bands were extracted via the
filter-Hilbert method, and average power was calculated over 4-s epochs with a sliding
window with 50% overlap. The individual alpha frequency (IAF) [36] was calculated
using the one-minute eyes-closed baseline trial collected at the beginning of the experi-
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mental session and used to define the seven EEG frequency bands for each participant
as follows: Delta (IAF−8 to IAF−6), Theta (IAF−6 to IAF−4), Alpha1 (IAF−4 to IAF−2),
Alpha2 (IAF−2 to IAF), Alpha3 (IAF to IAF+2), Beta (IAF+2 to IAF+20), and Gamma
(IAF+20 to IAF+30).

For the affective state classification problem (Stressed vs. Relaxed) all EEG channels
were included, which resulted in a total of 63 electrodes× 7 frequency bands = 441 features.
For the workload level classification problem (Easy vs. Difficult), since response frequency
was greater for the Easy condition, we excluded the electrodes over the motor and sen-
sorimotor brain regions (Cz, C1–C6, CPz, CP1–CP6) to ensure that incidental differences
in the motor requirements of the Easy and Difficult conditions did not contribute to the
classification. This resulted in a total of 49 electrodes × 7 frequency bands = 343 features
for the workload level classification.

3.4. Classification

For both the mental workload level classification and the affective state classification,
three classification paradigms were investigated and compared, as described below.

1. Subject-specific paradigm: For each target subject, the classifier was trained on the sub-
ject’s first two blocks of data and tested on the subject’s final two blocks. A regularized
Linear Discriminant Analysis (LDA) algorithm was used for classification [37].

2. Cross-subject without TL paradigm: For each target subject, the classifier was trained
on the subject’s first two blocks of data combined with all data from the other
17 subjects and tested on the subject’s final two blocks of data. No transfer learning
algorithm was applied. A regularized LDA algorithm was used for classification [37].

3. Cross-subject with TL paradigm: For each target subject, the classifier was trained on
the subject’s first two blocks of data combined with all data from the other 17 subjects
and tested on the subject’s final two blocks of data. The InstanceEasyTL transfer
learning method was applied to reject the differences between data coming from
different subjects; this method was originally proposed in [32] and is described in
detail in the section below.

For each of the above classification problems, a majority vote-based approach proposed
in our previous work to improve the classification of each state in the presence of the other
was employed [26]. Specifically, in each case three classifiers were trained and the final
predicted class was the result of a majority vote among the three. For the case of mental
workload level classification, the first classifier was trained on data from the Relaxed state
only, the second classifier was trained on data from the Stressed state only, and the third
classifier was trained on data from both states. Similarly, for the affective state classification,
the first classifier was trained on data from the Easy condition only, the second classifier
was trained on data from the Difficult condition only, and the third classifier was trained
on data from both conditions.

Note that the final two blocks of data consisted of 12 trials, each of duration 67 s, for a
total of 804 s of data. With 4 s epochs with 50% overlap, this yielded a classification every
2 s, for a total of 402 test samples per subject.

InstanceEasyTL Algorithm

EEG-based mental state classification typically requires a large amount of labeled data
for training. Given the non-stationarity of EEG data within a subject, as well as significant
intersubject variation, using data previously collected from other subjects, or even from
the same subject on a previous day, often leads to poor classification accuracy [38,39].
This is a challenge for developing real-world online BCI systems since impractically long
calibration sessions are needed in order to gather sufficient data from the user to train the
classifiers immediately before each use. Recently, transfer learning (TL) methods have
been applied to mitigate this issue [40]. TL models are efficient methodologies that aim
at transferring the previously extracted features from a labeled domain to a similar but
different domain with limited or no labels, to perform some specific decision tasks on the
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different domain [41–44]. With such methods, for a given mental state classification task,
EEG signals previously recorded from a set of subjects can be used to train a BCI system
that will be suitable for any user, whether their data is in the training set or not. This is
called cross-subject classification.

In this paper, we apply the InstanceEasyTL method, which was recently proposed
in [32] to improve cross-subject EEG-based fatigue detection, to our objective of simulta-
neous classification of both mental workload level and stress. InstanceEasyTL is based
on the EasyTL method [43], which was developed for image classification applications
but is adapted to work on EEG data where there are often much larger differences in the
target (test subject) and source (training subjects) domain distributions. Indeed, in [32], this
method led to an increase of more than 15% compared to other existing transfer learning
methods such as transfer component analysis (TCA) [45], geodesic flow kernel (GFK) [46],
and domain-adversarial neural networks (DANN) [47]. InstanceEasyTL is based on a
“strategy of alignment with certain weights to align EEG samples collected from both
source and target domains” [32]. To do this, InstanceEasyTL takes some EEG samples from
the target domain Ωt (i.e., the test subject’s data) and combines it with all data from the
original source domain Ωs (i.e., the training subjects’ data) to form a new source domain
for training. This increases the amount of data available for training without increasing
the amount of time needed for calibration prior to BCI use. As shown in Figure 2, the test
subject’s data (the initial target domain, Ωt) is divided into two parts: S and Ttd; Ttd is
added to the training subjects’ data (the initial source domain, Ωs, also called Tsd here) to
form the new source domain Ω′

s, and S is the data from the test participant that ultimately
undergoes classification (i.e., the new target domain, Ω′

t).
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𝜖𝑡 =  
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𝑥 ∈𝑇𝑡𝑑

𝑤𝑥∈𝑊𝑡𝑑
𝑡

 
(4) 

Figure 2. The original and new source and target domains. Ωs and Ωt are the original source and
target domains, respectively, while Ω′

s and Ω′
t represent the new source and target domains used in

the InstanceEasyTL algorithm, respectively. Figure adapted from [32].

For our data set, we take the first 50% of the test subject’s data (coming from the first
two blocks) as Ttd and combine it with the other 17 subjects’ data (Ωs) to create the new
source domain Ω′

s, which is used for training the classifier. We then take the final 50% of
the test subject’s data (coming from the final two blocks) as S, the test data.

A complete mathematical description of the InstanceEasyTL algorithm was first pro-
posed in [32]; for the convenience of the reader the main steps are summarized below.
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For the first iteration, t, of the algorithm, initial weights are assigned to the data from
both the training source domain, Tsd, and training target domain, Ttd, (both from Ω′

s) via
Equation (2) [32]

W1
sd =

⋃ns
i=1 wi

sd

W1
td =

⋃ns+m
i=ns+1 wi

td

W1 = W1
sd ∪ W1

td

(2)

here, ns and m are the number of samples in Tsd and Ttd, respectively, and wi
sd and wi

td are
the weights for the i-th sample from Tsd and Ttd, respectively. Initial values for wi

sd and wi
td

are randomly assigned. Next, the assigned weights for both Tsd and Ttd are divided by the
summation of all weights and stored as pt, as shown in Equation (3) [32]

sumt = ∑
w∈Wt

w

pt =
{

w
sumt ; w ∈Wt

} (3)

The training sample set T = Tsd ∪ Ttd in Ω′
s, pt, and the test set S in Ω′

t are taken as
input to the InstanceEasyTL algorithm (though note that S is not used for the updating of
weights in each iteration of the algorithm, but rather just for determining the predicted
class labels in the final iteration) and the expected class label of ht is calculated based on
the intra-domain programming method (also called EasyTL) first detailed in [43].

Next, the error, εt, between the predicted class labels, ht, and the real class labels, y(x),
is calculated via Equation (4) [32]

εt =
1

Wt
∗ ∑

x ∈ Ttd
wx ∈Wt

td

wx|ht(x)− y(x)| (4)

The weights of Tsd and Ttd are updated by the βt-based function through Equation (5),
detailed in [44]

βt = εt/(1− εt)

β = 1/
(

1 + (2 ln ns/N)
1
2

) (5)

The weights are then updated via Equation (6) [32]

Wt+1 =
⋃

x ∈ Tsd
wx ∈Wt

sd

wxβ|ht(x)−y(x)| ∪
⋃

x ∈ Ttd
wx ∈Wt

td

wxβ|ht(x)−y(x)| (6)

These steps (Equation (3) through (6)) are repeated for N iterations. When t = N, the
predicted class labels, h f (x), for the data in the test set, S, are calculated by Equation (7) [32]

h f (x) =

{
1, ∏N

t=N/2 β
−ht [x]
t ≥ ∏N

t=N/2 β−1/2
t

0, otherwise
(7)

4. Results

Table 1 shows the results of the mental workload level classification (Easy vs. Difficult)
for all participants for the three classification paradigms. The cross-subject with transfer
learning approach produced the best results with an average accuracy of 72.2% ± 5.3.
This was 12.3% and 15.11% higher than the subject-specific and cross-subject without TL
approach, respectively. A one-way ANOVA revealed a significant effect of the classification
approach (F2,34 = 278.86; p < 0.001), and post hoc Tukey–Kramer tests indicated these
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increases were both significant (
∣∣∣t(68)

∣∣∣ > 18.06; p < 0.001). The result for the subject-
specific approach was significantly higher than for the cross-subject without TL approach
(t(68) = 4.14; p < 0.001).

Table 1. Mental workload level classification results.

Mental Workload Level Classification Results (Easy vs. Difficult)

Subject-Specific Cross-Subject without TL Cross-Subject with TL

Subjects Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

1 66.7 0.66 58.2 0.58 73.5 0.73

2 49.3 0.51 47.2 0.48 64.2 0.65

3 64 0.63 59.7 0.59 74.8 0.74

4 65.8 0.65 59 0.6 75.0 0.75

5 53.0 0.54 51.3 0.52 65.9 0.66

6 52.5 0.53 53.8 0.53 68.8 0.67

7 56.4 0.56 50.5 0.5 66.5 0.65

8 58.1 0.57 50.9 0.5 63.4 0.63

9 57.7 0.58 58.6 0.58 73.5 0.74

10 66.5 0.66 59.7 0.59 77.2 0.76

11 59.2 0.6 56.8 0.55 71.6 0.72

12 57.6 0.57 55.9 0.56 69.5 0.68

13 66.6 0.66 65.5 0.66 79.8 0.79

14 67.7 0.67 67.7 0.67 81.4 0.81

15 60.3 0.61 61.3 0.62 80.5 0.8

16 60.8 0.6 56.0 0.56 72.3 0.71

17 58.8 0.58 58.5 0.58 72.7 0.72

18 57.7 0.57 57.3 0.57 69.6 0.7

Mean: 59.9 ± 5.3 0.59 ± 0.04 57.1 ± 5.1 0.56 ± 0.05 72.2 ± 5.3 0.71 ± 0.05

Table 2 shows the results of the affective state classification (Relaxed vs. Stressed) for
all participants for the three classification paradigms. The best results again came from
the cross-subject with transfer learning approach with an average accuracy of 74.2% ± 5.1,
which exceeded the accuracy for the subject-specific approach by 9.78% and for the cross-
subject without TL paradigm by 15.91%. A one-way ANOVA revealed a significant effect
of the classification approach ((F2,34 = 154.95; p < 0.001) and post hoc Tukey–Kramer

tests revealed that these differences were both significant (
∣∣∣t(68)

∣∣∣ > 10.72; p < 0.001). The
result for subject-specific was significantly higher than cross-subject without TL approach
(t(68) = 6.73; p < 0.001).

Since the classes are balanced for both the mental workload level classification and
the affective state classification problems, the accuracy should be a valid measure of the
classifier performance; however, the F1 score is given in Tables 1 and 2 as well.

By the binomial test, the lower limit for statistical significance in a binary classifica-
tion problem with n = 402, p = 0.5, and α = 0.05 is 54.2%. For the cross-subject with TL
approach, accuracies for all subjects, for both classification problems, exceed this value by
at least 9.2%.
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Table 2. Affective state classification results.

Affective State Classification Results (Relaxed vs. Stressed)

Subject-Specific Cross-Subject without TL Cross-Subject with TL

Subjects Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

1 68.8 0.69 65.1 0.64 78.6 0.78

2 60.0 0.59 47.7 0.47 67.4 0.66

3 61.6 0.61 62.4 0.61 79.0 0.78

4 64.4 0.64 64.2 0.63 80.0 0.79

5 60.8 0.61 51.4 0.52 71.5 0.73

6 65.5 0.65 50.9 0.51 68.4 0.68

7 60.5 0.6 54.8 0.54 67.8 0.67

8 60.6 0.61 56.5 0.56 66.9 0.67

9 64.4 0.64 56.1 0.56 74.2 0.75

10 64.0 0.63 64.9 0.63 78.5 0.77

11 59.0 0.59 57.6 0.56 71.3 0.71

12 65.3 0.64 56.0 0.56 69.9 0.7

13 72.8 0.71 65.0 0.64 81.9 0.81

14 73.6 0.74 66.1 0.67 79.0 0.78

15 67.2 0.67 58.7 0.58 80.2 0.81

16 62.3 0.62 59.2 0.58 77.0 0.78

17 66.8 0.66 57.2 0.57 74.3 0.74

18 62.7 0.63 56.1 0.56 70.3 0.71

Mean: 64.5 ± 4.1 0.64 ± 0.04 58.3 ± 5.4 0.57 ± 0.05 74.2 ± 5.1 0.74 ± 0.05

To further improve online classification accuracy by reducing incorrect predictions
resulting from sudden changes in the EEG signals, we applied a sliding window classifi-
cation in which the final predicted class for each sample was determined by the majority
vote of the output of the InstanceEasyTL classifier (i.e., the cross-subject with TL approach)
for that sample and the two previous samples. This method results in a prediction every
2 s, the same as before. Using this sliding window classification method for the cross-
subject with TL paradigm, the average accuracy for the Easy vs. Difficult classification
significantly increased by 5.3% to 77.5% ± 6.9 (t17 = −10.12; p < 0.001) and the aver-
age accuracy for the Relaxed vs. Stressed classification significantly increased by 9.9% to
84.1% ± 5.9 (t17 = −16.98; p < 0.001) over all subjects. Figure 3 shows the classification
accuracies using one-sample prediction as compared to the sliding window classification
for all subjects.

Figure 4 shows a simulation of online classification for one participant (Subject #15)
for both the workload level and affective state classification problems. The figure shows the
predicted class output using the sliding window classification every 2 s (recall classification
was performed over 4 s epochs with a sliding window with 50% overlap) for the final
two blocks of the session. The classifier for each individual sample was trained using
the cross-subject with TL approach. As can be seen in the figure, the predicted classes
follow the actual class labels with high accuracy—91.6% and 93.4% for workload level and
affective state classification problems, respectively.
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tion of sliding window classification.
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Figure 4. Simulated online output of the system for Subject 15 for both the Easy vs. Difficult and
Relaxed vs. Stressed classification problems. After training the classifier on the first two blocks of
data (combined with the data from all other subjects), consecutive samples from the final two blocks
were classified (epochs were of length 4 s, with 2 s overlap). Classification was performed using the
cross-subject with TL approach, with a sliding window classification over three samples. The shaded
intervals indicate the actual mental state, while the black dots indicate the predicted state.
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5. Discussion

The main objective of this study was to investigate the feasibility of performing
simultaneous classification of mental workload and stress level in an online passive BCI.
We investigated both subject-specific and cross-subject classification approaches, the latter
with and without the application of a transfer learning technique called InstanceEasyTL [32]
to align the distributions of data from the training and test subjects. In the subject-specific
case, the first 50% of the individual’s data were used to train a regularized LDA classifier,
and the final 50% of data were used as test data. For the cross-subject cases, the data from
the 17 other participants were also added to the training set. Though performed offline, all
steps of the analysis—including preprocessing, feature extraction, and classification—were
conducted in a manner completely compatible with online implementation.

Our results showed that mental workload level (Easy vs. Difficult) and affective state
(Relaxed vs. Stressed) could be classified in a manner suitable for online implementation
with accuracies of 77.5% ± 6.9 and 84.1% ± 5.9, respectively, across 18 participants. Ac-
curacies significantly exceeded chance (54.2% in this case) for all participants, for both
classification problems. These results were achieved using cross-subject classification
with transfer learning, which gave significantly better results than the other methods
(i.e., entirely subject-specific or cross-subject without TL applied, with the same amount of
training data taken from the test subject).

To the best of our knowledge at the time of writing, this study represents the first
attempt to perform simultaneous classification of mental workload level and stress in
an online passive BCI, though there are many studies that have looked at one or the
other conditions individually through offline applications. Actually, online BCI studies
are generally rather scarce. Recently, [48] presented an EEG-based classification of four
mental states (fatigue, workload, distraction, and the normal state) for seven pilots in
both offline and pseudo-online analyses. They proposed a multiple feature block-based
convolutional neural network (MFB-CNN) with spatio-temporal EEG filters to recognize the
pilot’s current mental states. In the pseudo-online analysis, they conducted an evaluation
between one of the mental states (fatigue, workload, and distraction) and rest states and
obtained the detection accuracy of 72%, 72%, and 61% for fatigue, workload, and distraction,
respectively. In ref. [49], a novel strategy named adaptive subspace feature matching
(ASFM) for cross-domain EEG-based emotion recognition was proposed. ASFM integrates
both the marginal and conditional distributions. Both offline and online evaluations were
performed, and the average classification accuracy of 75.1% ± 7.6 was achieved in the
subject-to-subject evaluation for 15 subjects for the online analysis. It is worth mentioning
that we employed the ASFM transfer learning algorithm to our data as well but did
not achieve promising results. Even though it is difficult to directly compare our study
to [48,49] due to differences in the experimental (e.g., type of task, number/length of
trials) and analytical (e.g., preprocessing techniques, EEG features used, and classification
algorithms) methods employed, the accuracies obtained are similar. The fact that our study
involved a potentially much more complex scenario—that is, simultaneous classification
of two states, where both states were confounding one another—makes our results even
more encouraging.

Note that the InstanceEasyTL algorithm allowed us to achieve satisfactory classifi-
cation accuracies despite a relatively small amount of training data taken from the test
subject immediately prior to “online” classification. To simulate an online application of
the system, the classifier was trained on the target subject’s first two blocks of data and
tested on the subject’s final two blocks, to keep the data continuity in time. Therefore, about
13.5 min (12 trials × 67 s/trial) of training data were used from the test subject; that is a
fairly reasonable length of time for system calibration prior to use. In the simulated online
testing, about 402 epochs were tested one by one as time progressed. The time taken for
data preprocessing, feature extraction, and classification of each 4-s epoch was 0.22, 0.59,
and 0.03 s, respectively, for a total of less than 1 s (0.84 s) per epoch. All the algorithms
were carried out using MATLAB R2019b with an Intel core i7-8th Gen processor.
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Due to restrictions on research involving human participants arising due to the
COVID-19 global pandemic, we were unable to conduct a separate experiment for on-
line implementation and instead used the data previously collected and reported in [25,26]
to simulate exactly an online classification scenario completely suitable for direct online
implementation. Future work will involve realizing the cross-subject mental workload
level and stress detection algorithms in an actual online application and evaluating them in
more realistic, ecologically-valid task scenarios in which users experience different levels
of workload and affective state.

6. Conclusions

In this study, we investigated the ability to classify both mental workload level and
affective state simultaneously using methods appropriate for implementation in an online
BCI. Using the InstanceEasyTL transfer learning algorithm proposed in [32], we achieved
accuracies of 77.5% and 84.1% for mental workload level and affective state classification,
respectively, using a database of “previous” subjects and just 13.5 min of training data from
the test subject. Classification was performed every two seconds. These results are very
promising and support the feasibility of developing a practical, online, passive BCI for
use in realistic scenarios where both the cognitive and affective state of the user will be
changing over time.
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