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Abstract: Household appliances, climate control machines, vehicles, elevators, cash counting ma-
chines, etc., are complex machines with key contributions to the smart city. Those devices have
limited memory and processing power, but they are not just actuators; they embed tens of sensors
and actuators managed by several microcontrollers and microprocessors communicated by control
buses. On the other hand, predictive maintenance and the capability of identifying failures to avoid
greater damage of machines is becoming a topic of great relevance in Industry 4.0, and the large
amount of data to be processed is a concern. This article proposes a layered methodology to enable
complex machines with automatic fault detection or predictive maintenance. It presents a layered
structure to perform the collection, filtering and extraction of indicators, along with their processing.
The aim is to reduce the amount of data to work with, and to optimize them by generating indicators
that concentrate the information provided by data. To test its applicability, a prototype of a cash
counting machine has been used. With this prototype, different failure cases have been simulated
by introducing defective elements. After the extraction of the indicators, using the Kullback–Liebler
divergence, it has been possible to visualize the differences between the data associated with normal
and failure operation. Subsequently, using a neural network, good results have been obtained, being
able to correctly classify the failure in 90% of the cases. The result of this application demonstrates
the proper functioning of the proposed approach in complex machines.

Keywords: fault detection; sensor data; industry 4.0; data reduction; feature analysis; feature selection;
indicators; artificial neural network

1. Introduction

Predictive maintenance is a recent technique, the result of the evolution of maintenance
techniques over the years. Initially, the most commonly used maintenance systems were
corrective. These systems carry out the relevant actions once the failure has occurred. With
this approach, it may happen that the repair has to be postponed instead of being repaired
on the spot due to a lack of readiness. Preventive maintenance, where maintenance activities
are scheduled at periodic intervals to prevent component degradation, was introduced in
the 1950s. However, as in the previous case, costs remain very high.

Given the growing demand for more reliable, safe and efficient industrial systems, the
need to optimize these maintenance processes becomes evident. In the 1980s, some factories
began to apply predictive maintenance techniques. They used sensors that continuously
monitored the machines and sent alerts when predefined limits were exceeded. This
significantly reduced scheduled maintenance activities and their associated costs. Currently,
the use of large databases combined with machine learning techniques makes it possible
to predict what is going to happen, when it is going to happen, and to alert the person in
charge (Industrial Internet of Things, IIoT) [1,2]. In this way, a “just-in-time” maintenance
that allows maximizing economic and productive performance is achieved. For this reason, as
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shown in Figure 1, predictive maintenance applications are having a great boom in the market,
expecting, according to a PWC survey, a 3.6% reduction of the annual costs during 2020.
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Figure 1. Annual cost reduction due to the incorporation of predictive maintenance techniques [1]. 
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8. Data processing so that the system learns to detect failures. 

In industrial environments, the most relevant machines that can be found most fre-
quently are electric motors [3,4]. Within them, the elements that concentrate the highest 
number of failures are the rotating elements and the transmission mechanisms due to their 
fatigue wear. Figure 2 shows the result of an ABB study on the critical elements and the 
most common causes of failure in induction electric motors. 

Once the critical machines, the elements that fail most frequently and the possible 
causes have been identified, the subsequent phases are carried out. 
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Predictive maintenance requires a great deal of dedication prior to installation. The
problems and their causes must be identified in order to subsequently define and develop the
monitoring system. This preliminary process could be structured in the following phases:

1. Detection of machines that suffer critical breakdowns for the production process.
2. Location of the machine element that produces the faults.
3. Identification of the causes that provoke the breakdowns (physical reasons why

it breaks).
4. Definition of the variables to be monitored.
5. Selection of the sensors.
6. Data acquisition.
7. Data curation and extraction of indicators (features).
8. Data processing so that the system learns to detect failures.

In industrial environments, the most relevant machines that can be found most fre-
quently are electric motors [3,4]. Within them, the elements that concentrate the highest
number of failures are the rotating elements and the transmission mechanisms due to their
fatigue wear. Figure 2 shows the result of an ABB study on the critical elements and the
most common causes of failure in induction electric motors.

Once the critical machines, the elements that fail most frequently and the possible
causes have been identified, the subsequent phases are carried out.
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In contrast to the simple sensors and actuators that make up a large part of the common
Internet of Things (IoT) scenarios in the smart city [5], there is an increasing number of
applications that are made up of what we may call complex machines.

As illustrated in Figure 3, we define complex machine as a device that:

- Has a 24/7 operation operated by users without detailed knowledge of the operation
of all the constituent parts of the machine.

- Integrates tens of sensors and actuators managed by several microcontrollers and
microprocessors communicated by control buses.

- Requires energy from the mains to work, sometimes has a battery, but as a short-time
backup.

- Has IP (Internet Protocols) connectivity.

Some examples of complex machines in the smart city are: household appliances,
climate control machines, vehicles, elevators, cash counting machines, etc.

Technically both production lines and complex machines are made up by a network
of controllers that integrate sensors and actuators. There are many works proposing
predictive maintenance strategies in production lines [6] or industrial equipment [7,8].
These approaches gather all the data together in edge/fog devices [9] or in the cloud [10]
and centrally analyzes them. In complex machines, this is not possible due to memory and
computation restrictions of controllers and also to industrial bus bandwidth limitations.

Currently, there are different predictive maintenance strategies depending on whether
they focus on physical aspects (physical model-based), on aspects of knowledge of the
machine itself (knowledge-based), or if they are based on the use of large quantities data,
pattern recognition, statistics, etc. (data-driven). This article proposes a fault detection
methodology applicable to complex machines, trying to apply hybrid methodologies that
combine the advantages of each strategy, adjusting them to the needs of complex machines.
For this reason, special attention needs to be paid to preprocessing, seeking to minimize
the number of data to be sent, so that malfunctions can be detected with the least amount
of data possible. In this way, this strategy can be applied to machines with limited memory
capacities, data transmission, etc.
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This paper is organized as follows. Section 2 presents the data processing method-
ology and its three different levels indicating the process applied in each case: sensor
level—variable targeting, board level—embedded data curation and feature extraction,
and machine level—feature integration and pattern finding. Then, Section 3 illustrates the
testbench used to verify the system proposed and analyzes the results obtained on each
layer. Finally, Section 4 provides conclusions.

2. Materials and Methods
2.1. Data Processing Methodology

A methodology for data processing consisting of three parts or levels will be proposed.
The first level, called the sensor level, focuses on taking measurements using various types
of sensors. The second level or board level, starts with the data obtained in the sensor level
to carry out a processing that allows reducing the amount of data to be transmitted and
extracting as much information as possible from them. The last level or machine level seeks
to perform an analysis of the data of the board level in order to extract some results. In
Figure 4, you can see the scheme of the proposed methodology.
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2.1.1. Sensor Level—Variable Targeting

The variables to be monitored in this type of application can be grouped into the
following groups: mechanical, electrical, audio, temperature and pressure [3].

The analysis of mechanical variables and specifically the analysis of vibrations are
the most common. Depending on the frequency range of the vibrations to be measured,
position sensors (0–10 kHz), speed sensors (10 Hz–1 kHz) or accelerometers (8 Hz–15 kHz)
can be used [2]. However, the use of accelerometers is the most common, as has been seen
in the vast majority of the articles consulted [11–19]. This type of analysis presents good
results, since the most common faults always generate additional vibrations to those of the
engine in normal operation. Thus, through its analysis, inappropriate behavior and even
the type of failure can be identified [19].

Another common approach is the analysis of electrical variables [4,11,13–15,20–22].
In them, the values of the stator’s motor currents and voltages are mainly monitored. The
use of these variables is based on the fact that the consumptions of a damaged machine
present variations compared to those of a “healthy” machine. In addition, the use of
these measures has advantages, such as the possibility of measuring without having to
access the interior of the motor, reducing the risk of damaging fragile parts and facilitating
the installation of the sensors. On the other hand, it requires a great knowledge of the
normal behavior of the machine and the different harmonics it presents due to construction
characteristics or load variations. In addition, this knowledge of healthy functioning must
be updated over time. Thus, applying techniques such as motor current signature analysis
(MCSA), it is possible to detect anything from electrical failures, such as short circuits in
the stator, to mechanical failures, such as eccentricities or rotor bar breaks [4].

In [2,23], audio measurements are used to detect bearing failures through the use
of microphones. These types of measures are not so well-established, although they are
gaining presence, as shown in [2]. The main cause is the contamination to which the
audio signals are exposed in an industrial environment, requiring the use of techniques for
their elimination. However, the possibility of obtaining them using microphones pointing
towards the machine from the outside at between 2 and 10 cm is a clear advantage compared
to vibration measurements [2].

These are the most commonly used types of measurements. However, others appear as
complementary measures, such as temperature measurements [13–15,17,21] or pressure
measurements [21], which are being used in very specific cases. A temperature increase
makes possible to detect electrical and mechanical failures, since in the event of excessive
friction or high electrical currents the elements tend to overheat. In addition, these types of
measurements do not require complex processing, and faults can be detected by simply
observing their values. Pressure measurements, for example, can be of great importance in
the analysis of the motor of an air compressor (Air Booster Compressor).

2.1.2. Board Level—Embedded Data Curation and Feature Extraction

Each board has a smart controller that might have wide variety of computational
and memory resources; from 8-bit microcontroller to an FPGA (Field Programmable
Gate Array). To extract the most relevant characteristics and reduce the volume of data
used, it is necessary to perform raw data filtering or pre-processing. In the case of pre-
dictive maintenance systems, preprocessing methods can be separated into three major
groups according to whether they are, in the time domain [13,14,20–22], in the frequency
domain [4,11,15–17,19,23] or in the time-frequency domain [12,18].

In the temporal domain, an attempt is made to reduce the number of data by filtering
outliers and erroneous data [14,21]. Normalization [13,21,22] becomes relevant due to the
use of various variables (mechanical, electrical, temperatures, pressures, etc.) that can take
values on different scales. Once the data have been adjusted, they can be used as they
are [21,22], or other indicators can be extracted from the parameters. In this second case,
statistical indicators (such as maximum, minimum, mean, median, standard deviation,
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variance, gradients, kurtosis, skewness or crest factor [14,24]) or of another type (such as
the principal components [13]) can be used.

On the other hand, in the frequency domain, the vast majority of cases use the fast
Fourier transform (FFT) as an analysis method [4,15–17,19,23]. It provides useful informa-
tion through the detection of the signal’s frequency peaks and the detection of harmonics.
This analysis is mainly applied when making vibration or sound wave measurements. The
virtue of the FFT is that it allows decomposing a signal into individual periodic signals and
establishing the relative intensity of each component, as can be seen in Figure 5. In this
way, it is very easy to identify the faults, corresponding to peaks at unusual frequencies. In
addition, it is a technique included in many electronic devices.
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The FFT requires that the sampled signal contains a complete representation of the
signal to be processed in the time domain or a periodic repetition. In cases where a complete
cycle of the signal to be modulated is not captured, techniques such as the Hanning window
are applied on the signal to mitigate possible reconstruction errors [16] (Figure 6).
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Finally, techniques in the time-frequency domain [12,18] provide a more realistic
description of the state of the machine. The main advantage they provide is that they
are capable of managing both stationary and non-stationary signals (limitation presented
by the FFT). The most popular for vibration analysis in rotating machines is the wavelet
transform (WT) [12].

This technique starts from an orthonormal wavelet located in time that multiplies the
signal. It can be applied at different times and with different scales to analyze the high
and low frequency components of the signal at different points. The signal is decomposed
into the approximation and detail coefficients, allowing the identification of the different
frequency contributions over time. An example can be seen in Figures 7 and 8.
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There are also other techniques such as the Short-Time Fourier Transform, STFT [18],
which consists of dividing the signal into small time windows on which the Fourier
transform is applied. In this way, it is possible to know the part of the signal in which each
frequency appears, but it has a lower resolution than the WT.

In the case of audio signals, an additional preprocessing would be necessary to carry
out the separation of the audio signal from the ambient noise. Some of the techniques used
are BSS (Blind Source Separation) or TDSEP (Temporal Decorrelation source SEParation),
which allow isolating a mixture of sounds from a specific process in real time [26].
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Figure 8. Coefficients of approximation and detail obtained by means of the WT of the signal
displayed with a Symlets wavelet.
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2.1.3. Machine Level—Feature Integration and Pattern Finding

Once all the desired indicators have been extracted, in order to make sense of these
data, it is necessary to analyze them together in what will be called the machine level. This
processing would consist of the procedure for identifying possible failures. Techniques for
the detection and identification of failure mechanisms are based on pattern recognition.
These can be applied following complex strategies, such as the use of neural networks and
machine learning [11,13,14,18,20–23], or through simpler methods, such as the use of fuzzy
logic [15,16] or visual analysis by specialist personnel [17].

Artificial neural networks (ANN) are very convenient for this type of task, as they
are able to work with a large amount of data and manage non-linearity situations with
a short response time [20]. However, actual failure data are scarce, and forced failure
data acquisition can be expensive. Even so, supervised learning methods are commonly
used [13,18,20–23], although a predictive maintenance implementation could be initiated
with unsupervised or semi-supervised learning (with labeled and unlabeled data) [14].

Finally, simpler techniques such as fuzzy logic are also applied. In [15,16], a classifi-
cation of the data is carried out based on the ranges in which they are found, using fuzzy
classifiers (good, normal, bad...). This allows a greater interpretability, something that can
be tricky with neural networks. However, this apparent simplicity presents a key point that
can become a bottleneck, the definition of the ranges, which requires a great knowledge
of the situation to be treated. Furthermore, since it has no learning capability, it is often
used in combination with neural networks, generating the so-called neural fuzzy systems
(NFS) [27].

Once the results of the machine level processing have been obtained, the data can
be sent to the cloud in order to perform a normality model that considers a large amount
of data from different machines. Thus, while in the machines, the neural networks have
patterns at the local level, in the cloud, the patterns are at a global level, which allows a
greater abstraction.

A complete example of a complex machine with the different layers can be seen
represented in the diagram in Figure 9: in yellow, the lowest layer would be that of the
sensor level; in orange, encompassing the previous one would be the board level; and
finally, in red, encompassing the previous two, is the machine level.
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In this example, it can be seen how the first three boards (energy management, micro-
controllers and FPGAs with actuators) communicate with a fourth, which is differentiated
by the ability to communicate with the outside. Said communication can be both, with
the user (Human Machine Interface) and with another computational element, proposed
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in the example through an IP bridge. This board also has processing capacity, along with
large RAM and FLASH memories, so that it can be in charge of analyzing the results
obtained. In this way, this fourth board is in charge of receiving possible orders from the
user, performing an analysis of the data received from other boards and sending the data
to a downstream processing unit (in the cloud in the proposed example).

3. Results and Discussion
3.1. Testbench Definition

The machine on which this methodology will be applied is a machine designed to
count banknotes that will be used mainly in bank branches to be able to count cash and
make deposits safely (Figure 10).
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The complex machine is made up of a main board and three secondary boards: energy
board, engines board and energy board (Figure 11), and the variables that are going to be
monitored are shown in Table 1:
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Table 1. Summary of the variables monitored.

Variable Board Abreviation Unit Bits

Transport engine current Engines I_trans
mA

12

Feeding engine current Engines I_feed 12

Transport engine encoder ticks Engines N_pul_trans Number of counter ticks
between two encoder pulses

12

Feeding engine encoder ticks Engines N_pul_feed 12

Infrarred sensor 1a Engines IR1a

0 no obstacle, 1 obstacle

1

Infrarred sensor 1b Engines IR1b 1

Infrarred sensor 2 Engines IR2 1

Infrarred sensor 3a Engines IR3a 1

Infrarred sensor 3b Engines IR3b 1

FFT of microphone measures Engines FFT - 1024

Doubles sensor 1 Banknotes Doubles1 Measure proprtional to
banknote’s thickness

32

Doubles sensor 2 Banknotes Doubles2 32

Temperature Energy Temp Celsius degrees 16

Internal voltage Energy Vint
V

16

Auxiliary voltage Energy Vaux 16

The tests will consist of passing bundles of 50 banknotes of the same denomination
(5 €, 10 €, 20 € and 50 €) through the machine. In addition, each bundle will pass through
the machine four times, placing all the banknotes in every possible orientation: front, back,
reverse front, and reverse back (Figure 12). This results in 16 samples for each tested case,
making a total of 800 banknotes analyzed per case.
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Regarding the failures analyzed, 13 defects (Table 2) were forced into the machine
through variations in eccentricities in axles (4) and wheels (3), use of defective components
such as springs (2), dented bearings (2), and deteriorated pulleys and worn belts (2):

This means that the whole dataset consists of 11,200 banknotes records. The proposed
strategy will focus on detecting failures that could be called permanent, this means that
they will appear throughout all the data collection and not sporadically, something that
could also happen under real operating conditions.
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Table 2. Summary of the tested cases.

Identifier Name of Failure

0 Normal operation case

1 Effect of eccentricity in axle 2

A Concentrity deviation of 0.2 mm

B Concentrity deviation of 0.5 mm

2 Effect of eccentricity in axle 4

A Concentrity deviation of 0.2 mm.

B Concentrity deviation of 0.5 mm.

3 Effect of dented bearings:

A Dented bearing in axle 2.

B Dented bearing in axle 3.

4 Effect of defective springs:

A Spring without screw at BNF.

B Spring without screw at the entrance of the safe.

5 Effect of defective doubles sensors:

A Perforated doubles wheel.

B Eccentricity of 0.04 mm of the outer wheel.

C Eccentricity of 0.08 mm of the outer wheel.

6 Deteriorated pulleys and worn belts:

A Deteriorated 32 z pulley.

B Worn S2M 180 belt and deteriorated exit pulley.

3.2. Data Analysis
3.2.1. Layer 1: Sensor Data

Sensor data layer capture is accomplished by three boards, which gather the variables
listed in Table 1. Once the data of the different failure cases have been obtained, they are
analyzed and compared with those of the normal operation case. It is important to know
the shapes and values of the data distributions in order to better understand the indicators
to be extracted in subsequent layers, since this allows us to assess the best strategies to
analyze them and perform a more efficient maintenance.

We will begin by analyzing the data obtained by the energy management board. Some
of the measurements taken are voltage measurements at different points or temperature
measurements, among others. When comparing the voltage data of various banknotes
according to their orientation and obtained in different situations, differences can be
appreciated. In Figure 13, it can be seen how the failure case shows higher values for Vaux
than the case of normal operation. Although these are differences of a very small order of
magnitude, given that the values present a very small variation, they must be taken into
account.

The engines board has sensors that take measurements related to the mechanical
operation of the machine, such as consumption of the machine’s motors or an FFT for
the vibrations analysis. Figure 14 shows the current consumption during the passage of
different banknotes. We can see that when introducing the modification in the machine, the
current figures have been altered. Although there is still a significant overlap in the ranges,
the values of the failure case present values below what would be considered normal.
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Figure 13. Comparison of the Vaux tension measurements of a 5 € banknote on reverse back orienta-
tion in the case of normal operation (left) and a failure case (right).
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Figure 14. Comparison of the measurements of the transport motor current of a 50 € banknote on
reverse front orientation in the case of normal operation (left) and that of a failure case (right).

The last of the boards included in the complex machine analyzed is responsible
for monitoring the condition of the banknotes through various measurements. One of
the sensors used provides values that are proportional to the thickness of the banknote
passing through the machine, called the doubles sensor. Figure 15 shows the measurements
obtained in the normal case versus one of the failure cases analyzed, presenting clear
differences that would allow the identification of such operation as erroneous.
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Figure 15. Comparison of the measurements of the double sensor 1 of a 20 € banknote on back
orientation in the case of normal operation (left) and one case of failure (right).
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3.2.2. Layer 2: Board Data

The amount of data provided by the machine is very high, since for each banknote (a
banknote takes 610 ms to pass through the machine) 33,000 bytes would be received from
the engines board, 9150 from the banknotes board and 7320 from the energy management
board. Therefore, the need to reduce this number through filtering and extraction of
indicators becomes evident.

In order to perform an initial filtering to reduce the number of data to be processed, it
is decided to use only the data relating to the passage of a banknote through the machine.
In this way, all data taken between banknotes are discarded. In addition, since the mea-
surements of some sensors are only of interest when the banknote passes through them,
it is necessary to generate a specific window for each of them. For this purpose, position
sensors are used, which allow us to know the position of the banknote in the machine,
being able to select the data only for those moments. Just through this filtering, we reduce
to 8808 bytes per banknote from the engines board, 640 from the banknotes board and
394 from the power management board, a reduction of an order of magnitude.

When proposing the indicators to be extracted, a layered data analysis was chosen,
as shown in Figure 16. The first layer would be the sensorization layer, the output of
which is the raw data. After the filtering process that would follow the sensorization layer,
the next layer would be that of the indicators per banknote, in which various indicators
corresponding to each note are obtained. Finally, the last one would be that of the indicators
per bundle, which aggregates the indicators per banknote into groups of a given number.
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Observing the output data rates of the last of the layers, it can be seen that a reduction
of three orders of magnitude in the bytes per second that are obtained from each board has
been achieved. With this extraction of indicators, by comparing the values of the training
phase with the values obtained in subsequent measurements, it will be possible to detect
deviations that will allow the identification of possible failures.

The indicators per banknote to be used are, in general, the means, medians, maximums,
minimums, standard deviations, asymmetries and kurtosis of the different measurements
available in the frames, adding the effective value in the case of currents.

Regarding the FFTs with a Hanning window (Figure 6) obtained for the vibration data,
a more complex analysis is conducted. To obtain the indicators extracted in the layer of
indicators per banknote, the areas under the curve of different parts of the FFT will be



Sensors 2022, 22, 586 14 of 23

obtained. In order to discover the more interesting parts, we will begin by identifying the
existing peaks. This identification consists of two phases: a first one in which the base noise
is eliminated, leaving a flatter FFT in which the peaks stand out more; and a second one in
which the peaks higher than half the maximum value are marked. Having identified the
most interesting parts as those that concentrate the majority of the peaks, the areas under
these parts of the FFTs will be used as the indicators of the vibration data (the limits of
the areas are defined based on observation). In a preliminary analysis of the FFTs, it has
been seen that in most of them, there are two areas of interest in which most of the peaks
are concentrated (see Figure 17). Therefore, it is decided to work with these two areas for
subsequent analysis.
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Figure 17. Graphs of the different phases of the identification process, from the original FFT, to the
FFT without the base noise, with the detected peaks and the colored areas of interest.

Once the indicators per banknote have been extracted, they are passed to the layer
of the indicators per bundle. Since the objective is the data reduction for a fault detection
application, it is not sought to have an instantaneous view of the machine operation. A
broader vision that allows observing the variations in a larger temporal space is more
interesting. Therefore, the integration of the banknote level indicators will be done in
groups of the same number of banknotes, from which indicators will be extracted per
bundle. The indicators extracted from the indicators of the previous layer will be the same
seven previous statistical values as above, the means, medians, maximums, minimums, the
standard deviations, the skewness and the kurtosis.

3.2.3. Layer 3: Machine Data

Finally, after obtaining the indicators from the bundle layer, the indicators reach the
machine level. In this layer, conclusions will be drawn from the indicators extracted in
the previous processes. For this purpose, this analysis seeks to identify the most relevant
indicators for each failure case, as well as the type of variation that should be expected
based on their probability distributions. Next, we will comment on the results obtained by
comparing the distributions of the indicators of the respective failure case with those of the
normal case.

The objective is to indicate whether the indicators of the failure case have higher or
lower values than those of the normal case, as well as the degree of discordance between
the distributions of these indicators. The indicators analyzed will be the indicators per-
bundle-mean. If no specific indicator is mentioned (AVG, Med, MAX, MIN, DES, SK or
KUR), the mean values are assumed to be the ones mentioned.

To assess the direction of the variation, the median of the distributions is used. On
the other hand, to assess the degree of discordance, the Kullback–Leibler divergence is
used. This is a unitless measure that compares the probability densities of two distribu-
tions. It provides values close to zero with two similar distributions and it grows as the
difference between both distributions increases. It is not symmetric, so two calculus are
made, considering first the normal case and then the failure one (P‖Q) and then viceversa
(Q‖P). From these two values, the larger one is the one considered. The choice of the
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Kullback–Leibler divergence as a measure of comparison of the data distributions obtained
in each failure case is based on the fact that the final model for failure classification will be
implemented by neural networks trained with the cross-entropy cost function, which is
directly related to the divergence measure. Thus, the nomenclature used is the one shown
in Table 3 (limits used are based on experimental observation) and the results obtained can
be seen in Table 4.

Table 3. Nomenclature used to classify the differences between distributions.

Divergence KL > 4 KL > 5 KL > 10 KL > 15

Higher LS S SS SSS
Lower LI I II III

It is convenient to take the data in the summary table with caution, since there are
distributions that, although they do not present divergences greater than the minimum,
they do show variations with respect to the normal case.

Table 4. Summary of the information of the indicators of interest in each case.

Failures 1 2 3 4 5 6

Indicators A B A B A B A B A B C A B

Current
I_trans SSS = II II I = III III III II III III III

I_feed = = = = = = = = = = = = =

Time
between IR

T_IR11 = = S S = = = = = = = = =

T_IR31 = = = = = = = = = = = = =

T_IR33 = = = = = = = = = = = = =

N_pul_trans = = = = = = = = = = = = =

N_pul_feed = = = = = = = = = = = = =

Doubles
sensors

Doubles 1 III III S = S SSS SSS S
AVG
SSS

DES S

AVG SSS
DES SSS

SK III
KUR SSS

AVG SSS
DES SSS

SK III
KUR SSS

SS AVG SSS
DES S

Doubles 2 AVG I
DES II

AVG III
DES II S LS SS SSS SSS S AVG

SSS
AVG III
DES SSS

AVG III
DES SSS

SK I
SS

AVG SSS
DES SSS

SK SS

Voltages
Vint = = = = = = = = = = LS LS =

Vaux = = = = = S = = = = = = =

FFTs
Energy 1 = = = = = = = I = = = LI =

Energy 2 = = = = = = = I II = = I I

Next, the indicators of interest for the three failure cases in group five, associated with
defects in the doubles sensor (case 5), will be shown. This case of failure has been chosen
because it presents deviations in a great variety of indicators.

In the data of the transport motor current (Figure 18), it can be seen how in all cases of
failure, the values obtained are reduced, the most notable being that of the first failure. In
the following cases, in Table 5 it can be seen how the medians decrease in the distributions
and the divergences increase as the eccentricity increases.
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Figure 18. Comparison of the probability distributions obtained for the mean values of the transport
motor current in the case of faults associated with the double sensors. Indicator: mean.

Table 5. Kullback–Leibler divergence values associated with the mean values of the transport motor
current for the identification of the faults associated with the double sensors.

I_Trans
Kullback–Leibler

0-5A 5A-0 0-5B 5B-0 0-5C 5C-0

Mean 25.322 26.229 6.836 14.215 12.087 17.932

The data from the doubles sensor 1 (Figure 19) shows deviations in all three cases
analyzed, something that might be expected, as the defects are introduced in the sensor
itself. Regarding the average values, it is seen that the one that suffers the most divergence
is the first failure of the chopped roller, while those associated with eccentricities show
smaller variations, but that vary in a linear way with increasing eccentricity. Analyzing
the shape statistics, it can be seen how the first failure shows values quite similar to the
normal case of standard deviations and coefficients of skewness and kurtosis. However,
the failures associated with eccentricities show much larger differences, highlighting the
standard deviation in the case of greater eccentricity, which is more than five times higher
than that of the normal case. All this can be supported by the divergence values obtained
in Table 6.
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Figure 19. Comparison of the probability distributions obtained for the mean values of the doubles
sensor 1 measurements in the case of failures associated with the doubles sensors. Indicators:
(top left) mean, (top right) standard deviation, (bottom left) skewness and (bottom right) kurtosis.

Table 6. Kullback–Leibler divergence values associated with the means, standard deviations, skew-
ness and kurtosis associated with the mean values of the double 1 sensor measurements for the
identification of the failures associated with the double sensors.

Doubles 1
Kullback–Leibler

0-5A 5A-0 0-5B 5B-0 0-5C 5C-0

Mean 26.985 27.402 19.838 21.173 25.869 25.379
Std.Dev. 6.509 3.008 26.270 25.759 28.101 26.075

Skewness 0.355 0.202 22.922 22.689 25.899 26.216
Kurtosis 0.297 0.469 15.573 10.018 26.375 16.953

Regarding the doubles sensor 2 (Figure 20), distributions of the mean values are very
similar to those of the previous sensor. However, in the shape statistics, there are differences
with respect to the previous sensor in the cases of failures associated with eccentricities.
The standard deviations are no longer so far apart, although they still show considerable
divergences (Table 7). The asymmetries no longer present values so far away from the
normal ones, and only in the case of higher eccentricity is a significant divergence observed.
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Figure 20. Comparison of the probability distributions obtained for the mean values of the doubles
sensor 2 measurements in the case of failures associated with the doubles sensors. Indicators:
(top left) mean, (top right) standard deviation, (bottom) skewness.

Table 7. Kullback–Leibler divergence values associated with the means, standard deviations and
asymmetries associated with the mean values of the double 1 sensor measurements for the identifica-
tion of the failures associated with the double sensors.

Doubles 2
Kullback–Leibler

0-5A 5A-0 0-5B 5B-0 0-5C 5C-0

Mean 26.516 27.226 25.925 26.189 25.012 24.793
Std. Dev 0.101 0.231 26.762 25.599 26.639 26.132
Skewness 0.588 0.663 2.222 0.761 5.800 0.983

Analyzing the values obtained for the Vint voltage (Figure 21), it can be seen that the
second fault shows hardly any variations with respect to those of the normal case, while
the other two show values higher than the usual ones. These effects are reflected in the
divergences in Table 8, obtaining the highest value in the fault with the highest eccentricity.
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Figure 21. Comparison of the probability distributions obtained for the mean values of the voltage
Vint in the case of failures associated with the double sensors. Indicator: mean.

Table 8. Kullback–Leibler divergence values associated with the means associated with the average
values of the Vint voltage for the identification of the failures associated with the double sensors.

Vint
Kullback–Leibler

0-5A 5A-0 0-5B 5B-0 0-5C 5C-0

Mean 2.196 0.669 0.516 0.42 4.760 1.414

Observing the results of this first analysis (Table 4), it is clear that some measurements
such as the feed motor currents (I_feed), some infrared pass-times or the intervals between
encoder pulses do not provide much information. In the case of the supply currents, it
may be due to the fact that none of the altered elements affected it directly, which means
that there are hardly any changes from one case to another. As for the T_IR31 and T_IR33
times, since they are associated with short distances compared to the T_IR11 time, and
with sections far away from the middle zone where the defects are located, this means
that they are not so easily altered. Finally, the intervals between encoder pulses present a
multimodal distribution that makes the extraction of information more difficult.

By detecting these differences with the naked eye on a measure related to the cross-
entropy cost function used to train the network, it is expected that the neural model in
charge of processing these indicators will also be able to identify the failures. To this end,
a feedforward multilayer neural network with one hidden layer was explored and, after
testing several architectures, a 39:128:14 architecture was chosen. The 39 input neurons
correspond to the most relevant indicators, while the 14 output neurons are associated with
the 13 failure cases analyzed and the case of normal operation.

Due to the large variety of ranges present in these input variables, a normalization is
performed to equalize the contributions of each variable to the multilayer perceptron. This
normalization is performed before the data enters the network. Between the two processing
layers that compose it, another batch normalization layer has been added with the same
objective.

The processing layers that compose the model are two dense layers of 128 and 14
neurons, respectively. The first layer uses the RELU function as the activation function. In
the case of the second one, there is one neuron for each class and the activation function
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chosen is softmax. Thus, the output of each neuron will be between 0 and 1, summing all of
them 1 (generates a probability distribution), assuming that the output with the maximum
value is the correct failure/normal case.

The supervision labels follow the one-hot encoding (13 labels to zero and the corre-
sponding class to one) and the optimization of the training hyperparameters was performed
with the Adam optimization algorithm [28]. Figure 22 shows the summary of the imple-
mented MLP architecture. Cross entropy was used as a cost function to perform the training
over 40 epochs.
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A cross-validation methodology was implemented to perform the training phase of
several networks to generate the full model. To reduce the possibility of the data sets in
the cross-validations becoming unbalanced due to sparse data, cross-validation with a low
k-fold of 5 was used. In addition, to maintain data representativeness, these subsets were
randomly generated using a stratified split to ensure that each test subset and training
subset has statistical values of the label distribution equivalent to those of the whole dataset.
In this way, five MLPs are generated, with the final model prediction being the mean or
vote of the five different independent results.

At the end of the training, five MLPs were obtained with accuracies around 90%.
However, as the classification result will be the result of the vote of the five networks,
the reliability of the final model is even higher. The possibility of three networks being
wrong, generating a bad prediction, would be close to 1%, which considerably increases
the confidence of the classification. Figure 23 shows the confusion matrices of two of the
five networks, which confirm the good performance of the methodology when applied to a
specific case of fault detection on complex machinery.

Despite the good results obtained, it must be taken into account that this model has
been made with data that were not isolated for validation. This has been the case because,
as there is not a large amount of data available, we have worked with the available data,
extracted manually by the manufacturers themselves. That is why the neural model,
although showing good results and could be developed at some point, must currently be
taken with caution. However, the fact that manual rule-based analysis of the results shows
perceptible differences proves that the effort put into preprocessing the data to reduce the
number of bytes to be sent has been successful. In this way, the objective of our proposal is
reached, being able to identify the failures with a smaller amount of information and also
being able to implement this methodology in complex machines with limited capacities.



Sensors 2022, 22, 586 21 of 23Sensors 2022, 22, x FOR PEER REVIEW 21 of 23 
 

 

 
Figure 23. Confusion matrices of two neural networks designed to recognize the 14 failure cases. 

4. Conclusions 
In this work, a study of the state of the art of predictive maintenance techniques, 
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the most relevant indicators and the most common treatment techniques have been 
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As future work, the use of a cloud computing environment is proposed. 
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of a global neural model that reaches a higher degree of abstraction than can be achieved 
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In short, a fault dectection system capable of identifying the failure that is occurring 
from the data extracted from a complex machine has been developed. This makes it 
posible to warn the operator who can correct the defect or it also can be used as a 
manufacturing quality control system. 
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Figure 23. Confusion matrices of two neural networks designed to recognize the 14 failure cases.

4. Conclusions

In this work, a study of the state of the art of predictive maintenance techniques,
focused on industrial environments, has been carried out. The variables to be monitored, the
most relevant indicators and the most common treatment techniques have been analyzed
to generate a basis on which to build the fault detection system to be carried out.

A monitoring methodology applicable to complex machines has been presented, in
which work is carried out at different levels with the aim of extracting the most significant
features from each piece of data. This methodology has been tested on a prototype cash
counting machine, which meets the description of a complex machine.

By analyzing the results obtained in each of the levels in which we have worked, we
have identified the most relevant data. In this way, it has been possible to significantly
reduce the amount of data to be used, being able to continue identifying the corresponding
failure in each case. All this allows a considerable reduction in the computational demand
of the system.

As future work, the use of a cloud computing environment is proposed. Communica-
tion via IP with the cloud of numerous machines would allow the generation of a global
neural model that reaches a higher degree of abstraction than can be achieved locally on
the machine.

In short, a fault dectection system capable of identifying the failure that is occurring
from the data extracted from a complex machine has been developed. This makes it posible
to warn the operator who can correct the defect or it also can be used as a manufacturing
quality control system.
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