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Abstract: An intelligent land vehicle utilizes onboard sensors to acquire observed states at a disorderly
intersection. However, partial observation of the environment occurs due to sensor noise. This causes
decision failure easily. A collision relationship-based driving behavior decision-making method via
deep recurrent Q network (CR-DRQN) is proposed for intelligent land vehicles. First, the collision
relationship between the intelligent land vehicle and surrounding vehicles is designed as the input.
The collision relationship is extracted from the observed states with the sensor noise. This avoids
a CR-DRQN dimension explosion and speeds up the network training. Then, DRQN is utilized
to attenuate the impact of the input noise and achieve driving behavior decision-making. Finally,
some comparative experiments are conducted to verify the effectiveness of the proposed method.
CR-DRQN maintains a high decision success rate at a disorderly intersection with partially observable
states. In addition, the proposed method is outstanding in the aspects of safety, the ability of collision
risk prediction, and comfort.

Keywords: deep recurrent Q network; intelligent land vehicle; decision-making; collision relationship;
partially observable Markov decision process

1. Introduction

An intelligent land vehicle makes driving behavior decisions based on environmental
information through sensors. However, sensor noise is inevitable owing to natural factors
such as weather [1], temperature, or road conditions. For example, the detected positions of
surrounding vehicles are deviated by road inclination. Moreover, there is noise in the data
obtained by sensors because of the vehicle’s movement and the sensors’ structure [2]. Thus,
the data acquired by sensors may increase, decrease, or even be lost. This difference between
observed states and environmental states causes a wrong estimation of environmental
conditions. For instance, a surrounding vehicle is very close to the ego vehicle, while the
detected distance data is still within the range of the safe distance. In this case, it is easy to
make wrong decisions based on inaccurate states of surrounding vehicles. Furthermore,
this may lead to traffic accidents, traffic congestion, and inefficiency [3].

The driving behavior decision-making is responsible for selecting an appropriate
driving behavior according to a planned path and the environmental states [4]. The driving
behavior refers to the target position, or the target speed, or the target acceleration, which
is one decision period ahead of the current state of the intelligent land vehicle on the path.
Then, the result of driving behavior decision-making is sent to the trajectory planning
part. Usually, the performance of the driving behavior decision-making is evaluated in
terms of safety and comfort [5]. However, the environment in the real world is full of
uncertainty. As a result, the environmental states are always partially observable [6].
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Therefore, this study focuses on the driving behavior decision-making problem with
partially observable states.

At present, the driving behavior decision-making method attracts wide attention.
This mainly includes the game theory method [7,8], generative decision method [9], fuzzy
decision method [10,11], etc. A game theory-based decision-making model for lane chang-
ing in urban congested intersections is presented in [7]. The model considers the coopera-
tion between the intelligent vehicle and adjacent vehicles before a lane change. In addition,
taking the conflict between safety, efficiency, and comfort into account, an intelligent vehicle
decision-making model based on game theory is proposed to select the optimal driving
strategy [8]. These methods model the decision-making process as a game by simplifying
the environment and ignoring the uncertain factors in the environment. In the aspect of
generative decision-making, the finite state mechanism is used for a high-accurate parking
detection to eliminate the interferences from adjacent vehicles [9]. Although the method is
very interpretable, it is very difficult to generate a complete rule in a complex environment.
In terms of fuzzy decision making, Cueva et al. [10] designed a fuzzy behavior decision-
making method to improve the efficiency of the vehicle sensor information exchange.
Moreover, Balal et al. [11] designed a lane change decision system based on binary fuzzy
reasoning for the highway environment. However, the accuracy of the membership degree
directly determines the accuracy of the decision estimation inescapably, and the design of
membership functions still depends on the human experience.

The partially observable Markov decision process (POMDP) is a suitable model for
the environmental states under sensor noise. POMDP is utilized to estimate the behavior
of other traffic participants and gives a safe trajectory to the self-driving vehicle [12,13].
Silva et al. [12] presented a data-driven machine-learning method for classifying driving
styles and provided automated feedback to drivers on their driving behaviors. Moreover,
a data-driven method is proposed to predict vehicles’ short-term lateral motions for safety
decision-making [13]. These methods have excellent search and analysis capabilities for the
environmental states, so they can better deal with the complex and uncertain environment.
Furthermore, deep reinforcement learning (DRL) based on POMDP is an effective method
for decision-making [14,15], because it studies naturalistic driving data or driving expert
experiences to achieve more human-like driving behaviors. Li et al. [14] built a mapping
relationship between the traffic image and the vehicle operations and obtained an optimal
driving strategy of the vehicle based on the deep Q network (DQN) at the intersection.
DQN also yields robust performance in lane and speed change decisions while an intelligent
vehicle gains noisy observation [15]. To conclude, the common decision-making method is
summarized in Table 1.

Table 1. Summary of the common decision-making method.

Method Reference Application

Game theory-based [7] Lane changing at congested, urban scenarios
[8] Decision-making at an urban unsignalized intersection

Generative
decision-making [9] Parking

Fuzzy decision-making
[10] Decision-making in a vehicle sensor tracking system

[11] Lane changing

Partially observable
Markov decision-making

Machine learning
[12] Driving style classification

[13] Lateral motion prediction

Deep reinforcement learning
[14] Decision-making at intersections

[15] Lane changing in dynamic and uncertain highways

In addition, the recurrent neural network (RNN) is gradually applied in the domain
of intelligent land vehicles. Sallab et al. [16] applied a recurrent neural network combined
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with an attention mechanism for information integration, to process partially observable
driving scenes. The long short-term memory (LSTM) based on RNN is utilized to predict
the future state of the surrounding vehicles for motion planning [17]. A deep recurrent Q
network (DRQN), a combination with DQN and LSTM, is also adopted to solve the problem
of traffic light control [18,19]. LSTM is a group of networks with loops in them and retains
memory about the previous state [20]. This can train time series and reduce the influence
of the noisy input. As a result, a combination of DRL and LSTM can be well applied to
driving behavior decision-making for intelligent lane vehicles in a noisy environment.

In this study, a collision relationship-based driving behavior decision-making method
for intelligent land vehicles based on DRQN (CR-DRQN) is put forward. This method
solves the problem of instability in decision-making caused by decreased perceptual confi-
dence successfully. The main contributions in this paper are:

• A collision relationship-based driving behavior decision-making method for intelligent
land vehicles is put forward. The collision relationship between an intelligent land
vehicle and surrounding vehicles is utilized as the state input, rather than the positions
and velocities of all the vehicles. This effectively avoids dimension explosion of the
network’s input with the increase in surrounding vehicles. Therefore, this design helps
to make right decisions quickly.

• By using long short-term memory (LSTM) to train the time-series input, the proposed
method effectively weakens the adverse effects of reduced perception confidence.
Further, this method ensures the safety of driving behavior decision-making.

• A series of comparative simulations are carried out for a scene of disorderly intersec-
tion. The experiments verify that the proposed algorithm is superior to traditional
DQN and its variants in the safety and comfort of decision-making.

The rest of this paper is organized as follows. First, related work is briefly reviewed
in Section 2. Then, Section 3 introduces the foundation of deep reinforcement learning.
Section 4 elaborates on the proposed method and the specific design for the observed states,
action space, and reward. The simulation configuration and comparative results are shown
in Section 5. Finally, the conclusion and future work are presented in Section 6.

2. Related Work

An intersection, especially one with no signal lights, is a typical uncertain and complex
environment. It is a great challenge for intelligent land vehicles to make appropriate
driving behavior decisions in this environment. Aimed at environmental uncertainty,
Iberraken et al. [21] proposed a flexible and safe autonomous decision-making system,
which improves the efficiency and security of decision-making for intelligent land vehicles.
For complex traffic at intersections, Noh [22] proposed a probabilistic collision threat
assessment algorithm, and Li et al. [23] established a dynamic safety potential field to
describe the spatial distribution of vehicle-driving risks affected by the environmental
state. In addition, Galceran et al. [24] proposed a synthesis reasoning and decision-making
method in autopilot mode. CNN detection and Kalman filtering are used to predict the
movement intention of obstacles as the basis for human-like, decision-making strategies [25].
This enhances the interaction between intelligent land vehicles and other drivers.

Two typical frameworks of DRL are based on policy gradients and value function.
The deep deterministic policy gradient algorithm (DDPG) is a policy gradient-based deep
reinforcement learning method suitable for continuous action space [26]. Huang et al. [27]
used DDPG to map vehicles’ driving states, such as velocity and road distance, to driving
behaviors, such as steering, acceleration, and braking. Moreover, Chen et al. [28] combined
positive and negative rewards with the priority experience replay method. This effectively
improves the sampling efficiency and enhances the performance of the DDPG model.
To consider passenger comfort while ensuring safety, a multi-objective reward function
is designed to study autonomous braking decision-making strategies based on DDPG in
emergencies [29]. In addition, given the inconsistency between behavioral decision-making
and trajectory planning, the dual-delay deep deterministic strategy gradient algorithm
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(TD3) is used to solve the optimal decision strategy, and the route feature is extracted from
the path planning space as the behavioral decision-making state space [30].

DQN is a deep reinforcement learning method based on value function, which can ef-
fectively solve discrete action space problems [31]. Kai et al. [32] used the DQN algorithm to
obtain an optimal driving strategy considering safety and efficiency. Further, Chen et al. [33]
combined DQN and fuzzy algorithm to deal with the correlation between different motion
commands. This makes the network results more feasible. In addition, Kamran et al. [34]
designed a risk assessment strategy as a reward for DQN, rather than a judgment about
whether a collision occurs or not. In addition, DQN’s variants are also applied in the
field of driving behavior decision-making. To reduce the impact of environmental un-
certainty, a dual-channel attention module is designed to enhance the analysis ability of
the environmental state. Then, the module is integrated into the dueling double deep Q
network (D3QN) to make safer and more efficient decisions for autonomous driving [35].
Mokhtari et al. [36] utilized two long-term short-term memory (LSTM) models based on a
double deep Q network (DDQN) and the priority experience replay method to reconstruct
the perception state of the environment and the future trajectories of pedestrians.

3. Foundation of Deep Reinforcement Learning

In this section, POMDP under sensor noise is introduced first. This is the basic model
of driving behavior decision-making for intelligent land vehicles. Then, an overview of
deep reinforcement learning is provided.

3.1. Partially Observable Markov Decision Process under Sensor Noise

At a real intersection, sensor noise creates a difference between the environmental
states and the observed states. However, POMDP is suitable for the agent in an uncertain
scenario. Thus, to represent a partially observable environment, a driving behavior decision-
making method for intelligent land vehicles is modeled by POMDP [37].

POMDP is expressed as a six-tuple 〈S, A, T, R, O, Ω〉 [38]. S is an environmental state
set while A is an action set, including a series of driving behaviors. T is the state transfer
function. R is the reward function. O is a set of observed states. Ω is the observation
model. ot~O(st) shows that an intelligent land vehicle receives observed states ot instead
of environmental states St in step t.

The observed states are detected by onboard sensors. These include an ego vehicle’s
position [x0, y0], an ego vehicle’s velocity v0, and surrounding vehicles’ positions [xi, yi].
It is assumed that only the ego vehicle’s states are completely observable. This means
that the ego vehicle’s observed position and velocity are the same as the real values.
The surrounding vehicles’ observed positions are defined as Equation (1). It adds noise
to the environmental positions with a certain probability, and the value of the noise is not
fixed. This design is closer to the real environment.

O([xi, yi]) =

{
[xi, yi] + Lerr × fgauss(x)× rand(−1, 0, 1), i f c < τ

[xi, yi], else
(1)

c is a random variable within [0, 1]. When the probability of noise occurrence τ is greater
than c, some noise randomly plays a part in the surrounding vehicles’ observed positions.
Lerr represents the observation error. fgauss(x) is a gauss number.

3.2. Deep Reinforcement Learning

During reinforcement learning, the intelligent land vehicle learns a strategy π by
interacting with the environment at the disorderly intersection to make driving behavior
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decisions. The state-action value function Qπ(s, a) represents the performance of a given
strategy π when choosing an action a in a state s. Thus, Qπ(s, a) is denoted as:

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣St = s , At = a

]
(2)

Q-learning algorithm maximizes the state-action value in Equation (2) to learn the
optimal strategy π∗. The optimal Qπ∗(s, a) follows the Bellman optimality equation:

Qπ∗(s, a) = Eπ∗[Rt+1 + γmax
a′

Qπ(St+1, a′)
∣∣∣St = s, At = a] (3)

However, the Q-learning algorithm makes useless calculations when facing continuous
and high-dimensional state input. As a powerful nonlinear function approximator, a deep
neural network solves well the above problem.

The deep neural network is a perceptron model, trained by the backpropagation
algorithm. The parameters of the network are adjusted by the gradient descent algorithm.
In general, the loss function of deep reinforcement learning is defined as:

L(ω) =
1
2
(R + γmaxa′Q(s′, a′; ω−)−Q(s, a; ω))

2 (4)

L(ω) is the variance between the target value and predicted value. R + γmaxa′Q
(s′, a′; ω−) represents the target value, while Q(s, a; ω) represents the predicted value.
An online Q network and a target Q network are constructed to calculate the predicted
value and target value, respectively. To improve the stability of the algorithm, the target
Q network’s parameters are updated with a fixed number of steps by copying the online
Q network’s parameters. Besides, an experience replay memory is set up to store training
samples. The online Q network is trained by randomly selecting samples from memory.
This setup breaks the correlation of successive samples.

4. Collision Relationship-Based Driving Behavior Decision-Making via DRQN

In this section, the collision relationship between an intelligent land vehicle and
surrounding vehicles is designed as the input of CR-DRQN. Then, CR-DRQN is utilized
to determine the best strategy for driving behavior decision-making. The design of the
decision-making model and the structure of CR-DRQN are described as follows.

4.1. Design of the Driving Behavior Decision-Making Model

To apply CR-DRQN to driving behavior decision-making at a disorderly intersection
without a traffic light, the state space, action space, and reward function are designed
as follows.

4.1.1. State Space

The state space is defined as the collision risk between the ego-vehicle and surrounding
vehicles: φ = [φ1, φ2, ..., φN ]

T . N is the number of surrounding vehicles. In this study, three
surrounding vehicles from different directions have the probability of collision with the
ego vehicle at a disorderly intersection, as an example.

In Figure 1, the yellow car is the ego vehicle, while the orange car is the surrounding
vehicle. The dashed lines from the ego vehicle and the surrounding vehicle represent
driving paths. Further, the meeting point of two green dashed lines represents the vanishing
point of the collision relationship. When the ego vehicle or surrounding vehicle leaves the
intersection, the collision relationship disappears.
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Figure 1. Description of collision relationship between an ego vehicle and one surrounding vehicle.

Take the collision relationship between the ego-vehicle and one surrounding vehi-
cle as an example. When there is a collision relationship, the input state is defined as
φ(oi) = [li, v′i, ti]. oi is the observed state of the surrounding vehicle i. li is the safety
distance between the ego vehicle and the surrounding vehicle i:

li = (li
0/v0 − li

i /vi)v0 (5)

where li
0 represents the arc length from the current position of the ego vehicle to the collision

vanishing point i, and li
i is the arc length between the surrounding vehicle i and the collision

vanishing point i. v′i is the velocity of the surrounding vehicle i relative to the ego vehicle.
ti is the time that the ego vehicle uses to move from the current position to the collision
vanishing point i: ti = li

0/v0.
Similarly, the collision relationship between the ego vehicle and other surrounding

vehicles is shown in Figure 2. In this case, the input state is a set of the collision rela-
tionship φ(o). Surrounding vehicles are counted counterclockwise in the stand of ego
vehicle: the south surrounding vehicle is 1, the east surrounding vehicle is 2, and the north
surrounding vehicle is 3. The dashed green lines 1©, 2©, 3© are the corresponding collision
disappearance boundaries.

The advantages of this specific state setting are as follows. If the input state of the
deep neural network is simply defined as the group of the position, course angle, and the
velocity of the ego vehicle and surrounding vehicles, the quantity of state input is too huge.
In the process of training and normalized calibration, it is hard to conduct enough training
for each state. This may result in numerical problems. On the contrary, the application of
the collision relationship contributes to simplifying and normalizing the network input.
This setting of the input state not only avoids numerical problems but also improves the
training speed and generalization ability of the network.
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Figure 2. Description of collision relationship between an ego vehicle and multiple surrounding vehicles.

4.1.2. Action Space

In this study, the ego vehicle only makes an acceleration decision without considering
the temporary lane change behavior of surrounding vehicles. Action Space is expressed as:

A= [AS, AF, DS, BR, MA]T (6)

The specific meaning is as follows. AS refers to accelerate slowly while AF is accelerate
fast. DS means decelerate slowly. BR refers to braking and MA represents maintenance.
To ensure stability and comfort in driving, the action is maintained during every deci-
sion step.

4.1.3. Reward Function

Three evaluation criteria determine the performance of CR-DRQN driving behavior
decision-making. The reward function R in Equation (7) is defined by the mix of safety,
comfort, and task completion efficiency:

R = α1Rsa f e + α2Rcom f ort + α3Re f f icient (7)

α is the weight of each evaluation criterion.
Rsafe represents a safety reward and Lsafe represents the minimum safe distance.

The definition of Rsafe is illustrated in Equation (8). On one hand, if li is larger than or equal
to Lsafe, the collision between the ego vehicle and the surrounding vehicle is unlikely to
occur. In this case, Rsafe is set to be 1. On the other hand, if li is smaller than Lsafe, there is
the possibility of a collision. Thus, Rsafe is set as −K1 in this case, but no collision occurs.
Furthermore, if the safety distance is short enough so that the collision happens, Rsafe is
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set as −K2. In addition, the relation between K1 and K2 is K2 > K1 > 0. This is because a
greater penalty is deserved due to the collision occurrence.

Rsa f e =


1, li ≥ Lsa f e
−K2, collision

−K1, li < Lsa f e and no collision
(8)

Rcomfort refers to the comfort punishment shown in Equation (9). The velocity control expects
a smooth process from acceleration to deceleration. If consecutive actions are acceleration
and deceleration, the comfort punishment is negative.

Rcom f ort =

{
−∆at, if A =(AForAS)&last A = (BRorDS), or swap

0, else
(9)

Refficient represents a task completion efficiency reward. It effectively prevents the ego vehicle
from stopping at the stop line until there is no risk of collision in any case. Therefore, Refficient
is designed as the velocity of the ego vehicle, which is presented in Equation (10):

Re f f icient = v0 (10)

4.2. Driving Behavior Decision-Making Method Based on CR-DRQN

In POMDP, DQN fails to be a good approximation of state-action value function,
because Q(o, a; ω) 6= Q(s, a; ω). In this study, LSTM replaces the first full connection layer
of DQN. LSTM is an improved recurrent neural network. The original RNN is very sensitive
to short-term input because its hidden layer has only one state. However, the interval of
the related input state under sensor noise is too long to be learned by the original RNN.
This is called the long-term dependence problem. LSTM adds a cell to store the long-term
state and expands the whole state according to the time dimension. It solves the long-term
dependence problem that RNN cannot handle.

The input state of CR-DRQN is the collision risk between the ego vehicle and sur-
rounding vehicles. The construction of the CR-DRQN network is divided into three parts,
as shown in Figure 3. The first part is the LSTM layer, the second is a full connection
layer, and the last is the output layer. CR-DRQN outputs the state-action value of each
action. The action with the maximal state-action value is selected at each step. Activation
functions in the full connection layer are rectifier nonlinear activation functions (ReLU),
while LSTM uses tanh and sigmoid functions, and the output layer uses the linear function.
The pseudo-code of the CR-DRQN algorithm is presented in Algorithm 1.

Algorithm 1: CR-DRQN pseudocode

1. Initialize replay memory D with capacity N
2. Initialize online Q network with parameters ω randomly
3. Initialize target Q network with parameters ω− = ω

4. For episode =1:M do
5. Initialize observed state o1 = O(s1)
6. For t =1:T do
7. With probability ε select random action at, otherwise select at= argmaxaQ(φ(ot), a; ω)
8. Execute action at in emulator and get reward rt+1 and next observed state ot+1
9. Store transition (ot, at, rt+1, ot+1) in D

10. Set yj =

{
rj+1, if episode terminates at step j + 1

rj+1 + γmaxa′Q′(φj+1, a′; ω−), otherwise
11. Update network parameters ω by using the gradient descent of (yj −Q(φj, aj; ω))2

12. Every C steps reset Q′ = Q
13. End for
14. End for
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5. Simulation Results and Discussions

In this section, experiments were conducted to verify the effectiveness of the pro-
posed driving behavior decision-making method, compared with DQN [14], the combina-
tion of DQN and priority experience replay method (Prioritized-DQN) [28], DDQN [36],
and D3QN [35]. Firstly, the environment and parameter settings are described. Next,
the performance of the proposed method is revealed from the aspects of safety, the ability
of collision risk prediction, and comfort.

5.1. Experiment Settings

In this section, the simulation environment is built to realize CR-DRQN and con-
trast algorithms, in Linux-based python by the Keras framework [39]. Meanwhile, their
performances are compared at the disorderly intersection.

The initial velocity of the ego vehicle is 10 m/s (the velocity at the intersection is
limited to 8.3 m/s), while the velocities of the surrounding vehicles are randomly selected
from 10 m/s, 8 m/s, 6 m/s, 0. When the distance between the surrounding vehicle and the
intersection is more than 150 m, the ego vehicle cannot detect a surrounding vehicle.

Safety is the primary goal of vehicles driving at a disorderly intersection. Therefore,
the average value of deceleration is slightly higher than that of acceleration, which is set
as follows:

• If the ego vehicle takes the accelerate slowly action, acceleration a is +1 m/s2.
• If the ego vehicle takes the accelerate fast action, acceleration a is +3 m/s2.
• If the ego vehicle takes the decelerate slowly action, acceleration a chooses −2 m/s2.
• If the ego vehicle takes the brake action, acceleration a is set to −4 m/s2.
• If the ego vehicle takes the maintain action, acceleration a is 0.

Reward settings are as follows: Lsafe = 15, K1 = 5, K2 = 100. The decision period is
T = 0.1 s and the weight of each evaluation criterion is α1 = α2 = 1, α3 = 0.2.

Each training episode includes a series of decision steps with a period of 0.1 s. On one
hand, Figure 4a shows a relationship between the cumulative reward and training episodes.
The cumulative reward improves with the increase in training episodes and becomes stable
in the end. On the other hand, Figure 4b shows a relationship between the network’s loss
and update steps. The loss decreases gradually as the update steps develop. The loss comes
to convergence too. To conclude, both indicate that the system has reached a stable state.
That is, the ego vehicle learns to make decisions to avoid a collision with surrounding
vehicles and drives through a disorderly intersection safely.

5.2. Settings of CR-DRQN’s Network Layers and Neurons

The numbers of neural network layers and neurons are crucial factors for the network
training [39]. These all affect the performance of CR-DRQN. If the parameters are too few,
the neural network cannot come to convergence quickly. If there are too many parameters,
the neural network appears to have an overfitting phenomenon easily. Therefore, 16 sets of
commonly used network parameters are utilized to find a relatively better set of parameters.
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According to the design of the existing work [40] and the references [28,41,42], the num-
ber of network layers is set to 4–8, considering the input dimensions of the network. More-
over, the number of neurons in each layer is generally designed to be a power of 2 or
multiples of 10, and is halved layer by layer. The number of neurons in the last layer is the
dimension of the action space.

Table 2 shows the performance of passing through an intersection for an intelligent
lane vehicle under different network parameters. Q-value is the weighted sum of Rsafe,
Rcomfort, and Refficient. First, Rsafe stands for a safe distance from the point of collision. When
the safe distance is greater than the minimum safe distance, it returns Rsafe = 1. However,
Rsafe is negative as a punishment in the condition that the distance between the ego vehicle
and the environmental vehicle is less than the minimum safe distance or the collision occurs.
Then, Rcomfort guarantees a smooth driving velocity and provides a comfortable driving
experience. Finally, Refficient assures that the ego vehicle can drive through the intersection.
This also prevents the ego vehicle from slowing down to 0 in front of the intersection in
any condition, until there are no surrounding vehicles. It is reasonable to set Refficient for an
intelligent land vehicle.

The number of layers and neurons of each neural network is shown in Table 2. The net-
work with the 9th group of network parameters completes the decision-making task and
gains better performance than the others.

This study uses bootstrapped random to update the weights of CR-DRQN. All the
networks are trained by using the Adam algorithm with a learning rate of 0.001. The replay
memory has a size of 2000 and the update interval of the target network is 100. The discount
factor is set as 0.95 and the batch size for sampling is 32.

5.3. Performance of Comparative Experiments with Different Sensor Noise

A series of comparative experiments are conducted to illustrate the performance of
CR-DRQN from three aspects: safety, the ability of collision risk prediction, and comfort.
Among them, safety is first evaluated by the success rate of decision-making, because safety
is the most crucial indicator of driving behavior decision-making. Then, to explore the
reason for the high success rate, the ability of collision risk prediction is assessed. Finally,
the comfort of CR-DRQN is verified. In addition, to present the perceptual confidence
fluctuation, the experiments consider the probability of noise occurrence within 0–70%.
In detail, sensor noise is set by varying the difference between the detected positions of
surrounding vehicles and their actual values.
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Table 2. Settings of CR-DRQN’s parameters and corresponding training results.

SerialNumber Network Layers Network Parameters Rsafe Rcomfort Refficient Q-Value

1
4

64/32/16/5 −5 −0.2 442.7 83.34
2 128/64/32/5 9 −1.6 466.4 100.68
3 256/128/64/5 12 −1.4 447.8 100.26

4
5

64/32/16/8/5 3 −0.4 448.3 92.26
5 128/64/32/16/5 −4 −0.6 446.6 84.72
6 256/128/64/32/5 3 −6.4 444.8 85.56

7

6

128/64/32/16/8/5 3 −0.4 448.3 92.26
8 160/80/40/20/10/5 3 −0.4 448.3 92.26
9 256/128/64/32/16/5 30 −0.8 485.5 126.3

10 320/160/80/40/20/5 30 −1 485.5 126.1

11

7

256/128/64/32/16/8/5 −15 −11.6 439 61.2
12 320/160/80/40/20/10/5 15 −4.3 554.9 121.68
13 512/256/128/64/32/16/5 26 −0.5 474.7 120.44
14 640/320/160/80/40/20/5 6 −0.4 443.4 94.26

15
8

512/256/128/64/32/16/8/5 −3 −8.2 437 76.2
16 640/320/160/80/40/20/10/5 −9 −0.7 434.4 77.18

5.3.1. Safety Evaluation

In this study, the success rate is used to evaluate the safety of driving behavior decision-
making. With different probabilities of noise occurrence, the model evaluation experiments
are repeated 20 times, and each experiment contains 200 episodes. The experimental results
are shown in Figure 5. The success rates of DQN, Prioritized-DQN, DDQN, D3QN, and CR-
DRQN in decision-making decrease with the increase in probability of noise occurrence τ at
a disorderly intersection. This illustrates that τ plays a role in the experiments. Additionally,
the decline in the decision success rate of DQN exceeds that of DDQN when sensor noise
probability is more than 40%. This shows that DQN is weaker than DDQN in dealing with
the environment with many noises. Moreover, the result of D3QN is better than DQN and
DDQN, but worse than CR-DRQN. Although D3QN combines the advantages of dueling
DQN and DDQN, which can reduce the variance and solve the overestimation problem,
it does not have an advantage in the state input with noise. Further, the success rates of
CR-DRQN and Prioritized-DQN are almost the same, which are much higher than those
of DQN, DDQN, D3QN with a low probability of noise occurrence. However, Prioritized-
DQN’s success rate decreases obviously when the probability of noise occurrence is greater
than 30%, while the success rate of CR-DRQN is still high. This is because LSTM trains the
time-series input effectively and makes a critical effect under sensor noise. Furthermore,
a high success rate needs a high ability of collision risk prediction, especially in the case of
sensor noise occurrence. Therefore, the great performance of CR-DRQN in collision risk
prediction is verified in the next subsubsection.

5.3.2. The Ability of Collision Risk Prediction

The ability to predict collision risk has a significant impact on decision success. This
ability is reflected by the velocity change of the ego vehicle. The velocity of the ego vehicle
is recorded from the above safety evaluation experiments. In those experiments, decisions
of DQN, Prioritized-DQN, DDQN, D3QN, and CR-DRQN are successful. As shown in
Figure 6, with different probabilities of noise occurrence, the velocity of the ego vehicle
slows down before an intersection because it is affected by the safety reward Rsafe. When
surrounding vehicles leave the intersection, the ego vehicle accelerates to maximum velocity
under the influence of Refficient until the episode ends. In Figure 6, although DDQN is
aware of dangers ahead, deceleration action is brief. Then DDQN speeds up soon. This
demonstrates that DDQN has a poor ability to avoid a secondary collision. Moreover,
the result of D3QN is like DDQN. The intelligent land vehicle decelerates to about 8 m/s
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first but the deceleration is brief. This illustrates that D3QN has a poor capability to avoid
second collisions, too. In addition, in the first 4 s, the velocity of the ego vehicle based on
CR-DRQN drops to approximately 4 m/s while the velocities of DQN and Prioritized-DQN
are approximately 7 m/s and 6 m/s, respectively. This shows that the deceleration of
DQN and Prioritized-DQN are less than CR-DRQN in the first four seconds. Thus, the ego
vehicle keeps a higher velocity based on DQN and Prioritized-DQN before the intersection.
However, it is too difficult to avoid a collision with high velocity. To conclude, both DQN
and Prioritized-DQN have weak abilities of collision risk prediction. On the contrary,
an intelligent land vehicle based on CR-DRQN can drive through an intersection safely
with lower velocity before an intersection. This verifies that CR-DRQN’s ability to detect
collision danger is more outstanding than other algorithms. That is also why CR-DRQN’s
decision-making success rate is higher.
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When the environment is partially observable on account of sensor noise, the observed
states exhibit hysteresis and are different from the environmental states. In this case, there
is no collision risk warning from the state input, but collision risk exists. Because of weak
abilities to predict risks, DQN, Prioritized-DQN, D3QN, and DDQN are highly dependent
on the accuracy of environmental perception. Therefore, the success rates of decisions are
greatly affected by perception error owing to the sensors. Nevertheless, CR-DRQN trains
time series so that the ability of risk prediction is stronger than the other four algorithms.
Although the environment is perceived with different levels of noise, the success rate
of CR-DRQN decision-making is slightly affected. The decision-making performance of
CR-DRQN in a partially observable environment is superior to DQN and its variants. That
is, the probability of decision failure is greatly reduced in the condition of sensor noise.

5.3.3. Comfort Evaluation

Here, the comfort of decision-making is tested by the frequency of acceleration change.
The acceleration of an intelligent land vehicle is recorded from the above safety evaluation
experiment with successful decisions. Acceleration curves with decision steps under
different probabilities of noise occurrence are shown in Figure 7. This shows apparently
that the acceleration fluctuation of CR-DRQN is smoother than other algorithms at different
probabilities of noise occurrence. The velocity control of CR-DRQN is more stable; thus,
driving comfort is enhanced.
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To intuitively show the frequency of acceleration change, Table 3 records the average
change times of acceleration based on CR-DRQN and other algorithms at different proba-
bilities of noise occurrence under 30 experiments. The acceleration change of CR-DRQN
is less than 16 times, while others are more than 22 times, even up to 44 times. With the
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increase in probability of noise occurrence, CR-DRQN has a great ability to maintain a low
frequency of acceleration change. However, DQN and its variants keep a high frequency of
acceleration change. Because of sensor noise, the observed states are not accurate. In this
case, it is hard for an intelligent land vehicle to make the right predictions. The ego vehicle
may predict collision risk sometimes or detect danger that passes soon. This leads to a high
frequency of acceleration change. Nevertheless, CR-DRQN can keep the low frequency of
acceleration change because it can train the time series by LSTM. CR-DRQN guarantees the
safety and comfort of decision-making for intelligent land vehicles.

Table 3. Average change times of the ego vehicle’s acceleration at different probabilities of noise
occurrence after 30 experiments.

Noise Probability 10% 20% 30% 40% 50% 60%

DQN 33 36 28 36 40 25
Prioritized-DQN 40 37 40 33 41 44

DDQN 38 32 35 32 32 38
D3QN 22 23 32 29 32 40

CR-DRQN 9 12 15 16 16 16

To sum up, the above experiments verify the effectiveness of CR-DRQN in driving
behavior decision-making of intelligent land vehicles at the disorderly intersection. CR-
DRQN successfully predicts collision risk, makes driving behavior decisions on time,
and passes an intersection quickly after collision risk is eliminated. At the same time, when
there is sensor noise in the environmental state input, decision performance is still high.

6. Conclusions

At a real disorderly intersection, the observed states are different from the environ-
mental states owing to sensor noise. This easily causes a partially observable environ-
ment and decision failure. In this study, a collision relationship-based driving behavior
decision-making method for an intelligent land vehicle via DRQN (CR-DRQN) is proposed.
The input of CR-DRQN is defined as the collision relationship between intelligent land ve-
hicles and other vehicles to enhance the generalization of the input state. Then, CR-DRQN
uses LSTM to replace the first full connection layer of DQN, with the ability of training
time series to improve the danger prediction ability under sensor noise. Finally, a series of
experiments verify that CR-DRQN shows better performance than traditional DQN and its
variants, in the aspect of safety, ability of risk prediction, and comfort.

In future work, we will have an intelligent land vehicle learn to make complex decision-
making decisions with expected trajectories based on reverse reinforcement learning.
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