
����������
�������

Citation: Alaa El-deen Ahmed, R.;

Fernández-Veiga, M.; Gawich, M.

Neural Collaborative Filtering with

Ontologies for Integrated

Recommendation Systems. Sensors

2022, 22, 700. https://doi.org/

10.3390/s22020700

Received: 8 December 2021

Accepted: 14 January 2022

Published: 17 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Neural Collaborative Filtering with Ontologies for Integrated
Recommendation Systems
Rana Alaa El-deen Ahmed 1,*, Manuel Fernández-Veiga 2 and Mariam Gawich 3

1 Business Information System, Arab Academy for Science Technology and Maritime Transport,
Cairo B-2401, Egypt

2 atlanTTic, Universidade de Vigo, 36310 Vigo, Spain; mveiga@det.uvigo.es
3 Centre de Recherche Informatique, Université Française en Egypte (UFE), Cairo 1029, Egypt;

mariam.gawish@ufe.edu.eg
* Correspondence: ranaalaa@aast.edu

Abstract: Machine learning (ML) and especially deep learning (DL) with neural networks have
demonstrated an amazing success in all sorts of AI problems, from computer vision to game playing,
from natural language processing to speech and image recognition. In many ways, the approach
of ML toward solving a class of problems is fundamentally different than the one followed in
classical engineering, or with ontologies. While the latter rely on detailed domain knowledge and
almost exhaustive search by means of static inference rules, ML adopts the view of collecting large
datasets and processes this massive information through a generic learning algorithm that builds
up tentative solutions. Combining the capabilities of ontology-based recommendation and ML-
based techniques in a hybrid system is thus a natural and promising method to enhance semantic
knowledge with statistical models. This merge could alleviate the burden of creating large, narrowly
focused ontologies for complicated domains, by using probabilistic or generative models to enhance
the predictions without attempting to provide a semantic support for them. In this paper, we present
a novel hybrid recommendation system that blends a single architecture of classical knowledge-
driven recommendations arising from a tailored ontology with recommendations generated by a
data-driven approach, specifically with classifiers and a neural collaborative filtering. We show
that bringing together these knowledge-driven and data-driven worlds provides some measurable
improvement, enabling the transfer of semantic information to ML and, in the opposite direction,
statistical knowledge to the ontology. Moreover, the novel proposed system enables the extraction of
the reasoning recommendation results after updating the standard ontology with the new products
and user behaviors, thus capturing the dynamic behavior of the environment of our interest.

Keywords: recommendation systems; neural collaborative filtering; ontologies; deep learning;
retail dataset

1. Introduction

The amount of information found on web pages and social networks has increased
dramatically in recent years as the Internet has grown. As a result, even while users
have access to more information, it is becoming increasingly challenging to match their
demands when it comes to providing information relevant to their interests. The rise
of the Internet has also accelerated the spread of e-services across a variety of online
platforms, with the primary benefit of providing products and services to consumers who
have not yet purchased them anywhere and at any time. With so much data and services
available, it is challenging not only for users to identify products they are interested in
fast, but also for e-commerce and similar systems to recommend the product from the data.
Recommendation systems (RSs) [1] are decision-support information systems created to
assist users in locating things that fit their interests from the vast variety of choices [2,3].

Sensors 2022, 22, 700. https://doi.org/10.3390/s22020700 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22020700
https://doi.org/10.3390/s22020700
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5088-0881
https://orcid.org/0000-0002-5136-3464
https://doi.org/10.3390/s22020700
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22020700?type=check_update&version=2

Sensors 2022, 22, 700 2 of 26

There are three main sets of techniques for building personalized RSs: ontology-
based [4,5], filtering by matrix factorization (MF) [6–10], and machine learning (ML) [11,12].
The common premise for all of them is trying to predict new items that match the users’
preferences, revealed through their past purchases or by means of explicit ratings. However,
these approaches differ fundamentally: ontology-based systems use a formalized ontology
(a conceptual graph of entities and their mutual relationships) suited to the specific domain
for rule-based reasoning; MF attempts to discover the low-dimensional latent factors
(hidden state variables) in the user–item preference matrix; ML estimates a statistical
predictive model from the collected data. While these methods have shown effectiveness
and accuracy in constructing RSs, all are based on a fixed ground truth (the dataset)
captured at a given time instant, so it is difficult to recommend diversified, personalized
products since the recommendations are based on past observed purchase history, and it is
not possible to take advantage of the change in users’ preferences with time, their drift [13],
because the computational load for building the model is often too large. For instance,
ontologies have to follow a slow and complex synthesis process, and the aid of external
experts is required [1]; ML needs large datasets and long training times to learn a precise
statistical model, and MF runs in time O(n3) at least, where n is the number of users. MF
methods suffer also from the sparsity problem [14] (inaccurate inferences when new users
or products are added), and ML methods exploit the statistical correlations independently
of the logical relationships among user–items.

Though a hybrid RS (e.g., [15,16]) that combines two or more of the usual approaches
seems intuitively more robust and able to tackles these problems, the drift of the users’
preferences with time cannot be tackled by hybrid RSs, yet, as long as the dataset used to
build the system is not allowed to evolve. For this, a key property is that the changes in the
dataset can be introduced automatically into an existing model and that the computational
task of updating the model is low.

This paper presents a hybrid recommendation system (adapted for online retail mar-
kets) in which a dynamic ontology and a neural network classifier [17–19] work jointly to
generate accurate recommendations for future purchases. The system differs from other
works that attempt to incorporate semantics into the neural network (e.g., [20,21]) in that
we allow the semantic representation to evolve with time, and in that, we use both item and
user information to reveal the latent factor with the neural network. The main contributions
of our work are:

• We propose a new ontology-based RS where the ontology is dynamically updated and
evolved to capture the semantic relationships between users and products. In contrast
to other knowledge-based systems, the evolution of the ontology is built automatically
without the participation of experts;

• The novel proposed system enables the extraction of the reasoning recommendation
results after updating the standard ontology with the new products and user behaviors;

• The proposed RS can be integrated seamlessly with other collaborative filtering and
content-based filtering RSs;

• The proposed methodology is able to provide better recommendations, aligned with
the current preferences of users.

The rest of the paper is organized as follows. Section 2 briefly introduces the tools
and techniques used in our work, i.e., recommendation systems, neural collaborative
filtering (NCF), and generalized matrix factorization (GMF). In Section 3, we review the
related work. Section 4 gives an overview of the hybrid architecture of our proposed
recommender and describes the main processing steps. The detailed architecture of the
neural collaborative filtering component is presented next in Section 5, and Section 6
contains the experimental evaluation results of the system, including the description
of the dataset, its preprocessing, the application of standard classification techniques,
and their combination with the proposed neural network and the information provided
by the dynamic ontology. Section 7 presents a separate evaluation of the personalized
recommendations, and the paper makes some concluding remarks in Section 8.

Sensors 2022, 22, 700 3 of 26

2. Background
2.1. Recommending Systems

The two classical forms of creating RSs are collaborative filtering (CF) and content-
based filtering (CBF). CF involves recommending products and items to active users
who liked or purchased them in the past by comparing current user ratings (implicit
or explicit) for things such as movies or products to those of similar users, which are
nearest neighbors determined via some appropriate distance measure. This is used to
provide recommendations for objects that have not yet been rated or seen by the active
user. User-based and item-based approaches are the two most common types of this
technique [14,22–25]. CBF promotes an item to users based on their interests and also the
product description of their past purchase. Because of this, the main disadvantage of CBF
is that the system’s recommended products are likely to be extremely similar to those that
the active user has already purchased.

Generally, collaborative filtering involves matching the current user ratings for objects
such as movies or products with those of similar users (nearest neighbors) to produce
recommendations for objects not rated or seen by the active user. There are two basic
variants of this approach, which are user-based and item-based collaborative filtering.
Traditionally, within the previous category, the primary technique used to accomplish this
task is the standard memory-based K-nearest-neighbor (KNN) classification approach. This
approach compares a target user’s profile with the historical profiles of other users to find
the top K users who have similar tastes or interests [26]. Other common forms of solving
the CF problem include MF (with many variants [22–24,27]) and ML [11,12,28].

Content-based filtering RSs [9,12,29] promote an item to users based on their interests
and the description of the item. Content-based recommendation systems could be used
to propose web pages, news articles, restaurants, television shows, and objects for sale,
among other things. Content-based recommendation systems share a method for: (i) de-
scribing the items that may be recommended; (ii) creating a user profile that describes the
types of items the user likes; (iii) comparing items to the user profile to determine what to
recommend, despite differences in the details of the domain systems [26].

2.2. Neural Collaborative Filtering

As highlighted above, the key step in CF is to find a good approximation to the
user–item interaction function directly from the observed data. Latent matrix factorization
postulates to this end a simple linear projection operator on a lower-dimensional space
embedded in the feature space; yet, linear interactions might not be powerful enough to
capture or replicate a complicated interaction function. An actual solution to this trap
consists of replacing the linear latent factors by a more general representation for nonlinear
user–item models. Currently, it is widely known that neural networks can faithfully learn
any functional input–output relationship between observables and hidden variables [30],
provided several mild technical conditions hold (basically, a bounded domain, an activa-
tion function under some general assumptions, and a growing number of nodes). The
approximation is arbitrarily good if the width and depth of the neural network are un-
constrained as well [31,32]. In other works, for a broad class of functions, deep neural
networks are universal approximators, a very powerful result that can be established by
first proving that neural networks can approximate well smooth and non-smooth simple
functions (e.g., sawtooth functions and polynomials); then, these building blocks are used
to approximate arbitrary functions by virtue of well-known results in functional analysis
such as the Weierstrass approximation theorem or Lagrange’s interpolation. Further details
were discussed at length in [32].

In view of this theoretical support, neural collaborative filtering, sparked by the recent
influential paper [28], advocates quite naturally the use of a neural network in place of
matrix factorization for modeling the interaction function f (·), under the intuition that the
accuracy shown by neural network technology in an impressive array of machine learning
tasks can also be exploited in CF. In NCF, the reduction in dimensionality is thus attained

Sensors 2022, 22, 700 4 of 26

through a sequence of layers in a neural network [19], and the similarity among the latent
factors is no longer restricted to be measured as a linear projection. More precisely, in NCF,
the learned function can be written as the output of a neural network ΦNCF : Rn0 → RnL of
L layers:

f (H, G) = ΦNCF =

W1, L = 1
W2 ◦ σ ◦W1, L = 2
WL ◦ σ ◦WL−1 ◦ · · · ◦ σW1, L ≥ 3

(1)

where Wi : Rni−1 → Rni , Wi(x) := Aix + bi are affine mappings giving the outputs of the i-
th layer for inputs x ∈ Rni−1 coming out of the previous layer, ◦ denotes the composition of
mappings, and σ(·) is a nonlinear activation function acting componentwise. Ai ∈ Rni×ni−1

and bi ∈ Rni are the parameters between layer i − 1 and layer i. There is a plethora of
activation functions proposed in the literature, but perhaps the most popular is still the
rectified linear unit (ReLU) σ(x) := max(0, x). Note that Ai is the connection or weight
matrix connecting two consecutive layers of the neural network and that bi is the bias; these
are known as the edge weights and node weights of the network, respectively. Note also that
σ(x)− σ(−x) = x, σ(x) + σ(−x) = |x|, and σ(λx) = λσ(x) for all λ ≥ 0; indeed, ReLU is
no other thing than an ideal rectifier (a diode, in the language of electrical engineers).

Training in a neural network is performed by means of the optimization of a loss
function through iterated backpropagation, i.e., the optimal edge and node weights (Ai, bi)
are computed backwards, from the output layer to the input layer. This is possible since
the local gradient of the loss function with respect to the weights at layer i can be com-
puted, so a general gradient descent sequence of steps can be followed. However, since
the number of parameters in (Ai, bi) can easily be too large, stochastic gradient descent
(SGD) [33] substitutes the gradient by an empirical expectation calculated on the basis of a
few training points (a batch), randomly sampled. The reduction in complexity with SGD is
thus very substantial.

In practical applications, other numerical problems might arise: these are due to the
unboundedness and non-differentiability of ReLU at zero, but both can be easily solved.
For inferring probabilities, as is the case in CF, the typical squared loss function is better
replaced by log-loss, namely the cross-entropy between the predicted output and the
desired values.

2.3. Generalized Matrix Factorization

Since neural networks are universal approximators, NCF trivially generalizes matrix
factorization as follows:

• One-hot encoding of users and items: The input to the NCF is a pair of unit vectors
ei ∈ R|I| and ej ∈ R|U | (where I is the set of items, U is the set of users, and | · | denotes
the number of elements of a set), which encode the identity of item i ∈ I and user
j ∈ U , respectively. ei (resp., ej) have a single one at coordinate i (resp., j), and their
remaining elements are zero. These vectors are column-stacked ei � ej := [eT

i eT
j]

T ,

where T denotes the transpose of a vector, and are input to the network;
• The weight matrix is:

A1 = H⊗G, (2)

where ⊗ is the Kronecker product between two matrices, and the bias b1 = 0. So
A1(ei � ej) = gT

j hi for all i, j;
• The (output) activation function is the identity mapping, i.e., σ = I. Since matrix

factorization is linear, a nonlinear activation function is completely unnecessary;
• The loss function is the mean-squared error (MSE).

These choices make the neural network ΦGMF discover the latent matrices G and H
with the backpropagation algorithm and then act linearly on their inputs just multiplying
the inner latent factors.

Sensors 2022, 22, 700 5 of 26

If, instead of using the identity activation function, one substitutes a nonlinear activa-
tion response ρ(·), while keeping the one-hot encoding and the internal Kronecker product,
and uses as the loss function a proper `p-norm, the result is an architecture that can operate
as a generalized matrix factorization with a nonlinear response, encompassing many different
types of decomposition.

2.4. Neural Matrix Factorization

Neural matrix factorization (NMF) is defined as the combination in a single recom-
mendation system of GMF and NCF. Specifically, NMF builds a system that maps the input
embeddings ei, ej to the outputs according to:

Φ(ei, ej) = ΦNCF(ei, ej) + ΦGMF(ei, ej). (3)

In [28], it was suggested that the input embeddings be split between the two parallel
computation paths, that is,

ei = (ei1, . . . , eip, ei(p+1), . . . , eid) := (ei,[1:p], ei,[p+1:d]), (4)

and similarly for ej, so that

Φ(ei, ej) = ΦNCF(ei,[1:p], ej,[1:p]) + ΦGMF(ei,[p+1:d], ej,[p+1:d]); (5)

yet, there is no loss of generality in using (3) always. Generalizations of (3) to other combi-
nation rules are straightforward, so, for instance, one could use Φ = max{ΦNCF, ΦGMF}
if the outputs are probabilities, or a weighted average Φ = π0ΦNCF + π1ΦGMF for some
prior (π0, π1). In the end, as in many other algorithms used in ML, (3) can be regarded as a
form of ensemble averaging for only two different classifiers (recommenders, in our case).
NMF is used in this paper for the fusion of ontology-based recommendation systems and
neural network recommenders.

3. Related Work

Ontology-based recommenders are one sort of knowledge-based RS that has received
attention when referring to better active user recommendations. An ontology—an orga-
nized set of concepts and categories in a subject matter or domain that formalizes their
characteristics and relationships among them—can be used to combine diverse data and
provide a first direction for recommendation preferences. Ontology models are used in
an ontology-based RS for user profiling, personalized search, and Internet browsing [4,5]
and support the expansion of RSs into a more diverse environment, allowing knowledge-
based methods to be combined with traditional machine learning algorithms. Commercial
RSs often include some simple product ontologies that can be used later via heuristics or a
huge community of user’s actively rating content suited for collaborative recommenda-
tions. Both data and ontological background information can be represented in defined
formats on the Semantic Web, where standard languages are used to represent metadata.
Nonetheless, constructing an ontology-based RS is an expensive procedure that involves
extensive knowledge expertise and handling of enormous datasets.

As for their use in RSs, ontologies have the advantage of an explicit modeling of
semantic information from which logical inferences can be drawn using some standard
rule-based inference system, such as Fact++ [34]. The system of concepts and qualitative
relationships among them can be easily tracked and represented with graphical software
tools such as Protégé editors (https://protege.stanford.edu, accessed on 30 November 2021)
and several existing plugins for visualization and functional extension, one of these being
the cellfie plugin used in this paper for the semi-automatic update of an ontology. Thus,
ontologies enable a rich and detailed semantic modeling of information as a loosely struc-
tured system of intertwined concepts; yet, from a computational point of view, there exist
some disadvantages in using them as the fundamental form of knowledge representation,

https://protege.stanford.edu

Sensors 2022, 22, 700 6 of 26

which limits their usefulness in RSs. First, ontologies are highly specific to a domain realm,
usually very narrowly focused. As such, building an ontology requires typically the partici-
pation of human experts for conceptualizing the main entities. In other words, building
an ontology is far from being an automatic process; on the contrary, there is some risk of
introducing bias due to the experts’ view of the field. Secondly, the ontology constitutes
only an information base to which a set of complete inference rules are to be applied to
deduce the implied consequences. Generally, these derived facts grow exponentially with
the size of the ontology and quickly become unmanageable. Thirdly, building the ontology
itself is costly in time and sometimes in access to experts. As a consequence, updating an
ontology with new information frequently means rebuilding it from scratch, which is not
realistic for a big RS such as on most websites or e-commerce sites.

In this paper, we used dynamic ontologies, i.e., ontologies that evolve with time, in a
more general architecture for RSs, in combination with NCF. Our main purpose was to
characterize the extent to which semantic modeling with ontologies and contemporary
CF (namely, NCF) can complement each other by extracting at the same time statistical
information and semantic knowledge from the same dataset in a semi-automatic way that
overcomes most of the complexity involved in re-creating the ontology or re-training the
NCF. In the rest of this section, we briefly review the related work on hybrid RSs and
(neural) CF most related to our approach.

The work in [28] pioneered the research in merging neural networks and CF for novel
RSs. The main idea, as mentioned previously, is to replace the linear matrix factorization
commonly used in CF by a more general and potentially more effective function approxima-
tor: a (deep) neural network. The experiments reported in [28] showed a clear advantage
when using this approach over the classical LMF that supports CF. A word of caution was
introduced recently by [35], who repeated the experiments and found that, with a proper
hyperparameter setting, LMF has similar or superior performance to NCF. In other words,
the expressive power of neural networks appears not to be essential for modeling purposes.
Therefore, the question is still open about the benefits and performance of using neural
networks for inferring recommendations.

Despite the intriguing competitiveness, many other works have explored the use of
deep networks for CF after [28]. For example, Reference [20] used two parallel neural
networks joined in the last layers for learning item characteristics and user behavior
together from text reviews. The first network works toward understanding users’ behavior
from their reviews, while the second one understands the characteristics of the item from
the reviews that are written on it. The last layer joins the two networks together, allowing
latent factors learned for users and items to collaborate with each other in a similar way as
with factorization techniques. Datasets named Yelp, Amazon, and Beer were used to test
the algorithm, and the results of DeepCNNoutperformed all baseline RSs by an average
of 8%. A comparison between neural collaborative filtering and matrix factorization was
conducted in [35].

Reference [36] proposed an approach called neural semantic personalized ranking
(NSPR) that combines the effectiveness of deep neural networks and pairwise learning.
The semantic representation of the items that were combined with latent factors learned
from implicit feedback was performed by NSPR to address the item cold-start recommenda-
tion task, specifically. Their system introduces two alternatives based on logistic and probit
functions. The experiment of the proposed approach was performed on two datasets (Net-
flix and CiteuLike) and applied MF and topic-regression-based CF. The experiment proved
that NSPR expressively outperformed the state-of-the-art baselines. The idea proposed
by [20] for their innovative context-aware recommendation model was to use a convolu-
tional matrix factorization (ConvMF) that incorporates convolutional neural networks into
probabilistic matrix factorization. This had a clear effect on the sparsity problem. Again,
the proposed model after integrating CNN into MF under a probabilistic perspective was
able to improve the accuracy of the rating prediction in addition to capturing the contextual
information of documents.

Sensors 2022, 22, 700 7 of 26

An example of a hybrid system composed of ontologies and CF is [33], applied to
MOOCs. Their RS combines item- and user-based CF with an ontology to recommend for
online learners personalized MOOCs within MOOC platforms. Here, the ontology was
used in order to present a semantic explanation about the learner and MOOC that would
be fused in the 11 recommendation method that would help enhance the personalization
recommendation for the learner. The cold-start problem of the RS can be released by
the use of the proposed hybrid technique by using the ontological knowledge before the
initial data.

The calculation of the similarity between ontologies has also been addressed via
machine learning techniques, as in [37,38]. The approach in this case was to perform a
direct embedding of the graph ontology to simplify the detection of the similarity between
the graphs and, next, to use the embedding as the input to a statistical learning algorithm.
The main problem with those embeddings is the large size of the base ontology graphs,
which for our application domain prevent the use of this sort of mapping.

4. Overview of the Proposed Recommendation System Architecture Based on ML,
NCF, and Ontology Evolution

This section introduces the proposed recommendation system architecture based on
machine learning, neural collaborative filtering, and ontology evolution, as well as the
proposed neural collaborative filtering with ontologies framework based on GMF and NCF.
The proposed system architecture is depicted in Figure 1 [5] and comprises four phases.
Phase 1 ϕ1 (top left of the figure) is the online retail dataset’s machine learning process;
Phase 2 ϕ2 (top middle) is the pre-evolution ontology of the online retail dataset; Phase 3
ϕ3 (center part of the Figure) is the ontology after the evolution of the online retail dataset;
finally, Phase 4 ϕ4 (top right) is the neural collaborative filtering. The arrows represent the
flow of information processing among the different computation steps:

• Phase ϕ1 of the ML process starts by loading the online retail dataset for a three-year
transaction and consulting a domain expert for the feature selection within the dataset.
The feature selection is further complemented in Phase 2 with ML techniques, thus
without subjective criteria. Along with that, the dataset is preprocessed and cleaned
by removing noisy data or missing values. The dataset is then used for training, and
the classification algorithm is built for the online retail domain. After that, the model
is evaluated by calculating the accuracy, and the ML-based product suggestions are
presented to the user after applying the hybrid recommendation techniques based on
CF and CBF;

• Phase ϕ2 includes the building of the online retail ontology before the evolution.
The features selected in the machine learning process that give high accuracy are
used as new inputs for enriching the old online retail ontology, which is built in a
semi-automatic way with the standard cellfie plugin from the old dataset. This dataset
records the users’ past purchases and behavior. The Fast Classification of Terminolo-
gies (Fact++) [34] reasoning plugin is applied to the old online retail ontology (before
the evolution), which recommends the products for users depending on their similar
characteristics, preferences, and past transactions by applying CF and CBF implicitly;

• Phase ϕ3 entails the evolution of the old online retail ontology by using the 2008 and
2009 versions of the database; this evolution process takes place by checking both
the old online retail ontology and the 2008 and 2009 database, then adding the new
individuals to the old online retail ontology. As a result of this, the evolved online
retail ontology is executed. The Fact++ reasoning plugin is applied to the evolved
online retail ontology as in Phase 2, so new products suggestions will be shown to
users according to the new purchases and behaviors. The two recommendations
(before and after the evolution) are then compared to highlight the changes in the
recommendations. Experimental results and examples are shown in Section 6. After-
wards, the evolved online retail ontology is extracted to apply to it the ML algorithms
and obtain product suggestions to the user using hybrid recommendation techniques;

Sensors 2022, 22, 700 8 of 26

• Phase ϕ4 applies NCF to the dataset extracted from the database, and recommenda-
tions are generated for the user both before and after adding the user feature layer
(UF). The last step is the evaluation step. In order to execute the evaluation of the
evolved ontology, two methods are used. The first one is the calculation of the preci-
sion and recall by a domain expert; the second method is implementing the quality
features dimension by calculating the cohesion and conceptualization. Subsequently,
the reasoning results of the old and the evolved online retail ontology are re-evaluated
by the domain expert by calculating the precision and recall.

Apply

Extracted

Extracted

Apply

Features
extracted

Semi-automatic ontology
building

User past purchases
Online retail old

ontology

Online retail evolved
ontology

User new
purchases

C
he

ck
 e

xi
st

en
ce

Neural collaborative
filtering

Dataset selection

Feature selection
Build model

Evaluate model

Evaluation
Expert eval

Quality features

Apply

Ap
pl

y

NCF product suggestion from dataset extracted from database without (UF) layer

NCF product suggestion from dataset extracted from database with (UF) layer

NCF product suggestion from dataset extracted from evolved ontology without (UF) layer

NCF product suggestion from dataset extracted from evolved ontology with (UF) layer

Pr
od

uc
t s

ug
ge

st
io

n
af

te
r e

vo
lu

tio
n

Product suggestion before evolution

Reasoning suggestion before/after
evolution

View product suggestion after
evolution

Vi
ew

 p
ro

du
ct

 s
ug

ge
st

io
n

be
fo

re
 e

vo
lu

tio
nCBF

CF

View

View

View

View

View
UserH

yb
rid

 re
co

m
m

en
da

tio
n Hybrid recommendation

evolved dataset

Figure 1. System architecture: Phase ϕ1 is a pre-classification used for feature extraction (top left,
machine learning process); Phase ϕ2 uses the classification results and the features to build the base
retail ontology (middle and top right blocks); Phase ϕ3 derives the evolved ontology after adding
the new information (center part); Phase ϕ4 uses NCF (middle left block) jointly with CF and CBF
(top right) to build the ensembled recommendations.

Figure 2 presents the implementation steps that the proposed (NCFO) framework
follows. The proposed NCFO framework includes five steps: the first section in the
framework includes the two datasets used in the experiment; the first one is extracted
from Contoso database, and the second dataset is extracted from the online retail evolved
ontology. Then, the framework starts with its steps. First the preprocessing process is
performed on both datasets. Second, the GMF method is used to formulate the proposed
NCFO framework by applying the dot product between the MF user id and MF product
id embedding vectors in addition to the MLP, which also uses the MLP user id and MLP
product id embedding vector with the new layer of the user feature layer (UF) as the inputs
for the MLP presented in the third step. Then, the three paths are concatenated with each
other to form the proposed NCFO framework in the fourth step. Lastly, the fifth step is the
evaluation, which occurs on both datasets before adding the user feature layer and after
adding it.

Sensors 2022, 22, 700 9 of 26

Figure 2. NCFO framework: the original and evolved databases are preprocessed first to encode the
features. These are later input to a generalized matrix factorization and a neural collaborative filter to
obtain the recommendations. The evaluation block measures the performance of the whole system.

5. Neural Collaborative Filtering Framework with Ontologies

The proposed NCFO framework for our retail market recommender is composed
of the ensemble union of GMF and NCF, that is generalized matrix factorization and
collaborative filtering, with a neural network as the function approximator. This is the
main computation in Phase ϕ4. The GMF block in the proposed architecture receives
as the input the item and user embeddings (their ids, in simple one-hot encoding); in a
parallel branch of computation, the NCF block takes as the inputs both the user and item
embeddings, and the subset of features for the user id (user features (UFs)). The complete
system architecture is depicted in Figure 3, which shows three internal blocks: the NCF
part ΦNCF(·) (bottom part in orange), the GMF part ΦGMF(·) (middle section, in blue),
and the novel deep neural network for integrating the ontology part (top section, in green),
encoded as in (4). Each block shows its component layer, the input/output sizes, and the
type of layer.

As seen in the figure, the UF is converted at the input layer to a sparse representation
with one-hot encoding, before undergoing the remaining steps. Next, all the embedded
input vectors (user, item, and UF) are processed by several layers of a neural network. Note
that one branch of this union network implements the generalized matrix factorization
approach, while the complementary branch works on the UF by applying a conventional
neural network sequence of layers with a decreasing number of nodes in each layer. This
second path of computation has naturally more layers than the GMF counterpart, as ex-
pected, since the UF encloses more richness than the latent factor modeling upon which the
GMF works. The interaction between the two paths of prediction/classification happens
mainly in the last (output) layer, where the inner representations found by each component
are merged (by concatenation) and passed to the last hidden layer.

For the user and item embeddings, the dense neural layers have a decreasing number
of units, in powers of two {128, 64, 32, 16, 8, 4} and use ReLU as the activation function.
The user features follow a deeper neural network with dense layers having {256, 1024, 128, 64,
32, 16, 8, 4} units in each layer, also with ReLU. Note that, in both cases (except the expan-
sion layer for the UF), the dropout factor was set to 0.5 for the connections between two
consecutive layers. The activation function for the last (output) layer is sigmoid, and the
loss function chosen was the binary cross-entropy, optimized via the Adam algorithm with
a learning rate of 0.001. For training, the batch sizes were {32, 64, 128}, and the number of
epochs was set to {100, 200, 400}. Training was performed for only a subset of the users,
as the dataset was large, and testing with the Adam, Adagrad, and RMSprop optimizers.

Sensors 2022, 22, 700 10 of 26

output:

input:

output:
user_id: InputLayer

[(None,256)]

[(None,12)]
user_ff0: Dense

[(None,256)]

[(None,12)]

input:

output: [(None,128)]

[(None,)] input:

output: [(None,128)]

[(None,)]

Embedding Embedding [(None,128)]

[(None,)]

[(None,128)]

[(None,)]

Embedding Embedding
dropout_6: Dropout

[(None,256)]

[(None,256)]

input:

output:
flatten_7: Flatten

[(None,128)]

[(None,128)] input:

output:
flatten_6: Flatten

[(None,128)]

[(None,128)]
flatten_5: Flatten

[(None,128)]

[(None,128)]
flatten_4: Flatten

[(None,128)]

[(None,128)]
user_ff1: Dense

[(None,1024)]

[(None,256)]

input:

output: [(None,256)]

[(None,128) (None,128)]
multiply_1: Multiply

[(None,128)] [(None,1)]

[(None,128)][(None,128) (None,128]
dropout_7: Dropout

[(None,1024)]

[(None,1024)]

layer0: Dense
[(None,128)]

[(None,256)]
user_ff2: Dense

[(None,128)]

[(None,1024)]

[(None,128)]

[(None,128)]

user_ff3: Dense
[(None,64)]

[(None,128)]

dropout_9: Dropout
[(None,64)]

[(None,64)]

user_ff4: Dense
[(None,32)]

[(None,64)]

[(None,32)]

[(None,32)]

user_ff5: Dense
[(None,16)]

[(None,32)]

[(None,16)]

[(None,16)]

user_ff6: Dense
[(None,8)]

[(None,16)]

[(None,8)]

[(None,8)]

user_ff7: Dense
[(None,4)]

[(None,8)]

[(None,4)]

[(None,4)]

input:

output: [(None,137)]

input:

output:
interaction: Dense

[(None,1)]

[(None,137)]

user_f: InputLayer
[(None,12)]

[(None,12)]

Integration of user features

output: [(None,)]

[(None,)]
item_id: InputLayer

input:

mlp_item_embedding: mlp_item_embedding:

concatenate_2: Concatenate

Neural collaborative filtering Generalized Matrix Factorization

mlp_user_embedding:

dot_1: Dot

mlp_user_embedding:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

dropout_8: Dropout
input:

output:

input:

output:

input:

output:

input:

output:

dropout_10: Dropout
input:

output:

input:

output:

input:

output:
dropout_11: Dropout

input:

output:

dropout_12: Dropout
input:

output:

input:

output:

input:

output:
dropout_13: Dropout

concatenate_3: Concatenate
[(None,128) (Node,1) (Nde,4) (Node,4)]

[(None,4)]

[(None,4)]

layer5: Dense
[(None,4)]

[(None,8)]

[(None,8)]

layer4: Dense
[(None,8)]

[(None,16)]

[(None,16)]

[(None,16)]

layer3: Dense
[(None,16)]

[(None,32)]

dropout_19: Dropout
input:

output:

[(None,8)]
dropout_18: Dropout

input:

output:

input:

output:

input:

output:

output:

input:
dropout_17: Dropout

output:

input:

[(None,32)]

[(None,32)]

layer2: Dense
[(None,32)]

[(None,64)]

[(None,64)]

[(None,64)]

layer1: Dense
[(None,64)]

[(None,128)]

dropout_16: Dropout
output:

input:

output:

input:

dropout_15: Dropout
output:

input:

output:

input:

[(None,128)]

[(None,128)]
dropout_14: Dropout

input:

output:

input:

Figure 3. Full architecture and components of the proposed NMF hybrid classifier, part of Phase ϕ4.
There are three parallel processing paths, neural collaborative filtering (orange), generalized matrix
factorization (blue), and the ontology embedding deep network (green).

6. Experimental Results

We now report on the implementation of the proposed algorithm and the experimental
results obtained with the dataset. First, the preprocessing step to embed the classification
techniques into the hybrid recommendation system is explained, so that this can be later
used in the CF and CBF recommendations. Next, we present the implementation of
the proposed novel neural collaborative filtering framework with ontology integration
(NCFO). This proposal extends the recently developed neural collaborative framework [28],
which already mixes CF and neural networks, with the information modeled with the
ontology. We describe the modifications and advantages over the basic NCF approach
and give an experimental performance evaluation. All the results were obtained running
the experiments on a computer with an Intel(R) core i7 3.2 GHz processor with six cores
and 16 GB RAM. The ML algorithms were implemented in Python 3.7 on the TensorFlow
2.0.0 and Keras 2.3.1 libraries. The tests for the ontology-based evaluation were performed
on the same computer with the standard-purpose software Protègè and its complements,
as described above.

6.1. Implementation Process Overview

Figure 4, which is itself a part of Figure 1, explains in detail the system implemented
in this work for composing the hybrid RS. The system was composed of three parts; the

Sensors 2022, 22, 700 11 of 26

input for the first part was the database for the years 2007, 2008, and 2009 on which the
ML process was applied, which included feature selection and data cleansing, selecting the
classification algorithms, model evaluation, and the visualization of results. The outputs
were the selected features used in building the old online retail ontology, this one consisting
of 60 classes, over 100,000 declaration axioms and more than 1.5M logical axioms from
113,953 individuals. The second part included the evolved online retail ontology after
adding new individuals to the old ontology for the years 2008 and 2009. Next, the third
part gave the evolved datasets that were extracted from the evolved online retail ontology
to be the input for the ML and the NCF blocks.

Figure 4. Detail of the integration of ontology evolution, ML, and NCF. This shows that the evolved
ontology is one of the inputs for NCF.

6.2. Description of the Dataset

The datasets used in this experiment were two versions of the same primitive dataset.
The first version was the original data (Contoso [39]), which included users’ features and
the properties of products useful and typical for personalized user recommendations, such
as customer unique tags, gender, economic and social status, geographic (i.e., cultural)
information, etc. The second dataset, in turn, was obtained from the first after evolving
an ontology built up from the raw data. Algorithm 1 summarizes the steps carried out for
establishing the baseline classification results used during the integration.

Algorithm 1: Processing steps for data analysis (Phase ϕ1)

Input: datasets Doriginal and Devolved;

Data curation, preparation, and cleansing;

Feature selection/extraction: expert + PCA;

Generate the utility matrix U (user, item) interactions;

Generate the normalized sparsity matrix S (user, item) interactions;

SVD decomposition of S: [U, Σ]← SVD(S) and truncation;

Calculate similarity of latent factors;

Unsupervised classification m ∈ {KNN, DT};
(Accuracy,Precision,Recall,F1)← Classify(m, U · S);
Test and validate over Doriginal and Devolved;

Sensors 2022, 22, 700 12 of 26

6.3. Feature Selection

Let us first describe the essential information available in our database. The online
retail dataset consisted of 36 features and 2,832,193 rows, for a total file size of over 800 MB.
The number of unique customers was 18,484, while the number of unique products was
1860. Most of the features included in the dataset are self-explanatory (Table 1), and some
of them are not significant for the recommendation outcomes. Among the numeric values,
only Weight contained missing values for some of the entries (703,803 ≈ 24.85%), which
were subsequently removed. For the experimental part, we determined that 10 features
enclosed most of the necessary information using the two methods: advice from an external
consultant and a PCA analysis of the raw data. Figure 5 shows the eigenvalues and
percentages of variance explained by each of the numeric features. We see directly that the
features were almost orthogonal along the two main principal components and that there
was a substantial difference and correlation among the features. The cumulative variance
explained by the 10 most significant eigenvalues was 95.83%. Based on this exploratory
computation, we decided to keep 10 out of the 36 features of the dataset for the subsequent
stages of the analysis, combining the latter results with the suggestions of an external expert
in the area of retail markets. Feature extraction is part of Phase ϕ1.

Table 1. A summary of the features in the dataset.

Type Features

Key (6) OnlineSalesKey, CustomerKey, GeographicKey, ProductKey,
ProductSubcategoryKey, ProductCategoryKey

Numeric (9) DiscountAmount, TotalChildren, NumberCarsOwned, YearlyIncome,
NumberChildenAtHome, UnitPrice, Weight, PromotionKey,
DiscountPercent

String (17) FirstName, LastName, Gender, Education, MaritalStatus,
CityName, StateProvinceName, RegionCountryName, ProductName,
ProductSubcategoryName, ProductCategoryName, ClassName,
BrandName, PromotionType, AsiaSeason, EuropeSeason, IsWorkDay

Date (4) BirthDate, StartDate, EndDate, DateKey

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10
Dimensions

P
er

ce
nt

ag
e

of
 e

xp
la

in
ed

 v
ar

ia
nc

es

Scree plot

OnlineSalesKey

DiscountAmount

CustomerKey

TotalChildren

NumberCarsOwned
YearlyIncome

NumberChildrenAtHome

GeographyKey

ProductKeyProductSubcategoryKey

ProductCategoryKey

UnitPrice

PromotionKey

DiscountPercent

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
Dim1 (24.3%)

D
im

2
(1

6.
5%

)

4

8

12

16

contrib

Variables − PCA

Figure 5. Principal component analysis of the dataset. The left panel shows the 10 first eigenvalues
in decreasing order of the explained variance. The right panel depicts the correlations among features
for the two highest principal components.

Sensors 2022, 22, 700 13 of 26

6.4. Unsupervised Classification with Ontology Integration

In order to quantify the benefits of integrating machine learning with other recom-
mendation approaches—namely, ontology-based (OB) using formal logic for reasoning; CF
or CBF, these being purely computational—we needed first to determine to what extent
classical ML techniques can group and recognize as similar the user and item behaviors
contained in the database. Since the dataset contained no labels as to the classes or profiles
that the customers belonged, we were dealing with a typical unsupervised learning task.
As a matter of fact, those classes or profiles were totally undefined in our setting, and
the main goal of the ML task was then to implicitly define the features that could help
to structure the data into disjoint subsets. Unsupervised learning is often characterized
by the presence of latent or hidden variables that cannot be directly observed and arise
only through noisy transformations in the raw data. In the following sections, we give
the technical details for the processing steps outlined in Algorithm 2, which is the core of
Phase ϕ4.

Algorithm 2: Processing steps for data analysis, NCFO.

Input: datasets Doriginal and Devolved;

Data curation, preparation, and cleansing;

filter features;

DISCARD NON-INFORMATIVE FEATURES:;
OnlineSalesKey, DiscountAmount,FirstName,LastName,
ProductSubcategoryKey, ProductSubcategoryName, ProductCategoryKey,
ProductCategoryName, UnitPrice, ClassName, BrandName, DateKey, BirthDate,
Weight, DiscountPercent, PromotionType, StartDate, EndDate, AsiaSeason,
EuropeSeason, IsWorkDay, PromotionKey;

ONE-HOT ENCODING: categorical features Gender, Education, MaritalStatus,
CityName, StateProvinceName,RegionCountryName;

REDUCE: group data by CustomerKey, ProductKey;

NORMALIZE: linear normalization in [0, 1];

DROP DUPLICATES;

User-item embedding for generalized matrix factorization;
User-item embedding for neural matrix factorization;

one-hot encoding of users;
UserEmbedding← e1(i=user−id);

one-hot encoding of items;
ItemEmbedding← e1(i=item−id);

one-hot-encoding of user features;
FeatureEmbedding← e1(i=feature−id);

Ensemble classification of GMF, NMF, and NCF: training;
Evaluation over Doriginal and Devolved

6.5. Baseline Hybrid Classification

We repeated the same baseline experiments over the evolved ontology. To that end,
the procedure consisted of evolving the original ontology, the one developed for the oldest
version of the dataset. The evolved ontology gave rise to new predictions corresponding
to the newly added items, and these new predictions were inserted back into the dataset
as the ground truth. Then, the classifiers were applied again over the modified (evolved)
dataset. The results appear in Table 2.

Sensors 2022, 22, 700 14 of 26

Table 2. Performance for the simple classifiers before and after the evolution of the ontology.

Before Evolution After Evolution
KNN DT KNN DT

Accuracy 87.47% 73.29% 94.06% 87.61%

Precision 99.18% 99.22% 99.31% 99.11%

Recall 99.07% 86.68% 96.35% 92.40%

F1 98.62% 92.52% 97.80% 95.63%

As shown in Table 2, there was an enhancement in the classification algorithms results
after the evolution of the dataset. For KNN, the Accuracy increased substantially from
87% to 94% in the dataset created from the evolved retail ontology, while for decision
trees (DTs), the accuracy rose from 73% to 87%. which is even more remarkable. In a
similar fashion, Precision increased as well in both cases—KNN and DT— between the
prior and posterior versions of the ontologies (datasets). The main conclusion to draw
from these results is clear: the semantic relationship and recommendations found by the
ontology, either in its static version or in its evolved offspring, when introduced back into
the dataset, enriched the patterns and could be used to better train standard classification
methods used in ML. We recall here that the main purpose of this numerical analysis was
not to devise a good multi-class classifier for the retail data, but only to test whether the
semantic information created by means of the ontology can be recognized and exploited
by classical ML algorithms. The fact that some improvement in the performance can
be measured ratifies the fact that the recommendations discovered via semantic rules
contained fresh information not present in the original (not evolved) dataset. Consequently,
the combination of ontology-based output and ML-based classifiers’ input was beneficial
for inference and prediction, as intuitively expected. This step is part of Phase ϕ3.

6.6. Neural Collaborative Filtering

In Phase ϕ4, the NCF and the ontology information were blended to generate improved
recommendations.

6.6.1. Hyperparameter Setting

Based on our starting test cases, we decided to set a fixed split test threshold, namely
70%–30%, to strike a proper balance between overfitting and generalization. Therefore, this
fraction was held constant over all the numerical experiments. Regarding the choice and tun-
ing of the optimizer, we conducted tests with three optimizers, {Adam,Adagrad,RMSprop},
three batch sizes for evaluating the gradients, {32, 64, 128}, and different input sizes for
training, as well as for testing, {100, 200, 400} different users. Numerical tests with more
users are extremely intensive in computing time and were not attempted. Nevertheless,
as we reported below, these combinations suffice to make effective predictions and recom-
mendations, so we conjectured that little improvement is to be gained by using large input
sizes. Naturally, this will depend on the diversity of the dataset.

Table 3 presents a summary of the results obtained for determining the setting of
the optimizer parameters, as well as for assessing the performance achievable with the
proposed NCFO architecture. These data correspond to the non-evolved dataset (i.e., the
one before the evolution), since the behavior of the evolved dataset was exactly the same.
Based on the results listed in Table 3, we selected the Adam optimizer (learning rate 0.001
with batch size 64 or 128 and 200 epochs for training). Longer training is more prone to
cause the overfitting of the produced model, and as Table 3 reveals, there were no further
consistent improvements by extending the training epochs beyond that value: convergence
was attained well before that limit. Figure 6 shows the typical training and test loss curves,
illustrating the convergence of the system around Epoch 100, consistently for every one of
the performance metrics.

Sensors 2022, 22, 700 15 of 26

Figure 6. Convergence of the NCFO performance metrics.

Table 3. Soft accuracy for different configurations of the parameters. Dataset without ontology evolution.

Optimizer
(# of Users, # of Products) # of Epochs Batch Size Adam Adagrad RMSprop

(50, 304)

100
32 0.8649 0.7215 0.8522
64 0.8705 0.7246 0.8548

128 0.8667 0.7195 0.8523

200
32 0.8847 0.7369 0.8673
64 0.8834 0.7428 0.8702

128 0.8894 0.7419 0.8726

400
32 0.8980 0.7962 0.8644
64 0.8910 0.8017 0.8784

128 0.8934 0.8027 0.8732

(100, 418)

100
32 0.8867 0.7547 0.8727
64 0.8969 0.7568 0.8837

128 0.8955 0.7611 0.8868

200
32 0.8914 0.7725 0.8782
64 0.8959 0.7842 0.8926

128 0.8891 0.7844 0.8968

400
32 0.8909 0.7753 0.8865
64 0.9037 0.7856 0.9026

128 0.9064 0.7839 0.9030

(200, 553)

100
32 0.8894 0.8065 0.8676
64 0.9026 0.8148 0.8828

128 0.9063 0.78361 0.8912

200
32 0.8946 0.8273 0.8964
64 0.9131 0.8479 0.9028

128 0.9092 0.8622 0.9003

400
32 0.9128 0.8341 0.9074
64 0.9107 0.8318 0.9056

128 0.9116 0.8493 0.9061

6.6.2. Running Time

The running time of the training step for the NCFO hybrid system depended crucially
on the number of internal parameters in the neural networks, the number of epochs, and the
number of the training samples. To a lesser extent, the computing time for training the
system was weakly dependent on the optimizer chosen. Though a complete analytical
characterization of the computational complexity for our system was not possible—the
internal optimization procedure via backpropagation is stochastic—we list in Table 4 some
representative results for our tests. We concluded from these figures that the optimizer

Sensors 2022, 22, 700 16 of 26

RMSprop required more than twice the training time and that the training time decreased
almost linearly with the batch size and increased linearly with the number of users used
for the training dataset. In view of these tests, we decided to take batch sizes of 64 and 128
for the evaluation and 200 epochs for training the algorithm, since these attained a good
balance between the model accuracy and loss and the total running time.

Table 4. Training times for the NCFO architectures (seconds).

Optimizer
(# of Users, # of Products) # of Epochs Batch Size Adam Adagrad RMSprop

(50, 304)

100
32 145.59 189.61 141.35
64 92.94 93.99 94.92

128 62.35 63.99 63.37

200
32 278.63 285.06 278.89
64 184.44 190.17 181.16

128 122.95 119.85 119.46

400
32 566.35 555.67 565.06
64 367.53 374.39 360.75

128 240.70 236.37 236.96

(100, 418)

100
32 250.34 249.61 568.37
64 162.49 163.74 381.78

128 109.51 106.37 245.87

200
32 486.97 499.78 1158.23
64 320.06 323.31 752.08

128 211.67 205.29 483.98

400
32 967.71 993.87 2750.17
64 651.75 1518.80 2127.64

128 403.53 949.84 397.96

(200, 553)

100
32 482.37 484.87 —
64 301.06 305.10 —

128 198.08 189.73 —

200
32 965.60 1213.02 —
64 626.58 603.84 —

128 402.97 389.71 —

400
32 2005.65 1880.86 —
64 1240.91 1177.66 —

128 756.34 757.84 —

6.6.3. Performance

Next, we characterize the performance of the NCFO framework when making rec-
ommendations. To this end, we first present the performance results of the hybrid neural
architecture when the input was the original non-evolved database and after the ontology
evolution. Thus, using the hyperparameters for the configuration selected according to
the criteria in the two latter subsections (recall, Adam optimizer with learning rate 0.001,
batch size equal to 64 and 128, and 200 epochs for training), we obtained the results listed
in Table 5.

Sensors 2022, 22, 700 17 of 26

Table 5. Validation of the soft accuracy (acc.) and validation loss (loss) for the proposed NCFO
hybrid recommendation architecture.

Before OE After OE
Training No UF UF No UF UF

(# of Users, # of Products) acc. loss acc. loss acc. loss acc. loss

(50, 304) 87.33 0.3574 89.15 0.3777 92.43 0.3215 94.58 0.3186
(100, 418) 88.23 0.3296 89.19 0.3408 92.81 0.3309 95.48 0.3325
(200, 553) 88.33 0.2908 90.62 0.2993 93.54 0.3005 96.76 0.3016
(400, 840) 88.94 0.2215 90.39 0.2344 93.25 0.2150 96.68 0.2192

Table 5 contains the measured validation accuracy and validation loss for different
test cases, as a function of the training dataset size, and compares the performance when
the input dataset came from the non-evolved ontology (i.e., the original old dataset) and
when the ontology was evolved. Furthermore, we compare in the same table the results
when the NCFO architecture disregarded the user features (No UF) and when those user
features were included (UF). The former case represents the NCFO architecture without
considering the information provided by the ontology, evolved or not. In other words,
this is the equivalent system to the generalized matrix factorization (GMF) implemented
through the neural collaborative filtering approach and should be compared to a standard
CF recommender eventually. The latter case corresponds to the NCFO architecture with
the complementary information given by the (evolved or non-evolved) ontology, or the full
architecture previously depicted in Figure 3.

As we can see in Table 5, there was a measurable improvement along both axis,
i.e., when the user features output by the ontology reasoner were taken into account,
and also when the novel information preprocessed by the ontology was used to train
the system. Therefore, these experimental results confirmed our original intuition that
implicit information contained in a domain-specific ontology can be exploited in a generic
ML architecture. Moreover, we can also verify that training the system with increasingly
large numbers of users and items also was useful to improve the results, since it increased
the variety of patterns to which the NCFO neural network was exposed. Indeed, if the
input dataset had enough variance in the raw data, using more training cases did not
lead automatically to overfitting of the model. This latter assertion, however, needs to be
carefully verified, since it is very sensitive to the (lack of) similarity in the available dataset.
This study has been left out of the scope of the paper, nevertheless. The receiver operations
characteristic (ROC) for the NCFO classifier is plotted in Figure 7. It was calculated using
the one vs. rest policy (our classifiers were multiclass), and it confirmed the gains attained
by incorporating the evolution and UFs into the hybrid RS.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R
 (

S
en

si
tiv

ity
)

FPR (1 - Specificity)

ROC

Before OE - No UF. AUC = 0.74
After OE - No UF. AUC = 0.77

Before OE - UF. AUC = 0.82
After OE - UF. AUC = 0.87

Figure 7. ROC for the different versions of the dataset: without ontology evolution and without user
features. The curves are plotted for Multiclass 1 vs. all classifications.

Sensors 2022, 22, 700 18 of 26

The second methodology for evaluation was the calculation of the hit ratio with
the proposed hybrid recommender. Recall that the recommender outputs a list of items
suggested for a given user, the top k best items according to the algorithm that best suit
her/his preferences, where k is a configuration parameter (k = 1, 3, 5, 10, for instance).
Namely, the proposed NCFO classification system ranks the items in decreasing order of
relevance according to the output of the ensemble neural classifier and selects the k-highest-
ranked products for recommendation, where k can be set as a parameter by the user. For the
calculation of the hit ratio, we followed the common leave-t-out approach [17] followed
in most of the literature. We selected randomly and uniformly a subset L of users from
the test set. For each user u ∈ L, we picked her/his t most relevant items i1, . . . , it from
the utility matrix and removed them as if there had not been any interactions (u, ij) in the
test dataset. Next, we predicted the top k ≥ t items for user u with the NCFO approach
and counted a hit (count one) if item ij was one of the items in the recommended listR for
some j = 1, . . . , t and a miss (count zero) otherwise. The size of the list L depended in our
case on the size of the test dataset, which was in turn 30% of the total dataset, where this
ranged from 100 to 400 users. In our case, we set t = k for all values k = 1, 5, 10, i.e., for
top-1, top-3, and top-5 recommendation lists.

Note that the definition of the top-k hit ratio is stringent for k = 1, as we required
strictly that the recommended item be exactly the one suppressed from the test dataset.
In contrast, the requirement for the hit ratio became more loose as k increased, since we
required only that at least one of the items inR coincide with the best-ranked items by user
u, or R∩ {i1, . . . , it} 6= ∅. Moreover, note that the special case k = 0 corresponds to the
case where the recommendation listR is disjoint with the best-ranked list {i1, . . . , it}, so
the user obtains as recommended products a list of novel or different ones than the one
she/he already purchased and knows.

The results of the experiment for the hit ratio are presented in Table 6. We can see
that the hit ratio for the top-one recommendation was rather low, since the system had
to correctly identify the unique top-ranked product for the user. There was, however,
a slight improvement when the user features and the ontology evolution were individually
incorporated into the system. The performance improved substantially when we increased
the value of k and enlarged the list of recommended products. In this way, for k = 3, we
obtained an average hit ratio around 65%, and again, we saw an improvement when the
ontology evolution was considered, as well as when the user features were taken into
account. In a similar way, the performance still improved up to around a 77% hit ratio if the
list was expanded to the top-five recommendations for the random users. The key aspect
to note is that the inclusion of the user features and the ontology evolution information led
consistently to higher hit ratios, in the range of 3–4%. While this margin is moderate, it is
meaningful, since we did not put special effort into designing an optimal neural network
architecture. Accordingly, we conjectured that with more fine-tuning and optimized layers
and dimensions, the achievable hit ratio can still be increased.

Table 6. Hit ratio with NCFO. Impact of the training dataset size and the ontology evolution.

Top-1 recommendation

Training Before OE After OE
(# of Users, # of Products) No UF UF No UF UF

(50, 304) 0.331 0.367 0.358 0.383
(100, 418) 0.352 0.370 0.368 0.388
(200, 553) 0.356 0.371 0.370 0.391

Sensors 2022, 22, 700 19 of 26

Table 6. Cont.

Top-3 recommendations

Training Before OE After OE
(# of Users, # of Products) No UF UF No UF UF

(50, 304) 0.624 0.651 0.648 0.662
(100, 418) 0.646 0.657 0.661 0.674
(200, 553) 0.648 0.659 0.661 0.676

Top-5 recommendations

Training Before OE After OE
(# of Users, # of Products) No UF UF No UF UF

(50, 304) 0.733 0.749 0.752 0.778
(100, 418) 0.765 0.763 0.778 0.797
(200, 553) 0.770 0.774 0.783 0.807

7. Online Retail Personalized Recommendations
7.1. Recommendation Results Based on Ontology Reasoning

The Fact++ reasoning plugin was applied on the online retail ontology. Each customer
individual in the ontology had data property assertions such as age, gender, number of
children, material status, education, and the order details for each individual. The rea-
soner detects the similarities between the customer individuals and recommends products
semantically according to these similarities. The results are collected in Table 7.

Table 7. Ontology reasoning recommendation before and after ontology evolution.

(u1, u2)—before evolution—(v1, v2)

RP

1. Contoso telephoto
conversion lenx 400 silver

1. MGS Hand Games
women M400 silver

1. Litware home theater system 5.1
channel M51 Black

1. Contoso telephoto conversion
lensx400silver

2. Adventure works 26,720
PLCDHTVM 140 silver

2. Adventure works 26,720
PLCDHTVM 140 silver

2. Adventure works 26,720 PLCDHTVM
140 silver

2. Adventure works 26,720
PLCDHTVM 140 silver

3. sv16xDVDM 360 Black 3. sv16xDVDM 360 Black 3. sv16xDVDM 360 Black 3. sv16xDVDM 360 Black
4. Contoso Home Theater
system 5.1 channel M
1520 white

4. Contoso Home Theater
system 5.1 channel M
1520 white

4. MGS Hand Games for office worker
L299 silver

4. Contoso 4GMP3 player E400
silver

5. Contoso 4G MP3 player
E400 silver

5. MGS Hand Games for
office worker L28 Black

5. SV Hand Games for office worker
L28 Red

5. Contoso Home Theater system
5.1 channel M1520 white

6. MGS Hand Games for
office worker L299 Red

6. Contoso Home Theater system 4.1
channel M1410 Brown

(u1, u2)—after evolution—(v1, v2)

RP

1. Contoso telephoto
Conversion
lensX400 silver

1. MGS Hand Games
women M400 silver

1. Litware Home theater system 5.1
Channel M515 Black

1. Contoso telephoto conversion
Lens X400 Silver

2. Contoso 4G MP3 player
E400 silver

2. Contoso home theater
system 5.1 channel
M1520 white

2. SV Hand Games for office worker
L28 Black

2. Contoso 4G MP3 player
E400 silver

3. Contoso home theater
system 5.1 channel
M1520 white

3. MGS Hand Games for office worker
L299 Yellow

3. Contoso 4GMP3 player E400
Silver

4. MGS Hand Games for
office worker L299 Black

4. Contoso Home Theatre system 5.1
channel M1520 white
5. Contoso Home Theatre system 5.1
channel M1520 white

5. Contoso Home Theatre 4.1
channel M1410 Brown

6. SV Hand Games for office worker L28
yellow 6. MGS Gears of war 2008 M450

7. MGS Hand Games for office worker
L299 Silver 7. MGS collector’s M160

Sensors 2022, 22, 700 20 of 26

To simplify the recommendation results, we randomly selected two pairs of users
(u1; u2) and (v1; v2) who were very similar to each other according to the cosine similarity
measure (of their latent factors). Specifically, their similarities were 0.997 and 0.982.

After the evolution, new products were added to the ontology, and the customers
bought the new products that were added after the evolution. Therefore, the reasoner
after the evolution recommended from the new products that were added according to the
change of their behaviors. After the evolution, new products (individuals) were added to
the ontology. According to that, all the test cases bought new products that were added
after the evolution. Therefore, the reasoner after the evolution recommended from the new
products that were added according to the change of their behaviors.

7.2. Recommendation Results Based on ML and the NCFO

This section presents the personalized recommendations to customers according to
their similarities, by using several techniques such as the machine learning recommendation
by using the hybrid recommendations techniques from the initial dataset extracted from
the database and the second dataset extracted from the evolved online retail ontology.
After that, the recommendations extracted by the neural collaborative filtering using the
deep learning techniques are presented as well, both before adding the user feature layer
and after adding it, and for the two settings of recommendation before and after the
evolution of the ontology.

The results included in this section constitute examples of recommendations for
individual users in every case. We recall that the average quality of the recommendation
was evaluated through the intrinsic performance of the NCFO (validation accuracy and
loss) and additionally through the hit ratio, which measures the fraction of adequacy among
the recommended products and those highly ranked by a sample of users. The hit ratio is
meaningful in that we did not have the possibility of collecting the opinions of the users on
the created recommendations, so feedback was not possible in our case.

Specifically, the lists of recommended products appearing in the tables below corre-
spond to the case of the top-five recommendations obtained for the leave-zero-out policy.
In other words, we did not remove from the test dataset any of the top-five highly ranked
products (HRPs) already purchased by that user. As a result, the recommended products
were disjoint with the HRPs. We emphasize that, in some test cases, the HRPs can be a
multiset, i.e., the same product can appear more than once if there are not enough explicit
preferences declared by that user according to her/his purchase history.

To simplify the recommendation results, we randomly selected two pairs of users
(u1, u2) and v1, v2) who were very similar to each other according to the cosine similarity
measure (of their latent factors). Specifically, their similarities were 0.997 and 0.982. Con-
sequently, the purpose of the following examples is to give an empirical sample of the
consistency or coherence of the recommendations. Formally, one possibility for measuring
the coherence is to use the Jaccard distance:

J(A,B) = |A ∩ B||A ∪ B| (6)

between the respective lists A, B of their recommended products, i.e., the fraction of
overlap between the two lists (J(A,A) = 1, J(A,B) = J(B,A)). A compound measure of
coherence for a given set of test users U could then be defined as:

C =
1

|U | · (|U | − 1) ∑
u,v∈U ,u 6=v

d(u, v)J(Ru,Rv), (7)

just by normalizing the aggregate pairwise coherence, where d(u, v) is the cosine similarity
between u, v and Ru (resp., Rv) denotes the set of items recommended to users u (resp.,
v). However, the coherence formula (7), despite its simplicity, does not lend itself to a
clear intuitive interpretation. The reason is that it aggregates the individual coherence

Sensors 2022, 22, 700 21 of 26

according to the cosine similarities, so it depends functionally in a non-trivial way on the
probability density function of d(u, v). Conversely, two very different distributions can
have close values of the coherence (7). Since comparing two distributions—directly for
d(u, v) or for the transformed coherence—can be performed in several forms depending
on the statistical applications, we decided not to work with the aggregated measure and
simply show several test cases to give a rough idea of the practical results.

In Tables 8–10, we present the outcomes of the recommendations for the first hybrid
system (ontology + classification with KNN and DT) and the highly ranked products (HRPs)
and recommendation lists for the neural NCFO hybrid system. In every case, the results
with and without the inclusion of the user features are included, and for the NCFO, the
results before and after the evolution of the ontology are given as well. This allows a direct
comparison between the textual similarities of the recommendation lists. We can easily
check that, for the two pairs of users who were strongly similar to each other (in cosine
distance), the recommendation lists overlapped significantly, as expected. As explained
above, this is a simple form of verification of the coherence of the recommendations.

Table 8. Top-five recommendation for two pairs of aligned users using the KNN and DT classifiers.

(u1, u2)—before ontology evolution—(v1, v2)

KNN

1. SV 16xDVD M360 Black 1. SV 16xDVD M360 Black 1. Adventure Works 26” 720p LCD
HDTV M140 Silver

1. Adventure Works 26” 720p
LCD HDTV M140 Silver

2. Contoso 512MB MP3 Player
E51 Silver

2 Contoso 512MB MP3
Player E51 Silver 2. SV 16xDVD M360 Black 2. SV 16xDVD M360 Black

3. Contoso 512MB MP3 Player
E51 Blue

3. Contoso 512MB MP3
Player E51 Blue

3. A. Datum SLR Camera X137
Grey

3. A. Datum SLR Camera X137
Grey

4. Contoso 1G MP3 Player
E100 White

4. Contoso 1G MP3 Player
E100 White

4. Contoso Telephoto Conversion
Lens X400 Silver

4. Contoso Telephoto
Conversion Lens X400 Silver

5. Contoso 2G MP3 Player
E200 Silver

5. Contoso 2G MP3 Player
E200 Silver

5. Contoso Optical USB Mouse
M45 White

5. Contoso Optical USB Mouse
M45 White

DT

1. Fabrikam Refrigerator
24.7CuFt X9800 White

1. Fabrikam Refrigerator
24.7CuFt X9800 White

1. A. Datum SLR Camera X137
Grey

1. A. Datum SLR Camera X137
Grey

2. Contoso 512MB MP3 Player
E51 Silver

2. Contoso 512MB MP3
Player E51 Silver

2. Contoso Telephoto Conversion
Lens X400 Silver

2. Contoso Telephoto
Conversion Lens X400 Silver

3. Contoso 512MB MP3 Player
E51 Blue

3. Contoso 512MB MP3
Player E51 Blue

3. Contoso Optical USB Mouse
M45 White

3. Contoso Optical USB Mouse
M45 White

4. Contoso 1G MP3 Player
E100 White

4. Contoso 1G MP3 Player
E100 White 4. SV Keyboard E90 White 4. SV Keyboard E90 White

5. Contoso 2G MP3 Player
E200 Silver

5. Contoso 2G MP3 Player
E200 Silver

5. NT Bluetooth Stereo
Headphones E52 Blue

5. NT Bluetooth Stereo
Headphones E52 Blue

(u1, u2)—after ontology evolution—(v1, v2)

KNN

1. SV Hand Games for Office
worker L28 Red

1. SV Hand Games for Office
worker L28 Red

1. A. Datum SLR Camera X137
Grey

1. A. Datum SLR Camera X137
Grey

2. Contoso 2G MP3 Player
E200 Silver

2. Contoso 2G MP3 Player
E200 Silver

2. Contoso Telephoto Conversion
Lens X400 Silver

2. Contoso Telephoto
Conversion Lens X400 Silver

3. Contoso 2G MP3 Player
E200 Black

3. Contoso 2G MP3 Player
E200 Black

3. Contoso Optical USB Mouse
M45 White

3. Contoso Optical USB Mouse
M45 White

4. Contoso 4G MP3 Player
E400 Silver

4. Contoso 4G MP3 Player
E400 Silver 4. SV Keyboard E90 White 4. SV Keyboard E90 White

5. Contoso 8GB Super-Slim
MP3/Video Player M800

5. Contoso 8GB Super-Slim
MP3/Video Player M800

5. Contoso 4G MP3 Player E400
Silver

5. Contoso 4G MP3 Player E400
Silver

DT

1. SV Hand Games for Office
worker L28 Red

1. SV Hand Games for Office
worker L28 Red 1. SV Keyboard E90 White 1. SV Keyboard E90 White

2. Contoso 2G MP3 Player
E200 Silver

2. Contoso 2G MP3 Player
E200 Silver

2. Contoso 4G MP3 Player E400
Silver

2. Contoso 4G MP3 Player E400
Silver

3. Contoso 2G MP3 Player
E200 Black

3. Contoso 2G MP3 Player
E200 Black

3. NT Bluetooth Stereo
Headphones E52 Blue

3. NT Bluetooth Stereo
Headphones E52 Blue

4. Contoso 4G MP3 Player
E400 Silver

4. Contoso 4G MP3 Player
E400 Silver

4. SV 40GB USB2.0 Portable Hard
Disk E400 Silver

4. SV 40GB USB2.0 Portable
Hard Disk E400 Silver

5. Contoso 8GB Super-Slim
MP3/Video Player M800

5. Contoso 8GB Super-Slim
MP3/Video Player M800 5. Contoso USB Cable M250 White 5. Contoso USB Cable M250

White

Sensors 2022, 22, 700 22 of 26

Table 9. Top-four recommendations (NCFO) and highly rated products for two pairs of aligned
users. Original dataset.

(u1, u2)—before user features—(v1, v2)

HRP

1. Contoso 4GB Portable
MP3 Player M450 White

1. Litware Washer &
Dryer 21in E214 Silver

1. NT Washer & Dryer 21in
E2100 White

1. MGS Hand Games men
M300 Black

2. NT Washer & Dryer
21in E2100 White

2. MGS Age of Empires
III: The Asian Dynasties
M180

2. MGS Hand Games men
M300 Black

2. Litware Washer & Dryer
21in E214 Silver

3. Contoso 4GB Portable
MP3 Player M450 White

3. MGS Age of Empires
III: The Asian Dynasties
M180

3. MGS Age of Empires III: The
Asian Dynasties M180

3. MGS Age of Empires III:
The Asian Dynasties M180

4. Contoso 4GB Portable
MP3 Player M450 White

4. MGS Age of Empires
III: The Asian Dynasties
M180

4. MGS Age of Empires III: The
Asian Dynasties M180

4. MGS Age of Empires III:
The Asian Dynasties M180

NCFO

1. Contoso USB Cable
M250 Blue

1. NT Wireless Bluetooth
Stereo Headphones M402
Green

1. MGS Dungeon Siege:
Legends of Aranna M330

1. Contoso Washer & Dryer
25.5in M255 Green

2. Contoso Washer &
Dryer 25.5in M255 Green

2. Contoso 4GB Portable
MP3 Player M450 Black

2. NT Wireless Bluetooth
Stereo Headphones M402 Red

2. Contoso Digital camera
accessory kit M200 Black

3. Contoso 4GB Portable
MP3 Player M450 Black

3. Litware Washer &
Dryer 25.5in M350 Silver

3. Fabrikam Trendsetter 1/2′′

3 mm X300 Black

3. NT Wireless Bluetooth
Stereo Headphones M402
Green

4. MGS Return of Arcade
Anniversary Edition
M390

4. NT Washer & Dryer
24in M2400 Green

4. MGS Flight Simulator 2000
M410

4. Contoso 4GB Portable
MP3 Player M450 Black

(u1, u2)—after user features—(v1, v2)

HRP

1. Contoso 4GB Portable
MP3 Player M450 White

1. Litware Washer &
Dryer 21in E214 Silver

1. NT Washer & Dryer 21in
E2100 White

1. MGS Hand Games men
M300 Black

2. NT Washer & Dryer
21in E2100 White

2. MGS Age of Empires
III: The Asian Dynasties
M180

2. MGS Hand Games men
M300 Black

2. Litware Washer & Dryer
21in E214 Silver

3. Contoso 4GB Portable
MP3 Player M450 White

3. MGS Age of Empires
III: The Asian Dynasties
M180

3. MGS Age of Empires III: The
Asian Dynasties M180

3. MGS Age of Empires III:
The Asian Dynasties M180

4. Contoso 4GB Portable
MP3 Player M450 White

4. MGS Age of Empires
III: The Asian Dynasties
M180

4. MGS Age of Empires III: The
Asian Dynasties M180

4. MGS Age of Empires III:
The Asian Dynasties M180

NCFO

1. Contoso Washer &
Dryer 25.5in M255 Green

1. NT Wireless Bluetooth
Stereo Headphones M402
Green

1. MGS Dungeon Siege:
Legends of Aranna M330

1. Contoso Washer & Dryer
25.5in M255 Green

2. Contoso 4GB Portable
MP3 Player M450 Black

2. NT Wireless Bluetooth
Stereo Headphones M402
Green

2. MGS Dal of Honor Airborne
M150

2. NT Wireless Bluetooth
Stereo Headphones M402
Green

3. Litware Washer &
Dryer 25.5in M350 Silver

3. Litware Washer &
Dryer 25.5in M350 White

3. SV Hand Games men M30
Red

3. Contoso 4GB Portable
MP3 Player M450 Black

4. MGS Return of Arcade
Anniversary Edition
M390

4. Contoso Home Theater
System 7.1 Channel
M1700 Silver

4. NT Washer & Dryer 27in
L2700 Green

4. Litware Washer & Dryer
25.5in M350 Silver

Sensors 2022, 22, 700 23 of 26

Table 10. Top-four recommendations (NCFO) and highly rated products for two pairs of aligned
users. Evolved dataset and ontology.

(u1, u2)—before user features—(v1, v2)

HRP

1. SV Hand Games men
M30 Black

1. Litware Washer &
Dryer 21in E214 Green

1. SV Hand Games women
M40 Yellow

1. Contoso Home Theater
System 2.1 Channel
M1210 Brown

2. SV Keyboard
E90 White

2. MGS Gears of War
2008 M450

2. Contoso Washer & Dryer
24in M240 White

2. Contoso Home Theater
System 5.1 Channel
M1520 White

3. SV Keyboard
E90 White

3. MGS Gears of War
2008 M450

3. SV Hand Games women
M40 Yellow

3. MGS Rise of Nations: Rise
of Legends M290

4. Contoso Washer &
Dryer 25.5in M255 Silver

4. Litware Washer &
Dryer 21in E214 Green

4. SV Hand Games women
M40 Yellow

4. Contoso Home Theater
System 5.1 Channel M1520
White

NCFO

1. Contoso Water Heater
2.6 GPM E0900 Grey

1. SV 40GB USB2.0
Portable Hard Disk
E400 Silver

1. SV DVD 38 DVD Storage
Binder E25 Red

1. MGS Return of Arcade
Anniversary Edition M390

2. MGS Rise of Nations:
Rise of Legends M290

2. Contoso USB Cable
M250 White

2. MGS Zoo Tycoon 2: Marine
Mania Expansion Pack M270

2. NT Washer & Dryer 24in
M2400 White

3. Adventure Works
Desktop PC1.80
ED180 Silver

3. Contoso Washer &
Dryer 21in E210 White 3. MGS Zoo Tycoon2009 E170 3. Contoso Multi-line phones

M30 Grey

4. MGS Flight Simulator
X Acceleration Expansion
Pack M200

4. Litware Home Theater
System 5.1 Channel M515
Black

4. Litware Washer & Dryer
24in M260 White

4. Contoso Home Theater
System 4.1 Channel M1410
Brown

(u1, u2)—after user features—(v1, v2)

HRP

1. SV Hand Games men
M30 Black

1. Litware Washer &
Dryer 21in E214 Green

1. SV Hand Games women
M40 Yellow

1. Contoso Home Theater
System 2.1 Channel M1210
Brown

2. MGS Gears of War
2008 M450

2. SV Keyboard E90
White

2. Contoso Washer & Dryer
24in M240 White

2. Contoso Home Theater
System 5.1 Channel M1520
White

3. SV Keyboard
E90 White

3. MGS Gears of War
2008 M450

3. SV Hand Games women
M40 Yellow

3. MGS Rise of Nations: Rise
of Legends M290

4. Contoso Washer &
Dryer 25.5in M255 Silver

4. Litware Washer &
Dryer 21in E214 Green

4. SV Hand Games women
M40 Yellow

4. Contoso Home Theater
System 5.1 Channel M1520
White

NCFO

1. MGS Rise of Nations:
Rise of Legends M290

1. SV 40GB USB2.0
Portable Hard Disk E400
Silver

1. Litware 14” High Velocity
Floor Fan E801 Black

1. MGS Return of Arcade
Anniversary Edition M390

2. MGS Age of Empires,
2009 E182

2. Contoso USB Cable
M250 White

2. Litware Washer & Dryer
24in M260 White

2. NT Washer & Dryer 24in
M2400 White

3. MGS Flight Simulator
X Acceleration Expansion
Pack M200

3. Contoso Washer &
Dryer 21in E210 White

3. Contoso Home Theater
System 4.1 Channel
M1410 Silver

3. Contoso Home Theater
System 4.1 Channel
M1410 Brown

4. Contoso Washer &
Dryer 21in E210 Green

4. Litware Home Theater
System 5.1 Channel
M515 Black

4. SV DVD 9-Inch Player
Portable M300 Silver

4. NT Washer & Dryer 21in
E2100 Green

7.3. Evaluation of the Results

The reasoning recommendation results of the online retail ontology before the evolu-
tion were presented to the domain expert to evaluate the recommendations generated for
the users that were used in the experiment. The expert identified 17 correct recommenda-
tions, and the total number of all recommendations was 27. Then, the precision was:

Precision =
number of correct recommendations

total number of recommendations
17
27

= 63%. (8)

Sensors 2022, 22, 700 24 of 26

The expert also mentioned 15 recommendations that did not exist in the online retail
ontology before the evolution. Then, the total number of possible recommendations equaled
32. According to this, the recall was:

Recall =
number of correct recommendations

total number of possible recommendations
= 53.12%. (9)

The reasoning recommendation results of the online retail ontology after the evolu-
tion were presented to the domain expert to evaluate the recommendations generated
for the users that were used in the experiment. The expert identified 20 correct recom-
mendations, and the total number of all recommendations was 23. Then, the precision
Precision = 20/23 = 86.95%. Finally, the expert’s evaluation reported 10 recommendations
that did not exist in the online retail ontology before the evolution. Then, the total number
of possible recommendations equaled 30. Then, the recall in this case Recall = 20/30 = 67%.
We therefore saw that the evolved ontology, even if increased with a small fraction of its
original size, substantially improved over the original performance values.

8. Conclusions and Remarks

The results reported in this work showed evidence allowing us to draw two main
conclusions:

• The information extracted by a logical reasoner based on a suitable ontology and in
parallel from a neural collaborative filter can be combined so that the accuracy of the
recommendations is improved. We showed results in this respect for the classification
accuracy and also for the hit ratio, which is more meaningful for the recommendation
of products;

• Another dimension that can effectively be exploited to improve the quality of pre-
dictions is the evolution of the ontology. Thus, a feedback loop in which novel data
are inserted back again into the ontology provides a two-fold benefit: it allows the
system to evolve in time, capturing the time-varying behavior of their preferences,
if present; it combines naturally fresh information with past information without
having to externally weigh the impact of each factor.

Author Contributions: Conceptualization, M.G.; investigation, R.A.E.-d.A.; methodology, R.A.E.-d.A.
and M.G.; supervision, M.F.-V.; writing—original draft, R.A.E.-d.A.; writing—review and editing,
M.F.-V. and M.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Spanish Government under research project “Enhancing
Communication Protocols with Machine Learning while Protecting Sensitive Data (COMPROMISE)”
PID2020-113795RB-C33, funded by MCIN/AEI/10.13039/501100011033, and grant RED2018-102585-
T (GO2EDGE).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used for this research is publicly available at https://www.
microsoft.com/en-us/download/details.aspx?id=18279.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alaa, R.; Gawish, M.; Fernández-Veiga, M. Improving Recommendations for Online Retail Markets Based on Ontology Evolution.

Electronics 2021, 10, 1650. [CrossRef]
2. Ricci, F.; Rokach, L.; Shapira, B.; Kanto, P.B. Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2010.
3. Rust, R.T.; Kannan, P. E-Service: New Directions in Theory and Practice; Routledge: London, UK, 2016. [CrossRef]
4. Kontopoulos, E.; Martinopoulos, G.; Lazarou, D.; Bassiliades, N. An ontology-based decision support tool for optimizing

domestic solar hot water system selection. J. Clean. Prod. 2016, 112, 4636–4646. [CrossRef]

 https://www.microsoft.com/en-us/download/details.aspx?id=18279
 https://www.microsoft.com/en-us/download/details.aspx?id=18279
http://doi.org/10.3390/electronics10141650
http://dx.doi.org/10.4324/9781315291291
http://dx.doi.org/10.1016/j.jclepro.2015.08.088

Sensors 2022, 22, 700 25 of 26

5. Alaa, R.; Gawich, M.; Fernández-Veiga, M. Personalized Recommendation for Online Retail Applications Based on Ontology
Evolution. In Proceedings of the 2020 6th International Conference on Computer and Technology Applications, Antalya, Turkey,
14–16 April 2020; pp. 12–16. [CrossRef]

6. Zhang, H.; Shen, F.; Liu, W.; He, X.; Luan, H.; Chua, T.S. Discrete Collaborative Filtering. In Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval; ACM: New York, NY, USA, 2016. [CrossRef]

7. Zhang, M.; Guo, X.; Chen, G. Prediction Uncertainty in Collaborative Filtering. Decis. Support Syst. 2016, 83, 10–21. [CrossRef]
8. Salter, J.; Antonopoulos, N. CinemaScreen recommender agent: Combining collaborative and content-based filtering. IEEE Intell.

Syst. 2006, 21, 35–41. [CrossRef]
9. Lops, P.; Jannach, D.; Musto, C.; Bogers, T.; Koolen, M. Trends in content-based recommendation. User Model. User-Adapt. Interact.

2019, 29, 239–249. [CrossRef]
10. Son, J.; Kim, S.B. Content-based filtering for recommendation systems using multiattribute networks. Expert Syst. Appl. 2017,

89, 404–412. [CrossRef]
11. Wu, J.; Sang, X.; Cui, W. Semi-supervised collaborative filtering ensemble. World Wide Web 2021, 24, 657–673.

doi: 10.1007/s11280-021-00866-7. [CrossRef]
12. Braida, F.; Mello, C.E.; Pasinato, M.B.; Zimbrão, G. Transforming Collaborative Filtering into Supervised Learning. Expert Syst.

Appl. 2015, 42, 4733–4742. [CrossRef]
13. Sánchez-Moreno, D.; Zheng, Y.; Moreno-García, M.N. Time-Aware Music Recommender Systems: Modeling the Evolution of

Implicit User Preferences and User Listening Habits in A Collaborative Filtering Approach. Appl. Sci. 2020, 10, 5324. [CrossRef]
14. Guo, G.; Zhang, J.; Thalmann, D. Merging trust in collaborative filtering to alleviate data sparsity and cold start. Knowl.-Based

Syst. 2014, 57, 57–68. [CrossRef]
15. Nilashi, M.; bin Ibrahim, O.; Ithnin, N. Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Syst.

Appl. 2014, 41, 3879–3900. [CrossRef]
16. Kaššák, O.; Kompan, M.; Bieliková, M. Personalized hybrid recommendation for group of users: Top-N multimedia recommender.

Inf. Process. Manag. 2016, 52, 459–477. [CrossRef]
17. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
18. Elbrachter, D.; Perekrestenko, D.; Grohs, P.; Bolcskei, H. Deep Neural Network Approximation Theory. IEEE Trans. Inf. Theory

2021, 67, 2581–2623. [CrossRef]
19. Goldfeld, Z.; Polyanskiy, Y. The Information Bottleneck Problem and its Applications in Machine Learning. IEEE J. Sel. Areas Inf.

Theory 2020, 1, 19–38. [CrossRef]
20. Zheng, L.; Noroozi, V.; Yu, P.S. Joint Deep Modeling of Users and Items Using Reviews for Recommendation. arXiv 2017,

arXiv:1701.04783v1.
21. Ebesu, T.; Fang, Y. Neural Semantic Personalized Ranking for item cold-start recommendation. Inf. Retr. J. 2017, 20, 109–131.

[CrossRef]
22. Hernando, A.; Bobadilla, J.; Ortega, F. A non negative matrix factorization for collaborative filtering recommender systems based

on a Bayesian probabilistic model. Knowl.-Based Syst. 2016, 97, 188–202. [CrossRef]
23. Prathama, F.; Senjaya, W.F.; Yahya, B.N.; Wu, J.Z. Personalized recommendation by matrix co-factorization with multiple implicit

feedback on pairwise comparison. Comput. Ind. Eng. 2021, 152, 107033. [CrossRef]
24. Nassar, N.; Jafar, A.; Rahhal, Y. A novel deep multi-criteria collaborative filtering model for recommendation system. Knowl.-Based

Syst. 2020, 187, 104811. [CrossRef]
25. Liu, J.; Toubia, O. A Semantic Approach for Estimating Consumer Content Preferences from Online Search Queries. Mark. Sci.

2018, 37, 930–952. [CrossRef]
26. Barragáns-Martínez, A.B.; Costa-Montenegro, E.; Burguillo, J.C.; Rey-López, M.; Mikic-Fonte, F.A.; Peleteiro, A. A hybrid content-

based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition.
Inf. Sci. 2010, 180, 4290–4311. [CrossRef]

27. Wu, J.; Chang, J.; Cao, Q.; Liang, C. A trust propagation and collaborative filtering based method for incomplete information in
social network group decision making with type-2 linguistic trust. Comput. Ind. Eng. 2019, 127, 853–864. [CrossRef]

28. He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, Perth, Australia, 3–7 April 2017. [CrossRef]

29. Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine
Learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [CrossRef]

30. Bertsimas, D.; Dunn, J. Optimal classification trees. Mach. Learn. 2017, 106, 1039–1082.. [CrossRef]
31. Donoho, D.L. Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation. Appl. Comput. Harmon.

Anal. 1993, 1, 100–115. [CrossRef]
32. Markovsky, I. Low-Rank Approximation; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [CrossRef]
33. Haeffele, B.D.; Vidal, R. Structured Low-Rank Matrix Factorization: Global Optimality, Algorithms, and Applications. IEEE

Trans. Pattern Anal. Mach. Intell. 2020, 42, 1468–1482. [CrossRef] [PubMed]
34. Kim, D.; Park, C.; Oh, J.; Lee, S.; Yu, H. Convolutional Matrix Factorization for Document Context-Aware Recommendation. In

Proceedings of the 10th ACM Conference on Recommender Systems; ACM: New York, NY, USA, 2016. [CrossRef]

http://dx.doi.org/10.1145/3397125.3397134
http://dx.doi.org/10.1145/2911451.2911502
http://dx.doi.org/10.1016/j.dss.2015.12.004
http://dx.doi.org/10.1109/MIS.2006.4
http://dx.doi.org/10.1007/s11257-019-09231-w
http://dx.doi.org/10.1016/j.eswa.2017.08.008
http://dx.doi.org/10.1007/s11280-021-00866-7
http://dx.doi.org/10.1016/j.eswa.2015.01.023
http://dx.doi.org/10.3390/app10155324
http://dx.doi.org/10.1016/j.knosys.2013.12.007
http://dx.doi.org/10.1016/j.eswa.2013.12.023
http://dx.doi.org/10.1016/j.ipm.2015.10.001
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/TIT.2021.3062161
http://dx.doi.org/10.1109/JSAIT.2020.2991561
http://dx.doi.org/10.1007/s10791-017-9295-9
http://dx.doi.org/10.1016/j.knosys.2015.12.018
http://dx.doi.org/10.1016/j.cie.2020.107033
http://dx.doi.org/10.1016/j.knosys.2019.06.019
http://dx.doi.org/10.1287/mksc.2018.1112
http://dx.doi.org/10.1016/j.ins.2010.07.024
http://dx.doi.org/10.1016/j.cie.2018.11.020
http://dx.doi.org/10.1145/3038912.3052569
http://dx.doi.org/10.1109/TSP.2016.2601299
http://dx.doi.org/10.1007/s10994-017-5633-9
http://dx.doi.org/10.1006/acha.1993.1008
http://dx.doi.org/10.1007/978-3-319-89620-5
http://dx.doi.org/10.1109/TPAMI.2019.2900306
http://www.ncbi.nlm.nih.gov/pubmed/30794507
http://dx.doi.org/10.1145/2959100.2959165

Sensors 2022, 22, 700 26 of 26

35. Rendle, S.; Krichene, W.; Zhang, L.; Anderson, J. Neural Collaborative Filtering vs. Matrix Factorization Revisited. arXiv 2020,
arXiv:2005.09683v2.

36. Sun, T.; Yang, F.; Zhang, D.; Yang, L. Ontology Building Based on Two-layer Ontology Model. In Proceedings of the 2012
International Conference on Industrial Control and Electronics Engineering, Xi’an, China, 23–25 August 2012. [CrossRef]

37. Kulmanov, M.; Smaili, F.Z.; Gao, X.; Hoehndorf, R. Semantic similarity and machine learning with ontologies. Brief. Bioinform.
2020, 22, bbaa199. [CrossRef] [PubMed]

38. Wang, T.; Gu, H.; Wu, Z.; Gao, J. Multi-source knowledge integration based on machine learning algorithms for domain ontology.
Neural Comput. Appl. 2018, 32, 235–245. [CrossRef]

39. Contoso. Microsoft Contoso BI Demo Dataset Retail Industry. Available online: https://www.microsoft.com/en-us/download/
details.aspx?id=18279 (accessed on 28 February 2021).

http://dx.doi.org/10.1109/icicee.2012.392
http://dx.doi.org/10.1093/bib/bbaa199
http://www.ncbi.nlm.nih.gov/pubmed/33049044
http://dx.doi.org/10.1007/s00521-018-3806-5
 https://www.microsoft.com/en-us/download/details.aspx?id=18279
 https://www.microsoft.com/en-us/download/details.aspx?id=18279

	Introduction
	Background
	Recommending Systems
	Neural Collaborative Filtering
	Generalized Matrix Factorization
	Neural Matrix Factorization

	Related Work
	Overview of the Proposed Recommendation System Architecture Based on ML, NCF, and Ontology Evolution
	Neural Collaborative Filtering Framework with Ontologies
	Experimental Results
	Implementation Process Overview
	Description of the Dataset
	Feature Selection
	Unsupervised Classification with Ontology Integration
	Baseline Hybrid Classification
	Neural Collaborative Filtering
	Hyperparameter Setting
	Running Time
	Performance

	Online Retail Personalized Recommendations
	Recommendation Results Based on Ontology Reasoning
	Recommendation Results Based on ML and the NCFO
	Evaluation of the Results

	Conclusions and Remarks
	References

