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Abstract: In Chinese sentiment analysis tasks, many existing methods tend to use recurrent neural
networks (e.g., long short-term memory networks and gated recurrent units) and standard one-
dimensional convolutional neural networks (1D-CNN) to extract features. This is because a recurrent
neural network can deal with the order dependence of the data to a certain extent and the one-
dimensional convolution can extract local features. Although these methods have good performance
in sentiment analysis tasks, recurrent neural networks (RNNs) cannot be parallelized, resulting
in time-inefficiency, and the standard 1D-CNN can only extract a single sample feature, with the
result that the feature information cannot be fully utilized. To this end, in this paper, we propose a
multichannel two-dimensional convolutional neural network based on interactive features and group
strategy (MCNN-IFGS) for Chinese sentiment analysis. Firstly, we no longer use word encoding
technology but use character-based integer encoding to retain more fine-grained information. Besides,
in character-level vectors, the interactive features of different elements are introduced to improve the
dimensionality of feature vectors and supplement semantic information so that the input matches the
model network. In order to ensure that more sentiment features are learned, group strategies are used
to form several feature mapping groups, so the learning object is converted from the traditional single
sample to the learning of the feature mapping group, so as to achieve the purpose of learning more
features. Finally, multichannel two-dimensional convolutional neural networks with different sizes
of convolution kernels are used to extract sentiment features of different scales. The experimental
results on the Chinese dataset show that our proposed method outperforms other baseline and
state-of-the-art methods.

Keywords: multichannel; two-dimensional convolutional neural network; interactive features; group
strategy; feature mapping group

1. Introduction

Nowadays, social media and online shopping platform are widely used, and many
users are happy to share their opinions and comments on social media and shopping
platforms. Mastering and understanding these opinions and commenting on sentiment
tendencies are essential to promote the healthy development of social media. To this
end, there have been studies applying sentiment analysis to social media content, such as
Twitter [1–3] and Weibo [4–6]. Some studies even predict political elections by analyzing
the sentiment tendencies of content on social media. For example, political elections are
predicted by analyzing relevant content on Twitter [7,8]. In any case, the reasonable use of
sentiment analysis to automatically analyze a large number of content and comments on
social media has great significance in the era of big data.

In the field of sentiment analysis, there are usually three methods based on a sentiment
dictionary, based on traditional machine learning and based on deep learning. In early re-
search, sentiment analysis methods based on a sentiment dictionary and sentiment analysis
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methods based on traditional machine learning are mostly used. With the development of
deep learning, sentiment analysis based on deep learning has appeared in more and more
sentiment analysis tasks.

The sentiment analysis method based on a sentiment dictionary often realizes the
division of sentiment polarity at different granularities according to the sentiment polarity
of sentiment words provided by different sentiment dictionaries. In terms of sentiment
dictionaries, the construction of English-based sentiment dictionaries is relatively mature,
and the earliest sentiment dictionary is SentiWordNet [9]. Other common ones include
General Inquirer, Opinion Lexicon, and MPQA [10]. HowNet and NTUSD are frequently
used in Chinese sentiment words. Asghar et al. [11] use domain terms, emoticons, nega-
tive words, and modifiers to enhance sentiment analysis to improve model performance.
Han et al. [12] utilize SentiWordNet-based sentiment classifiers to score review datasets,
and then select sentiment words from positive and negative reviews to train and generate
domain sentiment dictionaries. Cai et al. [13] proposed the construction of a sentiment
dictionary based on a specific domain in view of the polysemy problem in the sentiment
dictionary. However, the sentiment dictionary-based method first needs to build a large-
scale sentiment dictionary that contains as many sentiment words as possible, which is the
basis for sentiment analysis by this method. However, the constructed sentiment dictionary
cannot be updated automatically, which makes it very difficult to build a sentiment dictio-
nary containing more sentiment words in reality when the word update speed is relatively
fast. Besides, it takes a lot of time to construct a sentiment dictionary artificially, resulting
in low time efficiency.

The sentiment analysis method based on traditional machine learning often trains a
sentiment classifier through a given dataset, and then uses the sentiment classifier to predict
sentiment polarity. Specifically, sentiment features are often first represented by statistical
algorithms such as bag of words (BOW) [14], TF-IDF [15], N-grams [16], etc., and then
the classifier is trained, and finally the classifier is used to predict sentiment polarity. In
machine learning, common sentiment classifiers include support vector machine (SVM) [17],
naive Bayes (NB) [18], and maximum entropy. In sentiment analysis tasks, decision trees
(DT) and K-nearest neighbor (KNN) are sometimes also used as sentiment classifiers.
Hajek [14] proposed to extract bag-of-words information and sentiment information from
annual reports, and then combine the bag-of-words and sentiment features to predict
stock investment reports. Dey et al. [15] aimed at the problem that existing methods only
use TF-IDF to represent the unigram or n-gram feature vector; they proposed to use a
combination of n-gram features and TF-IDF to represent sentiment features to improve the
representation ability of sentiment features. Huq et al. [19] used KNN and SVM to classify
the sentiment polarity of Twitter text. Dey et al. [16] used n-gram for feature extraction
and added tags after the sentence, and then used the SVM classification algorithm for
sentiment classification. Although some progress has been made in sentiment analysis
based on traditional machine learning, due to the limitations of this method itself, it cannot
represent sentiment features well, and the use of emotional information in the training
process is limited.

In any case, the above two methods are mostly used in early sentiment analysis tasks
and have poor feature representation capabilities. With the great success of deep learning in
the image field, more and more researchers began to apply deep learning to the research of
sentiment analysis and made great progress. Specifically, the common deep learning models
used in the field of sentiment analysis are the convolutional neural network (CNN) [20–22],
recurrent neural network (RNN) [23], long short-term memory network (LSTM) [24,25],
gated recurrent unit (GRU) [26,27], etc. Among them, LSTM is a variant of RNN, and GRU
is a variant of LSTM. Tang et al. [21] proposed graph convolutional networks for sentiment
analysis, and Jelodar et al. [28] used LSTM to classify COVID-19 reviews. In fact, in order to
further obtain sequence features, bidirectional long short-term memory network (BiLSTM)
and bidirectional gated recurrent unit (BiGRU) are also often used in sentiment analysis;
they learn sequence features from the front and back directions. Although the above models
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have made progress in sentiment analysis tasks compared to sentiment dictionary-based
methods and traditional machine learning methods, a single neural network model still
cannot fully extract sentiment features. For example, convolutional networks can only
extract local features, while networks with sequence characteristics (e.g., LSTM, GRU,
etc.) can only extract the entire sequence features. Therefore, a hybrid model combining
convolutional networks and networks with sequence characteristics is proposed [29]. In
addition, multichannel-based sentiment analysis methods have also been applied [27].

Based on the challenges of the above methods, and inspired by the great success of
two-dimensional convolution in the image field and the multichannel network, we propose
a multichannel two-dimensional convolutional neural network based on interactive fea-
tures and group strategy (MCNN-IFGS) for Chinese sentiment analysis tasks. Specifically,
our model is mainly composed of character-based integer encoding, interactive features,
input tensor expansion based on group strategy, and multichannel two-dimensional convo-
lutional neural networks with different convolution kernel sizes. The experimental results
on the Chinese review dataset show that our method is effective. The main contributions of
this paper are summarized as follows:

• The character-based integer encoding method is applied to the text sequence. Through
this method, the feature extraction network can flexibly extract different levels of
feature information, which is beneficial to retain more fine-grained information.

• The interactive features between character vector elements corresponding to any
sample are introduced to improve the dimensionality of feature vectors and enhance
sentiment features. We can obtain the corresponding semantic information by control-
ling the elements involved in the interaction.

• Group strategy has successfully realized the conversion of feature sequences into
feature maps. Compared with traditional feature sequences, feature maps contain
more feature information so that more sentiment features can be learned by the model.

• Multichannel two-dimensional convolutional neural networks with different convo-
lution kernel sizes are used to extract sentiment features of different scales, which
can effectively avoid the problem that single-channel networks cannot fully extract
sentiment features.

• In the existing literature on sentiment analysis methods, we have implemented senti-
ment analysis based on two-dimensional convolutional neural networks for the first
time and proposed a series of methods to ensure that two-dimensional convolutional
neural networks are successfully applied to sentiment analysis tasks.

The rest of the paper is organized as follows. In Section 2, we put our approach in the
context of relevant existing work. Then, in Section 3, we describe our method in detail, and
the experimental evaluation and analysis are in Section 4. Section 5 is a summary.

2. Related Work

Sentiment analysis methods based on deep learning have become research hot spots,
which are mainly divided into single network sentiment analysis and mixed network
sentiment analysis. Among the sentiment analysis of a single network, sentiment analysis
based on convolutional neural networks (CNNs) and long short-term memory networks
(LSTM) have been used the most. Yin et al. [30] believe that it is difficult to fully extract
sentiment features only by relying on end-to-end convolutional neural networks and the
sentiment information of words can easily be ignored, so they proposed a sentiment lexical-
augmented convolutional neural network (SCNN) for sentiment analysis. This method first
learns the sentiment embedding from the sentiment dictionary, and then is input into the
convolutional neural network as a text representation together with the word embedding
for feature extraction and classification. Wang et al. [31] proposed a unified position-aware
convolutional neural network (UP-CNN) to solve the problem that it is difficult to use
important aspect position information when modeling aspect category sentiment analysis
(ACSA) and aspect term sentiment analysis (ATSA) in a unified framework. This method
first uses an aspect detection network with prior knowledge to solve the problem of the



Sensors 2022, 22, 714 4 of 20

missing aspect position in ACSA, and then uses the aspect-aware context representation to
fit the convolutional network.

Gan et al. [32] proposed a sparse attention-based separable dilated convolutional
neural network (SA-SDCCN) for sentiment analysis to solve the problem of insufficient
feature extraction by standard convolution, which can obtain features of different distances
as much as possible without increasing parameters. Zhao et al. [33], Zhou et al. [34], and
Lu et al. [35] successfully combined convolutional networks with graph models for senti-
ment analysis. Aiming at the problem that most existing methods in aspect-level sentiment
classification ignore the sentiment dependence between different aspects, Zhao et al. [33]
propose to use a graph convolutional network (GCN) to effectively capture the sentiment
dependence information between different aspects in a sentence. Zhou et al. [34] pro-
posed to use GCN to model syntax and knowledge for aspect-level sentiment analysis,
thereby effectively improving the model’s use of syntactic information and common-sense
knowledge. Aiming to solve the problem of ignoring syntactic constraints and long-range
dependence in most existing methods in aspect-level sentiment analysis tasks, Lu et al. [35]
proposed an aspect-gated graph convolutional network (AGGCN), which can effectively
avoid the problem of erroneously identifying irrelevant context words as clues of emotion
in judgment due to the above problems.

Sentiment analysis methods based on neural networks with sequence characteristics
are also an important part of single network sentiment analysis. Common networks with
sequence characteristics include LSTM, BiLSTM, GRU, and so on. Ma et al. [36] proposed
using common-sense knowledge to solve the challenges faced by aspect-based sentiment
analysis and targeted sentiment analysis. First, common sense related to sentiment concepts
is incorporated into the training of the end-to-end network, and a Sentic LSTM is proposed
to make common-sense knowledge better integrated in the recurrent encoder. Bao et al. [37]
pointed out that the lack of flexibility of end-to-end deep neural networks makes it difficult
to adjust the network to correct some obvious problems during the training process and
the attention mechanism is unlikely to pay too much attention to the specific information
of a sentence. Therefore, they proposed to use dictionary information to make the model
more robust and flexible, and at the same time to use regularized attention to make the
model pay more attention to different parts of the sentence.

Ahmed et al. [38] believe that traditional sentiment lexicons cannot avoid that the
sentiment polarity of a word remains unchanged from one domain to another. Therefore,
they proposed a weak supervised network model, which aims to learn a series of sentiment
cluster embeddings from the global representation of sentences in the target domain, and
then build a domain-dependent sentiment dictionary. Through this model, the problem
of sentiment polarity change between domains can be well improved. Hassan et al. [39]
proposed the use of gated-recurrent-units (GRUs) for a multi-class review sentiment classi-
fication task. This model combines word embedding in a specific domain that does not rely
on reviewer information, which can help the model to learn sentiment features to a certain
extent. Cambria et al. [40] have developed a three-level representation for sentiment anal-
ysis termed as SenticNet 5 which is able to discover conceptual primitives automatically,
and the common-sense knowledge is embedded. After that, they proposed an ensemble of
top-down and bottom-up learning embedded in senticNet 6, which is based in symbolic
and subsymbolic AI [41]. They have trained their model using a WordNet-affect emoticon
list, which is freely available on the internet. Of the above two methods, BiLSTM occupies a
very important position. Wei et al. [42] proposed to use BiLSTM with multi-level orthogonal
attention to perform implicit sentiment analysis tasks in response to the challenges of im-
plicit sentiment analysis tasks. This method uses multi-level attention so that the difference
between words and sentiment tendencies can be effectively identified as an important
feature of implicit sentiment analysis. At the same time, the orthogonal mechanism is
applied to ensure that the discriminant of the model is maintained during optimization.

Although the above sentiment analysis method based on a single network has made
great progress, it cannot fully extract sentiment features. In order to obtain sentiment
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information more fully, sentiment analysis methods based on hybrid neural networks have
been proposed one after another. Li et al. [43] and Behera et al. [44] successfully combined
CNN and LSTM in sentiment analysis tasks. In response to this challenge, Li et al. [43] first
proposed a new sentiment padding method based on integrated lexicon features, which can
improve the proportion of sentiment information in each review, and secondly used a model
based on the combination of CNN and LSTM to learn sentiment features. Behera et al. [44]
proposed a sentiment analysis model called Co-LSTM based on CNN and LSTM for social
big data. This model has strong adaptability and scalability in social big data, and secondly,
it is not restricted by any specific domain. In addition, Zhang et al. [45] and Zhao et al. [46]
successfully combined CNN and GRU for multimodal sentiment analysis tasks and aspect-
based sentiment analysis tasks, respectively. Basiri et al. [47] proposed an ABCDM model
that combines BiLSTM, BiGRU, and CNN for sentiment analysis tasks.

In addition, multichannel sentiment analysis methods are also an important part of
hybrid neural network sentiment analysis. Gan et al. [48] pointed out that the existing
sentiment analysis methods still face great challenges due to the serious multi-sentiment
polarity of words and the long-term dependence between words in Chinese texts. Therefore,
a scalable multichannel joint structure composed of CNN and BiLSTM with attention
mechanism was proposed for sentiment analysis. The source context features and the
multi-scale high-level context features can be extracted by the multichannel structure and
the model channel can be adjusted according to the actual corpus. Feng et al. [49] proposed
an MCNN-MA model to solve the problem of limited text features of short text, which is
composed of a multichannel convolutional neural network with a multi-head attention
mechanism. The model first combines word features with part-of-speech features, position
information and dependency syntax features to form three new combined features, and
then uses a convolutional neural network with a multi-head attention mechanism to further
learn sentiment information. Aiming at the problem of easy loss of text information in
short texts, Li et al. [50] further proposed a SAMF-BiLSTM model, which is composed of
BiLSTM with a self-attention mechanism and multichannel features. This method first
uses the existing language knowledge and sentiment resources to form different feature
channels, and then uses the self-attention mechanism to enhance sentiment information.
The model can make full use of the relationship between words and sentiment polarity
without relying on sentiment dictionaries.

However, the abovementioned convolutional neural network is a one-dimensional
convolutional neural network, which cannot fully extract sentiment features, and the neural
network with sequential characteristics cannot be parallelized, which leads to low time
efficiency. To this end, we propose a multichannel two-dimensional convolutional neural
network (MCNN-IFGS) for sentiment analysis.

3. Our Method

Figure 1 illustrates the basic framework of our MCNN-IFGS method, which is mainly
composed of four parts: a character-based integer encoding method, feature interaction,
group strategy, and multichannel 2D-CNN with different convolution kernel sizes. First
of all, the character-based integer encoding method is used to divide and encode text
which can effectively retain more fine-grained information. Secondly, feature interaction
method is used to generate interactive features to improve feature vector dimension and
supplement semantic information. In addition, group strategies are used to form several
feature mapping groups. Finally, multichannel 2D-CNN with different convolution kernel
sizes is used to learn sentiment features at different scales.
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3.1. Character-Level Encoding

Zhang et al. [51] pointed out that character-level information can provide flexible
granular information. Inspired by this, character-based integer encoding is used to divide
and encode text in this subsection. In Chinese, characters are the smallest unit of words, so
through this encoding method we cannot only effectively retain semantic information but
also retain fine-grained information.

Let T = {T1, T2, . . . , Ti, Ti+1, . . . , Tn} denote the set of all text descriptions. For any
text description Ti, we first use a character-based integer encoding method to divide the
text, and the divided Ti can be expressed as T =

{
Ti,1, Ti,2, . . . , Ti,k, Ti,k+1, . . . , Ti,α

}
. Then,

we encode the divided Ti with integers to form the character-level vector, and the character-
level vector after encoding can be expressed as E=[Ei,1,Ei,2, . . . ,Ei,k,Ei,k+1, . . . ,Ei,l ]. Finally,
all the character-level vectors corresponding to the text description are merged into a
character-level matrix E, which can be expressed as:

E = Merge(E1, E2, . . . , Ei, Ei+1, . . . , En)
= [E1, E2, . . . , Ei, Ei+1, . . . , En]

(1)

where α represents the character length of the text description, l represents the dimension
of the character-level vector, and Merge( ) a acts as a merger, Ei ∈ Rl , E ∈ Rn×l .

3.2. Interactive Features

As described in the previous subsection, text-based character-level vectors alone do
not provide enough semantic information. Therefore, in this subsection, interactive features
are introduced to supplement semantic information to make up for the deficiency of
character-level vectors to achieve the purpose of enhancing sentiment. In addition, through
interactive features, we have successfully increased the dimension of character-level vectors,
paving the way for the smooth introduction of group policies in the next subsection.

3.2.1. Definition of Interaction Features

The interaction features are defined as follows:
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In the character-level vector Ei, the element ei,p corresponding to the position
p(p = 0, 1, 2 . . . , l) is sequentially multiplied with the β(β ∈ N+) elements corresponding
to the remaining positions until the multiplication operation cannot be performed. In
this process, we call the multiplication operation an interactive behavior, and the element
generated by each multiplication is called an interactive feature, and all the interactive
features generated by the element ei,p together constitute the interactive feature vector Mp
of the element ei,p. Finally, all Mp are concatenated into interactive feature vectors Fi,β
corresponding to character-level vectors Ei.

It is particularly important to note that the elements at the same position do not partic-
ipate in interactive calculations, and the β elements participating in interactive calculation
each time are directional, and the corresponding positions are arranged from low to high.

3.2.2. Representation of Interactive Feature Vectors

First of all, in order to better express the interactive feature vectors, we have introduced
some special symbols, which are explained as follows:

• U represents the vector continuous concatenation symbol. Assuming M1 = [1, 2, 3, 4],
M2 = [5, 6, 7, 8], then:

2
U

p=1
Mp = [M1, M2]

= [1, 2, 3, 4, 5, 6, 7, 8]
(2)

• C represents the combining marker in mathematics
• Concatenate() has the same effect as U
• f use() means to fuse two vectors into a two-dimensional matrix, for example:

F = f use( M1, M2)
= [M1, M2]
= [[1, 2, 3, 4], [5, 6, 7, 8]]

(3)

Then, the interactive feature vector Fi,β can be expressed as:

w =
p

∑
γ=1

Cβ−1
l−γ (4)

Q = Fw
i,β−1 (5)

Mp = e1,p ·Q (6)

Fi,β =
l−β

U
p=1

e1,p ·Q

=
l−β

U
p=1

Mp

= [M1, M2, . . . , Mp, Mp+1, . . . , Ml−β+1]

(7)

In the above expression, the meaning of each symbol is explained as follows:

• w represents the first w term of the interactive feature vector Fi,β

• Q represents the interactive feature vector after removing the first w interactive features
in Fi,β

• Mp represents the interactive feature vector generated by element ei,p

• where Q ∈ RCβ−1
l −ω , Mp ∈ RCβ−1

l −ω , Fi,β ∈ RCβ+1
l , the initial interactive feature vector

F0
i = Ei.
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Next, the interactive feature vector Fi,β corresponding to different β and the initial
interaction feature vector f are concatenated into a new interactive feature vector Fi, which
can be expressed as:

Fi = Concatenate
(
Fi,0, Fi,1, Fi,2, . . . , Fi,β, . . . , Fi,m

)
=

m
U

β=1
Fi,β

= [Fi,0, Fi,1, Fi,2, . . . , Fi,β, . . . , Fi,m]

(8)

where Fi ∈ Rdi , di =
m
∑

β=1
Cβ

l + l.

Finally, different interaction feature vectors Fi are fused into a two-dimensional inter-
action feature vector F.

F = f use( F1, F2, . . . , Fi, Fi+1, . . . , Fn)
= [F1, F2, . . . , Fi, Fi+1, . . . , Fn]

(9)

where F ∈ Rn×d, d =
m
∑

β=1
Cβ

l + l. The function of f use( ) is to fuse the different Fi into a

two-dimensional interaction feature vector.

3.2.3. The Determination Principle of β

From expressions Equations (3)–(6), we can know that when the length is fixed, β
determines the number of interactive features generated; that is, the dimension of the
interactive feature vector. Therefore, choosing the appropriate β is conducive to supple-
menting enough semantic information to achieve the effect of sentiment enhancement.
Secondly, choosing a reasonable β helps to reduce the dimensionality of the interactive
feature vector, improve the generation efficiency, and avoid the dimensional disaster and
time consumption caused by a too-large β value. In order to select the appropriate β more
accurately, we count the number distribution of words corresponding to different word
lengths from the Chinese review dataset. According to the distribution, we choose the
length with more words as the value range of β. According to statistics, we find that the
words of the dataset are mainly concentrated in lengths 1, 2, and 3 and the proportion of
the number of words corresponding to these three lengths is more than 90%. Therefore,
in this paper, we take 1 and 2 as the value of β. It is specially noted that when the word
length is 1, the corresponding a = 0 means that no interaction will be performed, so 0 is not
used as the value of β.

For the interactive feature matrix F, PCA is used to reduce the vector dimension.
Assuming that the specified dimension is b, the new interactive feature matrix F

′
after PCA

dimensionality reduction satisfies F
′ ∈ Rn×b.

3.3. Group Strategy

In sentiment analysis tasks, the standard one-dimensional convolutional neural net-
work often cannot learn enough sentiment features. There are two main reasons: one is that
the standard one-dimensional convolutional neural network can only extract local features,
and the other is the learning object of the model is often a single sample in sentiment
analysis tasks. In this subsection, we mainly discuss how to use group strategy to solve the
above problems.

In order to solve the above problems, our idea is to convert the traditional two-
dimensional feature matrix into several feature mapping groups as model input. However,
a simple way to switch between the two cannot guarantee that the emotional polarity of the
transformed feature map group remains unchanged. To this end, we propose to use group
strategy to perform this conversion process. This method first divides the samples with the
same sentiment polarity into several groups, so the samples of the same group have the
same sentiment polarity. Then, we convert the samples in each group to ensure that the
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sentiment polarity of the converted feature map group remains unchanged. Finally, each
feature mapping group is converted from a number of samples with the same sentiment
polarity. Through the group strategy, we successfully converted the learning object of the
model from a single sample to a feature mapping group, which is conducive to learning
more sentiment features.

Specifically, for the interactive feature matrix F
′
, we divide the samples into different

groups according to the sentiment polarity Sk. Here, we use BSk ∈ RnSk
×b to represent

the sample set corresponding to sentiment polarity Sk, and nSk to represent the number
of samples corresponding to sentiment polarity Sk. In BSk , all samples have the same
sentiment polarity.

It is worth noting that in the conversion process, the dimension corresponding to each
dimension has some influence on the model performance, so choosing the appropriate
dimension for each dimension has a positive impact on improving the model performance.
Encouraged by the representation of image features, in the conversion process, we keep
the dimensions of the second dimension and the third dimension of the input tensor equal.
In order to make the model learn as much sentiment information as possible, the fourth
dimension is determined according to the principle of taking a larger value for a large
sample and a smaller value for a small sample. Specifically, assuming J is the dimension of
the fourth dimension, then BSk is first converted into DSk feature mapping groups, each
feature mapping group consists of J samples, and J satisfies J =

nSk
DSk

. In this paper, because
we use a large-scale review dataset, according to the above principles, we choose a series of
larger J values to conduct experiments to determine the most appropriate J value.

Finally, BSk is converted into the four-dimensional input tensor BSk ∈ RDSk×H×I×J .
All the converted input tensors BSk are finally fused into a new four-dimensional input
tensor BS ∈ RDS×H×I×J , which can be expressed as:

BS = f use
(
BS1 ,BS2 , . . . ,BSk ,BSk+1 , . . . ,BSh

)
= [BS1 ,BS2 , . . . ,BSk ,BSk+1 , . . . ,BSh ]

(10)

where H = I =
√

b, DS = DS1 + . . . + DSh . For the extended four-dimensional input tensor
BS, it can be regarded as consisting of DS feature mapping groups M ∈ RH×I×J . Each
feature mapping group M consists of J samples with the same sentiment polarity.

3.4. Multichannel Two-Dimensional Convolutional Neural Networks

In this subsection, a multichannel two-dimensional convolutional neural network
is used for sentiment analysis, and each two-dimensional convolution has a different
convolution kernel size, which is conducive to learning sentiment features of different
scales. In addition, compared to a single-channel network, a multichannel network can
obtain more sentiment information. Figure 2 shows the main structure of the multichannel
two-dimensional convolutional neural network.
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In this paper, we propose to utilize two-dimensional convolution with different con-
volution kernel sizes to extract sentiment features of different scales. In order to ensure
that the second dimension and the third dimension of the input and output feature tensors
before and after convolution remain unchanged, before convolution, any feature mapping
group Mr is 0-padded. Specifically, we utilize two-dimensional convolutions with 1 × 1,
3 × 3, and 5 × 5 convolution kernel sizes to extract short-distance, middle-distance, and
long-distance sentiment features, respectively. After that, two-dimensional max-pooling
was used to select useful sentiment features. This process can be expressed as:

Ms
r = tanh( Mr ∗Ws) (11)

Ms′
r = max( Ms

r) (12)

Mm
r = tanh( Mr ∗Wm) (13)

Mm′
r = max( Mm

r ) (14)

Mg
r = tanh

(
Mr ∗Wg

)
(15)

Mg′
r = max

(
Mg

r

)
(16)

where Ms
r ∈ RH×I×Js , Mm

r ∈ RH×I×Jm and Mg
r ∈ RH×I×Jg are two-dimensional convo-

lution outputs with 1 × 1, 3 × 3, and 5 × 5 convolution kernel sizes, respectively Js,
Jm and Jg are the dimensions of the corresponding two-dimensional convolution output

space Ms′
r ∈ RHs×Is×Js , Mm′

r ∈ RHm×Im×Jm and Mg′
r ∈ RHg×Ig×Jg are the corresponding

two-dimensional max-pooling outputs. Hs = Is = Hm = Im = Hg = Ig = H
2 = I

2 and
Ws, Wm and Wg are the corresponding two-dimensional convolution weight parameters,
respectively. tanh is the activation function of the two-dimensional convolution.

For feature matrices Ms′
r , Mm′

r and Mg′
r , they are respectively embedded in a V-

dimensional output space for feature fusion in the later stage. After embedding, all output
feature matrices have the same shape. This embedding can be expressed as:

M̂s′
r = relu

(
Ws′Ms′

r + bs′
)

(17)

M̂m′
r = relu

(
Wm′Mm′

r + bm′
)

(18)

M̂g′
r = relu

(
Wg′Mg′

r + bg′
)

(19)

where M̂s′
r ∈ RHs×Is×V , M̂m′

r ∈ RHm×Im×V and M̂g′
r ∈ RHg×Ig×V .Ws′ ,Wm′ ,Wg′ , and bs′ , bm′ ,

bg′ are parameters, relu is the activation function of the fully connected layer. After that,

the element-wise addition method is used to fuse M̂s′
r , M̂m′

r and M̂g′
r to obtain the fusion

feature Fr, which can be expressed as:

Fr = M̂s′
r ⊕ M̂m′

r ⊕ M̂g′
r (20)

where ⊕ is the element-wise addition.
Finally, the fusion feature Fr is input into a so f tmax classifier for sentiment classifi-

cation, and cross-entropy is used as the loss function of the model. During the training
process, the model parameters are optimized by minimizing cross-entropy

ŷi = so f tmax
(
WyFi

)
(21)

L = − 1
N ∑

i
∑

j
yi log p(ŷi) (22)
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where Wy is the parameters of the so f tmax function, i is the index of the text description, j
is the category index, ŷi denotes the predicted value, and yi is the ground truth.

4. Experiments

In this section, extensive experiments are outlined that verify the effectiveness of
MCNN-IFGS. Specifically, the experimental setups are first stated. Secondly, comparative
experiments are detailed, and the results of the experiments are analyzed. Finally, we show
the additional experiments conducted to further verify the effectiveness of our method.

4.1. Experiment Setups
4.1.1. Datasets

The experiment was carried out on a dataset of Chinese reviews from popular shop-
ping websites in China [52]. The dataset included 100,000 shopping reviews, and each
review corresponded to different sentiment polarity, positive or negative. In this paper, in
order to maintain category balance, we randomly selected 97,200 reviews from the dataset,
and used the standard train/test splits of 72,900/24,300 for the sentiment analysis task.
The statistics of the dataset are shown in Table 1. In order to obtain more text informa-
tion of the dataset, the text sequence length distribution of the dataset was counted as
shown in Table 2, and the changes in the number of samples corresponding to different text
lengths are shown in Figure 3. Figure 4 shows the probability distribution corresponding
to different text length ranges.

Table 1. General statistics of Chinese review dataset.

Sentiment Polarity
Number

Avg_len
Train Test

positive 36,450 12,150
32.58

negative 36,450 12,150

Table 2. Distribution of text length in Chinese review dataset.

Length 10 20 30 40 50 >50

Number 30,910 22,973 13,820 8984 5492 17,821

Probability 0.31 0.23 0.14 0.09 0.05 0.18
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4.1.2. Data Preprocessing

In the original dataset, there were illegal characters due to encoding problems, which
affected the performance of the model to a certain extent. In order to avoid the impact of
illegal characters on the performance of the model as much as possible, we corrected the
encoding problem and removed illegal characters. In this paper, in order to protect the
integrity of the text sequence, stop words and punctuation have not been removed. Finally,
the preprocessed text and the corresponding sentiment polarity were written into a text file
as the experimental operation object, and at the same time facilitated the statistics of the
text data distribution.

4.1.3. Evaluation Metrics

In our research, in order to evaluate the performance of the model more comprehen-
sively, we used Accuracy, Precision, Recall, and F1-score as evaluation metrics, which are
widely used in sentiment analysis tasks. The standard deviation of each evaluation metric
score was used to measure the stability of each evaluation metric. In addition, in order
to avoid accidental errors as much as possible to ensure the validity of the experimental
results, each method was run five times in the experiment, and the average of the different
evaluation metrics was used as the final result to quantify.

4.1.4. Hyperparameter Setting

In this work, the most appropriate value of input channel J was set to 60 and the value
of the compressed dimension b of PCA was set to 900. Thirty-two 1 × 1 filters, sixty-four
3 × 3 filters and one hundred and twenty-eight 5 × 5 filters were respectively set as the
first two-dimensional convolutional layer, the second two-dimensional convolutional layer,
and the third two-dimensional convolutional layer parameters. In order to better train the
optimal model, we chose Adam as the optimization algorithm to train our network, and
the optimal learning rate in this optimization algorithm was set to 0.001 for this sentiment
analysis task. We set the number of training epoch to 30, the batch size to 128, and the
dropout rate to 0.8.

4.2. Comparison with Existing Methods
4.2.1. Comparative Methods

• LSTM: In this method, a LSTM network is used to extract sentiment features. It is
composed of a embedding layer, an LSTM layer and a full connected layer [53].

• Two-layer LSTM: A two-layer LSTM is used to extract text features [54].
• BiLSTM: Bidirectional long short-term memory network. A one-layer BiLSTM is used

to extract text features [54].
• Two-layer BiLSTM: A two-layer BiLSTM is used to extract text features [54].
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• GRU: A gated recurrent unit is a variant of LSTM. Compared with LSTM, GRU retains
its resistance to gradient disappearance. Meanwhile, its internal structure is simpler,
training is faster, and it has been widely used for sentiment analysis recently [55].

• BiGRU: Bidirectional gated recurrent unit. In order to solve the difficult problem of
modeling sentiment relationships in recurrent structure, Chen et al. [56] proposed to
use a bidirectional gated recurrent unit to capture sentimental relationship information.

• Character-level ConvNets: This method applies ConvNets to characters for the first time.
Experimental results show that when training on large-scale datasets, ConvNets do
not require word-level information. In addition, existing research results show that
ConvNets do not rely on semantic information [57].

• SLCABG: This method uses a convolutional neural network (CNN) combined with
a bidirectional gated recurrent unit (BiGRU) for sentiment analysis of Chinese text.
The attention mechanism and the sentiment lexicon are used to emphasize important
information and enhance sentiment features, respectively [58].

• MDMLSM: This model firstly uses the pre-trained BERT model to form word vectors,
then applies the attention-based BiLSTM to extract text features, and finally the output
feature representations are sequentially input into the multilayer perceptron and
sentiment classifier [59].

• MC-2D-CNN (word-based): In this article, the MCNN-IFGS we propose is based on
character-based operation objects. In order to further explore the differences be-
tween characters and words, we added the word-based MCNN-IFGS as a compari-
son method.

Here, the stochastic gradient descent (SGD) is set to the optimization algorithm of
character-level ConvNets, GRU, and BiGRU to train the network, where the learning
rate is 0.01. LSTM, two-layer LSTM, BiLSTM, and two-layer BiLSTM use Adagrad as an
optimization algorithm to train the model, and the learning rate is 0.05. Adam is used as
the optimization algorithm of MCNN-IFGS (word-based), and the learning rate is set to
0.001. It is worth noting that all the above parameters were set according to the original
paper and appropriately adjusted according to the Chinese dataset to maintain the best
state of the model.

4.2.2. Results and Analysis

A series of comparative experiments were carried out on the Chinese review dataset.
The experimental results are shown in Table 3.

Table 3. The results of different methods on Chinese review dataset. Here, each method was run five
times. The value before “±” was the mean value, followed by the standard deviation.

Methods Accuracy Precision Recall F1

LSTM 0.932 ± 0.001 0.931 ± 0.002 0.934 ± 0.003 0.933 ± 0.001
2-layer LSTM 0.935 ± 0.001 0.932 ± 0.002 0.933 ± 0.002 0.932 ± 0.001
BiLSTM 0.931 ± 0.000 0.932 ± 0.004 0.932 ± 0.005 0.932 ± 0.000
2-layer BiLSTM 0.930 ± 0.001 0.932 ± 0.003 0.929 ± 0.003 0.931 ± 0.001
GRU 0.867 ± 0.002 0.871 ± 0.003 0.864 ± 0.006 0.868 ± 0.002
BiGRU 0.930 ± 0.001 0.928 ± 0.002 0.933 ± 0.003 0.931 ± 0.001

Character-level
ConvNets 0.928 ± 0.000 0.929 ± 0.004 0.930 ± 0.006 0.929 ± 0.001

SLCABG 0.934 ± 0.000 0.931 ± 0.005 0.937 ± 0.006 0.934 ± 0.000

MDMLSM 0.930 ± 0.001 0.931 ± 0.002 0.929 ± 0.003 0.930 ± 0.001

MCNN-IFGS
(word-based) 0.970 ± 0.004 0.978 ± 0.004 0.966 ± 0.006 0.972 ± 0.004

MCNN-IFGS (Ours) 0.972 ± 0.003 0.974 ± 0.006 0.975 ± 0.008 0.974 ± 0.003
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From Table 3, we can know that our MCNN-IFGS method is superior to six recurrent
neural network methods. Among the six methods, GRU has the worst model performance,
and its accuracy, precision, recall, and F1-score scores reached only 86.7%, 87.1%, 86.4%,
and 86.8%, respectively, and the scores of the other five methods were similar. The overall
performance of the two-layer LSTM method was the best, and the accuracy score reached
93.5%, which was 0.3%, 0.4%, 0.5%, 6.8%, and 0.5% higher than that of the other five
methods. From the value of the standard deviation, the scores of each evaluation metric
of these five methods were relatively stable, and the degree of fluctuation was small.
The maximum amplitude of fluctuation appeared in the recall of GRU, and the value of
standard deviation was 0.006. In any case, the scores of our MCNN-IFGS method on the
four evaluation metrics were all higher than those of the six recurrent neural network
methods, and the scores on accuracy, precision, recall, and the F1-score were higher than
3.7%, 4.2%, 4.2%, and 4.2% of the scores of the four evaluation metrics of two-layer LSTM,
respectively. This shows that compared with the six recurrent neural network methods,
our MCNN-IFGS method can learn more sentiment features, all thanks to our conversion
of the learning object from a traditional single sample to feature mapping group.

We can also see from Table 3 that our MCNN-IFGS method was superior to character-
level ConvNets, SLCABG, and MDMLSM. In these three methods, the model performance
of SLCABG was better than that of character-level ConvNets. The accuracy, precision,
recall, and F1-score scores of SLCABG were 93.4%, 93.1%, 93.7%, and 93.4%, respectively,
which were 0.6%, 0.2%, 0.7%, and 0.5% higher than those of character-level ConvNets.
This is because the SLCABG method uses 1D-CNN and BiGRU to extract features and the
attention mechanism is used to focus on important features. Compared with the standard
1D-CNN, it can obtain and utilize relatively more features. In fact, from the score of the
evaluation metrics, the score gap between character-level ConvNets and SLCABG was not
large. However, CNN can be parallelized in the training process with high time efficiency,
while a recurrent neural network cannot be parallelized, resulting in a high time cost. From
the perspective of time cost, the use of the CNN method for sentiment analysis tasks has
certain advantages. Besides, we observe that the model performance of MDMLSM was
slightly higher than that of character-level ConvNets, which is because MDMLSM uses an
attention-based BiLSTM network to help the model capture important information. In any
case, the above three methods were weaker than our MCNN-IFGS method. The scores of
our MCNN-IFGS method on the four evaluation metrics were 3.8%, 4.3%, 3.8%, and 4.0%
higher than those of SLCABG, respectively, indicating that our method was more effective.

From Table 3, we can see that our MCNN-IFGS method was relatively superior to
MCNN-IFGS (word-based), and its scores on accuracy, recall, and F1-score were higher than
0.2%, 0.9%, and 0.2% of the corresponding evaluation metrics of MCNN-IFGS (word-based),
respectively. This shows that the character-based method of constructing objects can be
more helpful to improve the performance of the model. Compared with the word-based
method of constructing objects, it can provide or help us retain more sentiment information.

4.3. Further Analysis of MCNN-IFGS

In this section, in order to further prove the effectiveness of our MCNN-IFGS method,
we show the design of two further experiments.

4.3.1. Effect of Learning Rate

In this subsection, in order to explore the influence of the learning rate of the opti-
mization algorithm on the MCNN-IFGS method, we conducted a series of experiments for
different learning rates. In particular, we set a series of learning rates to {0.001, 0.002, 0.003,
0.004, 0.005, 0.006, 0.007, 0.008}. The experimental results are shown in Table 4 and Figure 5.
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Table 4. Performance of MCNN-IFGS on the Chinese review dataset. Here, different learning rates
were used to carry out experiments. The value before “ ± ” was the mean value, followed by the
standard deviation.

Learning Rate Accuracy Precision Recall F1

0.001 0.972 ± 0.003 0.974 ± 0.006 0.975 ± 0.008 0.974 ± 0.003

0.002 0.965 ± 0.006 0.971 ± 0.007 0.966 ± 0.009 0.968 ± 0.005
0.003 0.969 ± 0.003 0.971 ± 0.002 0.973 ± 0.005 0.972 ± 0.002
0.004 0.955 ± 0.025 0.961 ± 0.012 0.957 ± 0.040 0.959 ± 0.024
0.005 0.933 ± 0.029 0.923 ± 0.031 0.957 ± 0.024 0.940 ± 0.026
0.006 0.913 ± 0.066 0.923 ± 0.055 0.917 ± 0.071 0.920 ± 0.062
0.007 0.890 ± 0.053 0.911 ± 0.047 0.886 ± 0.060 0.898 ± 0.050
0.008 0.818 ± 0.162 0.848 ± 0.121 0.777 ± 0.251 0.934 ± 0.209
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From Table 4 and Figure 5, we can conclude that when the learning rate was 0.001, the
model had the best performance, and its scores on accuracy, precision, recall, and F1-score
reached 97.2%, 97.4%, 97.5%, and 97.4%, respectively. On the whole, the performance of
the model decreased as the value of the learning rate increased. When the value of the
learning rate was 0.008, the scores on accuracy, precision, recall, and F1-score decreased to
81.8%, 84.8%, 77.7%, and 80.0%, respectively, and the model performance was the worst.
Specifically, from the perspective of different intervals, as the value of the learning rate in-
creased from 0.001 to 0.003, the model performance showed a trend of first decline and then
rise, and the decline of the four evaluation indicators reached 0.7%, 0.2%, 1.1%, and 0.5%,
respectively. Although there was a fluctuation in the model performance between 0.001 and
0.003, their fluctuation amplitude is relatively small, indicating that the learning rate in
the interval had limited influence on the model performance and the model performance
was relatively stable. As the learning rate exceeded 0.003, the performance of the model
showed a stable downward trend. When the learning rate increased to 0.008, the score of
each evaluation metric of the model was the worst, indicating that with the learning rate
exceeding 0.003, the negative impact of the learning rate on the model began to appear,
and increased with the increase of the learning rate value. These negative impacts led to
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the decline of the model’s ability to extract and utilize sentiment features, which further
affected the performance of the model.

From the perspective of model stability, the stability of model performance was the
worst when the learning rate was 0.008, and the average of the standard deviation of all
evaluation metric scores was 0.186. In contrast, the stability of the model’s performance
was the best when the learning rate was 0.003, and the average of the standard deviation
of all evaluation metric scores was 0.003. From the overall trend of change, the average
of the standard deviation of all evaluation metric scores increased with the increase of
learning rate, which indicates that the stability of the model performance decreased with
the increase of learning rate, and this instability would also affect the ability of the model
to extract and utilize sentiment features. In any case, we can also see from Figure 5 that
when the learning rate was in the range of 0.001 to 0.003, the stability of the model had a
trend of first rise and then decline; the average of the standard deviation increased from
0.005 to 0007 and then decreased to 0.003, but the maximum volatility was only 0.007 and
the average of the standard deviation was only 0.007, far lower than the value of the rest of
the interval. This shows that although there were fluctuations in this interval, the stability
of the model had little effect, and the stability of the model was relatively good. As the
learning rate exceeded 0.003, this fluctuation disappeared, accompanied by a stable upward
trend, indicating that the stability of the model changed significantly when the learning rate
exceeded 0.003, and the unstable factors increased, which is not conducive to the model
fully learning sentiment features.

In short, through the above analysis, we can know that the learning rate has a signifi-
cant impact on the performance and stability of the model. Choosing the appropriate value
of the learning rate plays an extremely important role in improving the performance of the
model and maintaining the stability of the model. In fact, the main reason why different
learning rates affect the model is that an inappropriate learning rate will make the model
unable to fully learn the text features during the training process.

4.3.2. Effect of Model Parameters

In this subsection, we detail how in previous work, model parameters often had a
certain degree of influence on the model. Here we mainly explore the specific impact
of dropout value and learning epoch on the MCNN-IFGS method. Specifically, in the
experiment to explore the influence of dropout value on the model, we set the dropout
value as {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, and the experimental results on different dropout
values are shown in Table 5. In the experiment to explore the impact of learning epoch on
the model, the maximum value of the learning epochs was set to 30, and the test accuracy
and test loss were used as evaluation metrics. Figure 6 shows the changes of test accuracy
and test loss value with learning epochs.

Table 5. MCNN-IFGS performance comparison of different dropout values on the Chinese review
dataset. The value before “ ± ” was the mean value, followed by the standard deviation.

Dropout Accuracy Precision Recall F1

0.2 0.964 ± 0.002 0.962 ± 0.002 0.973 ± 0.004 0.968 ± 0.002
0.3 0.962 ± 0.002 0.967 ± 0.007 0.965 ± 0.011 0.966 ± 0.002
0.4 0.966 ± 0.002 0.963 ± 0.006 0.975 ± 0.005 0.969 ± 0.002
0.5 0.967 ± 0.004 0.971 ± 0.010 0.968 ± 0.007 0.970 ± 0.003
0.6 0.968 ± 0.005 0.971 ± 0.004 0.971 ± 0.013 0.971 ± 0.005
0.7 0.967 ± 0.002 0.969 ± 0.005 0.971 ± 0.007 0.970 ± 0.002

0.8 0.972 ± 0.003 0.974 ± 0.006 0.975 ± 0.008 0.974 ± 0.003
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From Table 5, we can see that the overall performance of the model was basically better
and better as the dropout value increased. Although there were some fluctuations, these
fluctuations were small and not enough to affect the overall change law. As the dropout
value increased to 0.8, the model learned best. In any case, as the dropout value increased
to 0.3, the model performed the worst. Its scores on accuracy, precision, recall, and F1-score
only reached 96.2%, 96.7%, 96.5%, and 96.6%, respectively. Specifically, we found the
difference in model performance corresponding to different dropout values was not large,
which shows that different dropout values had less impact on the model performance.
From the perspective of model stability, model performance was basically stable. The
average value of the standard deviation of all evaluation metrics scores corresponding to
different dropout values was relatively small, and the maximum value was only 0.007. In
short, the above analysis found different dropout values had less negative effects on model
performance and model stability.

From Figure 6, we can observe that the change curve of test accuracy with learning
epochs was relatively smooth, and the change of test accuracy relatively stable. Specifically,
we found that when learning epochs were between 1 and 5, the test accuracy increased with
the increase of learning epochs. As the number of learning epochs exceeded 5, the accuracy
of the model no longer changed greatly but began to maintain a relatively stable state.
When the number of learning epochs increased to 28, the accuracy of the model reached
the maximum. This change shows that when the learning round was 1 to 5, the learning
ability of the model increased rapidly. As the learning round exceeded 5, this learning
ability of the model did not change significantly, and the model’s learning of sentiment
features reached a certain height.

We can also see that the change in the test loss value was basically the opposite of
the change in the test accuracy from Figure 6. The test loss value decreased sharply with
the increase of the learning rounds when the learning epochs were between 1 and 5. This
shows that the learning ability of the model increased rapidly in this interval. As the
learning epoch increased to 5, the test loss value reached the minimum value of 0.102. As
the learning epoch exceeded 5, the test loss value no longer changed significantly but was
in a state of minimal fluctuation.
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5. Conclusions

In order to improve the problem that traditional sentiment analysis methods cannot
fully learn Chinese sentiment features, we proposed a multichannel two-dimensional
convolutional neural network based on interactive features and group strategy (MCNN-
IFGS). The core idea of the paper was to convert the learning object of the model from
a single sample to a feature mapping group, and then use MCNN-IFGS for emotional
feature learning. In order to successfully realize this core idea, we proposed a series
of methods. First, we did not use word encoding technology, instead using character
encoding technology that can retain more fine-grained information. Secondly, in order
to supplement semantic information as much as possible and improve the dimension of
feature vectors, interactive features were introduced. Next, we used the group strategy
to transform the interactive feature matrix into several feature mapping groups, thus
successfully transforming the traditional learning objects into feature mapping groups.
Finally, we used MCNN-IFGS to perform feature learning on the feature map group. The
experimental results show that our proposed MCNN-IFGS method was superior to the
comparison method. In the paper, we used a two-dimensional convolution structure, which
can also handle pictures well, which lays a good foundation for our future research on
multimodal sentiment analysis.
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