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Abstract: Wearable devices use sensors to evaluate physiological parameters, such as the heart rate,
pulse rate, number of steps taken, body fat and diet. The continuous monitoring of physiological
parameters offers a potential solution to assess personal healthcare. Identifying outliers or anomalies
in heart rates and other features can help identify patterns that can play a significant role in under-
standing the underlying cause of disease states. Since anomalies are present within the vast amount
of data generated by wearable device sensors, identifying anomalies requires accurate automated
techniques. Given the clinical significance of anomalies and their impact on diagnosis and treatment,
a wide range of detection methods have been proposed to detect anomalies. Much of what is reported
herein is based on previously published literature. Clinical studies employing wearable devices
are also increasing. In this article, we review the nature of the wearables-associated data and the
downstream processing methods for detecting anomalies. In addition, we also review supervised
and un-supervised techniques as well as semi-supervised methods that overcome the challenges of
missing and un-annotated healthcare data.

Keywords: anomaly detection; heart rate; wearables; missing data; machine learning

1. Introduction

The assistance of wearable technologies in monitoring healthcare is revolutionizing the
medical field. The emergence of wearable devices has allowed real time monitoring of vital
signs, including the heart rate, number of steps taken and other parameters, such as calories
and elevation [1]. These devices enable the continuous and longitudinal monitoring of the
above-mentioned physiological parameters. The advantage of such a system is that it can
be used anywhere and at any time.

Given the clinical significance of wearable devices and the associated physiological
parameters that are measured, wearable devices likely can play a role in reducing health
check-up costs and unwanted burden on the already overloaded healthcare programs
around the world. The role of wearables in the future of precision health is currently being
developed on a large scale [2]. To obtain an overview of the number of studies in the field of
wearables, a keyword-based search was performed. The term “wearable sensors healthcare
monitoring” was searched using the Google Scholar database (accessed 18 October 2021).
We observed that the number of wearables-related studies has significantly increased within
the last two decades (Figure S1).
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The increase in wearables-associated studies published in the last few decades indi-
cates a growing interest in wearable applications and efforts in advancing the data analysis
associated with this field. The growing trend observed here also indicates the growth of
the wearables market with several companies now developing biosensors for monitoring
physiological parameters.

Several smart wearable devices and/or applications ranging from smart clothes, skin
devices and other gadgets have been developed [3]. Popular clinical and research-grade
wearable sensor technologies are being manufactured by Ava Science, Abbot, Zoll and
Medtronic, among others. These manufacturers have also been approved by the United
States (US) Food and Drug Administration (FDA). Among them is also Fitbit®, which has
the largest user base along with Jawbone®. These devices have shown good performance in
terms of accuracy of user physiological parameters, which has led to them being employed
for various scientific studies.

Apart from these devices, the Apple® Watch 2, Samsung Gear S3®, Xiaomi Mi® and
Huawei Talk Band B2® are other wearable devices that provide health care monitoring [4,5].
In addition to these established names in the wearables industries, there are several manu-
facturers that assemble devices, including Welch Allyn, Scanadu Scout and iHealth-finger.
These latter firms have even been utilized in clinical studies [6]. Deemed a medical revolu-
tion, these devices provide continuous longitudinal monitoring.

Data processing of physiological parameters, such as heart rate, blood pressure and
body temperature, recorded by the wearable devices, can provide a clinical yield that may
play a role in assessing patient health. The continuous availability of the aforementioned
features within well-defined time and date frames increases the availability of multiple
unique patient data points individually as well as for larger population groups. In addition,
such continuous monitoring may foster more efficient and reliable diagnoses.

Progress in the field of wearable technologies has also facilitated the development of
algorithms for automated health event prediction along with modes for prevention and
focused clinical intervention [7]. Extensive reviews on remote sensing of patient health
and sensor development in the past have been presented, and such reviews continue to
be published today [8–11]. Literature reviews and meta-analysis have also focused on
wearable-based interventions, specifically on their role in enabling a healthier lifestyle [12].

In this review article, we address the process of detecting clinically relevant features
extracted from wearable sensors and the associated data. As part of this process, a major
task is to identify relevant data points or instances from raw wearable outputs which are in-
dicative of patient health. For example, the heart rate is a vital physiological parameter, and
abnormal heart rates that span a period of time can be translated into indicators of various
diseases by utilizing mathematical models, which are elaborated from Section 3 onwards.

These abnormal data points are called anomalies, and this review is primarily on
understanding and reviewing algorithms that are capable of detecting anomalies in addition
to decision-based systems that can handle the constantly evolving personalized data [13].
Even though methods exist for anomaly detection, there are still some challenges in the
current literature with respect to anomaly detection. The first hurdle in anomaly detection
is in evaluating the anomalies and distinguishing them between true and false positives.

Secondly, various statistical and machine-learning-based techniques are employed in
anomaly detection based on the field of application, such as bank fraud, malware detection
and healthcare. However, the prediction of anomalies in each field is based on trends and
signatures which are unique to that field [14]. In the field of healthcare, application of the
existing anomaly detection methods would require significant re-structuring and unique
assumptions [15]. In this article, we provide an overview of anomaly detection, data types,
imputation strategies and the prospects of the field.
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2. Overview of Anomaly Detection

This section details the data types and strategies involved in analyzing the wearable
data for detecting anomalies. The process of anomaly detection involves detecting patterns
in heart rate and steps among other parameters that are significantly different from the re-
maining data. Anomalies in heart rate typically translate to significant and often actionable
information.

In addition to the enormous value of heart data, other physiological data that can be
collected from wearables include steps, blood pressure, the respiration rate, SpO2 levels,
electrocardiogram, calories and skin temperature [16,17]. Additionally, various studies
have combined capnography, stroke volume, pain, level of consciousness and urine output
to accurately determine the associated physiological changes in patients. Recent studies
that will be discussed further have shown that there are few traditional vital parameters
that are crucial and can accurately evaluate human health.

Heart rate is considered as the standard vital sign indicating changes in cycles of the
heart. Recent studies have shown an increase in the usage of this primary attribute to infer
various cardiac pathologies [18–20]. Evidence is mounting in support of heart rate data to
assess cardiovascular disease and its prevention [21]. A high resting heart rate correlates
with an increased risk of coronary artery disease (CAD) [22]. Even in healthy people, heart
rate monitoring gives an insight into normal cardiac physiology.

Monitoring healthy individuals is necessary as anomaly detection techniques em-
ploy supervised, un-supervised and semi-supervised algorithms, all of which requires
continuous temporal data for analysis. Using anomaly detection, the identification of
unusual patterns can sometimes be false positives and will not have any medical relevance;
hence, the results obtained by anomaly detection methods should always be cross-checked
with the electronic health record (EHR) data of the user. A general overview of anomaly
detection is described below (Figure 1).
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The process starts with acquiring data from patient wearable devices, which includes the heart
rate and steps. Various API interfaces are available to download this information, and these use
secure gateways to retrieve it. The raw data are then pre-processed to ensure all the parameters have
a uniform data structure based on timestamps. Data pre-processing is followed by missing data
imputation by utilizing various algorithms, e.g., the Expectation-Maximization (EM) algorithm.
The processed data are then subjected to various statistical and machine-learning algorithms for
anomaly detection.

Anomaly detection can be carried out using several methods as elaborated at the end of the
workflow. Some of the methods comprise hybrid methods from statistics, machine learning and data
analysis, for example, HROS-AD, RHR-diff and LAAD. The detected anomalies are used to predict
and infer clinically relevant information for the user wearing the wearable device. Abbreviations:
EM—Expectation Maximization; KNN—K-nearest neighbor; HROS-AD—Heart rate over steps
anomaly detection; RHR-Diff—Resting Heart Rate difference; LAAD—Long Short-Term Memory
Network-based autoencoder; and MICE—Multivariate imputation by chained equations.

2.1. Noise and Outliers

Anomaly detection is strictly distinct to noise in the data. As the word suggests, noise
is a phenomenon that is of no interest to data analysis and must be removed before anomaly
detection is carried out. Considering a subjective judgement, the designated deviation for a
point to be called an outlier in real applications is a difficult task. The anomalies can be
embedded in a huge amount of noise, and it is noteworthy that even an outlier should be
considered an abnormality/noise. The problem with noise in data is far worse for electronic
health records since very little information is available on the patient’s whereabouts, which
is required to associate the physiological parameters.

Under such conditions, noise is considered a weak outlier, and its detection algorithms
use quantifiable methods, such as the nearest neighbor algorithms [23]. Since wearable
data comprises continuous time series data points, careful evaluation is required for the
distinction between normal data, anomalies and noise. However, some studies suggest that
even the outliers may contain valuable information [24]. Raw data comprised of multiple
components is illustrated in Figure 2.
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These data instances require meticulous differentiation for further processing as discussed by
Aggarwal (2017) [23]. In wearables-associated data, the distinction between normal and other data
types is primarily performed using machine-learning-based techniques.

Various statistical tests along with proximity models provide a good approximation
for differentiating normal data points from the rest [24]. Furthermore, the knowledge
of outlier detection also requires understanding of the different machine-learning-based
categories. Studies in anomaly detection problems in the area of finance, climate and
internet applications have broadly used supervised, un-supervised and semi-supervised
machine-learning approaches [25,26].

Semi-supervised methods have been successful and applications in the above fields
have displayed methods, including the Mahalanobis distance [27], Cook’s distance [28],
Tukey’s method [29], Z-score [30] and K-means [31] and K-medoids [24].

However, there are a few challenges to be addressed before considering anomaly
detection from wearables-associated data. First, defining a region of anomaly is often in
the boundaries of normal patterns. Under such situations, normal physiological behaviors
can often be masked as anomalous and vice versa. Secondly, in the case of heart rate
data, normal behavior might evolve, which can be otherwise represented in the absence of
adequate knowledge of underlying physiological changes. Another important challenge is
the unavailability of labelled data, which is usually used for training or validation processes.
Under such conditions, appropriate modifications in the above-mentioned algorithms, as
elaborated in Section 4 of this article, are required.

2.2. Data Types

The data collected from wearables can be an object, point or vector among others. The
data can have attributes that can be binary, continuous or categorical. These data can have
a relationship with each other in the form of sequence data, spatial data and graphical data.
The anomaly points from these data can be divided into point anomalies and contextual
anomalies. While point anomalies are those instances from the data that are anomalous
or those that lie outside the boundary of the normal regions, the latter categorizes points
based on a specific context. They may be deemed as an outlier in one instance while being
normal in another [32].

The contextual anomalies are dependent on the structure of the data set and anomalies
detected from time series data are a prominent example. Another group, called collective
anomalies, is the occurrence of points that are not anomalous by themselves but occur as a
collection of points as seen in cases where the data instances are related [33]. In a particular
study, Chandola et al. (2009) introduced an example of human electrocardiogram output in
which a region of low value existed for a large time period. In such cases, this abnormality
was not characterized as an anomaly.

Labels provide additional information about each instance in the wearables data. A
significant feature of advanced wearable devices is the availability of several features that
can enhance the value of each point. Along with heart rate, information on the number
of steps, calorie consumption and temperature can aid the anomaly detection methods.
Retrieving these labels, however, poses a challenge [34]. The best practices in anomaly
detection include associating wearable devices data with patient health records, which can
annotate each instance of heart rate, steps, calorie consumption etc., into medically relevant
information clusters [35]. However, obtaining such data from health care management
systems depends heavily on accurate measurements and a thorough knowledge of the
underlying mechanisms.

2.3. Data Pre-Processing

Wearable devices, based on their capability, can detect various physiological measure-
ments from their users. These include heart rate, steps, calories burned, elevation and
various activity summary data at the seconds and/or minute levels. Several wearable
manufacturers have also made available dedicated servers for storing the user information,
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e.g., Fitbit® stores user data in their servers. The raw data can be accessed via an application
programming interface (API) and user authentication [36]. Once downloaded, these files
can be converted into programmable formats for further processing.

The most popular among these are comma-separated values (CSV) files due to their
pre-dominance in the data landscape [37]. The wearable data, which includes all the
physiological properties described above, can be downloaded for each day separately. These
intraday data are typically processed in order to achieve uniform date–time stamps. The
anomaly detection pipelines have different requirements based on their usage. Although,
all of them need the heart rate and the corresponding time frames, which has to be built
accordingly.

Machine-learning-based methods generally require one file with all the physiological
annotations that could be extracted from the device. These methods are mostly unsu-
pervised and are capable of predicting accurate anomalies from user data. The LAAD
framework has been particularly successful in this respect, and this, along with other
existing methods, will be elaborated in greater detail in Section 3. A major challenge in the
pre-processing step is filling and/or imputing the missing data [38], which is detailed in
the following section.

2.4. Missing Data and Data Imputation

The physiological data from daily activities gathered from wearable devices at a highly
detailed level can yield accurate clinical information. However, retrieving continuous
wearables data is a difficult task due to inherent “missing data” challenges. There can be a
number of reasons why data is missing from a wearable device.

For example, instrument malfunctions as well as inconsistencies in extracting all of
the data due to abrupt wearing behaviors constitute a few of the reasons [39]. Imputing
missing data may be suspect and draw great attention to the validity in time-series data
analysis. Missing data can be categorized into three types based on the likelihood of being
missing; missing completely at random (MCAR), missing at random (MAR) and missing
not at random (MNAR). In MCAR, no difference exists between data sets with missing
data and those with no missing data.

Missing data caused due to power loss in the wearable device is a loss of information,
which is due to random chance. In the case of MAR, there is a pattern where the data
would be missing based on the time period when the battery is still active. If the data were
missing only on that specific time of day, it would be considered missing at random. It is
assumed that, in the case of MAR, the missing data can be evaluated from the remaining
values, i.e., we still have the information about the instance of the missing data. Here too,
the missingness depends on the data we observe.

Here, the probability of the missing data is the same within certain specified instances.
In both MAR and MCAR, we have a good chance of recovering the missing data. However
in MNAR, the source of missing data is known, and yet, a mechanism to effectively retrieve
it does not exist [40]. Wearable devices could be removed because of various reasons and
sometimes even purposely, which could lead to MNAR. When the data follow a MCAR or
MAR distribution, the observed data are still representative of the population, unlike the
MNAR. The chief principle of identifying the appropriate category of missing data is so
that no one fills in missing data unnecessarily.

Omitting the missing data can directly lead to biased estimates. Hence, data imputation
presents the alternative by estimation based on knowledge from data and predicting the
values. The approaches to handle missing data are broadly distinguished into statistical
imputation methods and imputation mechanisms that are integrated with machine-learning
algorithms. One of the most basic methods of missing data imputation is mean value
imputation.

In this method, the empty instances are filled using the mean values from the available
observed data. However, this method is unable to preserve the relationship between
variables. Since the imputation in this case are estimates, there will be associated errors,
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which will lead to committing type I errors, in which case, the null hypothesis will be
rejected although accurate. Although there are several methods for handling missing data,
two of the widely used approaches include the maximum likelihood (ML) and multiple
imputation (MI) methods.

The maximum likelihood method is considered to be more efficient due to multiple
reasons, including the minimum sampling variance, consistency in the results produced
and one uniform model. On the other hand, the multiple imputation method requires
several decisions and imputation models, etc. Hot deck imputation is a simple and effective
method of imputing values from the observed set of a similar unit, i.e., imputing values
using values from the same set. This method is not as developed as the other methods, and
its applications may have challenges which are yet to be studied in detail.

The multivariate imputation by chained equations (MICE) method imputes data using
assumptions like MAR and MCAR [41]. The iterative series of the prediction models
employs multiple variables to impute the missing variable making it highly robust. This
is particularly useful for imputing values belonging to variables with good correlation.
Bootstrapping along with multiple imputation using expectation maximization (EMB) is
a robust method. This method is known to be effective for up to 30% missing data and
is far superior to single imputation methods which do not consider the uncertainty of
the predicted missing value as they are obtained using the mean, median or mode as
opposed to the machine-learning-based methods, such as MICE. A brief comparison of
these methods is presented in Table 1.

Table 1. Data imputation methods.

Methods Definition Accuracy References

Mean value imputation (MVI) The values are filled using calculating the
mean for a missing value Biased [42]

Maximum Likelihood (ML) A likelihood function is evaluated and then
sum or integrate over the missing data

Unbiased parameter
estimation [43]

Hot Deck Imputation A data matrix for all instances created is
chosen as a source for missing values

Replication of values may
cause bias [44]

Multiple Imputation (MI)

Starts by introducing random variation and
generates several datasets with slightly

different imputed values. Statistical analysis
on each to find the optimal one

Comparable to ML [45]

Multivariate Imputation by
Chained Equations (MICE)

The method first identifies an imputation
model for each column followed by random

draws from the observable data
Comparable to ML [46]

Expectation–Maximization
with Bootstrapping (EMB)

Initially the likelihood function is evaluated
using model parameters. Next, with the

updated parameters, the likelihood function is
maximized, and the parameters are updated to

return a new distribution

Comparable to ML [47]

3. Basic Categorization of Anomaly Detection

The wearable data has two main features: a timestamp and continuity of data points.
Each variable must have a time dimension and data points that are continuous within
a certain period of time. Repeated measurements over time, otherwise referred to as
time-series data are the primary form of data structure retrieved from wearables [48].

The physiological measurements, such as heart rate, steps etc., that are collected at
regular intervals over time allows the identification of trends in patient health and aids
in health monitoring. Time series data can be further classified into two types: univariate
and multivariate. Univariate time series have scalar values, while the latter consist of
multidimensional values or vectors. Wearable associated data are often multivariate time
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series as these consist of more than one-time dependent variable [49]. These variables are
also dependent on each other.

In addition to the type of data, it is also important to understand the different types of
outliers that are often discussed within the context of anomaly detection in multivariate
data. Point outliers are abnormal points at a specific instance of time. The abnormality
could be judged based on its relationship with the subsequent values, which is detailed
in the next section. The other type of outliers is categorized as subsequence outliers.
These are a collection of consecutive outlier points that can affect multiple variables in the
dataset [23,50]. Detecting these outliers/anomalies from wearables-associated data would
require a combination of several existing methods. These existing methods are benchmark
anomaly detection techniques, which have been previously employed in fields, such as
bank frauds, data networking, spam detection, insurance and other fields.

The methods employed to identify anomalies in these areas are now observed to have
extended applications [25,51]. A certain degree of similarity in the data types of the above-
mentioned fields with that of wearable data for example, time instances, longitudinal data
and the existence of baseline features, among others, have pushed researchers in the field of
anomaly detection to apply the existing algorithms for identifying health-related anomalies
in the wearable data. As previously stated, anomaly detection for wearables-associated
data can be broadly divided into supervised, semi-supervised and unsupervised methods.

3.1. Supervised Anomaly Detection

In this framework, the dataset is composed of labels for training and test data. The
training data can be used to create a classification model that will demarcate the normal
versus the anomalous instances. The general principles behind these methods are often in-
dependent of the spatial or temporal data in use [52]. The chief goal of supervised anomaly
detection is to support the learning method with application specific information. In the
case of wearables, the goal is to identify physiological data points that give information
about the hidden abnormalities in the users’ data. Such relevant markers are however
very rare to extract since extracting continuous biologically relevant information for long
time periods and without missing data is difficult. As a consequence, the creation of a
supervised learning model is very difficult [53].

A clear distinction between normal and abnormal data is required for supervision and
is also referred to as training. Acquiring label information on these data points is of the
utmost importance. Supervised anomaly detection methods completely ignore unlabeled
data in the training step. The dependence of supervised methods on labeled data includes
active learning from the extensive knowledge available for the outlier candidates [54]. It is
evident that supervised methods would provide a better accuracy of detection by virtue of
the additional knowledge.

Some of the popular methods include supervised neural networks, support vector
machines (SVM) and decision trees. Support vector machines has been extended to various
non-standard scenarios as in the case of anomaly detection from wearables [55]. Training
data are used by the one-class SVMs, which then model the density distribution based on
it. This is later used to differentiate between normal and abnormal data instances. Another
popular method is the application of decision trees. Decision trees create models that
classify anomalies based on a decision rule. This rule is dependent on the training data.

The classification of anomalies depends on the model class that is evaluated from the
training data. The classification of data points will depend on all the nodes of the decision
tree and its corresponding value derived from the decision rule. However, decision trees
can produce over-complex trees [56]. Depending on the type of device, healthcare data from
wearables can have several annotations, which can be useful for increasing the accuracy
of machine-learning-based predictions. Several new approaches have been designed that
addresses the current drawbacks, and these are detailed in Section 4.
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3.2. Unsupervised Anomaly Detection

Contrary to supervised methods, this framework does not require training data. These
algorithms are based on two assumptions for the data under consideration. The first
assumption is that the number of normal instances far outnumber the anomalous ones.
The second assumption views anomalies as a different qualitative instance compared to the
normal [57,58]. Data groups appearing frequently can be assumed normal. Based on these
assumptions, unsupervised anomaly detection methods can be broadly categorized into
clustering-based methods, statistical methods and also nearest neighbor-based methods,
the latter being frequently used for anomaly detection in this category [59].

k-Nearest neighbor (KNN) in the field of anomaly detection is a classification method
based on user-defined threshold values. Even though the KNN method is used in super-
vised anomaly detection, it is also applicable in unsupervised anomaly detection. The
fundamental idea behind identifying an anomaly is usually its tendency to stay farther
away from a cluster of similar observation. In the absence of learning, a threshold value
has to be determined, which will determine the anomaly [60]. However, a major drawback
is that it identifies only global anomalies or point anomalies. In wearables data, local
anomalies are equally important, as anomalies at an instance of time can have a significant
impact on the nearby values. In any medical condition, the instances before and after an
anomaly are particularly relevant and important.

Some of the widely used unsupervised anomaly detection methods also include
the clustering technique [60,61] unsupervised neural networks [62] and K-means-based
clustering method [63]. Neural networks are particularly important for anomaly detection
in multivariate data, which is primarily the case with wearables-associated data. These can
correlate different variables of the time series. A major drawback of supervised methods,
such as SVM and KNN is their low effectiveness against multivariate data.

Several modifications on neural network-based methods, such as deep auto en-
coding [51], Gaussian mixture model [64], convolutional long short-term memory net-
works [65], multi-scale convolutional recurrent encoder-decoder [66] are amongst the latest
improvised methods to overcome such issues. Several algorithms have been proposed for
this unsupervised anomaly detection but to identify the proper subset for the anomaly
detection task is considered difficult. With respect to the unsupervised anomaly detection
method, deep learning allows extraction of the features from the data. There are, however,
a few limitations to this approach.

It is difficult to obtain such huge volumes for training purpose. A large section of
these data is unstructured and requires various pre-processing steps, which may vary
based on their sources [67]. There also exists an innate variability amongst anomalies
themselves. There are various types and subtypes of anomalies, with 3 broad, 9 basic
and 63 subtypes, which have been previously studied. These should be understood in
the analysis of healthcare associated data as further research work is done in anomaly
detection [68].

3.3. Semi-Supervised Anomaly Detection

The semi-supervised detection method is considered to be better than supervised
methods. Often due to incomplete information in data (mostly outlier labels and the
variance in outlier (randomness of values)), semi-supervised techniques are used to check
the outlier property of a data point. This class of anomaly detection is involved when
a large section of the data is unlabeled and the dimensions of data are high, which is
especially the case with clinical observation data [69].

Traditional unsupervised methods can work on unlabeled data; however, the unavail-
ability of large-scale continuous data can be a major limitation. This is another reason
behind employing semi-supervised methods, which can work with missing data at the cost
of few labeled instances.

The aim of such detection methods is to build a normal class model, and the anomaly
can be detected based on the deviation of its corresponding instances [70]. Widely used
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methods in this category of anomaly detection methods include one-class SVMs, deep
auto-encoders and Gaussian models [64,71–73]. Deep semi-supervised anomaly detection
was also introduced recently, which not only learns from labelled normal data but also
labelled anomalies [74].

This also, like the supervised and un-supervised method, has to be applied under
definite assumptions with a relative consideration towards the limitations. However, a
combination of statistical inference along with machine learning methods is mostly used
for anomaly detection in a disease framework. These methods are thus tailored to address
the availability of continuous data, the type of devices and the disease conditions.

4. Applications of Anomaly Detection Methods on Wearables Associated Data

There are several wearables-associated studies with clinical implications. In this sec-
tion, we elaborate in detail some of the most relevant studies. Li et al. (2017), in their study,
demonstrated that wearables have the potential to monitor activity along with physiology.
In the study, they combined the sensor data with frequent medical measurements to make
predictions on the onset of Lyme disease and inflammation. Through the study, they also
observed a distinction between the insulin-sensitive and insulin-resistant subjects.

Various devices were employed that measured the heart rate, SpO2 and temperature
along with other activity-related parameters for a prolonged span of two years. A baseline
was established for the data during sleep and non-sleep instances, and based on this,
a Z-transformation was employed to scale and standardize the time instances. The activity
specific data was then monitored and compared with the overall period to reveal the
outliers [6].

In a study by Mishra et al. (2020), heart rate and steps data were used to detect
COVID-19. They analyzed physiological and activity data from over 5200 participants,
which included 32 individuals diagnosed with COVID-19 infections. The study showed
elevated resting heart rates relative to the individual’s baseline. With the missing values
imputed as zeros, two algorithms resting heart rate difference (RHR-diff) and heart rate
over steps anomaly detection (HROS-AD) were developed. The first algorithm was based
on standardizing the resting heart rate over a fixed time frame to observe baseline residuals.

The time interval was detected as anomalies based on scan statistic method [75]. In
HROS-AD, heart rate and steps data were combined in a machine-learning-based elliptic
envelope approach. The data was assumed to have a Gaussian distribution and the method
identified both univariate and multivariate outliers based on the distance of each HROS
point from the overall mean. These points are regarded as contaminants that are too
extreme for the assumed Gaussian distribution of data [76].

In a similar study, Bogu et al. (2021) were able to detect an abnormal resting heart
rate during the COVID-19 disease state. The resting heart rate was identified using cor-
responding step count values. A deep-learning approach based on a Long Short-Term
Memory Network-based autoencoder (LAAD) was employed in this study. Data labelling
(infectious, non-infectious and recovery periods) was based on a literature review. The
abnormal resting heart rate (RHR) was estimated using its distance from baseline before
generating the training set.

To prevent overfitting in the deep learning model, different data augmentation tech-
niques were employed, which increased the size of training data. RHR indicative of
COVID-19 infection was detected in 14 individuals [77]. The aforementioned studies em-
phasized the importance of characterizing an individual’s baseline. Irrespective of the
evaluation models applied, setting a baseline can significantly improve the performance of
anomaly detection.

Another study performed by Zhu et al., on COVID-19 prediction by utilizing heart rate
and sleep data collected from wearables devices, employed a neural network prediction-
based method. This study used categorical features, such as the holiday activity the person
was engaged in along with information on the current season and weather patterns in
addition to the wearable data. This information was combined with historically detected
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anomaly rates to construct the input for anomaly detection [78]. To accurately determine
the anomaly points, it is important to identify the source of those points.

Various physiological ailments can point towards the anomalies; hence, a wider range
of categorical features was proposed in this study. Apart from COVID-19, heart related
ailments can also be monitored using wearables. Wang et al. (2021) studied a total of
16,320 atrial fibrillation (AF) patients and established that wearable use has a positive effect
on health care [79]. The detection of AF was successfully performed by Lown et al. (2020).

In this case, an online library of time interval between two consecutive R-waves from
an electrocardiogram was used, and a correlation of RR interval changes was studied with
respect to previous changes, which represented the heart rate variability. These changes
were represented using a Lorenz plot. A Gaussian support vector machine was employed,
which correctly identified AF with 100% accuracy [80].

These studies exemplified wearable technology and its application in real time disease
state monitoring. Hybrid algorithms profiting from the available statistical and machine
learning frameworks are expected to grow in the near future. Some examples of such
research works are presented below (Table 2).

Table 2. Wearables-associated studies with clinical implications.

Disease under Study Wearables Used Method Applied Major Finding References

COVID-19 Huami wearable
devices

Anomaly detection
algorithm, neural

network prediction
modelling

methodology

Prediction model with potential
to alert COVID-19 outbreak in

advance as a part of health
surveillance system

[78]

Atrial Fibrillation
(AFib) Not mentioned Not mentioned

Follow-up health care amongst
those using wearables was

higher indicating better disease
management

[79]

Atrial Fibrillation
(AFib) Samsung Simband

Noise-resistant
machine learning

approach

The screening algorithm can
enable large scale detection of
undiagnosed AFib from noisy
Photoplethysmogram (PPG)

wearable sensor

[81]

Sleep/wake
identification Fitbit Alta; Fitbit Inc Hidden Markov

models

Accurate measurement of
sleep/wake cycle and an

effective personalized model
[82]

Monitor heart rate in
real time during

moderate exercise

Xiaomi Mi Band 2 and
Garmin Vivosmart

HR+
Not mentioned

Estimating accurate heart rate
signals under physically

strenuous activity
[83]

Prediction of Heart
Failure Exacerbation

wearable sensor (Vital
Connect, San Jose CA)

Machine learning
analytics algorithm

Multivariate data from
wearables accurately predicts the

need for rehospitalization of
patients with a heart failure risk

[84]

Atrial fibrillation (AF) Amazfit Health
Band 1S

Artificial intelligence
(AI) algorithm

PPG sensor derived data along
with AI can be an efficient way

to detect AF
[85]

Distance walked or run,
calorie consumption,
quality of sleep and

heart rate

Fitbit Charge 2
(Thought Technology

LTD, Toronto,
CANADA)

HR-derived algorithms

Accurate heart rate monitoring
for fitness tracking using
wearables compared to

electrocardiograph has several
significant differences, which

needs to be studied

[86]
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5. Prospects
5.1. Handling and Transparency of Wearables Associated Data

Extracting clinically relevant outputs from wearables-associated data has several key
requirements. The anomaly detection algorithms discussed above have all greatly benefited
from the availability of large wearable datasets; hence, the development of data repositories
should go hand in hand. A slow but steady shift from hospital-based care to patient-centric
care is being observed worldwide. This, along with an increasing popularity of wearables,
is slowly leading toward a data surge [87,88]. Tracking the progression of any disease state
demands uninterrupted wearables-associated data points, which is beyond the scope of
hospital care.

Such longitudinal data collected over large time periods on a daily basis can amount
to data accumulation. The analytical usage of this data, as it has been discussed throughout
this current review article, depends on approaches to access and distribute the data. The
development of wearables-associated software directed at both accurate health monitoring
and state of the art data collection, analysis and visualization is of the utmost impor-
tance [89]. Both standalone and hybrid methods for anomaly detection require accurate
interpretations that can be correlated with the user activity and their daily experience.

Generating recommendations includes decision making by the users and goal synchro-
nization, both of which may require platforms in addition to mobile applications. Existing
recommendations regarding the correlation of various variables from the device should
be put to the test. For example, exercise and sleeping are independent variables, which,
when correlated can conceal the underlying physiological anomaly. Additionally, statistical
significance on relationships should leave enough room for practical significance, which
arises with the increase in data.

Anomaly detection methods also needs gold-standard data against which to compare
the generated results. Databases, like the UK Biobank [90], and other similar libraries with
cohort studies can be very useful in comparing standalone wearables-associated studies.
Another important area is the transparency of algorithms designed to compute steps or
sleep data, which should be encouraged. The limitations of the large-scale data generated
from wearables need to be addressed more often [89].

5.2. Application of Wearables in Healthcare

The impact of COVID-19 has renewed everyone’s interest towards novel healthcare
solutions. Wearables-technology and its adoption is significantly increasing in awareness
among the public. Wearables are already being integrated into clinical practices. The
vital signs, such as heart rate, temperature, blood pressure and blood oxygen saturation,
measured by the wearable devices are carefully being used for clinical applications. The
extraction of useful health-related markers is slowly making its way into mobile health-
related interventions [90].

Intensive care units (ICU) have reported many benefits by employing wearables in
making precise medical decisions. Heart rate and sleep measurements have helped manage
post-ICU care. Patients recovering from major surgeries and associated stress can benefit
from a continuous monitoring of their physiological changes. Heart rate and sleep are often
associated with pain levels and underlying recovery.

Wearables-derived data employed with machine-learning algorithms can, therefore,
provide accurate patient monitoring. A wide array of disorders is now being brought
under the investigation paradigm of wearables. Metabolic disorders are marked by high
blood pressure, blood sugar and abnormal cholesterol, among other conditions. With ad-
vancements in non-invasive monitoring of such conditions, the management and control of
disease becomes easier [7,42]. Efforts are being made to monitor and diagnose hypertension
by measuring blood pressure longitudinally over time. Blood pressure monitoring can be
helpful for many associated primary conditions [91,92].

Additionally, sleep disorders, mental health, maternal and neo-natal care require
active tracking; they can benefit from wearable technologies. Monitoring patient fitness
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has allowed for a better understanding of the before and after disease states. Such initia-
tives have afforded significant observations in various disease models. In case of cancer
treatments, analyzing biometric data from wearables can be used to predict pain levels,
stress etc. Similarly, activity and sleep data have been collected and employed to predict
migraine attacks.

In this particular clinical trial, machine learning was employed on a dataset comprised
of physiological parameters along with environment variables to predict the likelihood of a
migraine attack [93]. Such studies have been noted from the ClinicalTrails.gov database.
There are 82 studies that have wearable devices associated in their clinical trial process,
twenty (20) of them have been completed thus far, and 36 are in the recruiting state. Other
studies (14) have been initiated pending recruitment, while the remaining studies are either
suspended or the status is unknown. A detailed account can be found in Table S1.

Among the current on-going clinical trials, the wearables-associated interventions
have been particularly successful in managing lifestyle diseases. Metabolic disorders
and their risk in worsening cardiovascular disease state is an active field of study in the
application of wearables. Based on evaluating the disease conditions in the ongoing trails,
there are 23 clinical trials utilizing wearables to understand and/or monitor lifestyle disease
states. Hypertension requires a longitudinal measure of heart-rate variability, and wearable
monitoring devices are an affordable and non-invasive means of monitoring the heart
rate [94].

Monitoring energy expenditure in cardiac patients can be crucial in their rehabilitation.
A Fitbit wearable-based clinical trial was able to assess the improvement in the physical
activity of patients with chronic heart failure and coronary artery disease. Similarly, in
demonstrating the effectiveness of a fitness tracker for children with deep vein thrombosis,
a research team employed Fitbit devices to evaluate the physical activity in patients [95].
Several such studies are proving that wearables are robust healthcare monitoring devices.

5.3. Impact of Wearables on Managing Healthcare

Steady improvements in algorithms for anomaly detection are being made. Simultane-
ously, large datasets have been made available to improve the predictability. Wearables
and the data analysis are thus connected to certain key areas, such as the cloud and data
security. The internet connection, in particular Wi-Fi, helps in communication between
wearable devices with hand-held devices, such as smart phones and the cloud.

The development of a dedicated cloud infrastructure for storage and analyzing data
can enhance wearables usage in healthcare. The security of these devices is another aspect
to be considered. A systematically regulated online cloud infrastructure along with device-
to-device connectivity is necessary in digital healthcare framework [96]. These factors can
eventually help in the application of wearables-associated big-data and accurate anomaly
detection for studying disease pathogenesis.

Smartphones and other hand-held devices are typically used for obtaining and trans-
mitting information collected from the wearables. An integrated system would be useful
in managing disease states. Carefully detected anomalies with medical relevance can be
translated into knowledge which can then be instrumental in handling a global health crisis.
The COVID-19 pandemic has certainly shifted the thrust towards the need for a more digital
or telemedicine-based healthcare system. The pandemic saw a rise in tele-consultations.

Under such situations, wearable devices can provide health parameters, which are
otherwise collected during patient’s clinical visits. The primary health data collected in
this way is already being used to assess chronic diseases. Tracking heart rate and other
primary parameters has proved helpful in the past to develop models for the spread of
influenza [97]. Such physiological tracking studies have been initiated by The Scripps Re-
search Translational Institute along with Fitbit®, Apple® Watch and Garmin® devices [98].

Another study conducted by TemPredict at University of California, San Francisco
(UCSF) utilizing the Oura ring also made efforts in tracking physiological data from
users [99]. The Internet of Things (IoT) can integrate and store data and carry out smart
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identifications along with the tracing of patient data and exchange of knowledge. The
entire infrastructure is a potential tool for doctors to handle crisis situations.

6. Conclusions

Wearables-associated data are increasingly becoming popular in clinical setups. Such
data are extremely valuable to predict disease biomarkers. The application of anomaly
detection methods in the rapidly growing healthcare field can aid clinical practices by
detecting inconsistencies and undetected physiological parameters. The machine-learning
approaches discussed in the review are being employed to not only detect outliers but
also identify novel data points, which are far from otherwise seemingly normal physiologi-
cal values.

These methods also address the drawbacks of un-annotated wearables data by em-
ploying semi-supervised methods, such as one-class support vector machines and deep
auto-encoders, which employ training based on both labelled and unlabeled data resulting
in accurate user data analysis. Overall, applying anomaly detection on the real-time data
produced by wearable devices can reveal valuable clinical information in terms of disease
diagnosis, prediction, treatment and rehabilitation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22030756/s1, Figure S1: Comparison of number of research
articles on wearables sensors and healthcare monitoring; Table S1: List of wearables-associated
clinical trials.
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