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Abstract: The existing analysis methods for the silicon gyroscope drive loop, such as the perturbation
method and period average method, cannot analyze the dynamic characteristics of the system. In this
work, a linearized amplitude control model of the silicon gyroscope drive loop was established to
analyze the stability and set-up time of the drive loop, and the vibration conditions of the silicon gyro
were obtained. According to the above results, a new silicon gyroscope interface circuit was designed,
using a 0.35 µm Bipolar-CMOS-DMOS (BCD) process, and the chip area was 4.5 mm × 4.0 mm. The
application-specific integrated circuit (ASIC) of the silicon gyroscope was tested in combination with
the sensitive structure with a zero stability of 1.14◦/hr (Allen). The test results for the ASIC and the
whole machine prove the correctness of the theoretical model, which reflects the effectiveness of the
stability optimization of the closed-loop controlled drive loop of the silicon gyroscope circuit.

Keywords: gyroscope; closed-loop controlled drive loop; linear model; complementary metal oxide
semiconductor (CMOS)

1. Introduction

Gyroscopes are sensors that can be used to detect angular velocities [1–3]. They are
widely used in science, technology, the military, and other fields [4–6]. Compared with
traditional gyroscopes, silicon gyroscopes based on microelectromechanical system (MEMS)
technology and CMOS technology have the characteristics of low cost, small size, low power
consumption, high reliability, and mass producibility [7,8]. The silicon gyroscope interface
circuit is required, to bring the gyroscope structure into resonance, and the angular velocity
can be detected using the Coriolis force principle. Hence, closed-loop control drive loops
based on automatic gain control (AGC) were commonly used to maintain the constant
amplitude vibration of sensitive structures at their resonant frequencies [9,10]. In the
closed-loop drive circuit of a silicon gyroscope, due to the highly non-linear component
in the acceleration-to-speed signal transfer function, it was difficult to obtain an accurate
analytical solution for the loop-transfer function [11,12].

In some traditional methods, such as the perturbation method and the period average
method, the system was linearized near its equilibrium point and its time domain was
analyzed, so the starting conditions of the system could be easily obtained. Nevertheless, it
was difficult to obtain the specific performance of the system using traditional methods
because their nonlinear functions were solved in the time domain and their solutions were
too complex to obtain their analytical solutions [13,14]. Some works proposed models to
simplify the amplitude response of a second-order system as a first-order system to analyze
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the stability of the system [15], but they did not quantitatively analyze the system response
influenced by different control parameters.

In this work, the second-order transfer function of the drive loop was simplified in
the low-frequency range to the first-order transfer function by using the perturbation term
equivalent method, and an equivalent model of the silicon gyro drive loop was established.
Based on this model, the characteristics of the amplitude frequency, phase frequency, and
step response were simulated by SIMULINK, and parameters such as Ki and Kp were
optimized according to the simulation results. According to the optimized parameters, the
pre-stage circuit was adjusted. In order to verify the correctness of the model, a test system
was established. The system’s start-up time and set-up time with different proportional
integral controller (PI) parameters were compared by a transient response experiment
for the silicon gyroscope. The performance of the silicon gyroscope interface circuit chip
was tested and analyzed. According to the Allen variance method, the bias stability was
1.14◦/hr, which met the requirements for high-precision silicon gyroscope sensors.

2. Drive Loop Modeling and Simulation

The electrostatically driven capacitive silicon gyroscope was analyzed as an example.
Its operating principle is shown in Figure 1.
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Figure 1. Sensitive structure of electrostatically driven capacitive silicon gyroscopes.

2.1. Mechanical Motion Principle of Silicon Gyroscope

Silicon gyroscopes measure angular velocity based on the Coriolis Force effect. When
there is an angular velocity input perpendicular to the direction of a silicon gyroscope
resonance plane, a forced vibration is generated in its resonance plane perpendicular to
the resonance direction, and the input angular velocity can be calibrated by measuring its
forced vibration. Equation (1) is the expression for the Coriolis Force [16]:

→
F = 2m(

→
Ω×→v ) (1)

where m is the effective mass of the structure motion,
→
Ω is the input instantaneous angular

velocity, and
→
v is the velocity of the structure motion.
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Let the direction of the vibration of the silicon gyroscope driving the modal mass
block be the X-axis and the direction of the vibration of the detecting modal mass block
be the Y-axis. When the whole gyroscope rotates in the Z-axis with angular velocity
Ω, the Coriolis Force is generated in the Y-axis direction. When the silicon gyroscope
mass block is subjected to simple harmonic forces F0 sin ωdt in the driving direction, the
dynamics equations for the gyroscope in the driving and detecting modes can be expressed
as Equations (2) and (3) [17]:

Md
d2x
dt2 + λd

dx
dt

+ Kd · x = F0 sin ωdt (2)

Ms
d2y
dt2 + λs

dy
dt

+ Ksy = 2MsΩx′(t) (3)

where Md is the mass of the driving mass, and Ms is the mass of the sensing mass. λd and
λs are the damping force coefficients of the mass in the X-axis and Y-axis directions. Kd and
Ks are the elasticity coefficients of the mass in the directions of the X-axis and Y-axis. x and
y are the displacement of the mass in the X- and Y-axis directions.

2.2. The Establishment of the Closed-Loop Control Drive-Loop Model

In the drive loop of the silicon gyroscope, the transfer function of the detection struc-
ture that converts the acceleration into the velocity signal has a highly nonlinear component,
and it is difficult to obtain an accurate analytical solution [18,19].

The kinetic equation of the drive mode in the driving velocity control gyroscope can
be described as a deformation of Equation (2):

..
x + 2ξdωd

.
x + ωd

2x =
.
ux (4)

where ωd =
√

Kd/Md is the intrinsic frequency of the drive mode, ξd = λd/2Mdωd is the
damping ratio of the drive mode, and the drive signal of the gyroscope is represented by
the driving acceleration ux, which could be obtained as kvux in the driving loop, where kv
is a displace to voltage conversion gain, u is the controller voltage.

The analytical solution could be written approximately as:

x(t) ≈ a(t) sin(ωxt + θ(t)) (5)

where a(t) and θ(t) are the time-varying amplitude and phase. ωx = ωd
√

1− ξd
2. The first

and second derivatives of x(t) could be written as:

.
x =

.
a sin(ωxt + θ) + a cos(ωxt + θ)(ωx +

.
θ) (6)

..
x =

..
a sin(ωxt + θ) + 2

.
a cos(ωxt + θ)(ωx +

.
θ)− a sin(ωxt + θ)(ωx +

.
θ)

2
+ a cos(ωxt + θ)

..
θ (7)

Substituting Equations (5)–(7) into Equation (4) [20], one can derive:

..
a sin(ωxt + θ) + 2

.
a cos(ωxt + θ)(ωx +

.
θ) + a[cos(ωxt + θ)

..
θ − sin(ωxt + θ)(ωx +

.
θ)

2
]

+2ξdωd[
.
a sin(ωxt + θ) + a cos(ωxt + θ)(ωx +

.
θ)] + ωd

2a sin(ωxt + θ)

= kvu[
.
a sin(ωxt + θ) + a cos(ωxt + θ)(ωx +

.
θ)]

(8)

Considering the cosine term, one can derive:

.
a + ξdωda +

..
θ

2(ωx +
.
θ)

a =
1
2

kvua (9)
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Since the resonant frequency of the sensor was several kilohertz, compared to xdωd,
the disturbance term

..
θ/2(ωx +

.
θ) could be ignored. kvua is the envelope signal of ux, which

could be redefined as ua. Therefore, the transfer function could be rewritten as:

G′(s) =
a(s)

ua(s)
=

1
2(s + ξdωd)

(10)

This could mean that the second-order transfer function of the original drive loop
could be simplified in the low-frequency range to the first-order transfer function that only
described the output signal.

Based on the analysis above, the closed-loop model of the gyroscope drive loop shown
in Figure 2 could be established. As shown in the figure, in order to find the transfer
function of the drive loop, the reference voltage input Vref was used as the input, and the
output of the low-pass filter was used as the output. The closed-loop transfer function of
the entire loop system could be obtained as:

Vout

Vin
=

KtotalKvgaVre f Vdc
ωd

2k(s + ωdξd)

ωlp f

s + ωlp f

(
Kp +

Ki
s + τ

)
1 + KtotalKvgaVre f Vdc

ωd
2k(s + ωdξd)

ωlp f

s + ωlp f

(
Kp +

Ki
s + τ

) (11)

where Kvga is the gain of the variable gain amplifier, Vdc is the driving direct current (DC)
voltage, k is the spring constant, ωlpf is the cutoff frequency of the filter, Kp and Ki are the
proportional and integral terms of the PI controller, and Ktotal is the product of Kvoltage-force,
Kdisplace-voltage, and Krectifier.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 14 
 

 

( ) 1( )
( ) 2( )a d d

a sG s
u s s ξ ω

′ = =
+

 (10)

This could mean that the second-order transfer function of the original drive loop 
could be simplified in the low-frequency range to the first-order transfer function that 
only described the output signal. 

Based on the analysis above, the closed-loop model of the gyroscope drive loop 
shown in Figure 2 could be established. As shown in the figure, in order to find the trans-
fer function of the drive loop, the reference voltage input Vref was used as the input, and 
the output of the low-pass filter was used as the output. The closed-loop transfer function 
of the entire loop system could be obtained as: 

( )

( )

2

1
2

lpfd i
total vga ref dc p

d d lpfout

lpfd iin
total vga ref dc p

d d lpf

KK K V V K
k s s sV

KV K K V V K
k s s s

ωω
ω ξ ω τ

ωω
ω ξ ω τ

 + + + + =
 + + + + + 

 (11)

where Kvga is the gain of the variable gain amplifier, Vdc is the driving direct current (DC) 
voltage, k is the spring constant, lpf is the cutoff frequency of the filter, Kp and Ki are the 
proportional and integral terms of the PI controller, and Ktotal is the product of Kvoltage-force, 
Kdisplace-voltage, and Krectifier. 

 
Figure 2. Closed-loop model of gyroscope drive loop. 

2.3. Simulation Result of the Model 
According to Figure 2 and Equation (8), a SIMULINK simulation model was estab-

lished, and the influence of Ki, Kp, lpf, and Kvga on the system’s amplitude–frequency char-
acteristics and unit step response was analyzed. 

As shown in Figure 3a, with an increase in Kp, the gain of the system remained un-
changed, and the bandwidth increased. The setup time was the shortest when Kp = 10. 
Therefore, considering the system comprehensively, Kp = 10 was the optimal value for the 
system parameters. As shown in Figure 3b, the loop gain increased when Ki increased, but 
the bandwidth did not change much. According to the step response of the system, Ki = 
200 was a suitable value. In Figure 3c, it can be observed that the cut-off frequency of the 
low-pass filter could be chosen. It could be observed that the cut-off frequency of the low-
pass filter had little effect on the gain and bandwidth of the system, and the step response 
indicated that the choice of ωlpf should not be too small. As shown in Figure 3d, an increase 
in Kvga would significantly increase the system gain and bandwidth. 

In addition, the zero pole of the system could also be observed in the root trajectory 
diagram of the closed-loop system, as shown in Figure 4. 

Therefore, a strategy for optimizing the system parameters for this structural param-
eter could be derived from the results of Figures 3 and 4. In order to obtain drive-loop 
parameters with better stability and robustness, a shorter build-up time, and less system 

Figure 2. Closed-loop model of gyroscope drive loop.

2.3. Simulation Result of the Model

According to Figure 2 and Equation (8), a SIMULINK simulation model was estab-
lished, and the influence of Ki, Kp, ωlpf, and Kvga on the system’s amplitude–frequency
characteristics and unit step response was analyzed.

As shown in Figure 3a, with an increase in Kp, the gain of the system remained
unchanged, and the bandwidth increased. The setup time was the shortest when Kp = 10.
Therefore, considering the system comprehensively, Kp = 10 was the optimal value for the
system parameters. As shown in Figure 3b, the loop gain increased when Ki increased,
but the bandwidth did not change much. According to the step response of the system,
Ki = 200 was a suitable value. In Figure 3c, it can be observed that the cut-off frequency
of the low-pass filter could be chosen. It could be observed that the cut-off frequency of
the low-pass filter had little effect on the gain and bandwidth of the system, and the step
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response indicated that the choice of ωlpf should not be too small. As shown in Figure 3d,
an increase in Kvga would significantly increase the system gain and bandwidth.
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In addition, the zero pole of the system could also be observed in the root trajectory
diagram of the closed-loop system, as shown in Figure 4.

Therefore, a strategy for optimizing the system parameters for this structural param-
eter could be derived from the results of Figures 3 and 4. In order to obtain drive-loop
parameters with better stability and robustness, a shorter build-up time, and less system
oscillation, appropriately increasing Ki and Kvga to obtain a larger system gain, and then
adjusting the value of Kp to change the zero point of the complex plane and the loop
stability, could be considered.
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3. Circuit Design and Experiments

The 0.35 µm four-metal double polycrystalline N-well CMOS process was used to
complete the layout design of the silicon gyroscope interface ASIC chip. Figure 5 shows
the layout of the interface circuit chip.

3.1. Overall Design of the Drive Loop

In the drive loop of Figure 6, the signal of the drive detection in the gyroscope structure
was detected using a charge amplifier. After differencing, amplification, phase shifting, and
demodulation, the signal with the same resonant frequency of the drive mode was obtained,
and the automatic gain control of this signal was realized through a peak detection module
and PI control module. The final drive signal was superimposed with the DC reference
signal, which was applied to the drive combs at the top and bottom of the left and right
sides of the gyroscope structure to complete the self-excited drive of the silicon gyroscope.
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3.2. Circuit Implementation Details
3.2.1. Charge–Voltage (CV) Conversion Circuit

Figure 7 shows the structure of the three-stage operational amplifier circuit used in
the root preamplifier circuit. A T-network structure was used in this operational amplifier
to implement a large resistor to increase the transimpedance gain and reduce noise. In
addition, using this T-network structure could increase the integration and reduce the chip
area. This T-shaped transimpedance network consisted of a transistor and a resistor in the
red circle, which could achieve an equivalent feedback resistance greater than 100 MΩ. The
principle of this T-shaped resistor network was to make the gate source voltages of the
two transistors equal. Q17 and Q19 were set so that Q18 was in the linear region and had a
larger equivalent resistance due to its smaller gate source voltage and smaller aspect ratio.
This equivalent resistance was proportional to the bias resistance in the bias current source
and was not affected by time and temperature variations [21]. The feedback capacitor Cf
was about 5 pF, and its resistance was matched to the silicon gyroscope sensitive structure
to reduce the effect of parasitic capacitance. The equivalent resistance of the T-shaped
network was:

Req = RM(1 +
R2

R1
) + R2 (12)

where RM was the equivalent resistance of the transistor Q18, and its resistance was about
1 MegΩ, which was much larger than R1 and R2.
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3.2.2. Phase-Compensation Circuit

Figure 8 shows a block diagram of the phase-compensation circuit, i.e., phase shifter.
Phase shift was generated in the pre-stage CV conversion, so the phase had to be shifted
by 90◦ in the post-stage circuit to meet the phase conditions of the closed-loop self-excited
drive. The operational amplifier OP1 and the resistors R1, R2, and R6 formed an adder,
wherein the resistance values of R1, R5, and R6 were equal, to realize negative feedback.
The operational amplifier OP2, the resistor R3, and the capacitor C1 formed a feedforward
integrator. The operational amplifier OP3, resistor R5, and capacitors C2 and C3 formed
a feedback integrator. A forward transfer integrator was used to achieve a 90◦ phase
shift, and a feedback integrator was used to eliminate the continuously integrated forward
transfer integrator detuning voltage.
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3.2.3. Automatic Gain Control Circuit

Figure 9 shows a schematic diagram of the automatic gain control and drive modu-
lation circuit, which was used to adjust the DC bias of the closed-loop drive voltage to
achieve a dynamic amplitude stabilization drive.
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As shown in Figure 9, the half-wave rectifier circuit consisted of an operational ampli-
fier OP1, and resistors R1 and R2 with two diodes; the full-wave rectification and low-pass
filtering functions were completed with an integrator composed of the operational amplifier
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OP2 and C1, C2 and R6, and the resistors R3 and R4. The inverting input of the integrator
was connected to the voltage reference source through the resistor R5, and the integrator
completed the closed-loop amplitude control function. The parameters in the circuit were
R1 = R2, R3 = 2R4, R7 = R8 = R9, and R10 = R11 = R12. After the closed-loop feedback, the
integrator automatically adjusted the output DC voltage Vdc; the alternating current voltage
amplitude, Vac, was:

Vac =
πR3Vre f

2R5
(13)

The adder consisted of the operational amplifier OP3 with the resistors R7, R8, and
R9, whose function was to superimpose the signals Vdc and Vac. The multiplier consisted
of the operational amplifier OP4 with the transistors Q1 and Q2, whose function was to
complete the high frequency modulation of the driving voltage signal, with a function of
(Vdc + Vacsinwt)U(t), to avoid coupling interference. In the multiplier, a switch consisted
of the transistors Q1 and Q2, whose gates were controlled by voltage square waves ±U(t)
with a period of TS = 25 ms and a duty cycle of 50%, which was used to realize the square
wave modulated signal.

3.3. Verification of Closed-Loop Control Drive-Loop Model

In order to verify the correctness of the stability analysis and stability model of the
drive loop in this work, a transient response experiment for the silicon gyroscope was
carried out, and the system’s start-up time and set-up time were mainly compared when
using different PI parameters. In order to test the transient response of the gyroscope drive
loop, a test system was established, as shown in Figure 10. Keysight’s U2355A high-speed
data acquisition card was used to capture the signal at a sampling frequency of 50 kHz, and
the debug interface was used to switch the power of the entire interface circuit on and off
to generate a step signal. After the system was powered on, the drive signal was sampled,
and the sampled result was processed by Matlab. The transient response of the closed-loop
drive circuit when the PI controller started to oscillate with different parameters is shown
in Figure 11.
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When the drive signal was started using different Kp, the transient waveforms were as
shown in Figure 11. It could be observed that within about 0.2 s when the silicon gyroscope
system was powered on, the driving loop did not start immediately, and the driving signal
had not yet been established. Then the noise components were continuously selected
and amplified by the closed-loop self-excited driving loop through frequency selection, a
tiny driving signal was generated which was rapidly amplified by the multiplier. After a
period of rise time, it was quickly stabilized at a fixed amplitude under the action of the
closed-loop oscillation automatic gain control module in the driving loop as a sine wave. It
could be observed that with Kp increasing from 5 to 10, the overshoot signal was gradually
smoothed, and the rise time and settling time were increased. When Kp continued to be
increased, the overshoot signal was increased again. The test result proved that, when
Kp = 10 and Ki = 200, the stability optimization of the control loop was realized.

In order to prove the conclusion above, the comparison between the simulation and
the test about rise time was given in Table 1 and Figure 12. It could be observed that the rise
time of the model was almost the same as the test result. Compared with the test results,
the rise time of the drive-loop model was slightly different. However, the change trends
were the same, which also verified the correctness of the model.
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Table 1. Test and simulation results of sensor with different proportional term Kp.

Kp 5 10 15 20

Rise time with simulation (s) 0.16 0.21 0.06 0.04
Rise time of the test (s) 0.15 0.19 0.04 0.02
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3.4. Experimental Results for the Whole System

The system was tested by connecting the PAD points on the interface ASIC chip to the
solder joints on the corresponding PCB with silicon aluminum wire through a press welder
and integrating the ASIC chip on a PCB board. The circuit operated at a ±2.5 V supply
voltage with a power consumption of 90mW. The main instruments and equipment used
for the interface circuit testing are shown in Table 2.

Table 2. Device used by silicon gyroscope sensor test system.

Equipment Type Manufacturer

High-precision current source PW36-1.5ADP KENWOOD
Current source E3631A Agilent

Dynamic signal analyzer 35670A HP
Oscilloscope DSOX2002A Agilent

To verify the design of the self-excited drive circuit, the driving spectrum was analyzed
using a dynamic analyzer, HP35670A. Figure 13 shows the spectrum of the drive signal of
the closed-loop self-excited drive circuit. The unmodulated drive signal in the time domain
was tested using an oscilloscope (DSOX2002A), and the test results are shown in Figure 14.
The frequency stability was 0.93 ppm. This drive voltage signal was applied to the silicon
gyroscope drive comb after high-frequency modulation. The test results show that the
driving circuit could make the silicon gyroscope structure self-excited induce stable driving
at the resonant frequency.
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A whole machine test on the silicon gyroscope was carried out. At room temperature,
the serial debugging assistant was used to sample the digital output for one hour, and
the sampled data were averaged every 10 s. The data results were fitted according to the
international standard stability Allen variance method, as shown in Figure 15. The output
bias stability was 1.14◦/hr (Allen), which could meet the requirements for high-precision
silicon gyro sensors. The effectiveness of the stability optimization of the drive loop was
proved by the test results.
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