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Abstract: The problem of deep learning network image classification when a large number of image
samples are obtained in life and with only a small amount of knowledge annotation, is preliminarily
solved in this paper. First, a support vector machine expert labeling system is constructed by using a
bag-of-words model to extract image features from a small number of labeled samples. The labels of a
large number of unlabeled image samples are automatically annotated by using the constructed SVM
expert labeling system. Second, a small number of labeled samples and automatically labeled image
samples are combined to form an augmented training set. A deep convolutional neural network
model is created by using an augmented training set. Knowledge transfer from SVMs trained with a
small number of image samples annotated by artificial knowledge to deep neural network classifiers
is implemented in this paper. The problem of overfitting in neural network training with small
samples is solved. Finally, the public dataset caltech256 is used for experimental verification and
mechanism analysis of the performance of the new method.

Keywords: support vector machine; convolutional neural network; knowledge transfer; bag of
visual words

1. Introduction

Today’s world is in an era of big data. Social networking sites, intelligent transporta-
tion, intelligent medicines, and other fields are generating massive image samples every
day. These massive data provide the premise and support for the training and updating of
deep learning models [1–3]. The serious problem of big data is that the number of samples
is large, but the labeled samples that endow knowledge are few. This problem hinders
the generalization of deep convolutional neural network models with strong learning and
generalization capabilities in real life [4]. In order to solve this problem, the first task is
how to expand the existing small number of labeled samples to generate a large number of
labeled image samples that meet the needs of deep learning model training [5,6]. Secondly,
due to the high dimension of the image, the existing expert systems that only classify
low-dimensional image features well, are difficult to apply to the expansion of image
annotation samples. The key to solving the above problems is to achieve effective feature
dimensionality reduction for existing high-dimensional images. The final problem to be
solved to achieve the goal is the selection of a suitable deep learning image classification
model and model parameter training method [7–11]. When the number of network layers
is deep, Kalman filtering can be used to adaptively update the neural network [12,13].

The authors in [14] studied the effects of unbalanced data sets on different classifiers.
This document uses a data balance algorithm to effectively improve the classification
performance of the classifier in the unbalanced data. This study details the effects of
sampling inadequate data sets, using balance algorithms and over-sampling data sets on
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classifier performance. It has proven to have an important role in the performance of a
few types of data sets. The authors in [15] proposed a new loss function in the model
training phase, the squared gradient magnitude loss (SGM) was used to improve the
effect of representation learning. The literature used generators to generate new data
for data augmentation for few-shot classes. The disadvantage of this method is that it
captures complex data distributions. The authors in [16] combined meta-learning and data
augmentation to generate new samples with different variations by changing illumination,
location, etc. The authors in [17] proposed a prototype network. The prototype network
used a deep neural network to map images into vectors. For samples belonging to the
same category, the average value of this category of sample vectors was obtained as the
prototype of the category. By continuously training the model and minimizing the loss
function, the distance between samples in the same category were closer together, and the
distance between samples in different categories were further away, so as to update the
parameters of the embedding function. The idea and implementation method of the
prototype network are very simple, but the results obtained by only using the labeled data
are not necessarily accurate, and the sample size is too small, which will lead to the deviation
of the classification boundary. The authors in [18] proposed a method for solving the few-
shot problem with federated learning. The authors in [19] proposed a neural network
training method from the source domain to the target domain. Mehrotra et al. used the
generative adversarial network to solve the small sample problem. First, input the sample
data and destroy it, then input the damaged sample into the generator network to generate a
new sample, and compare the new sample with the original input sample to judge whether
the new sample is a real sample. The algorithm effectively expands the experimental data
by synthesizing new samples [20]. However, when it is in the deep learning framework,
it needs a certain number of training samples to generate the countermeasure network.
Boltzmann machine generates a probability model from samples. The model parameters
are infinite dimensions. A considerable number of samples are required to generate the
function. Compared with generating a countermeasure network and Boltzmann machine,
this paper realizes the effective training of a neural network based on only labeled small
samples, and it only needs a small number of training samples. The reason is that there
are relatively few SVM parameters. Based on a small number of labeled samples, a mature
SVM classification model can be trained to assign knowledge to unlabeled image samples,
so as to realize the capacity expansion training of the neural network.

Our core contribution is to creatively train a deep neural network image classifier
with a large number of parameters using small labeled samples. The executable bridge
is built between a small number of labeled samples and the generation of a large num-
ber of samples that meet the needs of neural networks. The specific steps are as follows.
First, based on a small number of image sample sets annotated by artificial knowledge,
three feature descriptors are used to extract the underlying features of the image. The visual
word bag feature vector set is constructed by clustering. The clustering method achieves
effective dimensionality reduction for complex features in original images. Secondly,
the support vector machine image classification model was constructed, respectively based
on the established visual word bag feature vector set. Thirdly, a large number of image
sample sets without knowledge annotation obtained in life was input into the established
support vector machine image classification model in turn, and the labels of the corre-
sponding samples were predicted. Then, the selected deep convolutional neural network
classification model parameters were trained based on the obtained set of a large number
of annotated image samples. Finally, the classification performance of the neural network
after knowledge transfer was verified by experiments. The experimental results show that
under the different number of predicted labels, with the continuous increase in the number
of enhanced training sets of the neural network, its classification accuracy continued to
improve. Our method is 3% higher than the highest average classification accuracy of
H0G_BOVW_SVM. Compared with the convolutional neural network with parameter ini-
tialization under the few-label samples, the average classification accuracy of our method



Sensors 2022, 22, 898 3 of 16

is 20% higher. The expert knowledge reflected by the designed shallow support vector
machine model is successfully transferred to the convolutional neural network in the form
of predicted labels, which improves the shortcomings of the convolutional neural network’s
poor expressive ability and generalization ability due to insufficient labeled samples.

2. Visual Word Bag Feature Extraction and SVM Image Classifier Construction Based
on Small Label Image Samples

The main purpose of this section is to construct a shallow support vector machine
model based on a small number of manually labeled samples for the data expression
of expert knowledge: Firstly, three different feature descriptors are used to extract the
underlying features of the image [21,22], and the visual word bag model is created by
clustering method to realize the effective dimensionality reduction in complex features.
The constructed visual word bag model is used to represent the image features [23–26].
Then, based on the established visual word bag feature vector set, support vector machine
image classification models with a small number of knowledge label samples as input are
constructed, respectively. Finally, a large number of unlabeled image samples are input
into the established support vector machine with good classification performance to assign
knowledge annotation.

2.1. Construction of the Bag of Visual Word Based on Small Label Image Samples

The main objective of this section is to extract the bottom features of the sample image
based on the image sample set marked with a small amount of artificial knowledge in real life,
and then generate the visual word bag feature vector set by the K-means clustering method,
so as to effectively reduce the dimension of complex features in the marked sample image; it lays
a foundation for establishing the SVM image classification method based on low dimension.

2.1.1. Image Bottom Feature Extraction Based on Three Feature Descriptors

The BOVW model is widely used in traditional image classification algorithms.
Its main idea is to map the local low-level features to the middle and high-level latent se-
mantic features of the image through clustering algorithm. Each cluster center is the visual
word of the image, and all cluster centers form a visual word bag, so that each image can
be represented by the visual word frequency histogram. Because the quality of the visual
word bag is closely related to the extracted bottom features, and the quality of the visual
word bag will further affect the accuracy of image classification, three different feature
descriptors are selected to extract the bottom features of image, which are scale invariant
feature transform, histogram of oriented gradient, and Canny edge detection algorithm.

Sift describes the image by finding local interest points in different scale spaces to
help identify objects. SIFT divides the image into 4 × 4 grid. In each grid, the gradient
is quantified into 8 directions to form a 128-dimensional vector. Hog first converts the
image into a gray image, and then calculates the gradient value of each pixel to capture
texture information and contour. Canny realizes edge detection by using non maximum
and double threshold detection. Its advantage is that it can detect weak edge details.

2.1.2. Bag of Visual Word Were Generated Based on Image Underlying Features and the
K-Means Clustering Method

Based on the features extracted by the bottom feature descriptor, the effective dimen-
sionality reduction in the features is realized by the clustering method, and the visual word
bag of the image is further generated. The algorithm flow chart of bag of the visual word
model is shown in Figure 1 below:

Figure 1. Flow chart of Bag of Visual Words.
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The image classification algorithm based on bag of visual word model is divided into
four steps:

The first step is to extract the local feature vector of the image with the above three
different descriptors.

In the second step, due to the large number of feature vectors extracted by the feature
descriptor and high dimension, the K-means clustering method is used to cluster the bottom
local feature vectors of the image obtained by the feature descriptor into K clusters, so that
there is high similarity in the clusters, but low similarity between clusters, and each cluster
center is a visual word.

In the third step, the image is represented as the distribution of words, and the vi-
sual word frequency histogram is used to represent the image features. After K-means
clustering, a visual dictionary composed of K visual words is obtained, which can be
expressed as V = (v1, v2, · · · vi, · · · , vk), vi represents a visual word. In this way, the im-
age sample is represented as a k-dimensional feature vector F, in the specific form of
F = ( f1, f2, · · · fi, · · · , fk), where fi is visual word vi number of occurrences.

In the fourth step, the classifier support vector machine is designed and trained,
and the image feature vector represented by word bag model is used for image classification.

2.2. Construction of the SVM Classifier Based on Bag of Visual Word of Small Label Image Samples

The main goal of this section is to build a support vector machine image classifica-
tion model with a small number of labeled samples as input based on the established
visual word bag feature vector set. A large number of unlabeled image samples are in-
put into the established support vector machine with good classification performance
for label assignment.

SVM is a new structured learning method based on structural risk minimization. SVM
shows excellent performance in the case of small samples and the creation of the model is
not complex. When the kernel function is introduced, it can solve various kinds of nonlinear
problems. Support vector machine classifier is a classifier that aims to find the maximum
margin to solve the parameters w and b, so as to construct the decision boundary and
classify with the decision boundary. The schematic diagram of SVM is shown in Figure 2.

Figure 2. Schematic diagram of support vector machine.

For non-linear separable sample data, it is necessary to increase the dimension of the
data and project the data from the original space x to the new space Φ(x). The decision
function of SVM dealing with nonlinear problems is as follows:

f (xtest) = sign(w ·Φ(xtest) + b) = sign(
N

∑
i=1

αiyiΦ(xi) ·Φ(xtest) + b) (1)
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Among them, αi is the Lagrange multiplier. (xi, yi) is the training set sample input by
the support vector machine. N is the number of training set samples input by the support
vector machine, and xtest is the test set sample of the support vector machine.

In extreme cases, the kernel trick is used by SVMs to solve multi-dimensional and
computationally expensive problems because the data may be mapped into an infinite-
dimensional space. The kernel trick is a mathematical way of representing the result of a
dot product in the increased dimensional space using a vector calculation in the original
space of the data. Specifically:

K(u, v) = Φ(u) ·Φ(v) (2)

The dot product function K(u, v) in the original space is called kernel function. Φ(x)
is a mapping function. With the kernel function, the decision boundary is expressed as:

f (xtest) = sign(
N

∑
i=1

αiyiΦ(xi) ·Φ(xtest) + b) = sign(
N

∑
i=1

αiyiK(xi, xtest) + b) (3)

The kernel function is calculated in the original space, which can avoid the problem of
the curse of dimensionality. In this paper, the linear kernel function is selected for image
classification test.

In Section 2.1, different feature extraction methods are used to extract the bottom
features of the image, and the extracted features are clustered into word bags. Based on the
different image features represented by different word bags, the classification accuracy of
the trained shallow model support vector machine is also different. The model with the
highest predicted label accuracy is selected as the expert system. The expert system labels
and filters unlabeled image samples to form a quasi-labeled dataset. The specific process
is shown in Figure 3. Multiple SVM expert systems are trained based on different image
features of a small number of labeled samples. The mathematical expression is as follows:

S = {si(Fi)|Fi ⊆ F} (4)

where si(·) represents the ith expert system trained based on feature Fi.

Figure 3. Flow chart of pre training model.

Then, Rank is determined by the classification accuracy of si and the first m ex-
pert systems with better classification performance are selected to construct a model
candidate pool:

SN = {si|Rank(Acc(si)) ∈ {0, 1, . . . , m− 1}} (5)
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Among them, m is taken as 2 in this paper, Acc(si) represents the classification accuracy
of the model si on the validation set, and its mathematical expression is

Acc =
c

∑
i=1

xii/
c

∑
i=1

c

∑
j=1

xij (6)

Among them, xij is the number of samples that actually belong to the ith class, but is
predicted by the model to be the jth class; c = 6, refers to the number of categories to be
distinguished. The pre-trained SVM model in SN is selected to predict unlabeled samples
by measuring the accuracy rate.

Du = {(x̃l+1, ỹl+1), (x̃l+2, ỹl+2), · · · , (x̃l+u, ỹl+u)} (7)

where ỹl+u is the prediction label of unlabeled image sample x̃l+u. ỹl+u is obtained by
fusing multiple SVM models:

ỹl+u = g(si(Fl+u)
∣∣∣si ∈ SN) (8)

where g(·) represents the fusion function. The specific process is to calculate the arithmetic
average value of image classification prediction probability of different models, and select
the category with the highest probability as the fusion function result.

3. Knowledge Transfer and Depth CNN Image Classifier Model Based on Expert
Annotation System

After the shallow support vector machine model is established, a large number of
unlabeled images are successively input into the support vector machine for assignment,
labeling, and screening. A large number of labeled samples marked by the expert system
and the original sparse labels are combined into an enhanced training set. The augmented
training set is used to train and solve the selected deep convolutional neural network
classification model. This process realizes knowledge transfer from sparse labeled sample
sets to deep neural network classifiers.

3.1. Knowledge Transfer of Fenerating a Large Number of Label Samples

The flow chart of BOVW_ SVM_VGG16 algorithm is shown in Figure 4. If the neural
network is directly trained with sparse labeled samples, the neural network often suffers
from severe overfitting. Therefore, this paper proposes a knowledge transfer-based convo-
lutional neural network image classification method. Since different feature descriptors
have different emphasis on image feature description, combining the advantages of three
feature descriptors, the bag-of-words model is used to characterize image features, which
are used to train a shallow model support vector machine. The SVM with the best training
accuracy was used to make predictions on unlabeled images to form a quasi-labeled dataset.
The predicted labels of quasi-label data sets are the data representation of SVM knowl-
edge. In order to better extract the underlying features, this paper adopts three different
feature extraction methods to build support vector machines. If you want to use other
feature extraction methods, you can use the transfer learning method to transfer the feature
extraction part of the mature neural network for image feature extraction, which is the
future direction of work. After the support vector machine predicts the unlabeled samples,
some of the labeled image samples and the predicted labeled samples are combined to form
an enhanced training set, and the remaining part of the labeled samples is used as the test
set. The augmented training set is randomly cropped, and the obtained image sample size
is 224 × 224, and normalized preprocessing is performed. The image samples preprocessed
by the data are sent to the selected neural network for training, where the loss function is
the cross-entropy loss function, and the learning rate is 0.0001.
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Figure 4. BOVW_SVM_ VGG16 algorithm flow chart.

This study was conducted under the following assumptions:
The mathematical expression of labeled image sample data set is as follows:

Xl = {(x1, y1), (x2, y2), · · · , (xl , yl)} (9)

where xl is the lth image sample, yl ∈ {1, 2, · · · , c} is the class label of xl, there are c classes in to-
tal. The mathematical expression of unlabeled image sample set is Xu = {xl+1, xl+2, · · · , xl+u}.

Step: 1. Train SVM by minimizing the objective function.
Input: Part of the data is extracted from the labeled image sample set as the training set,

the training set image data is DS
T = {(x1, y1), (x2, y2), · · · (xN , yN)}, where i = 1, 2, · · · , N.

(1) The optimization problem is constructed and solved by selecting the appropriate
kernel function and the appropriate parameter C.

min
α

1
2

N
∑

i=1

N
∑

j=1
αiαjyiyjK(xi, yj)−

N
∑

i=1
αi

s.t.
N
∑

i=1
αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, · · · , N

(10)

Find the optimal solution α∗ =
(
α∗1 , α∗2 , · · · , α∗N

)T .
(2) Choose α∗ positive component of 0 < α∗j < C, calculation

b∗ = yj −
N

∑
i=1

α∗i yiK(xi, xj) (11)

(3) Constructive decision function:

s(x) = sign(
N

∑
i=1

α∗i yiK(x, xi) + b∗) (12)

Step: 2. Because the integration of multiple support vector machines is better than
that of a single support vector machine, the two models with the best SVM classification
accuracy under different feature extraction are selected to predict the unlabeled image.
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If the two models form a consistent prediction for the same unlabeled image, the sample is
selected as the quasi-label sample to increase the capacity of the neural network training set.

ỹl+u = g(s(x̃l+u)) (13)

Step: 3. The labeled sample data set and quasi-labeled sample data set are combined
to form an enhanced training set ATS.

ATS = DS
T ∪ Du (14)

Step: 4. The augmented training set is used to train and solve the selected deep
convolutional neural network classification model. This process realizes knowledge transfer
from sparse labeled sample sets to deep neural network classifiers.

3.2. Deep Neural Network Classifier Model Construction

The main objective of this section is to select the appropriate neural network and build
the model and solve the parameters. The selection of suitable neural network has a great
impact on the results of image classification. The selected neural network is constructed
and trained based on a large number of label samples obtained by knowledge transfer of a
support vector machine.

Vgg16 is a neural network that focuses on building convolution layers. The number 16
means that the network contains 16 convolution layers and full connection layers. Vgg16
has a regular network structure, with several convolution layers followed by a pool layer
that can compress the size of the image. The pool layer reduces the height and width of the
image. At the same time, there is a certain law in the change in the number of filters in the
convolution layer. Because vgg16 shows good performance in various image classification,
this network is selected as the basic model of this paper [27,28]. The network structure
diagram of vgg16 is shown in Figure 5.

Figure 5. VGG16 network structure.

The neural network classification task has n training samples to be assumed, and the
training set samples are denoted as

{(
x(1), y(1)

)
,
(

x(2), y(2)
)

, · · · ,
(

x(n), y(n)
)}

, where xn

represents the nth training sample, y(n) represents the true label of the sample,
y(n) ∈ {1, 2, . . . , c}. c represents the number of classification task categories. For a given
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sample x, p(y = j|x) represents the probability of sample x in each class of classification
results. Use the function hθ(x) to represent p(y = j|x) :

hθ(x(i)) =


p(y(i) = 1

∣∣∣x(i); θ)

p(y(i) = 2
∣∣∣x(i); θ)

...
p(y(i) = C

∣∣∣x(i); θ)

 =
1

c
∑

j=1
eθjx(i)


eθ1x(i)

eθ2x(i)

...
eθcx(i)

 (15)

where θ1, θ2, · · · , θc represents the parameters of the model, and the specific form of θ is
as follows:

θ =


θ1
θ2
...

θc

 (16)

At this point, the cost function of the classifier is:

J(θ) = − 1
n

 n

∑
i=1

c

∑
j=1

1
{

y(i) = j
}

log
eθjx(i)

c
∑

l=1
eθl x(i)

 (17)

where 1{·} is the indicative function, 1{true} = 1, 1{ f alse} = 0.

4. Digital Simulation Example and Algorithm Performance Analysis

This section mainly introduces the data sets and experimental environment used in the
experiment, and describes in detail the analysis and influence of different feature extraction
methods on the accuracy of SVM image classification, the influence and analysis of the
number of quasi label data sets on the accuracy of neural network classification, and the
analysis and comparison of the accuracy of different models in the case of small samples.

4.1. Experimental Preparation

In order to verify the effectiveness of the algorithm proposed in this paper, the cal-
tech256 data set collected by California Institute of technology is used. In this dataset,
pictures are divided into 256 categories, and the pictures in each category range from
80 to 800. Six kinds of images are selected for experiments, namely, aircraft, face, horse,
ladder, motorbike, and T-shirt. The quantity of each type of image data and its labels are
shown in Table 1:

Table 1. Types, quantities, and labels of images.

Image Type Quantity Label

Airplane 800 1
Face 435 2

Horse 270 3
Ladder 242 4

Motorbike 798 5
T-shirt 358 6

Due to the unbalanced number of image samples per class, when generating pseudo-
labels, the network tends to skew toward classes with a larger number of training sets.
In order to prevent this from happening, two fixed numbers of samples were randomly
selected from each type of image samples as labeled samples, and the labeled sample sizes
of each type of image are 24 and 36, respectively. The labeled samples were divided into



Sensors 2022, 22, 898 10 of 16

a training set and validation set with a ratio of 2:1, and then a threefold cross-validation
experiment was performed to train the support vector machine. This means that the
number of training sets is 16 when the labeled sample capacity is 24, and the number of
training sets is 24 when the labeled sample capacity is 36.

4.2. Analysis and Influence of Different Feature Extraction Methods on SVM Image Classification
Accuracy

Since different feature extraction methods and some important parameters have a great
impact on the SVM classification performance, a large number of experimental analyses
were to select SVMs with high classification accuracy. Figure 6 visualizes the frequency
histograms of image visual words under different image feature descriptor underlying
feature extraction methods. The visual word frequency histogram was extracted under the
condition of k = 400.

Figure 6. (a) Feature extraction histogram of SIFT; (b) Feature extraction histogram of Hog;
(c) Feature extraction histogram of Canny.

From the visual feature extraction histogram, it can be seen that the visual word
histogram frequency of sift and hog feature extraction is higher than canny frequency,
so sift and hog can better reflect the characteristics of the image. Figure 7 shows the
validation results of SVM trained under different feature extraction and k = 400 when the
sample size of each type of labeled image is 24 and divided into training set and validation
set in a ratio of 2:1 for cross validation. The confusion matrix was used to represent and
visualize them.

Figure 7. (a) Confusion matrix of SIFT_BOVW_SVM; (b) Confusion matrix of Hog_BOVW_SVM;
(c) Confusion matrix of Canny_BOVW_SVM.

In order to find the most suitable parameter value k, this paper conducted a lot of
experiments in different feature extraction situations. In order to ensure the reliability of
the experimental data, the data sets with labeled sample sizes of 24 and 36 were randomly
divided into three parts, two of which were used as training sets and one was used as test
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sets. The average classification accuracy obtained by the threefold crossover experiment
was used as the basis to measure the classification performance of the support vector
machine: 16 in the table represents the number of training sets when the labeled sample
size is 24, and 24 in the table represents the number of training sets when the labeled sample
size is 36. Table 2 gives the specific overall classification results. Figure 8 visualizes the data
in Table 2 with a line chart.

Table 2. Classification accuracy of SVM verification set under different characteristics.

Parameter
Model

Sift Hog Canny

Number of cluster kernel function 16 24 16 24 16 24

100 linear 0.667 0.72 0.782 0.837 0.604 0.639

200 linear 0.708 0.764 0.823 0.865 0.604 0.681

300 linear 0.729 0.806 0.83 0.858 0.646 0.694

400 linear 0.729 0.806 0.865 0.90 0.646 0.681

500 linear 0.729 0.792 0.865 0.90 0.646 0.694

600 linear 0.75 0.806 0.876 0.886 0.646 0.708

700 linear 0.75 0.792 0.865 0.90 0.646 0.667

800 linear 0.771 0.833 0.886 0.90 0.691 0.708

900 linear 0.771 0.778 0.886 0.907 0.671 0.694

1000 linear 0.75 0.778 0.865 0.879 0.683 0.687

1100 linear 0.771 0.778 0.845 0.893 0.662 0.699

1200 linear 0.792 0.792 0.875 0.90 0.662 0.681

1300 linear 0.833 0.829 0.875 0.886 0.683 0.681

1400 linear 0.771 0.819 0.854 0.886 0.662 0.671

1500 linear 0.771 0.778 0.875 0.893 0.62 0.639

Figure 8. Comparison of classification accuracy under different features.

When a CNN was trained on a dataset with noisy labels, the neural network will
overfit to the noisy data because the deep network can learn and memorize any training
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dataset. When selecting a prediction model to label unlabeled samples, two SVM classifiers
with good classification performance were selected as the labelers. At the same time,
two SVM classifiers were used to label the same sample. If the prediction results were the
same, the label was used as the quasi-label of the unlabeled sample.

In order to make the correct rate of pseudo-labels predicted by SVM at a high level,
different k values were selected when making the bag-of-words model. The size of the
visual dictionary was determined by the number of clusters k. A suitable value of k makes
the extracted feature vector more representative of image features. If the dimension of
the visual dictionary is too small, the difference between different types of images cannot
be clearly represented. If the dimension is too large, it will lead to the redundancy of
features, and the key information of the image will be too scattered, which will cause the
disaster of dimensionality and seriously affect the classification efficiency of the image.
The experimental results show that when k = 100 to 400, the classification accuracy of
the support vector machine SVM under the bag-of-words model of HOG is continuously
improved. At k = 400 to 1500, the SVM image classification accuracy tends to be stable,
while the feature extraction time and model training time continue to increase. It can be seen
from Figure 8 and Table 2 that the image classification accuracy under this feature can reach
up to 91%. In the case of small samples, the texture and contour information extracted by
HOG can be used to effectively represent image features, so that support vector machines
can express good classification performance. Compared with the image features of SIFT
and Canny, the dimension of the image features extracted by HOG is small, and the model
training time is also less. In general, the SVM pseudo-labels trained under the HOG feature
had the highest accuracy and efficiency. When k = 100 to 800, the classification accuracy
of support vector machine SVM under the bag-of-words model of SIFT continuously
improved. When k = 800 to 1500, with the increase in the k value, the model training time
increased continuously, but the classification effect is not significantly enhanced. In this
case, the image classification effect is not proportional to the k value. Compared with the
HOG and SIFT feature extraction methods, the classification accuracy of the support vector
machine trained by the features extracted by Canny reaches the optimum and tends to be
stable with the increase in the k value when k = 800; after which, the classification accuracy
of SVM will not improve significantly with the increase in the k value. Compared with
the classification accuracy under HOG and SIFT features, the classification level under this
feature is lower. Therefore, the support vector machine model under this feature extraction
was not used as the prediction model. In order to verify the influence of different numbers
of small samples on the classifier, this paper selected 16 and 24 training sets to train the
support vector machine model. The experimental results show that the support vector
machine model trained with the number of training sets of 24 is better than the support
vector machine model with the number of 16.

4.3. Influence of the Number of Quasi-Label Data Sets on the Classification Accuracy of
Neural Network

The support vector machine model with the highest accuracy to label and screen unla-
beled image samples was used. The training set of quasi-labeled image samples and labeled
image samples was fed into a fine-tuned convolutional neural network VGG16 for training.
In the experiments, five augmented training sets with different capacities were constructed.
The number of boosted training sets increased by 500 each time. The augmented training
set was used to train the convolutional neural network. The remaining one-third of the
labeled image samples in each category were used as the validation set of the convolutional
neural network, and the validation set was used to test the effectiveness of the small-sample
image classification algorithm based on the convolutional neural network and support
vector machine proposed in this paper. The images need to be preprocessed before the
neural network can be trained. First, the size of the image was cropped to 224 × 224. Then,
the cropped image were flipped horizontally with probability p = 0.5 and normalized.
VGG16 uses the Adam optimization algorithm during training. VGG16 uses iterative
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training, the maximum number of iterations is 50,000 epochs, and the learning rate is set to
0.0001. The results are shown in the following Table 3:

Table 3. Classification accuracy of vgg16 verification set under different capacity enhancement
training sets.

Number of Training Set

Number of Labeled Samples Quasi Label Capacity
Increase Quantity Val_acc

16/24 0 72.9%/73.5%
16/24 500 74.5%/74.6%
16/24 1000 78.5%/79.3%
16/24 1500 83.5%/83.7%
16/24 2000 89.6%/88.1%
16/24 2500 92.5%/93.4%

It can be seen from the table that when the number of labeled samples is 16 and 24
to increase the number of quasi-labeled data sets, the classification accuracy of the same
neural network on the validation set is not much different. The reason for this is that
the total number of training sets is not much different. However, the enlargement of the
training set has a great impact on the training of the neural network. With the increase in
the number of quasi-labeled data, the accuracy of the neural network on the validation set
continues to increase, indicating that the knowledge learned by the support vector machine
under the small sample data was successful. Migrating to a convolutional neural network
improved the over-fitting phenomenon caused by low classification accuracy of neural
network under small label samples.

4.4. Comparison of Classification Accuracy of Different Models in the Case of Small Samples

The highest average classification accuracy on the validation set of the SVM trained
under three different feature descriptors, the VGG16 network under parameter initialization
and the knowledge transfer method proposed in this paper are compared in this section.
The comparison is shown in Table 4. Figure 9 shows the change in the loss function and the
accuracy rate during the VGG16 training process using only small samples.

Table 4. Classification accuracy under small label samples of different models.

Modle
Training Set Sample Size

16 24

SIFT_BOVW_SVM 83.3% 83.3%
HOG_BOVW_SVM 87.5% 90.7%

Canny_BOVW_SVM 69.1% 70.8%
VGG16 72.9% 73.5%

BOVW_SVM_VGG16 92.5% 93.4%

It can be seen from the table and figure that the VGG16 directly trained with small
samples has serious overfitting. The accuracy of the training set is 91.66% and the accuracy
of the test set is 72.91%. Due to the simple feature extraction method of traditional image
classification methods, the classification accuracy is between 70% and 90%. The convo-
lutional neural network image classification effect based on knowledge transfer is better,
and the classification accuracy can reach 93.4%. It is 3% higher than the highest classifica-
tion accuracy of the traditional machine learning classifier Support Vector Machine (SVM).
Compared with the deep convolutional neural network in the small sample case, the VGG16
model trained with the quasi-labeled sample dataset can learn better discriminative features
and improve the classification accuracy by 20%. This means that the knowledge learned
from the artificial bag-of-words model and the shallow model SVM can be successfully
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transferred to the pretrained convolutional neural network in the form of predicted sample
labels. The effectiveness of this method in solving the problem of low image classification
accuracy in the case of small samples is verified in the experiments.

Figure 9. Vgg16 network training process under small samples.

5. Summary and Prospects

This paper mainly introduces a new method of deep convolutional neural network
image classification based on knowledge transfer in the environment of small label samples.
This method mainly combines different feature extraction methods with different advan-
tages, and integrates multiple traditional image classification methods to predict unlabeled
images. The number and accuracy of quasi-labeled samples increased. The augmented
training set enables efficient training of convolutional neural networks. The knowledge
learned by the shallow model support vector machine was successfully transferred to
the convolutional neural network model, which improved the robustness and generaliza-
tion ability of the convolutional neural network model. Experimental verification shows
that the proposed method has better classification performance than traditional image
classification methods. Our method is 3% higher than the highest average classification
accuracy of HOG_BOVW_SVM. Compared with the convolutional neural network with
parameter initialization under the few-label samples, the average classification accuracy is
20% higher. In the future research, since different classifiers have different characteristics,
if the classification performance can be better by combining multiple classifiers, the neural
network will learn better knowledge. In addition, the feature extraction information of the
trained neural network can be used to embed multiple classifiers into the neural network
for model fusion to further improve the accuracy of image classification. As the structure of
the neural network gets deeper and deeper, the gradient descent algorithm can be replaced
by the Kalman filter for adaptive updating [29]. This is a direction that can be considered
in the future.
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