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Abstract: The electrocardiogram (ECG) is considered a fundamental of cardiology. The ECG consists
of P, QRS, and T waves. Information provided from the signal based on the intervals and amplitudes
of these waves is associated with various heart diseases. The first step in isolating the features of an
ECG begins with the accurate detection of the R-peaks in the QRS complex. The database was based
on the PTB-XL database, and the signals from Lead I–XII were analyzed. This research focuses on
determining the Few-Shot Learning (FSL) applicability for ECG signal proximity-based classification.
The study was conducted by training Deep Convolutional Neural Networks to recognize 2, 5, and
20 different heart disease classes. The results of the FSL network were compared with the evaluation
score of the neural network performing softmax-based classification. The neural network proposed
for this task interprets a set of QRS complexes extracted from ECG signals. The FSL network
proved to have higher accuracy in classifying healthy/sick patients ranging from 93.2% to 89.2%
than the softmax-based classification network, which achieved 90.5–89.2% accuracy. The proposed
network also achieved better results in classifying five different disease classes than softmax-based
counterparts with an accuracy of 80.2–77.9% as opposed to 77.1% to 75.1%. In addition, the method
of R-peaks labeling and QRS complexes extraction has been implemented. This procedure converts a
12-lead signal into a set of R waves by using the detection algorithms and the k-mean algorithm.

Keywords: ECG signal processing; few-shot learning; R wave detection; distance-based classification;
PTB-XL dataset; deep learning

1. Introduction

Machine learning, especially Deep Learning (DL) approaches, has been of interest
in academia and industry. This has resulted in numerous changes in the approach to
automatic detection or classification processes. However, the reliability of such studies has
not always been high and differs depending on the methods used.

Since recently, it has been proved that Artificial Intelligence (AI) and machine learning
has numerous applications in all engineering fields. Among them are the areas of elec-
trical engineering [1], civil engineering [2], and petroleum engineering [3]. In addition,
classification using DL methods [4] have several practical applications in various areas
of medicine, such as the diagnosis of diseases based on physiological parameters [5], the
classification of cardiac arrhythmias based on ECG signals [6,7], and the recognition of
human activity [8]. Various ECG classification schemes based on DL were used to detect
heart diseases [9–12], for example, using Long Short-Term Memory networks [13] and one-
dimensional Convolution Neural Networks [14–16]. In addition, DL methods have been
used to classify pathological conditions of the heart, such as arrhythmia, atrial fibrillation,
ventricular fibrillation, and others.
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Cardiovascular disease is a general term for a series of cardiovascular abnormalities
that are the world’s leading cause of death [17]. Each of them is identified and interpreted
using an electrocardiogram (ECG). The ECG is an important non-invasive diagnostic
method for the interpretation and identification of various types of heart disease. Figure 1
shows an illustrative waveform of the ECG signal. Every day, approximately 3 million
ECGs are produced worldwide [18]. ECG data contain rich information about the rate
and rhythm of the heartbeat. Clinically, the ECG is analyzed over a short period using a
graph of several consecutive cardiac cycles. The process begins with R-peak detection. It is
usually the most visible part of the ECG that can be easily identified. The ECG reflects the
depolarization of the main mass of the ventricles and refers to the maximum amplitude in
the QRS complex. QRS complexes are the starting point for the analysis of the ECG signal.
They serve as rhythm items and provide information about intraventricular rhythm and
conduction [19,20].

Figure 1. The illustrative waveform of the ECG signal.

Several methods and techniques have been used to locate the R-peak in the ECG
signal, based on standard techniques such as digital filtering, wavelet transform, Fourier
Transform, signal decomposition, and Hilbert Transform. However, only a few proposed
works use DL methods in the literature to detect QRS complexes. One of the works in [21]
is where a 300-point Convolutional Neural Network (CNN) and clustering on the neural
output are used to detect QRS complexes on the pre-processed input signal. Another
method using CNN has been proposed [22], demonstrating the reliable detection of the
fetal QRS complex. The authors of the work [23] proposed a 1-D CNN and Multi-Layer
Perceptron (MLP) classifier that determines the QRS positions. Another approach was the
work [19] in which two DL models based on multi-dilated convolutional blocks were used:
CNN and CRNN. Finally, this group of works includes [24], where a stacked autoencoder
deep neural network is proposed to extract the QRS complex.

Regardless of the DL methods chosen, problems are identified, including classification
efficiency, the detection of undesirable results, dependence on computing power, and the
high sample count. In response to these problems, a few newly published articles propose
using Few-Shot Learning (FSL) to identify new concepts in medicine and fill the gap
between the efficiency and the size of the training samples. FSL mimics humans’ ability to
acquire knowledge from a few samples. This technique involves training a neural network
to encode input data into small-sized vectors, which distances to other vectors encoding
objects of the same class are smaller than to vectors representing objects from different
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classes. The distance between vectors is usually computed by measuring the Euclidean
distance between two vectors. In addition, FSL can encode information regarding the
object’s belonging to a particular class in the output vector. Because of that, the layer of
neurons representing defined classes is not required, which allows the FSL network to
distinguish between classes that were not seen during training, thereby enabling learning
from limited samples and rapidly generalizing to new tasks, giving a different perspective
on DL.

There are many areas of application of FSL methods. In the medical field, the use
of FSL methods occurs in conjunction with medical images and medical signals. One of
the application directions is to use the network-based FSL method to classify rare human
peripheral blood leukocyte images. The proposed Siamese network by the authors of [25]
contains two identical Convolutional Neural Networks and a logistic regression network.
In justifying their research, the authors point to the relationship between the number of
leukocytes and various diseases, including cancer. The obtained results show that the
Siamese network can overcome the scarcity and imbalance of datasets used in this research.
The results are promising and give hope for addressing the issue of rare leukocyte images
recognition in medicine.

Another view is the use of Few-Shot Deep Learning in medical imaging, for example,
COVID-19-infected areas in Computed Tomography (CT) images. Recent studies indicate
that detecting radiographic patterns on chest CT scans can provide high sensitivity and
specificity in identifying COVID-19. One of the works [26] was undertaken to investigate
the efficacy of FSL in U-Net architectures, allowing for a dynamic fine-tuning of the
network weights as new samples are fed into the U-Net. The obtained results confirmed the
improvement of the segmentation accuracy improvement in the identification of COVID-
19-infected regions. A similar approach was proposed by the authors of another study [27],
pointing to the use of FSL for the computerized diagnosis of emergencies due to coronavirus-
infected pneumonia on CT images. A similar application of FSL was demonstrated by the
authors of the study [28], who undertook the classification of COVID-19 infected areas on
X-rays. As part of the research, the method was tested to classify images showing unknown
symptoms of COVID-19 in an environment designed to learn several samples, with prior
meta-learning only on images of other diseases.

Diagnostics of disease states based on medical images using DL methods have also
been applied in dermatology. The authors of the work [29] demonstrated the possibility of
using FSL for Dermatological Disease Diagnosis. Skin diseases are increasingly becoming
one of the most common human diseases, contributing to dangerous cancerous changes
or affecting motor disability. The proposed method is scalable to new classes and can
effectively capture intra-class variability. A similar approach was used by the authors
of [30], who proposed a Few-Shot segmentation network for skin lesion segmentation,
which requires only a few pixel-level annotations. The authors emphasize that the pro-
posed method is a promising framework for Few-Shot segmentation of skin lesions. The
conducted experiments show that removing the background region of the query image both
accelerates the speed of network convergence and significantly improves the segmentation
efficiency.

The works of other authors in medicine with the use of FSL indicate the possibility
of application in creating predictive models of drug reactions based on screens of cell
lines. For example, the authors’ work in [31] applied Few-Shot machine learning to train a
versatile neural network model in cell lines that can be tuned to new contexts using a few
additional samples. The model quickly adapted to switching between different tissue types
and shifting from cell line models to clinical contexts.

In biomedical signals, an interesting approach is to use the FSL method of Elec-
troencephalography (EEG)-based Motor Imagery (MI) Classification. The authors of the
work [32] drew attention to an essential aspect of research on the brain–computer interface
using EEG signals. In their justification, they indicated the potential of EEG in designing
key technologies in both healthcare and other industries. The research proposed a two-
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way Few Shot network that can efficiently learn representative features of unseen subject
categories and classify them with limited MI EEG data.

In the area of the ECG signal, the authors in [33] proposed a meta-transfer-based FSL
method to handle arrhythmia classification with the ECG signal in wearable devices. The
results obtained by the authors indicate that the proposed method exceeds the accuracy
of other comparative methods when performing various Few Shot tasks within the same
training samples.

The study aimed to determine the usefulness of the FSL for ECG signal proximity-
based classification. The research was conducted by training Deep Convolutional Neural
Networks to recognize 2, 5, and 20 different heart disease classes. For this task, two neural
networks were trained. The first one was optimized by performing FSL to classify input
samples based on Euclidean distance to the defined classes’ vectors. The second one was
trained to perform softmax-based classification. It serves as a basis for comparison due
to its well-known effectiveness in recognizing classes established during training. This
work also examines classification strategies in FSL by comparing the results obtained from
proximity-based classification to training machine learning algorithms on top of optimized
FSL neural networks. The tested machine learning algorithms are XGBoost, Random Forest,
Decision Tree, K-Nearest Neighbors, and SVMs. The neural network proposed for this task
interprets a set of QRS complexes extracted from ECG signals. The method of R-peaks
labeling and QRS complexes extraction has been implemented. This procedure converts
a 12-lead signal into a set of R waves by using the detection algorithms and the k-mean
algorithm. The novelty of this work involves using the FSL learning style for training on
known, fixed classes; its comparison with more typical, softmax-based classifications; and
the evaluation of classification strategies to be employed on top of the trained FSL network.

This paper is organized as follows: Section 2 closely describes the methods, the
architectures of the artificial intelligence system, and the previously carried out data
filtering, R Wave detection, and QRS extraction. Then, Section 3 presents the result of the
research. Then, the discussion is given in Section 4. Finally, Section 5 concludes the paper
and provides a look at further studies on this topic.

2. Materials and Methods

The methodology used in the paper was as follows (Figure 2): The PTB-XL dataset
containing the labeled 10-second raw-signal ECG was used for the research. First, the
records in the database have been filtered. Then, the R waves were labeled in the records in
the next step. On this basis, QRS segments were separated. Finally, the dataset has been
split into training, test, and validation data (respectively 70%, 15%, 15%). These data were
used to train two neural networks, based on softmax and a Few Shot, as classifiers of 2, 5,
and 20 classes of heart diseases. In the last stage, the network performance was evaluated.

Figure 2. General overview diagram of the method.

2.1. PTB-XL Dataset

In this study, all the ECG data used come from the PTB-XL dataset [34,35]. PTB-XL is
the publicly available and most extensive set of clinical ECG data. It provides a rich set of
ECG annotations and additional metadata, which together constitute an ideal source for
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training and evaluating machine learning algorithms. The PTB-XL dataset contains 12-lead
10 s ECGs from 18,885 different patients for a total of 21,837 records. ECG files come in two
other options with 500 Hz and 100 Hz sampling rates with 16-bit resolution. The research
used ECGs with 500 Hz sampling rates. The database contains 71 types of heart diseases
with 5 significant classes: normal ECG (NORM), myocardial infarction (CD), ST/T change
(STTC), conduction disturbance (MI), and hypertrophy (HYP).

2.2. Data Filtering

Initially, the PTB-XL had 21,837 records. However, not all records have labels (assigned
classes), and not all assigned classes were 100% sure. For this reason, both cases were
filtered out of the original dataset. Each record has a given class and a subclass for specific
heart disease. Records with the number of subclasses less than 20 were also filtered
from the original dataset. In this way, 17,232 records were obtained, each belonging
to 1 of the 5 classes and 1 of the 20 subclasses. Figure 3 shows a detailed distribution
of classes and subclasses. Descriptions of the classes of diseases are included in the in
Appendixes A and B.

Figure 3. Classes and subclasses of used records.

2.3. R Wave Detection and QRS Extraction

None of the known R-peak detection methods tested by the authors were 100% ef-
fective. In addition, these methods use only a 1-lead signal. For this reason, the authors
decided to propose their own method, using several known methods (Hamilton detec-
tor [36], Two Average detector [37], Stationary Wavelet Transform detector [38], Christov
detector [39], Pan–Tompkins detector [40], and Engzee detector [41] with modification [42])
for all 12-leads and obtaining a consensus from them using k-mean algorithm. The des-
ignated R-peaks were used to cut the 10-s records into segments referred to further in
the work as QRS complexes. The cuts were determined in the middle of the distance
between the designated R-peaks (Figure 4). The first and last segments were removed. The
following segments were resampled to 100 samples. In this way, for each record, a set of
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QRS complexes and metadata as BPM (Beat Per Minute) and resampling ratio for each QRS
complex were obtained.

Figure 4. Sample record of NORM class for I lead, with places for section cuts (Red).

2.4. Designed Network Architectures

This chapter describes the architecture of the Deep Neural Networks used in this re-
search (Figure 5) and the methodology of processing QRS complexes, applied loss functions,
and training procedure.

Figure 5. Designed Neural Network architecture.

The system receives the collection of QRS complexes stored in the input signal:

Xi = {Q1, ..., Qn}, n ∈ N+ (1)

where:
X—set of input signals after QRS extraction performed;
i—index of signal being processed by the system;
Qn—n-th extracted QRS complex containing 100 12-dimensional samples:

|Qj| = 1200, j ∈ N+ ∩ j ≤ n (2)
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Then, a set of QRS complexes is processed by the function designed to transform
each wave into a 24-dimensional vector containing abstract features allowing for similarity
calculation between vectors representing classes defined in the PTB-XL dataset:

f : R12×100 → R24 (3)

The function has been approximated by the deep convolutional neural function de-
scribed in Table 1. The process of learning this neural network has been presented in the
Section 2.5.

Table 1. The architecture of Deep Convolutional Neural Network encoding one QRS complex.

Layer Channels In Channels Out Kernel Size Padding Stride

Conv1d 12 24 3 1 1
MaxPool1d 24 24 2 0 2

Conv1d 24 48 3 0 1
MaxPool1d 48 48 2 0 2

Conv1d 48 96 3 0 1
MaxPool1d 96 96 2 0 2

Conv1d 96 2 1 0 1

Each convolutional layer’s output is subjected to the LeakyReLU activation function
with parameter equal to 0.01. The last convolutional layer operates using a kernel of size 1.
This computation has been inspired by GoogLeNet architecture [43], and its task is to
perform dimensionality reduction. This layer requires only 192 weights to reduce the
activation map size 48 times.

The function approximated by Convolutional Neural Network is used to encode each
QRS in the input data:

Zi = { f (Xi,j)|j ∈ N+ ∩ j < |Xi|} (4)

As a result, Zi is a set of 24-dimensional vectors with varying cardinality. This set is
now processed by Adaptive Maximum Pooling and Adaptive Average Pooling functions.

The Adaptive Maximum Pooling function selects maximum value from each dimen-
sion of the vectors in the set:

Zmaxi = [max({Zi,j,1|j ∈ N + ∩j < |Xi|}), . . . , max({Zi,j,24|j ∈ N + ∩j < |Xi|})] (5)

The Adaptive Average Pooling function averages values of every dimension from
vectors in the set:

Zavgi = [
1
|Zi|

|Zi |

∑
j=1

Zi,j,1, . . . ,
1
|Zi|

|Zi |

∑
j=1

Zi,j,24] (6)

The results of both Adaptive Average Pooling and Adaptive Maximum Pooling are
combined into 1 48-dimensional vector:

A = [Zmaxi, Zavgi] (7)

In the last step, the result is inputted to a fully connected layer with 20 neurons
turning the 48-dimensional vector of concatenated pooling results into a 20-dimensional
final vector:

Fi = f (A); f : R48 → R20 (8)

Vector Fi describes the input signal using 20 abstract features. It is used in both classi-
fication neural networks to determine the signal’s class by subjecting it to softmax function
for class probability distribution computation or in FSL for signal’s class determination
by measuring Euclidean distance to the center of the class represented by vector made
of averaging feature vectors obtained from signals on the training dataset. In the case of
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standard classification, there is also one more fully connected layer added to adjust the size
of the abstract features vector to the number of classes in the classification task.

2.5. Training

The neural networks’ parameters have been adjusted using Adam [44] optimizer. In
addition, the dataset has been split into training, validation, and test sets five times to
reduce the impact of fortunate weights randomization on the network’s performance. The
split was performed by dividing the dataset by 70%, 15%, and 15%.

The training dataset was used to determine the values of the network’s weights. In
addition, the network was evaluated on the validation dataset during the training process
to perform early stopping [45] for overfitting reduction purposes. The final network’s
evaluation has been performed on a test dataset using the last saved set of weights, which
scored the best result on the validation dataset. Each time the network scored the best
result on the validation dataset, its weights have been saved. The training lasted until
10,000 epochs elapsed or early stopping was performed.

For the purpose of this research, two neural networks have been trained, one for FSL
and one for standard classification serving as a basis for a benchmark. Both networks are
structurally almost identical and differ only in adding one fully connected layer in standard
classification tasks and the interpretation of output vector and employed loss function.

2.5.1. Few-Shot Learning

Few-Shot Learning network was trained using the triplet margin loss function [46].
The task of this loss function is to decrease the distance between vectors belonging to the
same class and increase it for vectors from different classes. This process can be described
by the formula:

L(a, p, n) = max(d(a, p)− d(a, n) + m, 0) (9)

where:
a—“anchor” vector. This vector is compared with the other two vectors;
p—“positive” vector. This vector belongs to the same class as the “anchor” vector;
n—“negative” vector. This vector belongs to the different class as the “anchor” vector;
m—margin. Quantity describing desired separation of vectors from the same class with
vectors from different classes. In this research, m was equal to 1;
d—distance function, d : (R20, R20)→ R1.

For this research purpose, the Euclidean distance has been used as a distance function:

d(x, x′) =
|x|

∑
j=0

(xj − x′j)
2 (10)

The purpose of the triplet margin loss function is to ensure that the distance between
vectors from two different classes is higher than a distance between vectors of the same class
in addition to constant margin m. The neural network is not penalized for its performance
only if:

d(a, p)− d(a, n) + m ≤ 0 (11)

d(a, p) ≤ d(a, n)−m (12)

Minimizing this function ensures the separation of inter-class distances from distances
to vectors of other classes by the margin of m.

During training, triplets of vectors, two from the same class and one from different
classes, were randomly selected and fed to the network. At each step, classes were picked
from the distribution created from the computing frequency of occurrence in the dataset.
This approach was motivated by the a priori assumption that reciprocating class observation
frequency from dataset to training process results in better network convergence. However,
for more balanced training, a different approach may be undertaken, in which classes are
picked from either a weighted frequency-based distribution or a univariate one.
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Due to the PyTorch limitation of forming only homogenous-sized tensors, the process
of forming batches requires one more restriction on the triplet sampling function. Every
sample in the batch must have the exact number of QRS complexes. The batch-sampling
function first randomly selects the number of QRS complexes required in this batch to
obtain such tensors. Then, it randomly selects triplets from signals in the dataset that
contain the same amount of QRS complexes as the value selected. Finally, the amount of
QRS complexes in the batch is sampled from the distribution weighted by the frequency
of each wave in the dataset. The evaluation process of the neural network consists of
these steps:

1. Split evaluation dataset randomly into two sets while ensuring that QRS complexes
for each class have the same cardinality. From now on, the first set is referenced as a
“database” set and the second one as a “query” dataset.

2. Use an Artificial Intelligence system to convert each set of QRS complexes from both
“database” and “query” datasets into 20-dimensional vectors.

3. For each class, take all vectors belonging to it from the “database” set and compute
the average 20-dimensional vector. It results in average vectors being later referenced
as “class center vectors”.

4. For each vector in the “query” dataset, compute its distance to every “class center
vector”. The class, whose “center vector” has been the closest to the vector from the
“query” dataset is the class associated with the entry in the “query” dataset.

5. Calculate evaluation metrics by comparing true labels of vectors in the “query” dataset
with labels computed in the previous step.

This process emulates the behavior of the real-life working environment. The “database”
set resembles the structure that stores previously measured and processed ECG signals
labeled by professionals. This database is used to label incoming queries. In this research,
entries in the database were aggregated by computing the average for each class. This
solution involves the least amount of computational cost. It is because “class center vectors”
are computed once. Then, the incoming query must be compared with only one vector per
class instead of numerous database entries, as required in other strategies.

The other method of classification involved training machine learning models on top
of network-encoded small-sized vectors. The machine learning models evaluated in this
work are XGBoost, Random Forest, Decision Tree, K-Nearest Neighbors, and SVMs with
linear, polynomial, radial basis function, and sigmoid kernels. In this approach, the FSL
neural network generates small-size vectors encoding crucial features of the input signals.
Then, the aforementioned machine learning algorithms are trained to classify these vectors.

2.5.2. Softmax-Based Classification

Softmax-based classification is a well-known process of training a neural network
using the operation mentioned above as an activation function for converting the neural
network’s output into a class probability distribution. The equation of the softmax function
is given below:

σ(Z)i =
eZi

∑
|Z|
j=1 eZj

(13)

where:
Z—output vector computed by neural network;
σ(Z)i—value of class probability distribution function for i-th class.

The output of the softmax activation function is then compared with the desired results
using cross-entropy loss function computed with the formula below:

L(p, y) = −
M

∑
c=1

yo,c, ln(po,c) (14)
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where:
p—probability that observation o belongs to the class c computed by application of softmax
function on the output of neural network; y—binary value that is equal to 1 if observation
o belongs to the class c and 0 if not.

The loss function forces the neural network to output the vector as close as possible
to a one-hot encoded vector with the maximum value contained under the index of the
class the signal belongs to. This is a well-established solution tested both by scientists and
engineers and in this research, it serves as a basis for comparison between FSL network
results and softmax-based one.

2.6. Metrics

Neural networks were evaluated using the metrics described below [16]. For simplicity
of equations, specific acronyms have been created, as follows: TP—True Positive, TN—
True Negative, FP—False Positive, FN—False Negative. The metrics used for network
evaluation are:

• Accuracy: Acc = (TP + TN)/(TP + FP + TN + FN);
• Precision = TP/(TP + FP);
• Recall = TP/(TP + FN);
• F1 = 2 · Precision · Recall/(Precision + Recall);
• AUC—Area Under ROC. ROC (Receiver operating characteristic) is a curve deter-

mined by calculating the True Positive Rate = TFP = TP/(TP + FN) and the False
Positive Rate = FPR = FP/(TN + FP). The False Positive Rate describes the x-axis
and the True Positive Rate the y-axis of a coordinate system. By changing the threshold
value responsible for the classification of an example as belonging to either the positive
or negative class, pairs of TFP–FPR are generated, resulting in the creation of the
ROC curve. AUC is a measurement of the area below the ROC curve.

3. Results

The networks have been evaluated using the k-fold cross-validation technique for
k = 5. Each network has been trained five times from scratch on the randomly selected
train, validation, and test datasets. The evaluation results on the test dataset are presented
in Tables 2–7 for tasks involving the classification of 2, 5, and 20 classes, respectively. Tables
show the averaged, minimal, and maximal accuracy values and the F1, AUC, and specificity
and sensitivity scores with standard deviation. Additionally, the average accuracy and the
F1 score achieved by the evaluated models have been presented in Figures 6 and 7.

Table 2. Results for two-class classification, part I.

Technique Acc Acc Avg |
Std F1 F1 Avg | Std AUC AUC Avg | Std

FSL proximity-based 89.5–91.1% 90.4% | 0.5% 89.1–90.8 90.6 | 0.6 92.5–94.4 93.7 | 0.8
Softmax-based classification 89.2–90.5% 89.7% | 0.4% 89.0–90.2 89.4 | 0.4 94.8–95.9 95.5 | 0.4

FSL + XGBoost 87.9–89.7% 88.9% | 0.7% 86.5–88.5 87.7 | 0.8 95.1–97.2 96.1 | 0.7
FSL + Random Forest 87.8–91.2% 89.4% | 1.1% 86.2–90.1 88.1 | 1.3 95.5–97.1 96.3 | 0.5
FSL + Decision Tree 84.9–88.9% 86.4% | 1.4% 82.8–87.5 85.0 | 1.8 82.8–87.5 85.0 | 1.8

FSL + KNN − 5 neighbors 88.7–92.0% 89.9% | 1.2% 87.1–91.2 88.8 | 1.4 93.9–96.4 94.6 | 0.9
FSL + KNN − 20 neighbors 88.1–93.3% 90.9% | 1.9% 86.6–92.6 89.8 | 2.2 96.0–97.8 96.6 | 0.7

FSL + SVM with linear kernel 88.6–93.3% 91.2% | 1.6% 87.4–92.9 90.3 | 1.8 96.1–97.6 96.9 | 0.5
FSL + SVM with polynomial

kernel 87.2–93.0% 89.6% | 1.9% 85.5–92.3 88.2 | 2.3 94.9–97.6 96.0 | 1.0

FSL + SVM with RBF kernel 89.2–93.3% 91.3% | 1.4% 88.1–92.8 90.5 | 1.6 92.2–95.6 93.8 | 1.3
FSL + SVM with Sigmoid kernel 68.6–92.9% 86.6% | 9.1% 66.2–92.2 85.3 | 9.6 83.6–95.3 88.2 | 4.0
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Table 3. Results for two-class classification, part II.

Technique Specificity Specificity Avg | Std Sensitivity Sensitivity Avg |
Std

FSL proximity-based 89.6–91.0% 90.4% | 0.5% 88.9–90.7% 89.9% | 0.6%
Softmax-based classification 89.0–90.2% 89.4% | 0.5% 88.9–90.7% 89.9% | 0.6%

FSL + XGBoost 89.1–90.7% 89.8% | 0.6% 86.5–88.5% 87.7% | 0.8%
FSL + Random Forest 89.4–91.9% 90.3% | 1.0% 86.3–90.1% 88.2% | 1.3%
FSL + Decision Tree 86.4–89.7% 87.6% | 1.2% 82.8–87.5% 85.0% | 1.8%

FSL + KNN − 5 neighbors 89.6–92.7% 90.8% | 1.1% 87.1–91.2% 88.8% | 1.4%
FSL + KNN − 20 neighbors 89.4–93.9% 91.6% | 1.7% 86.6–92.6% 89.8% | 2.2%

FSL + SVM with linear kernel 89.5–93.5% 91.6% | 1.5% 87.4–92.9% 90.3% | 1.8%
FSL + SVM with polynomial kernel 89.2–93.7% 91.0% | 1.6% 85.5–92.3% 88.2% | 2.3%

FSL + SVM with RBF kernel 90.0–93.5% 91.7% | 1.3% 88.1–92.8% 90.5% | 1.6%
FSL + SVM with Sigmoid kernel 68.2–93.4% 87.2% | 9.6% 66.2–92.2% 85.3% | 9.6%

Table 4. Results for five-class classification, part I.

Technique Acc Acc Avg |
Std F1 F1 Avg | Std AUC AUC Avg | Std

FSL proximity-based 69.8–74.2% 71.8% | 1.7% 60.6–66.9 63.7 | 2.4 85.6–88.9 87.6 | 1.2
Softmax-based classification 75.1–77.1% 75.8% | 0.8% 66.8–69.6 67.9 | 1.0 87.5–90.9 89.6 | 1.3

FSL + XGBoost 74.8–76.1% 75.2% | 0.5% 66.9–70.8 68.4 | 1.6 90.9–92.3 91.8 | 0.5
FSL + Random Forest 75.2–77.7% 76.3% | 0.8% 66.8–69.9 68.4 | 1.1 92.0–93.0 92.5 | 0.4
FSL + Decision Tree 67.0–68.5% 68.0% | 0.5% 58.7–63.3 61.3 | 1.4 75.2–77.8 76.7 | 0.8

FSL + KNN − 5 neighbors 74.4–76.7% 75.8% | 0.8% 65.9–71.1 68.4 | 2.1 87.5–89.8 88.8 | 0.8
FSL + KNN − 20 neighbors 77.3–79.5% 78.4% | 0.9% 68.2–71.6 69.6 | 1.2 92.0–93.2 92.5 | 0.5

FSL + SVM with linear kernel 77.0–79.8% 78.8% | 1.0% 69.9–73.1 71.7 | 1.1 93.4–94.3 93.8 | 0.3
FSL + SVM with polynomial

kernel 74.5–76.9% 76.0% | 0.9% 64.7–69.2 66.6 | 1.6 92.4–93.2 92.9 | 0.3

FSL + SVM with RBF kernel 77.9–80.2% 79.0% | 0.9% 69.0–71.8 70.6 | 1.0 93.3–93.8 93.6 | 0.3
FSL + SVM with Sigmoid kernel 64.4–76.6% 72.9% | 4.4% 53.1–65.0 62.1 | 4.5 89.5–92.8 90.8 | 1.1

Table 5. Results for five-class classification, part II.

Technique Specificity Specificity Avg | Std Sensitivity Sensitivity Avg |
Std

FSL proximity-based 60.2–66.4% 63.2% | 2.1% 62.7–68.1% 65.9% | 2.0%
Softmax-based classification 68.3–70.6% 69.5% | 0.8% 65.9–69.1% 67.1% | 1.1%

FSL + XGBoost 65.7–68.0% 66.9% | 0.9% 66.9–70.8% 68.4% | 1.7%
FSL + Random Forest 66.8–68.3% 67.8% | 0.6% 66.8–69.9% 68.4% | 1.2%
FSL + Decision Tree 57.1–59.9% 59.0% | 1.0% 58.8–63.4% 61.3% | 1.5%

FSL + KNN − 5 neighbors 64.9–70.0% 67.6% | 1.8% 65.9–71.1% 68.4% | 2.1%
FSL + KNN − 20 neighbors 70.2–72.9% 71.9% | 1.0% 68.2–71.6% 69.6% | 1.2%

FSL + SVM with linear kernel 69.8–74.5% 72.4% | 1.6% 69.9–73.1% 71.7% | 1.1%
FSL + SVM with polynomial kernel 68.3–75.5% 72.4% | 2.5% 64.7–69.2% 66.6% | 1.6%

FSL + SVM with RBF kernel 70.8–75.5% 73.5% | 1.8% 69.0–71.8% 70.6% | 1.0%
FSL + SVM with Sigmoid kernel 56.1–70.8% 65.4% | 5.1% 53.1–65.0% 62.1% | 4.5%
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Table 6. Results for 20-class classification, part I.

Technique Acc Acc Avg |
Std F1 F1 Avg | Std AUC AUC Avg | Std

FSL proximity-based 44.3–50.1% 47.8% | 2.1% 23.8–26.0 24.7 | 0.8 78.8–84.4 80.8 | 2.5
Softmax-based classification 66.2–68.2% 67.1% | 0.8% 31.9–33.0 32.4 | 0.4 82.4–86.3 84.4 | 1.5

FSL + XGBoost 58.7–66.2% 61.6% | 0.5% 25.3–34.5 29.7 | 3.4 74.2–86.3 79.3 | 3.5
FSL + Random Forest 61.5–66.6% 63.6% | 2.5% 27.1–36.7 30.9 | 3.5 73.6–80.3 77.1 | 2.3
FSL + Decision Tree 45.8–58.8% 51.0% | 4.5% 19.8–30.0 25.0 | 4.1 58.4–60.3 59.5 | 0.6

FSL +KNN − 5 neighbors 58.4–67.2% 61.3% | 3.2% 25.3–36.1 29.6 | 4.1 66.1–70.2 68.2 | 1.6
FSL + KNN − 20 neighbors 61.4–69.9% 64.6% | 2.9% 26.7–36.5 30.9 | 4.0 70.1–76.6 74.1 | 2.3

FSL + SVM with linear kernel 62.9–70.0% 65.3% | 2.5% 28.2–36.7 32.0 | 3.2 77.7–85.8 82.7 | 3.0
FSL + SVM with polynomial

kernel 59.7–67.2% 62.9% | 2.8% 23.4–34.0 28.7 | 4.3 74.7–84.9 80.1 | 3.7

FSL + SVM with RBF kernel 63.3–70.6% 65.8% | 2.5% 27.8–37.2 31.4 | 3.9 77.1–82.5 80.5 | 2.2
FSL + SVM with Sigmoid kernel 56.7–65.4% 59.8% | 3.2% 16.6–28.2 23.7 | 4.6 77.0–82.5 80.9 | 2.0

Table 7. Results for 20-class classification, part II.

Technique Specificity Specificity Avg | Std Sensitivity Sensitivity Avg |
Std

FSL proximity-based 24.9–26.8% 25.6% | 0.6% 27.7–29.7% 28.5% | 0.7%
Softmax-based classification 36.3–39.7% 37.6% | 1.2% 32.2–33.1% 32.6% | 0.3%

FSL + XGBoost 23.8–31.6% 27.7% | 2.6% 25.3–34.5% 29.7% | 3.4%
FSL + Random Forest 26.6–32.3% 28.4% | 2.2% 27.1–36.7% 31.0% | 3.6%
FSL + Decision Tree 19.4–28.5% 24.8% | 3.7% 19.9–30.0% 25.1% | 4.2%

FSL +KNN − 5 neighbors 24.0–33.7% 28.3% | 3.3% 25.3–36.1% 29.6% | 4.1%
FSL + KNN − 20 neighbors 24.9–31.1% 28.2% | 2.0% 26.7–36.5% 30.9% | 4.0%

FSL + SVM with linear kernel 25.6–34.1% 28.8% | 3.1% 28.2–36.7% 32.0% | 3.2%
FSL + SVM with polynomial kernel 26.0–33.0% 29.1% | 2.4% 23.4–34.0% 28.7% | 4.3%

FSL + SVM with RBF kernel 25.5–31.1% 28.9% | 2.7% 27.8–37.2% 31.4% | 3.9%
FSL + SVM with Sigmoid kernel 15.5–25.4% 20.8% | 3.4% 16.6–28.2% 23.7% | 4.6%

Figure 6. Comparison of average accuracy of evaluated models on 2, 5, and 20 classes detection.
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Figure 7. Comparison of average F1 score of evaluated models on 2, 5, and 20 classes detection.

The influence of the dataset size on the FSL classification has been examined. During
this evaluation, the Random Forest algorithm was used to classify few-shot encoded signals.
The results are depicted in Figure 8, which shows the relationship between the size of the
dataset used and the accuracy obtained during test evaluation. The sizes of the datasets
evaluated are 1%, 5%, 10%, 50%, and 100% of the size of original test dataset.

Figure 8. ACC as a function of the size of the original test dataset.

Figures 9–14 present the confusion matrices from the evaluation on one of the test
datasets composed for k-fold cross validation conduction purposes. The Figures 15–20
depict the accuracy on the training and validation datasets during the training process.
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Figure 9. Confusion Matrix for Few-Shot (2 classes) with proximity-based classification.

Figure 10. Confusion Matrix for Few-Shot (5 classes) with proximity-based classification.
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Figure 11. Confusion Matrix for Few-Shot (20 classes) with proximity-based classification.
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Figure 12. Confusion Matrix for softmax-based classification (2 classes).

Figure 13. Confusion Matrix for softmax-based classification (5 classes).
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Figure 14. Confusion Matrix for softmax-based classification (20 classes).
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Figure 15. Learning process of the Neural Network for Few-Shot (2 classes) with proximity-based
classification.

Figure 16. Learning process of the Neural Network for Few-Shot (5 classes) with proximity-based
classification.
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Figure 17. Learning process of the Neural Network for Few-Shot (20 classes) with proximity-based
classification.

Figure 18. Learning process of the Neural Network for softmax-based classification (2 classes).
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Figure 19. Learning process of the Neural Network for softmax-based classification (5 classes).

Figure 20. Learning process of the Neural Network for softmax-based classification (20 classes).

4. Discussion

The Deep Neural Network trained in a Few-Shot learning (FSL) fashion for proximity-
based classification provides the benefit of improved accuracy through an embedded
version of online learning, allowing for continuous classification augmentation without
network weight adjustments. The network’s accuracy can be improved without the addi-
tional optimization of its weights through the expansion of the classified signals dataset.
Such a set is used for referential class vector computation and is essential for the correct
signal classification. Cardiological professionals can improve the network by labeling the
signal and increasing the number of vectors used for class vector calculation, resulting in
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better classification. Such a procedure does not require training of the network, which is
cumbersome on production machines due to the higher computation complexity of the
training network than using an already trained one. This augmentation procedure can
be conducted on a CPU with low computation capabilities due to the simplicity of mean
vector calculation.

The Few-Shot Learning neural network proved to be more accurate than the softmax-
based network while classifying two classes. The FSL model had higher results in both
averages, maximal and minimal accuracy. However, the network proved to be less accurate
on tasks involving 5- and 20-class labeling. This phenomenon is most likely a result of
insufficient representation of classes with low cardinality. For example: In Figure 11, the
class “NORM” having the highest number of ECG records had the best precision and recall
of all classes. The authors plan a further examination of the dataset size’s influence on the
quality of prediction.

This work classified the signals processed by an FSL neural network by computing the
average vector representing each class and comparing the Euclidean distance between the
classified sample and all class-representing vectors. The other methods evaluated in this
work for classification use network-encoded signals in small-sized vectors to train models
running algorithms such as XGBoost, Random Forest, Decision Tree, K-Nearest Neighbors,
and SVMs with linear, polynomial, radial basis function, and sigmoid kernels. It turned
out that the most promising classification algorithm for FSL in this particular task is SVM
with a radial basis function kernel. This method proved to be the most effective among
all the examined FSL classification strategies and achieved better results than softmax-
based classification for both two and five classes. It achieved one of the highest scores in
accuracy, specificity, sensitivity, F1, and AUC among all compared models. The outcomes
are promising and suggest that the hybrid neural network systems based on proximity-
differentiation classification with integrated machine learning models may provide better
results than the typical softmax-based state-of-the-art classification. The authors plan on
conducting further research to determine whether a combination of FSL with SVM with
radial basis function kernel is beneficial in other tasks or merely the case in this particular
example.

The accuracy of the FSL network during the training process varies significantly more
than its softmax-based counterpart. This phenomenon is depicted in Figures 15–20. The
softmax-based classification network reaches convergence faster and is less susceptible to
the noise generated by the random selection of training data. This variance of the learning
process is essential because of the commonness of early-stopping usage during network
training. Typical early-stopping implemented in DL frameworks such as Keras stops the
training if the evaluation score of the trained network on the validation dataset was not
improved in a specific amount of time. This mechanism is important as it reduces the
amount of wasted computation time and energy. However, due to the high variance of the
FSL process, it is possible that controlling early-stopping based on local extremum may not
be the best strategy. The results indicate that filtration of evaluation score’s signal, such as
averaging, may prove beneficial. The authors plan on further examination in future works.

In previous work [16], the best-obtained result in that research classifying sick/healthy
patients (2 classes) is 89.2% accuracy. This value was increased in this research by the
FSL neural network, the accuracy of which spans from 89.5% to 91.1%. As a result, even
the worst performance of the studied network was better than the best in previous work.
However, the results were not as promising during the classification of 5 and 20 classes.
It is speculated that FSL can obtain better results for bigger datasets than Softmax-based
classification, but the latter requires less training data than the former. The authors plan on
conducting further research of this phenomenon.

The dataset size had almost no influence on the classification performance of the two
classes. However, its impact was significant for the classification of 5 classes and even
more important for the classification of 20 classes. It turns out that the more that classes are
differentiated from each other, the more data are required.
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5. Conclusions

The neural network trained for conducting Few-Shot Learning classification tasks
proved to be more accurate than the softmax-based classification network when classifying
signals using 2 and 5 labels but obtained worse results on 20 classes with fewer samples
per class. In this experiment, the most efficient method for performing classification
using the FSL network for signal encoding is the SVM model with an RBF kernel. Such
networks can be successfully applied in systems that provide feedback from experts and
data accumulation such as hospitals. The network can be improved without optimizing the
network parameters in this environment, which requires high-end processing units such as
GPUs. A proposed online learning strategy can be conducted on typical industrial CPUs.
The FSL networks may prove beneficial as they allow for their performance to be improved
after their rollout.
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Nomenclature

ECG Electrocardiogram
EEG Electroencephalography
CT Computed Tomography
QRS complex Combination of three of the graphical deflections (Q wave, R wave, and S wave)

seen on a typical ECG record. It represents an electrical impulse spreading through
the ventricles of the heart and indicating their depolarization

Conv1d Layer in Deep Neural Networks that performs a convolution on one-dimensional
signal

MaxPool1d Layer in Deep Neural Networks that performs pooling operation by selecting a
maximum value from the moving window

Fully Connected Layer in Deep Neural Networks that consists of neurons that process whole input
data

Leaky ReLU Activation function used in Deep Neural Networks
Padding Parameter used in convolutional layers specifying the amount of zeroed samples

added to the start and end of the processed signal. For example: Padding of 1 means
that there is one sample of value zero artificially added at the beginning and the
end of the signal. This operation is conducted to mitigate activation map shrinkage
due to the application of convolution

Stride Parameter used in convolutional layers specifying shift distance between subsequent
windows of convolutions. For example: A stride of 1 means that the next convolution
starts right after the beginning of the previous one, so the windows will overlap
(provided that kernel size is bigger than 1)

RBF Radial Basis Function
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Appendix A. Descriptions of the Classes of Diseases

NORM Normal ECG
CD Myocardial Infarction
STTC ST/T Change
MI Conduction Disturbance
HYP Hypertrophy

Appendix B. Descriptions of the Subclasses of Diseases

NORM normal ECG
STTC non-diagnostic T abnormalities, suggests digitalis-effect, long QT-

interval, ST-T changes compatible with ventricular aneurysm,
compatible with electrolyte abnormalities

AMI anterior myocardial infarction, anterolateral myocardial infarction,
in anteroseptal leads, in anterolateral leads, in lateral leads

IMI inferior myocardial infarction, inferolateral myocardial infarction,
inferoposterolateral myocardial infarction, inferoposterior my-
ocardial infarction, in inferior leads, in inferolateral leads

LAFB/LPFB left anterior fascicular block, left posterior fascicular block
IRBBB incomplete right bundle branch block
LVH left ventricular hypertrophy
CLBBB (complete) left bundle branch block
NST_ non-specific ST changes
ISCA in anterolateral leads, in anteroseptal leads, in lateral leads, in

anterior leads
CRBBB (complete) right bundle branch block
IVCD non-specific intraventricular conduction disturbance
ISC_ ischemic ST-T changes
_AVB first degree AV block, second degree AV block, third degree AV

block
ISCI in inferior leads, in inferolateral leads
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