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Abstract: The hard drive is one of the important components of a computing system, and its
failure can lead to both system failure and data loss. Therefore, the reliability of a hard drive is
very important. Realising this importance, a number of studies have been conducted and many
are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on
machine learning, and a few others on semantic technology. The studies based on machine learning,
despite promising results, lack context-awareness such as how failures are related or what other
factors, such as humidity, influence the failure of hard drives. Semantic technology, on the other
hand, by means of ontologies and knowledge graphs (KGs), is able to provide the context-awareness
that machine learning-based studies lack. However, the studies based on semantic technology lack
the advantages of machine learning, such as the ability to learn a pattern and make predictions
based on learned patterns. Therefore, in this paper, leveraging the benefits of both machine learning
(ML) and semantic technology, we present our study, knowledge graph-based hard drive failure
prediction. The experimental results demonstrate that our proposed method achieves higher accuracy
in comparison to the current state of the art.

Keywords: hard drive; failure prediction; knowledge graphs; machine learning; predictive maintenance;
reliability

1. Introduction

In recent years, advancements in fields such as machine learning (ML) have led the
shift towards the fourth industrial revolution, also referred to as Industry 4.0 [1]. Its main ob-
jective is to “bring an increase in productivity in both production and management systems” [2]
by focusing on analytics-driven insight development such as predictive maintenance
(PdM) [3]. The transition to Industry 4.0 is driven by the Internet of Things (IoT) and
the amount of generated data, which has increased exponentially, requiring large data
centres being used to meet companies’ storage demands [4]. The data itself is stored on
hard drives (HDs), which are one of the most commonly used data storage devices [5].
However, HDs are often prone to different failures. The most common failures can be
categorised as logical, mechanical, or firmware failures (https://www.salvagedata.com/
common-causes-of-hard-drive-failure/ (accessed on 6 June 2021)). Such failures can result
in system unavailability or even permanent data loss, which can have a negative impact
due to system downtime and can lead to monetary losses for companies [6]. For example,
78% of hardware replacements in Microsoft (https://www.microsoft.com/de-at/ (accessed
on 10 June 2021)) data centres were due to HD failure [7]. HD reliability is key and the
research for solutions that can predict such failures is an ongoing endeavour.
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Through the years, various ML and reasoning approaches based on algorithms such
as Decision Trees (DT) [8], k-Nearest Neighbour [9], Classification Trees (CT) [10], and
Regression Trees (RT) [11] have been adopted successfully for PdM (i.e., the failure pre-
diction accuracy rates have improved) [12–14]. State of the art solutions such as [7,15–18]
have shown to achieve more than 90% accuracy in failure prediction. However, ML on
its own lacks context awareness [19] and therefore, lacks the benefits that comes with it.
The term context refers to any information that can be used to characterise an entity’s
situation (i.e., whether a person, place, or object) [20]. For example, let us consider the fol-
lowing knowledge graph (KG) facts as triples (“Humans”, “are”, “mortal”) and (“Socrates”,
“is a”, “human”). Now, using these triples we can deduce the fact that (“Socrates”, “is”,
“mortal”). This is made possible by the context-awareness generated as a result of the
connected relationships. However, as machines do not inherently have the deductive
capability, we need to formalise the logical consequences based on entailment regimes
(https://www.w3.org/TR/sparql11-entailment/ (accessed on 12 August 2021)) to make
such deductions, which ontologies and KGs are capable of due to their ability to model
relationships [21]. In the case of the hard drive failure prediction we can have similar bene-
fits of KGs. For example, let us consider the following KG triples (“Hard drive”, “smart5”,
“10”), (“Hard drive”, “has humidity”, “89”), (“Hard drive”, “storage has average temperature”,
“65”). Now, using these KG triples we can deduce the fact that (“Hard drive”, “status”,
“fail”) (i.e., hard drive will fail). This is due to the fact that high humidity and temperature
deteriorate hardware, particularly electronic devices [22]. In ML, we can leverage such
advantages of the KGs using the nodes (or entities) representation and taking features of
a local neighbourhood coupled with relationships (details in Section 4) to improve the
prediction. Therefore, considering the benefits of using KGs and extending our initial
idea (see [23]), we hypothesise that by combining KGs and ML, we can achieve even
greater benefits in failure prediction and present our work on hard drive failure prediction.
The proposed approach takes the benefits of both: KGs’ context-awareness and ML pattern
learning and predictability capabilities. It also eliminates the limitations of rule-based
approaches, which requires us to have all the rules defined beforehand and also lacks
predictability like ML. Recent studies, such as [24], have also highlighted such limitations.

KG, which Fensel et al. [25] define as “very large semantic nets that integrate various and
heterogeneous information sources to represent knowledge about certain domains”, have the ability
to transform data into information and information into knowledge by creating meaningful
relationships between entities [21,25]. With the help of relationships, a KG is able to provide
context to ML. Other benefits of semantic technology such as data interopretability, connec-
tivity of data across domains and faster and easier knowledge discovery, have been further
discussed in more detail in [26–30]. Because of the benefits of semantic technology, we can
find its application in domains such as predictive maintenance [31,32] and recommender
systems [33] that utilise ontologies [34] and KGs. Additionally, Kainzner et al. [35] demon-
strate the potential benefits of semantic technology in relevant domains such as manufactur-
ing. Other than the relationships, KGs also offer a simple and adaptable way to include addi-
tional information. For example, humidity can have a significant impact on HD failure [22].
However, such environmental data is not available in SMART (Self-Monitoring, Analysis,
and Reporting) (https://www.ibm.com/support/pages/define-smart-used-smartcollect
(accessed on 13 June 2021)) attributes. SMART attributes are obtained from SMART tech-
nology [36], which enables monitoring of the hard disk’s status (see [7]) and reporting of
various reliability indicators.

In this paper, we demonstrate the value of combining KGs and ML for predicting HD
failures. Our proposed approach uses KGs and relational graph convolutional networks
(RGCN), a ML technique for failure prediction (details in Section 4.4). The KG used in this
study is based on data from SMART attributes.

The paper is structured as follows. Section 2 presents an overview of related works on
hard drive failure prediction. Section 3 provides information on the following methodology.

https://www.w3.org/TR/sparql11-entailment/
https://www.ibm.com/support/pages/define-smart-used-smartcollect
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A detailed description of the proposed solution in the paper is presented in Section 4, while
its performance evaluation is described in Section 5. Conclusions can be found in Section 6.

2. State of the Art

This section summarises the related work. The use of both ML techniques and semantic
technology can be found in various domains such as failure prediction in manufacturing.
However, because our study is focused on the prediction of HD failure, we restrict our
review of related work to HD. Schoenfisch et al. [37], for example, used semantic technology
(ontology) and Markov logic networks (see [38]) to conduct a study on the root cause
analysis of information technology (IT) infrastructure. Such studies are not included
in our analysis because they do not address HD failure prediction directly. The first
section, Section 2.1, summarises the study using semantic models, while the second section,
Section 2.2 focuses on the studies with ML techniques. Finally, Section 2.3 summarises the
related work presented in Sections 2.1 and 2.2.

2.1. Semantic Model-Based Study

Mamoutova et al. [24] present an ontology-based approach to automatic analysis
of data storage systems log files extending their work, a knowledge-based approach for
enterprise storage system diagnosis using ontology [39]. Their work incorporates expert
knowledge stored in a knowledge base as RDF (Resource Description Framework)/XML
(Extensible Markup Language) format by converting it to the N-Quads format of the graph
database. Mamoutova et al. [24] use an ontology to represent fault symptoms such as
damage due to abnormal temperature change, which are then reasoned over using moni-
tored data for diagnostic purposes. SPARQL (https://www.w3.org/TR/rdf-sparql-query/
(accessed on 3 August 2021)) and GraphQL+ (https://docs.dgraph.io/query-language
(accessed on 3 August 2021)) are used to facilitate diagnosis querying. As the authors
point out, the limitation is that each fault that needs to be detected must be described by
the combination of values and the used monitoring parameters. Furthermore, such an
approach is limited in its ability to express abnormal values of a parameter in terms other
than a simple threshold or binary value, such as a bounded interval. Mamoutova et al. [24]
also use ML-based techniques such as random forest (RF), long-short-term memory (LSTM),
gated recurrent unit (GRU), and LSTM with attention in a complex situation where an
ontology-based approach fails. This demonstrates the limitations of a semantic-only ap-
proach even more.

2.2. Machine Learning-Based Study

Su et al. [40] use the RF classification algorithm and SMART attributes to conduct
a study on hard drive predictive maintenance. The solution in [40] has the ability to
make real-time predictions by utilising technologies such as Apache Hadoop (https://
hadoop.apache.org (accessed on 2 June 2021)) and Apache Spark (https://spark.apache.org
(accessed on 6 September 2021)). The use of a RF classification algorithm for HD failure
prediction can also be seen in [41,42]. However, in addition to using the same ML algorithm,
Shen et al. [41] use a sliding window to reduce the effect of noise and an additional part
voting strategy to improve the prediction accuracy. On the other hand, Züfle et al. [42] use
additional techniques such as synthetic minority oversampling technique (SMOTE) [43]
and enhanced structure-preserving oversampling (ESPO) [44] together with random forest.
Similar to Su et al., Züfle et al. and Shen et al., Mashhadi et al. [45] also make use of RF
algorithm. Mashhadi et al. conducted a case study of the HD time to failure using SMART
attributes in cloud manufacturing settings. The authors perform regression analysis with
the RF classification algorithm to predict the time to failure. Further, the authors present
findings of specific SMART attributes, their importance and how they correlate with each
other across different brands. For example, it has been discovered that higher SMART
attribute values, such as SMART 5, SMART 10, and SMART 187, have a strong correlation
with failures. The other study, by Li et al. [5], do not use a RF algorithm, but rather a tree-

https://www.w3.org/TR/rdf-sparql-query/
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based algorithm based on decision trees (DTs) [8] and gradient boosting regression trees
(GBRT) [46]. The DTs was used for failure prediction, while the GBRT was used for health
degree evaluation (i.e., a value set for each failed sample between [−1, 0]). Furthermore,
a simple voting strategy with DT is used to improve prediction, and the work is evaluated
using the simulated scenario.

Han et al. [47] use a streaming approach to predict disc failure with the help of incre-
mental learning algorithms such as DT. The authors follow an ensemble approach com-
bining multiple DTs to overcome limitations such as single DT’s diversity and look-ahead.
SMART attributes are also used in the work to predict failure. Similar to Han et al., Gan-
guly et al. [48] also used an ensemble approach for their study. Ganguly et al. conducted a
study on hard drive failure prediction with the Azure (https://azure.microsoft.com/en-us/
(accessed on 12 September 2021)) cloud platform using a two-step ensemble method, which
employ a non-parametric DT at stage 1 and logistic regression (LR) at stage 2. The solution
in [48] has been put into production and it has shown to reduce the downtime of virtual
machines (VMs) caused by HD.

Studies by Liu et al. [6], Zang et al. [49], and Santo et al. [50], on the other hand,
use a deep learning approach for hard drive failure prediction. The work of Liu et al.
focuses on cloud storage systems and applied modified recurrent neural networks (RNN).
The main difference (in comparison to previous research) is how the current hidden layer
is updated, which is by feeding the previous time step hidden layer and output layer.
Similarly, the work of Santo et al. used LSTM, RNN based deep learning technique, while
the work of Zang et al. make use of adversarial training [51] with SMART attributes.
Both the work of Santo et al. and Zang et al. focus on hard drive health prediction.
In contrast to previous research, Franklin [52] conducted an empirical study on hard drive
failure prediction and observed an increase in the reallocated sector count of one of the
SMART attributes prior to a failure.

2.3. Summary

In conclusion, the majority of the studies discussed in Section 2 apply ML techniques
or, more recently, a few techniques based on semantic models for HD PdM failure predic-
tion. We present a summary of the existing solutions in Table 1. The table presents each
study, the main method that has been used (ML-based or semantic-based), and, when avail-
able, performance and training time statistics and current limitations. While most of the
presented solutions achieve accuracy of failure prediction above 90% and use SMART
attributes, context-awareness is rarely addressed. From the presented solutions, only the
one by Mamoutova et al. [24] uses semantic technology, namely ontologies, to provide
context to the selected ML model.

Two of the main limitations of the existing ML solutions as presented in Section 2 and
Table 1 is the lack of context awareness (e.g., why and how a failure occurred, how the
failure affects the HD overtime) and standardisation when dealing with heterogeneous
data types. The numerous ongoing studies demonstrate that the problem of predicting HD
failure requires a solution that takes into account the changing technological landscape
and advancement.

https://azure.microsoft.com/en-us/
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Table 1. Summary of existing HD PdM solutions.

Study Method Performance Training Time Were SMART Limitations
ML Semantics Attributes Used?

Mamoutova
et al. [24] Ë Ë Precision of 74%. 183 s to ~7 h, depending on

the algorithm. é

The use of a semantic-only approach is restricted to
predefined rules, such as the requirement that each

fault be defined by a combination of values and
monitoring parameters.

Su et al. [40] Ë é Accuracy of 85.84%. - Ë

Shen et al.
[41] Ë é Failure detection rates of over 97.67%.

False alarm rate of 0.017%. - Ë

Mashhadi
et al. [45] Ë é R2 with less than 50%. - Ë

Han et al. [47] Ë é
Precision, recall, and F1-score are

increased by 27.5–71.8%, 15.7–37.4%,
and 26.8–53.2% respectively.

Training time is 10.6 s (0.6 s
deviation). Ë

Züfle
et al. [42] Ë é

Accuracy, precision, and recall are
97.642%, 94.913%, and 96.97%,

respectively.

The average training time of
the multi-class classification
approach is 174 s, while for

the pre-filtering is 346 s.

Ë

As previously stated, studies that rely solely on
machine learning lack context awareness.

Furthermore, the studies lack benefits such as the
ability to incorporate expert knowledge and

additional information, such as humidity, which is
another reason for the failure associated with the use

of KG, aside from the improved results.

Ganguly
et al. [48] Ë é

Key performance indicators were
established and used at different steps,

such as design changes in production and
pilot in test environment.

- Ë

Liu et al. [6] Ë é 100.0% failure detection rate at a 0.02%
false alarm rate. - Ë

Zang
et al. [49] Ë é Accuracy, precision, and recall are 92.6%,

89%, and 88.7%, respectively. - Ë

Santo
et al. [50] Ë é Accuracy of 98.45%, precision of 98.33%

and recall of 98.34%. - Ë
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All these limitations can be resolved with the help of semantic technologies such
as ontologies and knowledge graphs, which provide both context and a unified data
model in machine-readable format. The use of semantic technology, namely knowledge
graphs, enables context-awareness through the relationships that hold between concepts
(in a specific domain) as demonstrated in studies such as [24]. As a result, in this study,
we present our work on combining KGs and machine learning for HD failure prediction.

3. Methodology

Figure 1 summarises the methodology that we follow. The first phase is data collec-
tion, which included the identification of appropriate data (i.e., the selection of a dataset
containing HD failure information from the numerous failure datasets available on the
internet) and its download. In our case, the downloaded dataset was tabular in nature
and was stored as comma-separated value (CSV) files. Section 4.1 contains additional
information about the dataset, such as the total number of samples and the location of the
collection. The next phase, as shown on Figure 1, is data preprocessing, which consists of
the following steps: (i) converting data to KG for RGCN and (ii) splitting data into training
and testing sets.

Figure 1. High level overview of followed methodology.

Details on how the tabular data is converted into a KG are presented in Section 4.2.
The converted KG serves as an input to RGCN, an ML technique that combines the KG
by transforming the KG into low-level representations (details in Section 4.4) and learning
patterns, which is also the proposed approach. For example, let us consider the following
KG triples: (“Hard drive”, “smart5”, “10”), (“Hard drive”, “has humidity”, “89”), (“Hard
drive”, “storage has average temperature”, “65”) and (“Hard drive”, “status”, “fail”), which were
presented in Section 1 and contains the information about HD failure. To enhance failure
prediction, we train the RGCN model on these KG triples containing information about HD
failures. Following training, we pass similar KG triples (i.e., KG triples with missing status
information) to generate a prediction, which in this case is the status (i.e., failed or working).
This approach to RGCN provides additional benefits, such as eliminating the additional step
of performing downstream tasks such as classification, that would otherwise be required
if embedding techniques such as Rotate3D [53] and K-BERT [54] were used. RGCN is a
generalisation of Graph Convolution Networks (GCNs) that operates on relational graph
data (or knowledge graphs) [55]. GCNs are a variant of convolutional neural networks
(CNNs) on graphs [56]. Moreover, in addition to the details on KG construction from
tabular data presented in Section 4.2, we refer to the following studies [57,58] for additional
information, as well as study [21] for additional information on KG.

Similarly, during the splitting training and testing data, we split the data into train-
ing and testing sets. In this step, we split both the KG and the original tabular data.
This is because we also used the H2O (https://www.h2o.ai (accessed on 22 September
2021)) AutoML (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (accessed

https://www.h2o.ai
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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on 22 September 2021)) (Automatic Machine Learning), which provides an automated
industrial standard supervised ML algorithm that operates on tabular data [59]. Further,
we use it as a baseline for the proposed approach. Section 4.3 provides additional in-
formation on H2O AutoML. Further details of the data preprocessing are presented in
Section 4.2.

Next, by using the split training data, we perform training in the subsequent step.
To train the H2O AutoML, the tabular training data is used, while the KG is used for
training the RGCN. Once training is complete, we evaluate the trained H2O AutoML and
RGCN models against the split test data. Finally, we perform a performance evaluation by
comparing our RGCN results to those of H2O AutoML, which served as a baseline for our
RGCN. The model performance is assessed using evaluation metrics (see Section 5.3), which
helped us understand how well the model is likely to perform in an unanticipated scenario.
In addition to comparing our results to those of H2O AutoML, we make a comparison with
the state of the art studies. The results are presented in Section 5.4.

Finally, the steps below summarise the step by step application method for the pro-
posed approach. It differs from the approach of the H2O AutoML, which follows the
standard ML approach.

1. The first application requirement is for data in the KGs. If only tabular data is available,
it must be transformed into the KGs. Section 4.2, data preprocessing, goes into greater
detail about the data transformation process into KGs and Section 4.1 discusses the
used data. Additionally, we refer to the studies [57,58] for additional information on
converting tabular data to KGs;

2. After obtaining the KGs data, the next step is to divide it into training and testing sets.
This step of splitting the data into training and testing set is also common for the H2O
AutoML. The task of splitting the data into a training and testing set is performed
during the data preprocessing phase;

3. The next step is to train the ML model, which in our case is RGCN, using the split
training KG. The details about the training are available in Sections 4.4 and 5.2;

4. After training is complete, the model is evaluated using split-testing KGs.
Sections 5.2 and 5.4 contain details about the evaluation and its findings, which
are performed and obtained aplying evaluation metrics (see Section 5.3).

In the case of H2O AutoML (see Section 4.3), we follow a similar procedure, training,
and evaluation, for example, as with RGCN, but with tabular data. Moreover, as an
alternative to RGCN, embedding approaches such as Rotate3D [53] and K-BERT [54] can
also be used. However, use of such an embedding approaches requires additional ML
algorithms to be able to make predictions, as embeddings only transform the KGs into low
level representations. This would therefore require more time and effort as one needs to
train and optimise multiple algorithms.

4. Experiment

In this section, we present details about our experiment. In Section 4.1, we present
details about the used data and data preprocessing in Section 4.2. Similarly, in Section 4.3,
we present details about H2O AutoML and why we selected it for our study. Finally,
in Section 4.4, we provide details on RGCN, such as the reasons for its selection and
use in our study. Additionally, we provide details on the experiment, such as the used
hyperparameters and activation functions.

4.1. Dataset

Our study focuses on HD failure prediction and also uses the ML technique. In order to
successfully apply the ML technique, we needed to train ML models. To train ML models,
we needed data, so the first step was to gather the dataset about HD failure. In our study,
we use data from Backblaze (https://www.backblaze.com/b2/hard-drive-test-data.html
(accessed on 10 June 2021)) as it offers a real-world HD failure dataset. The dataset contains
information about HD failures represented by SMART attributes. In our experiment, we used

 https://www.backblaze.com/b2/hard-drive-test-data.html
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the dataset from the third quarter of 2020. The dataset contains a total of 106 SMART
attributes of which 53 are raw values and 53 are normalised values. The values are stored in
92 different files, which after download are combined into one CSV file. Figure 2 shows the
data distribution after combining the data from all 92 different CSV files. The dataset contains
a total of 13,553,809 samples, with only 367 samples representing failed HDs.

Figure 2. Data distribution.

4.2. Data Preprocessing

The used data consists of 106 SMART attributes (see Section 4.1). Each SMART
attribute has a different level of importance. It would be beneficial if we use the attributes
that are more important in predicting HD failure. For example, SMART 3, which represents
spin-up time, is considered less critical. SMART 5, the other SMART attribute, is considered
critical (or more important than SMART 3). If we rely on SMART 3 instead of SMART 5,
there is a high chance that our prediction result will not be accurate. As a result, the first
data preprocessing step in our study was to fine-tune the SMART attributes based on their
significance. Table 2 shows the selected nine SMART attributes based on their importance
for HD failure prediction. The significance of the SMART metrics was determined using
information obtained from manufacturers, such as Segate (https://www.seagate.com/
gb/en/ (accessed on 23 September 2021)), and a review of the literature. Once we have
finalised the SMART attributes that are to be used in our study, the next step is to convert
the data into KGs. In case of H2O, we use tabular data with selected SMART attributes (see
Table 2). Figure 3 presents the process of creating the KG.

Table 2. List of used SMART attributes and their definitions.

SN SMART Attribute Definition

1 Smart 5 Reallocated sector count.
2 Smart 10 Spin retry count.
3 Smart 187 Reported uncorrectable errors.
4 Smart 189 High fly writes.
5 Smart 190 Temperature difference or airflow difference.
6 Smart 198 Uncorrectable sector count.
7 Smart 197 Current pending sector count.
8 Smart 199 UltraDMA CRC error count.
9 Smart 188 Connection timeout.

Figure 3. Transforming CSV data into a KG.

https://www.seagate.com/gb/en/
https://www.seagate.com/gb/en/
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A Python script is used to transform the combined raw data into a KG, which we
implemented. For the transformation of raw data into KGs, we followed the principles of
RDF Mapping Language (RML) (https://rml.io (accessed on 24 September 2021)). After
the transformation, the raw CSV data is saved in CSV format again, but this time in a triple
format (subject, predicate, object), denoted by (s,p,o) as shown in Figure 4. However, during
our experiment, we observed issues such as being out of memory and slow processing
when using the KGs stored in CSV. Therefore, to deal with these issues, we transformed the
KGs stored in CSV to NetworkX (https://networkx.org (accessed on 24 September 2021))
representation. The NetworkX representation allowed us to represent KGs as a graph,
which can be directly fed to RGCN. Similarly, Figures 5 and 6 show the visualisation of
an instance of the created KGs. We have removed the Uniform Resource Identifier (URIs)
from Figures 5 and 6 to simplify the visualisation.

One can observe the difference in the number of relationships and nodes in Figures 5 and 6.
This is due to missing values in the original data. In the case of the KG instance depicted in
Figure 5, there are no missing values, thus all 10 relationships are present. In addition to the
nine relationships discussed before, one extra relationship represents the status of the hard
drive based on the SMART attributes value. However, in the KG example depicted in Figure 6,
there were missing values, resulting in the absence of some relationships and the corresponding
nodes (or tail). This is also an advantage in this case as we can ignore the missing values, which
would otherwise have to be filled using imputation techniques.

Figure 4. KG stored in CSV.

Figure 5. Visualisation of a KG sample—I.

https://rml.io
https://networkx.org
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Figure 6. Visualisation of a KG sample—II.

4.3. H2O AutoML

H2O AutoML is a fully automated supervised ML algorithm that is part of the H2O
framework [59]. H2O is an open-source, distributed ML platform that is designed to
scale large datasets and to produce high-quality models, which are suitable for enterprise
deployment [59]. Our work uses H2O due to its ability to provide high-quality, enterprise-
ready deployment models. Additionally, we consider H2O AutoML because it works with
only tabular data (i.e., not KGs) and is the state of the art technique that serves as the
baseline for our KGs-based approach.

H2O AutoML provides an implementation for different state of the art algorithms.
The implemented base ML algorithms in H2O AutoML include XGBoost Gradient Boost-
ing Machines (XGBoost) (https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/
xgboost.html (accessed on 27 September 2021)), Gradient Boosting Machine (GBM) (https://
docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html (accessed on 27 Septem-
ber 2021)), Random Forest (RF) (http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-
science/drf.html (accessed on 27 September 2021)), Deep Neural Networks (DNN) (http:
//docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html (accessed on
27 September 2021)) and Generalised Linear Model (GLM) (http://docs.h2o.ai/h2o/
latest-stable/h2o-docs/data-science/glm.html (accessed on 27 September 2021)). Fur-
ther, H2O AutoML provides Stacked Ensembles (http://docs.h2o.ai/h2o/latest-stable/h2
o-docs/data-science/stacked-ensembles.html (accessed on 27 September 2021)) algorithms.
Stacked ensembles, also known as stacking or super learning, allow us to improve the
prediction accuracy by training a metalearner on ensemble model predictions, as shown in
Figure 7. Stacking ensembles, as opposed to ensemble learning, which takes the weakest
learner (such as a decision tree), considers the strongest learned models. H2O uses all mod-
els ensemble and best of family models for stacking. The “all models” ensemble contains
all the models while the best of the family ensemble only includes the best performing
model from each algorithm family [59].

In our experiment with H2O, we used four different algorithms: stacked ensembles,
GLM, distributed random forest (DRF), and XGBoost for training and testing. We excluded
DNN due to its implementation being unreproducible (https://docs.h2o.ai/h2o/latest-
stable/h2o-docs/automl.html (accessed on 22 September 2021)). The data was divided
in three sets: for training, testing, and validation. A total of 70% of the data was set aside
for the training set, 15% for the validation set, and 15% for the testing set. The training
and testing was performed using the system detailed in Section 5.1. We used a seed value
of 123,589,389. The seed value is used to generate pseudo-random numbers, which help
achieve reproducibility by producing the same sequence of results as long as we use the
same seed value. The algorithms were trained using 6 k-fold cross-validations. The k-
fold (i.e., a Monte Carlo [60] method) is a data resampling method used to evaluate the
generalisation ability of ML models and to prevent overfitting [61]. It accomplishes this

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html 
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html 
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/glm.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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by dividing the data into k subsets of training and validation sets and utilising each fold
once for validation and the remaining k − 1 subsets for training. Further, we restricted the
number of models to a maximum of 7. H2O also allows us to define a model’s time-bound,
which specifies the maximum amount of time a model can run during training. In our
case, we used the H2O default time limit of one hour. The parameters used, such as
the number of folds in k-fold cross validations and the maximum running time of H2O,
were determined through experimentation (i.e., by changing parameters). The presented
parameters yielded the better performance (see Section 5.4).

Figure 7. Stacked ensemble.

Tables 3–6 show the tuned hyperparameters of stacked ensemble, GLM, DRF, and
XGboost respectively. These hyperparameters were automatically tuned by H2O, which
resulted in better performance. As seen in Table 3, we ran 99 iterations of the stacked
ensemble model, wherein the chosen metalearner was GLM, using its default setting in
H2O. Although, H2O provides a number of different metalearners, we have opted for
GLM because it is a flexible algorithm for generalisation of L-base models as well as
suitable for prediction tasks. We determine the regularisation as the Elastic Net Penalty
(with alpha set to 0.5 and this causes lambda result to @ 1.21 × 10−7 as calculated by H2O)
to regularise the stacked ensemble model since the latter tends to overfit while combining
L base algorithms. In both Tables 3 and 4, the logit, link helps the model to gain further
predictive power. We are able to carry out transformations on the predicted probabilities
using logit transformation. In addition, as shown in Table 5, we set the number of trees
in the forest as 48, although the default number is 50 and the max depth as 20, which is
the default provided by H2O—higher values will make the model more complex and may
lead to overfitting. We also set the max leaves on each tree to 82. Note that some of the
leaves do not get to the max depth of 20 because at that depth, there are about a million leaf
nodes to be split with each having multiple columns resulting in millions of split points per
tree. These parameters are also displayed as part of the default DRF output on H2O, thus:
Model summary (number of trees, min. depth, max. depth, mean depth, min. leaves, max. leaves,
mean leaves).

Finally, in Table 6, we highlight the different hyper parameters for the implemented
XGBoost algorithm. Here, we see that although XGBoost has four inbuilt tree types, namely
exact, approx, gpu_hist, and hist, we have opted for the latter, because it is the fastest tree
method. This is as a result of the fact that it runs sketching only once while trying to carry
out split finding. Additionally, since the booster is of tree type, the learning rate (eta) is kept
at the default 0.3, max depth 10 (4 units greater than the default 6), and sample rate in set at
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0.6 which falls within the higher range of the limit 0.0 to 1.0 and can help increase training
accuracy. Similar to the other implemented algorithms already mentioned, XGBoost is also
a powerful gradient boosting machine (GBM) used to solve many problems today.

Table 3. H2O stacked ensembles parameters.

Iterations Regularisation Predicators Metalearner Link Lambda

99

Elastic Net
(alpha = 0.5,

lambda =
1.21 × 10−7)

3 GLM logit

nlambda = 100,
lambda.max =
1.298 × 10−4,
lambda.min =
1.21 × 10−7,
lambda.1se =
4.663 × 10−5

Table 4. GLM parameters.

Iterations Regularisation Predicators Link Lambda

45 Ridge (lambda =
8.302 × 10−8) 465 logit

nlambda = 30,
lambda.max = 0.001141,

lambda.min = 8.302 × 10−8,
lambda.1se = 2.331 × 10−6

Table 5. DRF parameters.

Number of
Trees Min. Depth Max. Depth Min. Leaves Max. Leaves

48 0 20 1 82

Table 6. XGBoost parameters.

Booster Number
of Trees

Learning
Rate

Sample
Rate

Max.
Depth

Min.
Rows

Tree
Method

gbtree 99 0.3 0.6 10 5 hist

4.4. Relational Graph Convolution Network (RGCN)

RGCN, which was introduced by Schlichtkrull et al. [55] operates on the relational
data, taking directed labelled multi-graphs G = (V, R, E) as input. The V in graph G
represent nodes (or entities) viεV, E represents the edge (or relations) represented by the
nodes (vi, r, vk)εE of type relation rεR. Graph Convolution Networks (GCNs), which can
be thought of as a subset of differential message passing, provide a more accurate repre-
sentation of nodes by combining connectivity and neighbourhood features, in contrast to
DeepWalk or node2vec (https://snap.stanford.edu/node2vec/(accessed on 12 September
2021)), which rely exclusively on connectivity [62,63]. RGCN takes GCN a step further by
taking relationships into account while retaining GCN’s advantages, such as advantages of
the neighbourhood node. RGCN evaluates Equation (1) while making a neural hidden layer
hl+1

i update, wherein Nr
i denotes a set of neighbourhood indices of node i under relation

rεR. The W in the Equation (1) represents the weight matrix and ci,r and a problem specific
normalisation constant. For details on RGCN, we recommend [55]. Furthermore, unlike
GCN, RGCN can deal with heterogeneous relationships [64]. As a result, we consider
RGCN in our research.

hl+1
i = σ

(
ΣrεRΣkεNr

i

1
ci,r

W l
r hl

k + W l
ohl

i

)
(1)

https://snap.stanford.edu/node2vec/
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The problem of HD failure prediction can be viewed as a node classification task in our
study using RGCN, in which we predict the missing node in a KG. In our case, the missing
node includes the HD status “fail” or “good”. Figure 8 shows an example of the node
classification. As illustrated in Figure 8, we predict the missing node (denoted by P) by
feeding the KG with missing nodes to the trained model. Figure 9 depicts the detailed
approach followed in our study. As illustrated in the Figure 9 method, we begin by training
our RGCN model with knowledge graphs and train target labels (or train target). The train
target labels contain information about HD failures, which is represented as a node in our
KG. Similarly, the test target labels (or test target) include data on HD failures information,
which we use to validate our trained model, which we present in Section 5.4. We used 70%
of the data in our RGCN study as a training set and 30% as a testing set.

Our RGCN implementation uses four dense layers and one output layer. The first
2 dense layers are made up of 8 hidden units, while the other 2 are made up of 16 hidden
units. Experimentation is used to determine the number of hidden units and the density of
the layer. Similarly to the H2O case, the presented parameters produced the better result
(see Section 5.4) in the case of RGCN. This is because making the model more complex
with more parameters leads to overfitting, whereas making the model too simple leads to
failure to learn. The activation function is the next most important feature. An activation
function distinguishes the neural network from linear models such as linear regression by
introducing nonlinearity and assisting the model in learning complex patterns [65]. There
are over 20 activation functions available, and choosing the right one is critical [66]. For all
of the dense layers in our study, we used the activation function ReLU (https://www.
tensorflow.org/api_docs/python/tf/keras/activations/relu (accessed on 27 September
2021)). The reason for this is that ReLU is more resistant to the vanishing gradient problem
than other activation functions such as Tanh and Sigmoid [66]. The output layer, however,
consists of the sigmoid activation layer. Another critical parameter is the loss function,
which quantifies the difference between the prediction and reality. As a result, we always
strive to minimise the loss function. Numerous loss functions are available, including
mean squared error (MSE) and cross-entropy (CE). The application of loss functions is
task-dependent. For instance, the regression problem makes use of the MSE. Due to the
classification nature of our task, we chose CE as the loss function. Additionally, there are
several variants of CE loss functions, including binary CE and categorical CE. We employ
categorical CE in our implementation. This is because categorical CE works with multi-
class as well as binary class and therefore is more flexible. Apart from the activation
function and loss, another critical parameter is the learning rate (LR), which determines
the number of steps the neural network takes during the learning process. If the LR is
very large, the chances of divergence are high; if the LR is very small, we may become
trapped in the local minima. Both of these situations are undesirable because they impair
learning and, ultimately, model performance. Considering the importance of the LR in our
implementation, we used an adaptive learning rate Adam (https://www.tensorflow.org/
api_docs/python/tf/keras/optimizers/Adam (accessed on 28 September 2021)) that takes
into account changing loss with an initial value of 1 × 10−3.

Figure 8. Node classification.

https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu
https://www.tensorflow.org/api_docs/python/tf/keras/activations/relu
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
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Figure 9. RGCN approach.

Overfitting is one of the major problems in deep learning. A similar instance was
observed in our experiment, and therefore, to alleviate the overfitting, we used dropout in
our implementation. Dropout is a well-established technique for restraining overfitting
and functions similarly to a switch, turning off the neurons [67]. In addition to dropout,
we also used the early stopping technique to monitor the validation accuracy. Early
stopping is a very effective and simple form of regularisation [68]. Early stopping is a
technique that stops the training once the monitored metric has stopped improving (https:
//www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping (accessed
on 1 October 2021)). Furthermore, due to the sparsity and rapidly growing number of
parameters that may be required, learning on a graph can be a difficult task. Therefore
to reduce complexity, we enabled parameter sharing in our implementation by setting
num_bases to a non-zero value. The training was then carried out for 500 epochs.

5. Performance Evaluation

This section contains details about the system and the software used in the experiment.
Section 5.1 discusses the system setup, providing details about the system’s use, such as the
number of Graphics Processing Units (GPUs). Section 5.2 provides information on training
and testing. Section 5.3 provides information on the evaluation metrics and the reasons why
we considered those evaluation metrics. Finally, in Section 5.4, we present our experimental
results and their comparison to H2O, which we considered as a baseline. We chose H2O
as a baseline because H2O is considered the industry-standard ML framework and is
widely used in different industrial use cases (https://www.h2o.ai/solutions/#use-cases).
In addition to comparison with the H2O, we also compare results with state of the art
studies. The selection of the studies to compare were made based on the used similar
evaluation metrics and the recency (2018 and later) of the article.

5.1. System Setup

We utilised Lambdalabs (https://lambdalabs.com/service/gpu-cloud (accessed on
27 September 2021)) GPU cloud. Our system consists of two NVIDIA RTX A6000 (https:

https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.h2o.ai/solutions/#use-cases
https://lambdalabs.com/service/gpu-cloud
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
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//www.nvidia.com/en-us/design-visualization/rtx-a6000/ (accessed on 27 September
2021)) GPUs, each GPU consisting of 48 GB GDDR6 memory, 200 GB Random Access
Memory (RAM), and 1 TB secondary storage. Further, it consists of 28 Virtual Central
Processing Units (VCPUS). The GPUs are linked together using NVIDIA NVLink (https:
//www.nvidia.com/en-us/data-center/nvlink/ (accessed on 2 October 2021)), a high-
speed direct GPU-to-GPU interconnect, which improves the performance by allowing
faster data exchange.

Most of the ML algorithms can be implemented using a variety of programming lan-
guages and libraries, such as Python (https://www.python.org (accessed on 2 September
2021)), R (https://www.r-project.org (accessed on 2 September 2021)), and Tensorflow
( https://www.tensorflow.org (accessed on 2 September 2021)). Our implementation uses
Python version 3 and the StellarGraph [64] Python based ML library for graph-based ML,
which is built on Tensorflow version 2. Further, we use the CUDA Compute Unified Device
Architecture CUDA) (https://developer.nvidia.com/cuda-zone (accessed on 7 September
2021)) (version 11.2) parallel computing platform and programming model developed
by NVIDIA for computation of the GPUs. During our initial experiment phase, we also
used the LEO4 (https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/ (accessed on
7 September 2021)). LEO4 is a high-performance compute cluster operated by the ZID
(IT-Center) at the University of Innsbruck in close collaboration with the Research Area
“Scientific Computing”.

5.2. Training and Testing

The training and testing of RGCN were performed using the Lambdalabs cloud.
The details of the used Lambdalabs cloud system are provided in Section 5.1. The training of
the RGCN model was performed for 500 epochs with 70% of the training data. Furthermore,
during the training, different strategies such as dropout and early stopping were applied,
which are discussed in detail in Section 4.4. The testing was performed using 30% of the
data. Similar to RGCN, we used the Lambdalabs cloud for experiments using H2O. During
the initial stage of the experiment, we also used the LEO4 cluster. The H2O training was
conducted using 70% of the data similar to RGCN. Various techniques, such as k-fold cross
validation, were employed to control overfitting during the training. The rest was used for
testing (15% for validation and 15% for testing). Timing-wise, RGCN training took around
2 h, while H2O AutoML training took around 2.5 h. In terms of testing, the amount of time
spent on prediction was negligible in comparison to the amount of time spent on training.
The details on training, such as the used hyperparameters, their initial values, and the
obtained tuned value after training, were presented in Section 4.3.

5.3. Evaluation Metrics

Evaluation metrics in ML help to understand how accurate a model prediction is
and indicate how well the model is likely to perform in an unanticipated scenario. In ML,
various evaluation metrics such as mean absolute error, mean squared error, accuracy, and
recall exist, and thus selecting an appropriate metric is important. This is because other
factors, such as data imbalance, must also be considered. Further, studies [69,70] have
shown that relying on a single evaluation metric is not a good idea, especially in the case of
highly skewed data. For example, one can achieve high accuracy by simply predicting the
dominant-negative class. Despite the model’s high accuracy, we are more likely to predict
negative for the positive class [70]. Such cases are extremely undesirable and necessitate
the use of additional metrics. Therefore, in our study, we have considered four evaluation
metrics: (i) accuracy, (ii) precision, (iii) recall, and (iv) Adjusted F-measure (AGF). Accuracy,
the first evaluation metric, is the most common and is a widely used metric that measures
the overall correctness of the model. Accuracy can be calculated by dividing the total
correct predictions by the total predictions, both correct and incorrect using Equation (2).
The other metric, precision measures the model’s exactness, while the recall measures
evaluate the model effectiveness on the positive/minority class by measuring the accuracy

https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/design-visualization/rtx-a6000/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.python.org
https://www.r-project.org
https://www.tensorflow.org
https://developer.nvidia.com/cuda-zone
https://www.uibk.ac.at/zid/systeme/hpc-systeme/leo4/
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of positive cases [69]. Equation (3) can be used to calculate the precision, and Equation (4)
for the recall. The F1 score, which is the harmonic mean of precision and recall, explains
how well precision and recall are balanced. However, studies have shown that the F1 score
(or F1 measure) does not perform well in the case of highly unbalanced data [69]. Therefore,
we considered the additional metric—AGF. The AGF metric is an improved version of the
F1 score, which can perform well even in case of unbalanced data and thus tell us how well
our model performs [69]. AGF can be calculated using Equations (5)–(7).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F2 = 5 × precision × recall
(4 × recall) + precision

(5)

InvF0.5 =
5
4
× precision × recall

(0.52 × recall) + precision
(6)

AGF =
√

InvF0.5 × F2 (7)

5.4. Results and Discussion

Figure 10 shows the experiment result. This includes our result from the cutting-
edge H2O AutoML framework and the proposed method. Further, the evaluation metrics
discussed in Section 5.3 are included in the experiment result depicted in Figure 10. The Y-
axis in Figure 10 represents the percentage, and the X-axis includes the evaluation metrics
recall, precision, and accuracy. Overall, we found that both experiments have high accuracy,
precision, and recall. On closer inspection, however, we can see a difference in the result.
The proposed method outperforms H2O AutoML in terms of performance by 1% improving
result from 99% (baseline H2O AutoML) to 100%. In terms of accuracy, the proposed
method, KG-based HD failure prediction, outperforms H2O by 1%. The same is true for
precision and recall. We can observe from Figure 10 that the proposed KG-based HD
failure prediction outperforms state of the art H2O by 1%. Further, in the case of the
AGF, we observe a similar pattern to that of accuracy, precision, and recall. The high
value of the AFG demonstrates that the result was not affected (or less affected) by the
high-class imbalance.

Figure 10. Proposed method versus the state of the art H2O result.
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In addition, we also compared our results with similar state of the art studies. Table 7
displays the findings from our studies as well as the compared relevant state of the art
studies, which were chosen based on their recentness (2018 or later) and use of similar
evaluation metrics. The best results were selected from the state of the art studies to
compare. As can be seen from Table 7, the proposed KGs-based approach performs better
despite our high data imbalance (with only 367 fail drives out of 13,553,809) compared to
studies such as [49] (758 fail drives and 30,685 healthy drives for the first dataset and 47 fail
drives and 7932 healthy drives for the second dataset).

Table 7. Comparison with state of the art studies.

Accuracy (%) Precision (%) Recall (%) Training Time

Su et al.(2018) [40] 85.84 − − −
Zang et al. (2018) [49] 92.6 89 88.7 −
Santo et al. (2020) [50] 98.45 98.33 98.34 −
Han et al. (2020) [47] − 71.8 37.4 10.6 s (streaming)
Züfle et al. (2020) [42] 97.642 94.913 96.97 174 s, on average

Mamoutova et al. (2021) [24] − 74 − 183 s–7 h
Our baseline (H2O AutoML) 99 99 99 ~2.5 h

Our proposed KG-based
approach 100 100 100 ~2 h

In addition to comparing the accuracy, precision, and recall of our results, we also
compared the training time of our solution to that of related work (see Table 7). As can
be seen in Table 7, half of the studies we considered for comparison, with the exception
of Züfle et al. [42], Han et al. [47], and Mamoutova et al. [24], did not report training
time. Our experiment’s training time is significantly longer than Züfle et al. [42] and
Han et al.’s [47] work. One of the reasons for the longer time, in our case, is the sample
size. We used a sample size of 13,553,809, while Züfle et al. [42] used 68,411. The other
reason is that the H2O AutoML approach performs extensive hyperparameter optimisation
of multiple algorithms, whereas the KG-based approach requires learning relationships.
Similarly, in the case of Mamoutova et al. [24], we observe a significant increase in our
training time (compared to Mamoutova et al.’s [24] best of 183 s). However, when we
compare our training time to the training time of algorithms such as LSTM, GRU, and LSTM
with attention, which is approximately 4–7 h in Mamoutova et al.’s [24], our training time
is shorter. Additionally, this demonstrates that training neural networks takes longer.

Finally, the results from our experiment and comparison to state of the art studies
and H2O (baseline) substantiate our claim that using a KG can improve failure predic-
tion. This improved failure prediction allows us to detect potential failures prior to their
occurrence, allowing us to take proactive action and, as a result, improve the reliability.

6. Conclusions and Future Work

In this paper, we described a novel approach for predicting HD failures that combines
ML and KGs. According to the evaluation results, combining these two technologies
supports context-awareness and helps achieve higher accuracy of failure prediction in
comparison to solutions that rely solely on ML. Moreover, the proposed approach can
be applied to any other domain that requires prediction tasks, such as disease prediction
(or classification). This generality of the presented approach is another benefit of our
work. In addition, the use of KGs enables the incorporation of domain knowledge from
domain experts and maintains human centricity, a step toward Industry 5.0 [71]. Since
different domain experts may hold divergent views, incorporating domain knowledge may
introduce bias, which can sometimes result in incorrect decision making. Solving such
challenges would entail providing additional domain knowledge. The future work will
focus on applying the proposed approach to other domains and industrial settings.
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