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Abstract: Established Internet of Things (IoT) platforms suffer from their inability to determine
whether an IoT app is secure or not. A security analysis system (SAS) is a protective shield against
any attack that breaks down data privacy and security. Its main task focuses on detecting malware
and verifying app behavior. There are many SASs implemented in various IoT applications. Most
of them build on utilizing static or dynamic analysis separately. However, the hybrid analysis is
the best for obtaining accurate results. The SAS provides an effective outcome according to many
criteria related to the analysis process, such as analysis type, characteristics, sensitivity, and analysis
techniques. This paper proposes a new hybrid (static and dynamic) SAS based on the model-checking
technique and deep learning, called an HSAS-MD analyzer, which focuses on the holistic analysis
perspective of IoT apps. It aims to analyze the data of IoT apps by (1) converting the source code
of the target applications to the format of a model checker that can deal with it; (2) detecting any
abnormal behavior in the IoT application; (3) extracting the main static features from it to be tested
and classified using a deep-learning CNN algorithm; (4) verifying app behavior by using the model-
checking technique. HSAS-MD gives the best results in detecting malware from malicious smart
Things applications compared to other SASs. The experimental results of HSAS-MD show that it
provides 95%, 94%, 91%, and 93% for accuracy, precision, recall, and F-measure, respectively. It also
gives the best results compared with other analyzers from various criteria.

Keywords: data security; triggers/actions; smart homes; software verification

1. Introduction

The Internet of Things (IoT) connects multiple smart objects that work together auto-
matically with limited human activity. With expectations of spreading to 75 billion devices
by the end of 2025, IoT is one of the fastest-growing areas in the internet world [1]. As
a result, IoT security and privacy have become one of the hottest topics. Because of the
growing number of IoT applications, such as in healthcare, industrial, agriculture, and
smart home applications, etc., there is increasing vulnerability to attack and violations of
privacy due to the different types of devices and sensors. There are several attacks such as
(a) physical attacks, (b) software attacks, (c) network attacks, (d) encryption, or data attacks
that may occur in IoT [2,3].
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The IoT application consists of several IoT systems that connect physical processes
with digital communication, and these depend on edge-based (sometimes also known as
event-driven) application. Event-driven application is responsible for taking the data from
sensors such as motion sensors, contact sensors, and smoke sensors, and command from
actuators such as smart power outlets, door controls, and smart locks towards providing
different forms of automation [4]. IoT systems also build their infrastructure with (i) devices
from the bottom up (ii) networking protocols, and (iii) IoT programming platforms [5].

One problem of IoT is the unequal status of existing platforms. As a result, the software
stack designed for the applications responsible for monitoring and controlling all objects.
Most of them do not have good essential tools and services to analyze security and privacy.
In particular, third-party apps installed by end users to automate IoT devices’ tasks may
include data leakage and abuse of permissions. Untrusted third-party apps lead to serious
errors and misconfigurations which affect the behavior of IoT applications [6,7].

Security analysis systems (SAS) play an essential role in providing security and privacy,
as they can analyze the behavior of IoT applications by detecting any malware, violations,
or vulnerabilities. SASs use different program analysis techniques and methods of analysis
(static, dynamic, or hybrid). The use of an SAS does not present any problem in discovering
traditional malware, but what is dangerous is the emergence of new types of these malicious
codes. According to science and business studies, around one million malware files are
generated daily, and cyberattacks would harm the world economy by around 6 trillion
USD yearly by 2021 [8].

Some SASs use static analysis such as [9–11], which analyzes the program without
executing; this method has drawbacks, as some data may be lost during the analysis phase.
Other SASs use dynamic analysis such as [12–14]. This analytical method discovers the code
skipped by the static analytical methods, either because it is not created until rendering or
cannot reach statically analyzable control flow [15]. Therefore, the hybrid analysis provides
the best result to detect any malware, by avoiding static or dynamic usage drawbacks.

Static analysis extracts static features from source codes, including strings, opcode, N-
grams, bytes, etc. On the other hand, dynamic analysis extracts dynamic features, including
API traces, instructions traces, network traffic, etc. Therefore, the usage of hybrid analysis
is the best tool for analysis to cover all features.

The main contributions of this paper are to introduce:

• HSAS-MD, a new SAS among the effective SASs, which is continuously being devel-
oped as a security compiler tool to act as a protective shield to detect malware. It
depends on the PA of the IoT APP, which may automatically verify app behavior.

• HSAS-MD, a hybrid analysis which analyzes IoT Apps by extracting static and dy-
namic features based on model-checking techniques. It also utilizes deep learning
to discover new malware and classify it to provide security, safety, and privacy by
detecting any abnormal behavior.

• The evaluation of the HSAS-MD performance, which is measured by applying the
proposed analyzer after enhancing CNN. The results of the proposed HSAS-MD were
compared with similar SASs. HSAS-MD gave the best accuracy, precision, recall, and
F-measure results.

Most of this paper’s sections are as follows: Section 2 presents an overview of the
background and some basic concepts related to IoT security analysis. Section 3 illustrates
the recent related works of the security analysis system for IoT and the research goals.
Section 4 presents a proposed hybrid security analysis system (HSAS-MD Analyzer) with
more details. The implementation and evaluation of HASA-MD are present in Section 5.
Finally, Section 6 presents conclusions, limitations, and future research trends in the se-
curity analysis system for IoT. The relevant abbreviations used in this paper are shown
in Abbreviations.
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2. Background and Basic Concepts

This section presents an overview of the security analysis system (SAS) for IoT
(Section 2.1), which includes some information about the Model-Checking Technique
(MCT), Path Sensitivity, and Control Flow Graph (CFG). The basic concepts of the smart
things platform are then presented in (Section 2.2), while (Section 2.3) shows the role of
deep learning (DL) for IoT security.

2.1. Security Analysis Systems (SAS) for IoT

Most research has proven that IoT architecture is composed of three layers, which
are: (i) the precision layer (or physical layer), which contains actuators, sensors, and intelli-
gent objects; (ii) the network layer, responsible for linking, transmitting, and processing
intelligent devices and objects; (iii) the application layer, which handles all applications
that users interact with, such as healthcare and smart home applications. In addition,
there are more famous control platforms which developers can use to construct smart
apps that interact with sensors and actuators wirelessly, such as Samsung’s SmartThings
platform [16], Apple’s HomeKit platform [17], and Amazon’s Alexa platform [18].

Most IoT security research tends toward the security of platforms, communication
protocols, smart applications, and IoT devices. On the other hand, there are few studies on
security from a comprehensive IoT perspective, including the interaction between smart
objects and their applications and platforms [19]. IoT platforms acquire sensor and device
data, then transform it into a lightway that can be easily consumed by other application
software. This data must be processed and analyzed to make sure it is not malware. Event-
driven technology is one of the technologies responsible for handling the communication
between application, platform, and services by events.

Event-driven technology can specify the criteria to be fulfilled; to collect, evaluate,
and continue to compare a significant amount of heterogeneous data in order to identify
different situations within a given domain [20]. It is also an interactive system of objects
managed by an event dispatcher (which acts as an intermediary between objects) through a
message-passing mechanism. There are gaps in the event-driven technology; for example,
(1) there are no access control mechanisms for object aggregation, event transmission, and
event capture; (2) the effect of disfigured events is usually hard to control, and these gaps
could easily expose you to various types of malware.

Security analysis systems (SAS) focus on malware detection while transmitting or
receiving data to/from IoT devices. IoT apps verify this behavior, as shown in Figure 1.
The heterogeneity of IoT applications and platforms makes the malware publisher more
accessible. Therefore, SAS has an efficient role in providing security for IoT applications.

An SAS depends on four factors to build an efficient detector: (i) the PA type used
(static, dynamic, or hybrid); (ii) the PA technique used in the SAS, such as model-checking,
program-slicing, taint-tracking, etc.; (iii) PA sensitivity, describing splitting data into uncer-
tainties in the output such as context, path, API, etc.; (iv) characteristics of analysis, such as
a control flow graph (CFG).

2.1.1. Model-Checking Technique (MCT)

It is a significant challenge for IoT systems to prevent any infiltration by various
malware types. The model-checking technique (MCT) is used in static and dynamic analysis
to detect malware. This technique detecting malware belonging to the same family well
and is also successful against malware based on obfuscation and polymorphic techniques.
MCT identifies the sequencing of states that occur during the program’s execution and
determines whether or not the sequences of states meet the safety property [21]. It scans
and checks the behavioral property inside the source code to find any mistakes. The code
is considered error-free if no errors are detected regarding a given property.



Sensors 2022, 22, 1079 4 of 33
Sensors 2022, 22, x FOR PEER REVIEW 4 of 34 
 

 

 
Figure 1. Security analysis systems for IoT applications. 

An SAS depends on four factors to build an efficient detector: (i) the PA type used 
(static, dynamic, or hybrid); (ii) the PA technique used in the SAS, such as model-check-
ing, program-slicing, taint-tracking, etc.; (iii) PA sensitivity, describing splitting data into 
uncertainties in the output such as context, path, API, etc.; (iv) characteristics of analysis, 
such as a control flow graph (CFG). 

2.1.1. Model-Checking Technique (MCT) 
It is a significant challenge for IoT systems to prevent any infiltration by various mal-

ware types. The model-checking technique (MCT) is used in static and dynamic analysis 
to detect malware. This technique detecting malware belonging to the same family well 
and is also successful against malware based on obfuscation and polymorphic techniques. 
MCT identifies the sequencing of states that occur during the program’s execution and 
determines whether or not the sequences of states meet the safety property [21]. It scans 
and checks the behavioral property inside the source code to find any mistakes. The code 
is considered error-free if no errors are detected regarding a given property. 

In [22], MCT is used for formal verification in IoT apps, including healthcare, com-
munication protocols, security, and monitoring applications. MCT examines a system’s 
validity against properties and malware. Malware behaviors are manually extracted in 
this detection method, and behavior groups are structured using linear temporal logic 
(LTL) to represent a specific feature [23]. This enables flexibility in verifying all desired 
properties, and offers concrete counterexamples with linear temporal logic (LTL), which 
is helpful in studying why and how bad states exist. It can catch the holistic essence of the 
test’s multi-application connections and more effective—but not rigorous—checks [4]. 
MCT is distinguished from other techniques in improving system quality: (1) Testing is 
the most efficient and straightforward method of detecting problems; (2) Abstract inter-
pretation and other program analyses are similar to model checking, in that they use al-
gorithms to prove program properties automatically; (3) Higher-order proving is a strong 
and proven method for verifying complex systems [24]. 

2.1.2. Control Flow Graph (CFG) 
CFG is one of the directed graphs in which the nodes represent simple blocks (a linear 

sequence of program instructions of one entry point and one exit point), and the edges 
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In [22], MCT is used for formal verification in IoT apps, including healthcare, com-
munication protocols, security, and monitoring applications. MCT examines a system’s
validity against properties and malware. Malware behaviors are manually extracted in this
detection method, and behavior groups are structured using linear temporal logic (LTL) to
represent a specific feature [23]. This enables flexibility in verifying all desired properties,
and offers concrete counterexamples with linear temporal logic (LTL), which is helpful
in studying why and how bad states exist. It can catch the holistic essence of the test’s
multi-application connections and more effective—but not rigorous—checks [4]. MCT is
distinguished from other techniques in improving system quality: (1) Testing is the most
efficient and straightforward method of detecting problems; (2) Abstract interpretation and
other program analyses are similar to model checking, in that they use algorithms to prove
program properties automatically; (3) Higher-order proving is a strong and proven method
for verifying complex systems [24].

2.1.2. Control Flow Graph (CFG)

CFG is one of the directed graphs in which the nodes represent simple blocks (a linear
sequence of program instructions of one entry point and one exit point), and the edges
represent control flow paths. CFG has benefits, including: (i) capturing a significant element
of code complexity; (ii) having a simpler representation form than source code. (iii) being
able to directly list different improvement actions [25]. Each graph is generated using
path sensitivity. It is sufficiently reliable for verification. It can justify branch connections,
which are typically required to check the number of error reports obtained during the test.
In [26], there are two symbolic states at a melting point in the control flow. It has the same
ownership status, producing one symbol, the power, by incorporating their implementation
cases in the data flow analysis. Symbolic states are otherwise treated separately as in the
study of sensitive paths.

2.2. SmartThings Platform

SmartThings is one of the most common open developer platforms for the IoT, with many
applications among the platforms available today. Smart devices deal directly with the central
hub. An IoT application called Smart Apps, or the third-party Apps, a small Groovy-based
system, allows users to optimize their homes using the devices’ capabilities. This type of
app is the riskiest in IoT as it is untrusted. It may contain misconfiguration—even malicious
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intent—and bugs that present a threat. The SmartThings platform has some advantages
which make it the best choice from the other platforms: (i) it has a set of 521 apps called
Smart Apps. Specific competing platforms such as HomeKit, Weave/Brillo, and AllJoyn
have fewer than 50 applications each in formative stages; (ii) it has built-in support from
major manufacturers for 132 different devices; (iii) it shares the key principles of security
architecture [27–29].

The SmartThings platform comprises three main mechanisms, as shown in Figure 2:
(i) a permission system scheme that allows developers to define devices and user inputs
needed for a specific device app at the time of launch; (ii) Smart Devices, a software
proxy that runs the apps for hardware devices; (iii) SmartApps, a software proxy enabling
users to manage their homes using device capabilities. Events are an integral part of the
SmartThings platform. They allow SmartApps to respond to physical environment changes
and create automated processes around them. SmartApps or Device Handlers do not
explicitly create event instances. Instead, they are internally made by the SmartThings
platform and passed on to SmartApps event handlers who have subscribed to those events.
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2.3. Deep Learning (DL) for IoT Security

The SAS systems that use machine-learning or deep-learning methods are more pro-
ductive than those that depend on program analysis techniques. They are significant in
converting IoT systems’ security from simply supporting secure connectivity between
devices to security-based intelligence systems. In [30], deep learning (DL) is a branch of
machine learning that has advantages in previous studies at detecting security breaches. It
has a high effect on malware detection due to learning more conceptual functions, reduced
training complexity, increasing accuracy, managing massive datasets, and supporting fea-
ture extraction. In [31] a DL approach is proposed based on Stochastic Gradient Descent
(SGD), which identifies attacks in the social IoT. The results show that DL methods outper-
formed more profoundly in every assessment aspect. A multitask deep-learning model
for malware detection and classification was proposed in [32]. A combined feature set
consisting of null-terminated tokens, API event plus parameter value, and API trigrams,
were obtained from static and dynamic analysis. A deep feed-forward neural network
was trained using a planned feature vector. In [33], CNN with a one-dimensional kernel
(CNN-1D) is used to detect network intrusions. The detection of network intrusions aims
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to identify network traffic as either normal or an attack carrier. The information taken from
network flow packets is used to classify the data [34].

The SAS’s main objective is to detect any malware present in the data sent or received
between cloud backend platforms and smart mobile applications.

3. Related Works and Research Goals

This section presents an overview of various related SASs recently applied to IoT
applications (Section 3.1). Section 3.2 gives the proposed analyzer’s research scope and
objectives, and Section 3.3 presents the triggers/actions concept in the IoT app.

3.1. Related Work

IoT apps are convenient, but they expose us to new security risks. These risks may
come from the collaborative behavior of several apps compared to traditional software
applications. Early work used customized safety and security principles to detect these
risks; however, these principles may not predict all device and application usages in a smart
home, ending in false alarms. In [35], extraction sandboxes are used as a security measure
in IoT. After analyzing a set of behaviors from various apps and devices, a sandbox is
installed, reinforcing the idea that previously undiscovered behaviors are not permitted. As
a result, the execution of malicious behavior introduced by software upgrades or concealed
by strategies to resist program analysis is prevented. Therefore, there are two main critical
issues in IoT applications. These issues are as follows: (i) verifying the codes by detecting
any abnormal behavior in the IoT applications; (ii) detecting if there is malware or not.
Therefore, the analyzers are built to solve these issues.

In addition, the analyzers have important metrics that play an essential role in improv-
ing their accuracy, such as analysis type and analysis technique. In [36], the author argues
that static analysis continues to improve by using various methods to deal with the most
advanced malware obfuscation techniques. However, there is a fundamental limit to what
can be consistently detected to detect opaque constants; an obfuscation transformation has
been created that obscures program control flow, hides access to local and global variables,
and disrupts tracking values held in processor registers, using the proposed obfuscation
method. Moreover, the opaque constant primitive can be implemented in a manner that
may be difficult for any static-code analyzer to analyze. This therefore shows that static
analysis alone may no longer be sufficient to identify malware. Instead, the hybrid analysis
is the best for obtaining accurate results.

In [37], a framework was built for malware detection, focused on correlating and con-
figuring static and dynamic API call sequences. Throughout their study, they examined the
distinction and relationship between static and dynamic API call sequences by identifying
various forms of malicious behaviors. After correlation and fusion, a hybrid vector space
is developed for detection and classification to test their method’s efficacy. Finally, four
classifiers were trained to detect/classify malware, including Random Forest, K-Nearest
Neighbor, Decision Tree, and Extreme Gradient Boosting. In addition, [38] presented a
framework that combines static and dynamic features into a single classification scheme.
Function length frequency and printable string information are extracted and translated to
vector representations for each executable file. First, all vector features are merged into a
single vector for each executable. The resulting vector is then used as input to four simple
classifiers.

Several surveys discussed malware detection using different techniques; for example,
articles [39–41] offer a systematic and comprehensive description of machine-learning
malware-detection strategies and DL techniques. It offers DL mechanisms categorized
by the type of network input, according to the methods used to extract a feature vector
representing the executable. The methods use the grayscale description of the executable
as input, as well as use it to fed with the series of API function infection. these methods
depend on describing programs according to a series of instructions, a byte stream, and
data traffic.
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In [5,41], security and privacy issues are presented in IoT platforms such as Samsung’s
SmartThings, Apple’s HomeKit, Open-HAB, Amazon AWS IoT, and Android Things,
that motivate program analysis techniques such as model checking, taint analysis, code
instrumentation, and symbolic execution).

The code of an IoT application can be transformed into a sensor-device state-actuator
platform structure with three types of common building blocks: permissions, events, and
call graphs. It focuses on program analysis goals, i.e., sensitive data leaks and permission
misuse. It also discusses the issues and challenges in IoT program analysis according to
three points: firstly, according to IoT-specific issues such as physical channels, simulation
and modeling of IoT programs, automated tests-case generation, multi-app analysis, inter-
action between IoT devices, and trigger-action platform services; secondly, according to
IoT application idiosyncrasies such as RESTful APIs, and language-inherited operations;
thirdly, according to analysis sensitivities, such as flow sensitivity, context sensitivity, field
sensitivity, path sensitivity, and provenance tracking). It includes FlowFence, Saint, Contex-
IoT, SmartAuth, ProvThings, and Soteria. Many researchers are still conducting security
studies for IoT applications to provide a practical overview of the security solutions for
supporting security by applying many SASs, as shown in Table 1.

Analysis types (static, dynamic, or hybrid) and analysis techniques are essential for
building security analyzers to detect malware [41]. Many security analysis systems (SASs)
are based on static analysis. Soteria [10] is a static analyzer using the model-checking
technique (MCT), that extracts a state model from the code of an IoT application to verify
if an application or multi-app system respects security, safety, and functional properties.
Another version is Soteria2 [42], a static analyzer using the convolutional neural network
(CNN). It is a random walk-based traversal method for feature extraction that employs
both density-based and level-based CFG labels to achieve consistent representation.

IotSan [4] employs the MCT and state model to check the approach to identify the
causes of cyber vulnerabilities, and provides actual precedents to clarify such triggers.
ForeSee [43] creates a multi-layer IoT hypothesis graph by simultaneously representing
all of the critical components of IoT systems, such as the physical surroundings, devices,
protocols, and apps. If there are any violations, the model checker can evaluate the created
hypothesis graph to validate system security or generate attack paths.

There are other static analysis SASs that use MCT. However, they depend on extracting
rule models, rather than state models, from the code of IoT applications such as IoTCOM [6],
SIFT [44], iRuler [45], and TAPInspector [46]. They all utilize static analysis algorithms to
automatically identify IoT app behavior from rule models.

The SASs based on dynamic analysis are IoTGuard [12] and IOTFUZZER [14]. IoT-
Guard works using the code instrumentation technique to analyze cod. It stores data of
the apps in a dynamic model, then checks security issues on the dynamic model. How-
ever, IOTFUZZER identifies vulnerabilities to memory corruption in IoT devices without
accessing their firmware images using dynamic analysis.

The use of static or dynamic analysis is not enough to detect all malware. Every
type of analysis cannot cover all malware. PATCHEC-KO [47] is a hybrid analyzer that
depends on static and dynamic analysis. It optimizes deep learning and hybrid binary
analysis to execute multi-platform binary code similarity analysis to identify vulnerabilities
without high-precision source code access. It is noted that hybrid analysis is more effective
in detecting malware after studying different SASs. Moreover, MCT is more effective at
detecting malware in IoT apps.

In this paper, the proposed HSAS-MD based on MCT uses hybrid analysis types (static
and dynamic) and hybrid models (state and rule) to avoid the disadvantages of using one
analysis type or analysis model. These hybrid analysis and hybrid models will increase the
accuracy malware detection.
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Table 1. An Overview of Security Analysis Systems (SAS) in IoT applications.

Ref. SAS. Name Analysis Type Analysis Technique The Main Work Advantages Limitations

[17] Soteria Static Model-Checking

Extracts a state model from the code of an
IoT application to verify if an application

or multi-app system respects security,
safety, and functional properties.

SOTERIA analysis on MALIOT
indicated it was accurate at recognizing

17 of 20 separate
property violations in those 17 apps.

1: The use of call diagnosis by
reflection.
2: Dynamic device permissions and
app configurations.

[34] IoTCOM Static Model-Checking

Explains how to construct a flexible model
extractor

that utilizes static analysis algorithms to
identify the behavior of IoT apps

automatically.

IoTCOM reduces the violation detection
time by 92.1%

Depends on all static and dynamic
features, which may include
unnecessary features.

[5] IotSan Static Model-Checking

Employs the model-checking approach to
identify the causes of cyber vulnerabilities
and provides actual precedents to clarify

such triggers.

Recognizes 147 vulnerabilities.
Can identify possible security violations

1: The checker of the Spin model
cannot manage a file size more
significant than that of the Promela
code.
2: The G2J translator does not
recognize heterogeneous sets.

[19] IoTGuard Dynamic Code-Instrumentation

Works in three phases: (a) execution of a
code instrumentor; (b) storing data of the
apps in a dynamic model; (c) detection of

IoT security on the dynamic model

IoTGuard introduces 11 single measures,
then blocks 16 in 6 (17.1%) Smart-Things,

then 5 (16.6%) IFTTT apps.

Enables a user to define policies
through IOTGUARD’s GPL.

[30] PATCH EC-KO Hybrid Deep-Learning

Optimizes deep learning and hybrid
static-dynamic binary analysis to execute

multi-platform binary code similarity
analysis to identify vulnerabilities without

high-precision source code access.

The PATCHECKO differential engine
identifies between still-vulnerable

functions and those set with an accuracy
of 96%.

The accuracy is not a high ratio.

[21] IOTFUZZER Dynamic Taint-Tracking and
Machine-learning

IOTFUZZER, which aims at identifying
vulnerabilities to memory corruption in

IoT devices without accessing their
firmware images.

IOTFUZZER successfully found 15
vulnerabilities of memory corruption

(which include eight newly discovered
vulnerabilities).

1: Scope of testing.
2: Connection mode
3: Cloud relay
4: Result judgments
5: Result accuracy

[7] Soteria2 Static Convolutional
Neural network

A random walk-based traversal method
for feature extraction employs both

density-based and level-based CFG labels
to achieve consistent representation.

Soteria achieves a 97.79% accuracy rate
for detecting AEs and 99.91% accuracy

of malware groups

1: CFG does not necessarily reflect the
actual code.
2: Obtaining a CFG representation
cannot be performed under
obfuscation
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3.2. Research Scope and Objectives of the Proposed Analyzer

The research scope depends on converting the source code of the third-party new
IoT apps to analyzable formats, as shown in Figure 3, then selecting the static features’
“actions”. The proposed HSAS-MD analyzer works on these features using the CNN
model to detect malware in these features, then verifies if there is any abnormal behavior
using MCT.
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The proposed analyzer’s main objectives are to detect vulnerabilities in supporting
IoT apps’ security through detecting malware and classifying them, as well as, using CNN,
to detect any abnormal behavior (conflict actions) in the IoT application using MCT, such
as breaches due to connectivity or device failures, misconfiguration problems, data leakage,
and physical security breaches.

3.3. The Trigger/Actions in the Smart Home Apps’ “Third-Party App”

IoT environments consist of various applications that deal with others through com-
mands (trigger, conditions, and actions) to operate or control devices and sensors. Every
IoT app has rules specified using “an event-condition-action paradigm.” These rules repre-
sent the behavior of IoT APPs for the proposed HSAS-MD as groups of triggers and their
corresponding conditions and actions. The rule model represented is Rh = <Th, Ch, Ah>,
explained as follows:

- Triggers (Th): Cyber or physical events that devices transmit to smart homes, such as
the activation of a motion sensor which triggers the rules;

- Conditions (Ch): If a rule may apply, the logical predicates are evaluated on the
current status of the devices. For example, a rule runs only if the system is in
“home” mode;

- Actions (Ah): When the conditions are satisfied, the rule changes the state of one or
more devices, leading to a physical change, such as the activation of a light switch.

Each rule attribute (Th, Ch, Ah) can be represented as a triple of a device D(α), an
attribute A(α), and a set of values V(α), in which α is a number from 1 to n [6].

The main problem is that end users can use untrusted apps, including malicious
commands. This app is called a third-party app in an IoT environment. If this app contains
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malware (malicious commands), it will lead to unpredicted behavior of the other apps,
devices, and sensors connected with it, as shown in Figure 4.
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The smoke alarm application is one of the typical applications used in smart homes that
end users may install. The main goal of this application is to detect smoke and act as quickly
as possible. This application consists of a smoke-detection-alert system, a water valve (on
the lower floor), and a light switch (in the living room). Operating this application issues a
smoke alarm, and the lights open when smoke is detected. When the high-temperature
level is reached, it opens the water valve to operate the fire sprinklers; finally, in the event
of fire control, it turns off both the alarm and the water valve. Furthermore, the application
is launched when the smoke detector battery is low. If malware breaches this application, it
will make the application work. However, there is no reason to operate it, and nor does
it use it in the event of a possible fire that causes great danger. Therefore, the presence of
an SAS is more critical for the purpose of supporting security and protecting other IoT
applications from receiving any actions from a malicious third-party app.

Events generated from the sensors are forwarded to the backend using software
proxies, as shown in Figure 2; these events invoke triggers defined in the rules. If the
present state of the cyber-physical system meets the conditions of a given rule, the rule
initiates one or more actions, which are transmitted as commands to devices [5]. Therefore,
it is important to detect the malware actions from the rules in the early stages to save time
in the static analysis process.

Due to the various threats which are generated from the interaction of various apps, it
is essential to consider the risks created by event-condition-action automation. Therefore,
the security of the IoT platform requires an understanding of the interaction between two
rules of APPS [45].
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These two rules may include risks as bugs and malware. These risks are classified
into various classes. In [6,46], the interaction between the two rules was organized into
seven classes: T1 (Action–Trigger); T2 (Action–Condition when matched); T3 (Action–
Condition when not matched); T4 (Self-coordination), T5 (Action–Action (Conflict)); T6:
Action–Action (repeat); and T7 (Exclusive Event).

This paper focuses on the rule of the Action conflicts using a deep-learning CNN
model. This rule means that two rules conflict with each other’s actions (ai =: −aj, in which
ai is the action of Condition 1, and aj is the action of Condition 2. They operate on the same
device and attribute but have different values, such as turning on or turning off at the same
switch). This risk can lead to the system entering an unstable or unknown state with the
same latency of rules.

In [48], the authors present a conflict-classification survey of the interaction of IoT
apps using model checks and formal notations due to the risk of conflicting rule issues. The
Action–Action conflict rules can be represented as if there are two rules—R1 and R2—which
are triggered by a similar event to access the same device D(α) and an attribute A(α), but
with conflict values V(α), as shown in Box 1.

Box 1. The interaction between two rules.

RAC (Ri, Rj)≡ (∃ Ah1∈ ARi; Ah2∈ ARj; R1, R2∈ RAC. (match (Ah1, Ah2) ∧ (V(α1) 6= V(α 2)) ∧ T
1 ∗ (R1, Ri) ∧ T 1 ∗ (R2, Rj) ∧ ((R1 = R2) ∨ sibling (R1, R2)))).
Where:
RAC . . . Rule of action conflicts
Ri . . . A series of rules, i = 1 to N
Rj . . . A series of rules, i = 1 to N
R1 . . . Rule 1
R2 . . . Rule 2
Ah1 . . . Action of rule 1
Ah2 . . . Action of rule 2
Vα 1 . . . Value of the device in the rule 1
Vα 2 . . . Value of the device in the rule 2
T1 . . . Trigger 1
sibling (R1, R2) . . . The two rules R1,R2 have the same trigger (T1) and a set of non-exclusive
conditions for them.

This paper, HSAS-MD, focuses on using hybrid analysis to convert source code to an
analyzable form. The CNN model extracted the malware by checking the actions in the
rules before installing the app and verifying the app’s behavior using MCT.

4. The Proposed Hybrid Security Analysis System Based on the Model-Checking
Technique and Deep Learning (HSAS-MD Analyzer)

This section presents the proposed hybrid security analysis system (HSAS) using
model checking and deep learning (MD). An efficient SAS is one of the most critical issues
related to IoT app security, serving as a security compiler. In a successful SAS, three factors
must be considered: (i) Detecting malware (action conflict) at an early stage of analysis;
(ii) Identifying and classifying new malware using the CNN model; (iii) Verifying the new
IoT app’s behavior.

The proposed HSAS-MD consists of three phases to detect malware early, as shown
in Figure 5: hybrid analysis, the deep-learning CNN model, and the model checker. Each
phase has an essential role in the proposed analyzer. The main goal of the hybrid analysis
phase is to convert the source code (groovy code) of IoT apps to an analyzable format before
using MCT. The output of the dynamic analysis is the dynamic features and configuration
extractor which will be verified directly by the final phase using the model-checking
technique. However, the output of the static analysis is the rule model, which consists of
triggers, conditions, and actions. These will be formatted in a vector-based format. It will
then be used in the following critical phase: the deep-learning phase.
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The main architecture of the proposed HSAS-MD is composed of six phases, as shown
in Figure 6. (1) Static analysis phase is responsible for extracting rules from the source code
of the IoT APP; (2) Dynamic analysis phase is responsible for extracting dynamic CFG from
IoT app source code; (3) Rule model phase is responsible for verifying the rules; (4) Deep-
learning (DL) phase is responsible for detecting and classifying features; (5) Filtration phase
is responsible for deciding the final decision of whether the feature is malware or benign;
(6) Finally, performing model-checking technique for verifying whether app behavior is
safe or not in each analysis phase.

This second phase uses CNN for text classification. It depends on checking the actions
from the rule model extracted from the first phase before sending them to IoT devices.
The CNN for text classification detects malware early, and it stops app analysis if there is
malware (malicious actions). This early-stage (CNN) saves time for the SAS to analyze
another IoT app. If there is no malware, the actions from the rules will transmit to the
model checker’s final phase.

The third phase is the model checker, which verifies the rules after also verifying
dynamic features the configuration extractor with the properties of the apps from the CNN
phase. The output of this phase is the decision of whether the behavior of the app is safe or
not. All steps of the proposed analyzer phases can be illustrated as follows:

Step 1: Convert the app’s source code to analyzable form using phase 1 of the proposed
analyzer.

- Static analysis: Start converting code to IR, extract AST, and build ICFG to make the
state model, then convert the state model to the rule model form.

- Dynamic analysis: Extract DGR to build CFG.

Step 2: Start phase 2 with the extracted actions from the rule model.
Step 3: Convert the rules that contain actions to be vector-based.
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Step 4: Run deep-learning “CNN for text classification” with the vector-based and
test actions.

Step 5: Evaluate the output of the CNN. If there is malware (malicious actions), stop
the analysis process; however, if there is no malware, phase 3 will operate with these static
features.

Step 6: Start phase 3 using the model-checking technique (MCT) to verify the app’s
behavior. It will check the static and dynamic features with the properties that describe all
specifications of this app. Therefore, the proposed HSAS-MD analyzer is concerned with
detecting security problems in IoT apps and detecting and classifying malware.
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4.1. Static Analysis Phase in the Proposed HSAS-MD

The static analysis phase depends on converting the IoT apps’ codes to a rule model
that includes triggers, conditions, and actions before using the model checker, as shown in
Figure 7. The static analysis phase depends on enhancing deep learning to check actions
before using a model checker. It is composed of four steps: Step (A) is to extract an IR
from the source code of an IoT application, including the event handler methods, entry
points, and call graphs; Step (B) builds a state application model that includes its states
and transitions from the IR, then converts the states to the rule model; in Step (C), model
checking used to check that the app’s behavior is in line with those properties developed in
step (D) when running independently, or interacting with other applications. Each step are
described in more detail below:
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Step (A) is the intermediate representation (IR). The IR has several advantages: it
allows precise modeling of the application’s life cycle, removes parts of the code that are
not relevant to property analysis, and finally enables the efficient extraction of states and
state transitions from implementation. It consists of three mechanisms to convert the source
code successfully to IR. The IR needs to access permissions, obtain events/actions, and
build CFG. (i) Permissions are responsible for obtaining all information from DCR about
the IoT application devices; (ii) Events/Actions represent the relation between events and
actions (when an event occurs (is triggered), a related action is taken); (iii) CFC represents
the relationship between entry points and their corresponding functions in the target
application and facilitates analysis using path sensitivity. IR constructed via AST represents
the Groovy source code of the IoT app. Analyzing the AST will build a call graph and API
methods as a CFG for each local method using path-sensitive analysis [49]. Additionally, the
AST visitors analyze the expressions from AST nodes that are built during the compilation
process to create ICFG in order to extract the state model.

Step (B) is the state model representing the codes to a set of states from IR to detect
violation from the interactions of state models between apps. Every state model will then
be converted to a rule model: Rh = <Th, Ch, Ah>. The conversion from a state model to
a rule model is used for the first time in an SAS. The rule model is better than the state
model method at detecting violations via testing actions. The state model is formulated
as (Q, S, δ), where Q is a series of states. Q represents the device’s attributes that change
due to the event handlers; S represents a series of transition labels representing the events;
δ is a function of the state transition using the Cartesian product of the attributes of its
device. The state model (Q, S, δ) is created from the physical IoT device’s manufacturer’s
specifications <device, attribute, value>. Each device has its attributes. Each device’s
attributes (conditions in the rule model) have specific values (actions in the rule model).
Therefore, the rule model Rh = <Th, Ch, Ah> is matched with <device, attribute, value>.

The advantage of the state model is the filtration of the deterministic and non-
deterministic states using an SMT solver. This is essential to verify the path conditions [50].
The deterministic states represent the conditions for the safe operation of an IoT device.
However, the non-deterministic states represent the safety violations. Therefore, it is an
important step for using the state model. However, the state model is not effective with an
increasing number of IoT devices, and malware actions were difficult to detect from the
state model. In [10], two challenges to extracting states are listed: the first is state explodes,
and the second is the precision of the state model is low as it depends on approximation.
Therefore, the rule model is extracted from rewriting the logical equation: rl for rules, and
crl for conditional rules [45].

For example, from app 1, as shown in Figure 4, when smoke is detected and the
temperature is >135, the handler method is responsible for opening the water valve. From
analyzing the handler method, there is a transition with the smoke detection and tempera-
ture >135 event labels from the “smoke undetected and valve closed” state to the “smoke
detected and valve opened” state. The values (actions) in this app are “valve opened” and
“valve closed”.

The property description needed in the static phase is in Step (D), the property identifi-
cation. These properties are configured in temporal logic to be checked with the generated
model of the target app using the model checker [51]. After discovering malware in actions
(rule model), a group of security properties was generated to be validated using a model
checker [46]. Some of these properties can be configured by the user. These properties were
classified into three types: safety (S), liveness (L), and general (G), written using LTL or
CTL. Examples for safety properties are as follows: S1, the water valve must be closed if
a leak is detected; S2, the door must always be locked when the user is not home; S3, the
alarm must always go off when there is smoke. Examples for liveness properties are as
follows: L1, after 9 pm the light will eventually be turned off; L2, after 1 h the door will be
locked. Examples for general properties are as follows: G1, do not turn on the living room
light when no-one is home.



Sensors 2022, 22, 1079 15 of 33

Finally, model checking (C) is responsible for verifying the code from the rule model
with the corresponding properties, which is discussed in the next Section 6. More details
for the workflow of the static phase are shown in Algorithm 1.
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4.2. Dynamic Analysis Phase in the Proposed HSAS-MD

The dynamic analysis phase focuses on dynamic features. It differs from the static
phase, as dynamic analysis depends on understanding how the code performs during the
execution process. This phase contains four steps, as shown in Figure 8.

More details for the workflow of the static phase are shown in Algorithm 2.
Step (A) is DGR. It collects all device attributes and actions from DCR and extracts

the dynamic features. It then converts the dynamic features to a set of dependency graphs
representing the interactions between event handlers of the app and reducing all unnec-
essary event handlers. Step (B) is the state model, an intermediate module that converts
the output of dependency graphs to the representation of CFG. Step (C) is the configura-
tion extractor, responsible for extracting all configurations related to the application and
the connected devices. A set of property descriptions is stored in step (D), referred to as
property identification. These properties are the same as in the static phase. In step (E),
the generator is responsible for matching the configuration and its related properties, as in
the static phase. Finally, Step (F), model checking, is responsible for verifying the code to
ensure it does not contain any abnormal behavior.
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4.3. Rule-Model Phase in the Proposed HSAS-MD

The third phase in the HSAS-MD is the rule-model phase. The smart home model
includes a set of IoT apps. Each consists of a group of rules; these rules describe the
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function of the IoT app and the related devices if they communicate physically with each
other. These devices include sensors, switches, thermostats, etc. However, if the IoT app
communicates virtually through the cloud, the direct mapping used to trigger the virtual
device or scheduling method is used by utilizing rule calls to invoke the second rule after a
delay run the API from SmartThings platform apps.

The HSAS-MD extracts the rule model using the model builder from the static phase.
It generates a formal rule-model representation, as shown in Table 2, including six slots
which describe each rule. The trigger action rules play an essential role in discovering the
bugs through the interactions between the rules.

Table 2. Rule representation model.

No. Slot Names Description

1 Rule (Rh) (trigger) (condition) (action)
2 Trigger (Th) (capabilities) (attribute) (value)
3 Condition (Ch) (capabilities) (attribute) (value)
4 Action (Ah) (capabilities) (attribute) (value)
5 Event (subject) (attribute)
6 Constraint logical expression | null

Each rule includes three main elements: the trigger, condition, and action. All of them
are described as follows: capabilities, attributes, and value, as shown in Table 2. The trigger
starts when an event happens. The event represents the temperature, motion, state change,
etc. The value of the trigger is a Boolean constraint, e.g., active, true. Some rules do not
include a value in the trigger, such as AutolockafterXminutes. As shown in Table 3, the
condition is essential in the rule.

The condition is represented as a Boolean such as true, value on. The condition is a
Boolean constraint representing the states. When all states in the conditions are satisfied,
the rule can be executed. Regarding actions, there are three types. The first type of action is
one where the attributes do not change, such as sending a mobile notification. The second
type of action depends on time. The third type of action is affected by actuators. This type
changes the value of the attribute, such as turning on or locking something.

The HSAS-MD focuses on the third type of action; the value of attributes may include
a conflicting value. This value may be changed when software is updated or by the end
user to give a contradictory value of the desired actuators. These action-conflicts lead to
serious situations in IoT apps.

To further illustrate the action conflicts, the AutolockafterXminutes app includes two
rules (R0 and R1).

The first rule (R0), assigned to lock1.capabilities and attributes are found with no value.
The condition value in this app is to cap_lock_attr_lock_val_locked. If the condition of

lock1 is already completed, the action value of the state will be cap_runIn_attr_runIn_val_on.
The second rule (R1) is assigned to the state, starting with the condition of the

cap_runIn_attr_runIn_val_on. This condition depends on the same action of R0. The
action will then be cap_lock_attr_lock_val_lock. The value of the action plays an essential
role in making the app do its function or make unwanted behavioral. This phase therefore
has a vital role in representing the rules Rh = <Th, Ch, Ah> as features using vector-based.

As shown in Table 3, this table is a dataset of rule-based IoT apps that includes ten
applications. Each application includes its capabilities and rules. The capabilities contain
the sensors and actuators.

Each application may include one rule or more rules depending on the task of the ap-
plication. Each rule consists of a vector of triggers, conditions, and actions. The trigger has
three elements: the capability object’s name, attribute, and value. Additionally, conditions
and actions have the same elements.
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Table 3. Rules description of the IoT apps dataset in a smart home.

Application Name Capabilities Rule No. Triggers Conditions Actions

AutoLockafter
Xminutes lock1 + state

R0

capabilities =
app_AutoLockafterXminutes.lock1 capabilities = app_AutoLockafterXminutes.lock1 attribute = app_AutoLockafterXminutes.state

attribute = cap_lock_attr_lock attribute = cap_lock_attr_lock attribute = cap_runIn_attr_runIn
no value value = cap_lock_attr_lock_val_locked value = cap_runIn_attr_runIn_val_on

R1 no triggers
capabilities = app_AutoLockafterXminutes.state attribute =

app_AutoLockafterXminutes.lock1
attribute = cap_state_attr_runIn attribute = cap_lock_attr_lock

value = cap_state_attr_runIn_val_on value = cap_lock_attr_lock_val_lock

AutoLockDoorsv2 lock1 + state
R0

capabilities = app_AutoLockDoorsv2.lock1 capabilities = app_AutoLockDoorsv2.lock1 attribute = app_AutoLockDoorsv2.state
attribute = cap_lock_attr_lock attribute = cap_lock_attr_lock attribute = cap_runIn_attr_runIn

no value value = cap_lock_attr_lock_val-
cap_lock_attr_lock_val_locked value = cap_runIn_attr_runIn_val_on

R1 no triggers
capabilities = app_AutoLockDoorsv2.state attribute = app_AutoLockDoorsv2.lock1

attribute = cap_runIn_attr_runIn attribute = cap_lock_attr_lock
value = cap_runIn_attr_runIn_val_on value = cap_lock_attr_lock_val_locked

DoorAutoLock lock1 + state
R0

capabilities = app_DoorAutoLock.lock1 capabilities = app_DoorAutoLock.lock1 attribute = app_DoorAutoLock.state
attribute = cap_lock_attr_lock attribute = cap_lock_attr_lock attribute = cap_runIn_attr_runIn

no value value = cap_lock_attr_lock_val_unlocked value = cap_runIn_attr_runIn_val_on

R1 no triggers
capabilities = app_DoorAutoLock.state attribute = app_DoorAutoLock.lock1

attribute = cap_runIn_attr_runIn attribute = cap_lock_attr_lock
value = cap_runIn_attr_runIn_val_on value = cap_lock_attr_lock_val_locked

DoorsUnlocked presence1 +
lock1

R0
capabilities = app_DoorsUnlocked.presence1 capabilities = app_DoorsUnlocked.presence1 attribute = app_DoorsUnlocked.lock1
attribute = cap_presenceSensor_attr_presence attribute = cap_presenceSensor_attr_presence attribute = cap_lock_attr_lock

no value value = cap_presenceSensor_attr_presence_val_null value = cap_lock_attr_lock_val_lock

IfFloodTurnValveOff alarm + valve R0

capabilities =
app_IfFloodTurnValveOff.alarm capabilities = app_IfFloodTurnValveOff.valve attribute = app_IfFloodTurnValveOff.valve

attribute = cap_waterSensor_attr_water attribute = cap_valve_attr_any attribute = cap_valve_attr_valve
value = cap_waterSensor_attr_water_val_wet value = cap_valve_attr_any_val_no_value value = cap_valve_attr_valve_val_closed

ItsTooCold temperatureSensor1
+ switch1

R0

capabilities =
app_ItsTooCold.temperatureSensor1 capabilities = app_ItsTooCold.temperatureSensor1 attribute = app_ItsTooCold.switch1

attribute =
cap_temperatureMeasurement_attr_temperature

attribute =
cap_temperatureMeasurement_attr_temperature attribute = cap_switch_attr_switch

no value
value =

range_0//cap_temperatureMeasurement_attr_
temperature_val_lte_tooCold

value = cap_switch_attr_switch_val_on

LightOnCold temperatureSensor1+
switch1

R0

capabilities =
app_LightOnCold.temperatureSensor1

capabilities =
app_LightOnCold.temperatureSensor1 attribute = app_LightOnCold.switch1

attribute =
cap_temperatureMeasurement_attr_temperature

attribute =
cap_temperatureMeasurement_attr_temperature attribute = cap_switch_attr_switch

no value
Value =

cap_temperatureMeasurement_attr_temperature_val_
lte_tooCold

value = cap_switch_attr_switch_val_on
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Table 3. Cont.

Application Name Capabilities Rule No. Triggers Conditions Actions

Motion TriggersLock motion1 + lock1 R0

capabilities =
app_MotionTriggersLock.motion1 capabilities = app_MotionTriggersLock.lock1 attribute = app_MotionTriggersLock.lock1

attribute = cap_motionSensor_attr_motion attribute = cap_lock_attr_lock attribute = cap_lock_attr_lock
value =

cap_motionSensor_attr_motion_val_active value = cap_lock_attr_lock_val_locked value = cap_lock_attr_lock_val_unlocked

DelayedCommandExecution contact1 +
switch1

R0

capabilities =
app_DelayedCommandExecution.contact1

capabilities =
app_DelayedCommandExecution.contact1

attribute =
app_DelayedCommandExecution.switch1

attribute = cap_contactSensor_attr_contact attribute = cap_contactSensor_attr_contact attribute = cap_switch_attr_switch
no value value = cap_contactSensor_attr_contact_val_open value = cap_switch_attr_switch_val_on

R1

capabilities =
app_DelayedCommandExecution.contact1

capabilities =
app_DelayedCommandExecution.contact1 attribute =

app_DelayedCommandExecution.switch1attribute = cap_contactSensor_attr_contact

attribute = cap_contactSensor_attr_contact
value = cap_contactSensor_attr_contact_val
-cap_contactSensor_attr_contact_val_open attribute = cap_switch_attr_switch

capabilities =
app_DelayedCommandExecution.contact1

no value attribute = cap_contactSensor_attr_contact value = cap_switch_attr_switch_val_offvalue = cap_contactSensor_attr_contact_val_closed

UnlockitWhenitOpens contact1 + Lock1 R0

capabilities =
app_UnlockitWhenitOpens.contact1 capabilities = app_UnlockitWhenitOpens.contact1 attribute = app_UnlockitWhenitOpens.lock1

attribute = cap_contactSensor_attr_contact attribute = cap_contactSensor_attr_contact attribute = cap_lock_attr_lock
no value value = cap_contactSensor_attr_contact_val_open value = cap_lock_attr_lock_val_unlock
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The HSAS-MD focuses on the value of actions. However, it uses the word2vec model
before using CNN to convert the Th, Ch, and Ah from words to vectors. The rule model,
including its elements (capabilities, attributes, and values), will then be fed as an input
to the DL phase (CNN) as features. From the training dataset of the IoT apps, when the
condition elements (capabilities, attributes, and values) are matched, the value of actions
can be detected using CNN. The early detection of whether the app has malware or not
saves time of analysis.

4.4. Deep-Learning (Dl) Phase in the Proposed HSAS-MD

The proposed HSAS-MD analyzer uses the Convolutional Neural Network (CNN).
CNN is one of the DL algorithms that can typically classify text [52–55] by taking a feature
vector, assigning significance (trainable weights and biases) to various aspects in the
input feature, and distinguishing one from the other. The preprocessing time needed for
CNN is lower than for other different classifiers. CNN is capable of understanding these
filters/characteristics.

Features are extracted from a feature dataset using trained TextCNN models. TextCNN
layers are used to learn distinctive malware representations to enhance the efficiency of
the proposed HSAS-MD analyzer. Therefore, CNN’s architecture is designed to extract the
features from the dataset by using a five-layered CNN model [56], as shown in Figure 9.
The five layers are:
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The input layer (C1) is the input feature in the vector-based 7 × 5 matrix. This layer
begins with triggers, conditions, and actions, which are then converted into a sentencing
matrix; the rows are word-vector representations of each. The sentence length is s and the
dimension of the word vector by d; the dimension of the sentence matrix is s × d2.

The first hidden layer (C2) is the layer that filters features into six filters. There are
three filter region sizes: 2, 3, and 4, each with two filters. The weight matrix w makes
the filter with region size z. Then, z · d parameters were obtained. The sentence matrix
by k ∈ Rs×d, k [m: n] represents the sub-matrix of k from row m to row n. The output
sequence X ∈ Rs−z+1 of the convolution operator is obtained by repeatedly applying the
filter on sub-matrices of k.

Xi = w · k [m: m + z − 1] (1)

where m = 1. s − z + 1, then adds a bias term b ∈ R and an activation function f to each Xi,
inducing the c ∈ R s−z+1 for this filter:

ci = f (Xi + b) (2)

The second hidden layer (C3) aims to resample and transform the second layer result.
Thus, for each feature map in C2, six filters of 4 × 1 vectors are obtained. This feature map
was obtained after applying many filters for the same region size z.

In the third hidden layer (C4), the six filters in c3 are merged, and three filters of 2 × 1
are obtained. Each feature map is applied to 1-max pooling, which means that the most
significant number from each feature map is collected. Thus, a simple feature vector is
formed from all six maps, and these six features are combined to build a feature vector for
the final layer.

The output layer (C5): this is a final layer of CNN, which receives a C4 feature vector
to classify the sentences. It will classify them into two classes.

4.5. Filtration Phase in the Proposed HSAS-MD

This critical phase is used to improve CNN’s training and enhance the accurate
decision for the output. “Binary cross-entropy” function used as the output of CNN
consists of two classes (the class with the number 1 indicates the malware class, and the
class with the number 0 shows the benign class). The following Equation (1) is used in
binary cross-entropy. B is the predicted probability, and A is the binary indicator (o or 1).
The output of this phase is the final decision if there is malware or not.

BCE = −(A log (B) + (1 − A) log(1 − B)) (3)

4.6. Model-Checking Technique in the Proposed HSAS-MD

The model-checking technique (MCT) is the core analysis process in the proposed
HSAS-MD analyzer for verifying the behavior of IoT apps. MCT has systematically verified
that all states of the given system meet the given properties to verify the app’s behavior.
The proposed HSAS-MD verifies the rule model in the static analysis phase as the same
analyzers [6,45,46] and verifies CFG in the dynamic analysis phase. For the static analysis
phase, which depends on the rule model, MCT depends on rewriting logic (the logic that
happens due to the changes of the state and concurrent computations). These computations
are formulated from logic (L) to rule model (R), meaning that every state that matches
the L will be converted to R [57,58]. In [59], the security rules to LTL were formulated,
which were verified using MCT. For the dynamic phase, MCT verifies CFG dynamically
using DynAUoy. It enhances the e Alloy specification system, allowing models’ dynamic
properties to be specified and analyzed [51].
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5. Implementation, Evaluation, and Discussion of HSAS-MD

This section presents the implementation, evaluation, and discussion of the proposed
HSAS-MD analyzer using different evaluation metrics. The central core of evaluating
the proposed HSAS-MD is the ability to (i) extract static and dynamic features from the
source code of IoT applications; (ii) detect malware from features’ datasets; (iii) detect APP
behavior using MCT.

5.1. Description of Tools Used

Experiments of program analysis (IoT APPs) were performed with Eclipse IDE and
IntelliJ IDEA 2021.1.1 ×64 on a 2.6 GHz Intel i5-4300M processor and 8 GB RAM laptop,
using Oracle’s Java Runtime version 1.8 (64 bit) in its default settings. The Alloy tool used
for the model-checking test applied the Graphviz tool for state-model representation. The
output of the hybrid analysis will be the input of the CNN model. This CNN model used
PyTorch, based on torch library runs with Google Colaboratory.

5.2. Implementation of the Proposed HSAS-MD

The proposed HSAS-MD depends on reusing a hybrid analysis analyzer that depends
on the model-checker tool, then filtering its output features using the CNN model. This
method is the fastest, most accurate, and most applicable to be used. The proposed HSAS-
MD implementation reused IoTCOM [6] and then filtered its features using the CNN
model. There are two stages to verify the proposed HAS-MD analyzer before using the
model-checker tool.

5.2.1. Extracting Rule Model from Static Analysis

This stage depends on reusing the analyzer “IoTCOM” [6]. It depends on using the
potential of our formal abstractions by creating a modular model extractor. This depends
on Alloy, which is a model-checker tool for representing the standard specifications of
IoT apps, such as reflecting the behavior of IoT apps to safely detect security risks and
respect cyber and physical channels by using IoT apps’ PA code. It consists of two phases:
a behavioral rule extractor and a formal analyzer. The output of the static phase “rule
extractor,” is reused in HSAS-MD in the CNN model, and the dynamic analysis output is
verified directly to the final phase of MCT.

5.2.2. Testing the Deep-Learning “CNN Model”

The CNN model’s task is to filter fake actions (malware) in the proposed HSAS-MD. It
takes the static analysis output: triggers, conditions, and actions to be trained and tested. As
shown in Table 3, each application has its own rules. The CNN model deals with triggers,
conditions, and actions as sentences. These sentences are represented in a word-embedding
vector [56]. The testing phase focuses on the action vector, if the trigger vector and condition
vector match the same previously restored trigger and condition vector to the same rule in
the considered application. The action must match the new action. If the two actions are
matched, it is a benign action, and it will be moved to the next phase (MCT). Otherwise, it
will be malware.

Figure 10 shows the following test result; when the input action from the considered
IoT application “Door Auto-Lock” to CNN is matched, the output of CNN will detect that
this application “Door Auto-Lock” is benign. However, Figure 11 shows that the test result
is malware. When the input action from this application “Door Unlock X minutes” to the
CNN does not match the stored action, it will stop this application from continuing and
transferring to the next verifying phase, MCT.
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5.3. Evaluation Metrics

The performance of the proposed analyzer utilizes the confusion matrix to evaluate
the output of the HSAS-MD. The confusion matrix can be made using defined indicators,
as shown in Table 4, which provide a helpful way to measure the proposed analyzer’s
performance against other SAS analyzers. In this paper, the analyzers were evaluated
based on commonly used accuracy, precision, recall, and F1 score, as in Equations (4)–(7),
respectively.
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Table 4. Description of the Confusion Matrix.

Indicator Description

True positive (TP) The number of malware samples was detected correctly and labeled
as malware.

True negative (TN) The number of benign samples was correctly detected and labeled
as benign.

False positive (FP) The number of benign samples was wrong and labeled as malicious.
False negative (FN) The number of malware samples was wrong and labeled as benign.

Based on the above indicators, the following performance analysis equations were
used to obtain the confusion matrix as shown in Figure 12:

- Accuracy (ACC) is the ratio representing the number of correctly identified analyzers.
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ACC = (TP + TN)/(TP + TN + FP + FN) (4)

- Precision (PRC) is the number of accurately predicted true positives.

PRC = TP/(TP + FP) (5)

- Recall (RCL) is the ratio of correctly identified malware relative to the total quantity
of malware.

RCL = TP/(TP + FN) (6)

- F-Measure (F-MS) is the ratio that reflects a mixture of accuracy and the recall efficiency
of the system.

F-MS = 2 × (Precision × Recall)/(Precision + Recall) (7)

5.4. Evaluation of the Proposed Analyzer

To ensure the efficiency of the HSAS-MD analyzer, the evaluation is based on a
comparison with competitors’ analyzers. Competitors have been carefully selected to have
the same goal to detect malware or to detect abnormal behavior, such as violations due to
communication/device failures, physical safety violations, accounts for app interactions,
etc., in the source code of the IoT app.

The comparison was established using the same target dataset, “IoTMAL” [60]. This
dataset creates erroneous SmartApps with property violations in multi-app or single-
app environments. Moreover, more public repository “SmartThings Apps” are used to
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detect malware. The HSAS-MD used the same test cases of violation detection proper-
ties [4,6,10,46] to evaluate the performance, using Table 4.

The following research questions have been created in the evaluation phase of HSAS-
MD with related SAS analyzers using Table 5. SAS analyzers were selected based on MCT.
Some only use MCT [4,6,10,43,44], while [45,46] use other techniques with MCT.

Table 5. A comparison between various SASs based on MCT.

Paper SAS Analyzers Analysis
Technique Analysis Type Static Analysis

Model

[10] Soteria MCT Static State
[4] IotSan MCT Static State

[43] ForeSee MCT Static State
[6] IoTCOM MCT Static Rule

[44] SIFT MCT Static Rule
[45] iRuler MCT & NLP Static Rule
[46] TAPInspector MCT & Slicing Static Rule

This Paper HSAS-MD MCT &CNN Static & Dynamic State & Rule

The proposed HSAS-MD uses two techniques, which are MCT and DL. The following
figures [9–11,15–18] are configured to represent the results of the research questions.

RQ1. What is the accuracy, precision, recall, and F-measure of the proposed HSAS-MD compared
to other analyzers?

The HSAS-MD gives the best results in accuracy (ACC), precision (PRC), recall (RCL),
and F-measure (F-MS), as it depends on using hybrid analysis, not relying only on static
or dynamic analysis. This impact plays an essential role in covering all vulnerabilities, as
shown in Figure 13. Another impact that makes the proposed HSAS-MD the best is that
the state model and rule model are used together in the static phase. It is noted that the
analyzers which relied on rule models such as TAPInspector, SIFT, iRuler, and IoTCOM
gave the best result than others, such as Soteria, IotSan, and ForeSee, that depend on the
state model.
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Figure 13. The comparison of the proposed HSAS-MD analyzer with other related analyzers based
on ACC, PRC, RCL, and F-MS.
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RQ2. What is the performance, according to the analysis time, to detect abnormal behavior?

The time of analysis is the essential impact to indicate the performance of analyzers.
As shown in Figure 14, The proposed HSAS-MD gives the best performance as it has a fast
analysis time for the early detection of malware. The deep-learning CNN model has an
essential role in detecting malware early.
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Figure 14. The analysis time of the proposed HSAS-MD analyzer with other related analyzers.

RQ3. What is the performance according to analysis type (static, dynamic and hybrid) in the SAS?

The hybrid analysis achieves the best result, as it combines static and dynamic analysis.
As shown in Figure 15, the proposed HSAS-MD gives the best results. In contrast, the other
analyzers depend on static analysis only.
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RQ4. What is the best the static analysis phase to be used (state model, rule model, and hybrid model
that combines state and rule)?

There are three SASs based on the state model: Soteria, IotSan, and ForeSee. Addition-
ally, three SASs are based on the rule model: IoTCOM, SIFT, and iRuler, compared to the
proposed HSAS-MD which is based on both the rule and state models. The performance
of analyzers increases more using the rule model than the state model. Figure 16 shows
that the performance of three SASs based on the rule model is better than the other three
SASs based on the state model; the proposed HSAS-MD gives the best performance as it is
a hybrid using the two models.
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RQ5. What is the verification time of CNN for detecting conflict rules?

It is essential to measure the efficiency of the CNN model. According to rules training
and testing in the proposed HSAS-MD, measuring the verification time of CNN is essential.
Figure 17 shows that the rate of verification time is suitable to the number of rules used. The
verification time increases with the increase in rules at the appropriate time rate. Various
CNN models such as RNN [61], TCN [62], RNN with an attention layer [63], and CNN-
1D [34] are compared with the proposed CNN to measure the verification time of rules as
shown in Figure 18. The proposed HSAS-MD give the best ACC, PRC, RCL, and F-MS to
verify and classify rules that may have a fake condition (malware).
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6. Conclusions, Limitations, and Future Research Trends

The competition between security experts and developers has been a never-ending
battle against malware complexities, improving rapidly as innovation advances. It is,
therefore, necessary to move towards the development of SASs to ensure the security
and safety of IoT applications. This paper presented a hybrid security analysis system
(HSAS) based on MCT and DL for IoT applications. The main advantages of the proposed
HSAS-MD analyzer are the ability to (i) convert the source code of the target applications
to a format of a model checker that can deal with it; (ii) detect any abnormal behavior in
the IoT application; (iii) extract the main static features from it to be tested and classified
using a deep-learning algorithm; (iv) decide whether the app behavior is safe or not.

It is evident from the experimental results of HSAS-MD that the applied hybrid
analysis is better than the static or dynamic analysis, as it provides reliable results and
covers all the advantages of static and dynamic analysis. Moreover, the results show that
MCT is a more accurate professional analysis technique, particularly with the applied path
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of sensitivity compared with similar SASs that use various PA techniques. HSAS-MD gives
the best results in the detection of physical vulnerabilities and malware.

A conclusion was made about the effectiveness of using hybrid analysis for malware
detection, as it covers all issues for detecting malware. It is better than using one type of
analysis (static or dynamic analysis). MCT is an efficient technique for detecting malware
in applications. In addition, using CNN with MCT give the best results.

There is a limitation in HSAS-MD, which is that malware detection depends on the
spatial context, which does not focus on IoT devices’ locations. The physical channels or
connections are affected by the location of IoT devices. The second limitation is that HSAS-
MD focuses on one type of action conflict, which depends on the value of the actuator.
There are two other types of action which rely on time or static attributes, such as sending
notifications.

There are more points in future research trends. The first main point addresses the
mentioned limitations by focusing on the IoT devices’ locations. Additionally, all types of
action conflict will be resolved. The second is enhancing the “program-slicing technique”,
which relies on slicing one program into a multi-statement. Using the program-slicing
technique with MCT and CNN will provide more accuracy and time. The third point
is testing the proposed HSAS-MD with different datasets to increase the training of the
detection of new IoT malware. The fourth is that the proposed HSAS-MD will be applied
with Android apps for the IoT platform by modifying the specifications that match these
Android apps.
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