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Abstract: Despite the great attention that the research community has paid to the creation of novel
indoor positioning methods, a rather limited volume of works has focused on the confidence that
Indoor Positioning Systems (IPS) assign to the position estimates that they produce. The concept
of estimating, dynamically, the accuracy of the position estimates provided by an IPS has been
sporadically studied in the literature of the field. Recently, this concept has started being studied
as well in the context of outdoor positioning systems of Internet of Things (IoT) based on Low-
Power Wide-Area Networks (LPWANs). What is problematic is that the consistent comparison of
the proposed methods is quasi nonexistent: new methods rarely use previous ones as baselines;
often, a small number of evaluation metrics are reported while different metrics are reported among
different relevant publications, the use of open data is rare, and the publication of open code is absent.
In this work, we present an open-source, reproducible benchmarking framework for evaluating
and consistently comparing various methods of Dynamic Accuracy Estimation (DAE). This work
reviews the relevant literature, presenting in a consistent terminology commonalities and differences
and discussing baselines and evaluation metrics. Moreover, it evaluates multiple methods of DAE
using open data, open code, and a rich set of relevant evaluation metrics. This is the first work
aiming to establish the state of the art of methods of DAE determination in IPS and in LPWAN
positioning systems, through an open, transparent, holistic, reproducible, and consistent evaluation
of the methods proposed in the relevant literature.

Keywords: benchmarking; error estimation; accuracy estimation; localization; positioning; machine
learning; fingerprinting; reproducibility; open data; open code

1. Introduction

Over the last decade, the broad public has been familiarized with Location-Based
Services (LBS), due to their proliferation in mobile devices [1]. Global Navigation Satellite
Systems (GNSS), such as GPS, Galileo, GLONASS, and BeiDou, are commonly used, and
LBS relying on them are facilitated to provide users not only with an estimate of their
position, but also with an estimate of the system’s certainty over the provided position
estimate [2]. Through the user interfaces of relevant applications, the users can see their
estimated location as a point on a map. Moreover, the Dynamic Accuracy Estimation
(DAE), which expresses the estimated potential error of the provided location estimate,
is often depicted as a slightly transparent circle centered at the location estimate, with
a radius that corresponds to the estimated error (Figure 1). This concept is met in the
relevant bibliography with the terms ‘accuracy estimation’ [3–5], ‘error estimation’ [6–10], or
‘confidence’ [11]. This accuracy estimation is helpful in several ways, as it facilitates the
cognitive interpretation of the reliability of the provided estimates by users and it assists
their decision making [11]. For instance, users that are in the process of way-finding might
‘wait for the circle to become smaller’, which corresponds to receiving a position estimate
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over which the system claims a higher certainty, to confidently orientate themselves in their
environment. Moreover, higher-level applications and LBS might use the information of
DAE to take high-level decisions, such as for selecting to return to the users a subset of the
most accurate location estimates [4,12] or for selecting the most accurate among a set of
simultaneously available positioning technologies [13–15].

Although the DAE is a feature that is widely available in satellite-based LBS, it is far
from being an established practice for Indoor Positioning Systems (IPS) or for outdoor
positioning systems of Internet of Things (IoT) based on Low-Power Wide-Area Networks
(LPWANs) operating over technologies such as Sigfox or LoRaWAN [9,16,17]. Both IPS and
outdoor LPWAN-based systems commonly utilize signals from basestations to infer location
estimates [18,19]. Over the last decade, there have been several publications that propose
different methods of calculating the DAE in such systems, which are presented in this
work [4–11,16,17,20–22]. Nevertheless, as the current study demonstrates, the comparison
of each new method with the previously published ones is quasi nonexistent. There is a
significant gap of consistent comparisons among the proposed methods that would clearly
and unambiguously establish the state of the art of dynamic accuracy estimation of IPS and
LPWAN positioning systems. Moreover, the relevant literature has not consistently used
performance metrics nor common baselines to evaluate and relatively compare different
methods. Despite the variety of proposed works, it remains unclear to a person that wants
to deploy an IPS on how to select a method of DAE.

Figure 1. Visualizing the actual positioning error and the DAE.

In this work, we present an open-source, reproducible benchmarking framework for
evaluating and comparing various methods of DAE. The motivation and the goal of this
work have been to provide the following contributions. The current work interprets, in
a common and consistent terminology and notation, the variety of existing methods of
DAE determination. Moreover, it brings together, it discusses, and it programmatically
implements the multitude of existing methods of DAE determination and of all relevant
evaluation metrics that can be used to evaluate the performance of DAE, describing how
the selection of a metric may depend on the requirements of the use-case. The code
implementation of all evaluated methods, metrics, and of any other relevant content of
this work is openly available in the Zenodo repository [23]. For benchmarking, several
public datasets are used, such as the outdoor datasets of Low-Power Wide-Range Networks
(LPWANs) presented by Aernouts et al. [19], and the MAN [24,25] and DSI [26] indoor
datasets. Overall, this work aims to contribute toward the definition of the state of the art
of methods of DAE determination.

This is the first work on the subject of DAE in IPS and LPWAN positioning systems,
which brings together different DAE determination methods, evaluating them in a common
framework. In addition, it is the first work that implements all relevant metrics, discussing
their utility. More importantly, it is the first time that a code implementation of all the
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examined DAE methods and of the relevant evaluating metrics becomes openly available
to the community. In this way, the code implementation of this benchmarking, apart from
facilitating the reproducibility of the current work, allows its reusability in different settings.
Therefore, the interested reader can use a dataset from their deployment of interest and
comparatively evaluate different DAE methods, before selecting the one that satisfies their
requirements, using the appropriate metrics for their use case. It is worth noting that, in
this work, as well as in the relevant methods of the literature that are benchmarked in this
work, RSSI (Received Signal Strength Indicator)-based fingerprinting localization methods
are studied. The results of this work indicate that the superiority of one DAE determination
method over another greatly depends on the setting/dataset used and on the selected
evaluation metric. Overall, the data-driven methods of DAE appear to have, in general, a
better performance in large datasets.

The rest of this paper is organized as follows. In Section 2, the related work is
discussed. Section 3 presents in detail the methods and the datasets used in this work.
Section 4 contains a detailed presentation of the experimentation and the results. An
extensive discussion of the results takes place in Section 5, which is followed by Section 6
that concludes the work.

2. Related Work

There has been a variety of proposed approaches, regarding the way positioning
systems could estimate a level of certainty over a location estimate that they produced. The
categorical division of these approaches can be described by two main types of methods:
the rule-based methods (Section 2.1) and the data-driven methods (Section 2.2). In the first
category of the rule-based methods [4,5,7,8,10,11,20–22], which monopolized the publications
of the field for a long period of time, the aim is to hand-craft heuristic methods of estimating
the quality of location estimates. The second category of the data-driven methods [6,9,16,17]
has only recently emerged. These data-driven methods learn to predict the quality of
location estimates based on a dataset that is used to train a machine learning model.

In this section, we present the relevant literature of the wider topic of accuracy es-
timation in indoor positioning systems. Therefore, apart from discussing the main type
of methods that dynamically estimate the accuracy of the location estimates in an online
manner, we also present works that discuss offline accuracy estimation methods. Before
presenting the existing methods, we establish terminology and notation that are used when
presenting the methods of previous works.

Let fe be the received fingerprint for which the positioning system needs to provide a
location estimate le of its ground-truth location lgt. Relevant methods often utilize the k-
Nearest Neighbors method to find the k nearest fingerprints from fe in the training set with
respect to their distance in the signal (feature) space. Let fi be the ith closest fingerprint,
and let its position be li, ∀i ∈ [1, k]. The distance of two fingerprints, fa and fb, in the
multidimensional signal space is denoted as Dss( fa, fb). It is in this signal space that the
Euclidean distance defines which are the nearest neighbors of a fingerprint. Moreover, the
geographical distance of two locations, la and lb, is denoted as Dgeo(la, lb), indicating the
distance in meters between two locations.

• lgt, the ground truth location where the fingerprint was recorded;
• fe, the received fingerprint for which the location must be estimated;
• le, the estimated location derived from the received fingerprint fe;
• fi, the ith closest fingerprint to fe;
• li, the location of the ith closest fingerprint fi;
• Dss( fa, fb), the distance of two fingerprints, fa and fb, in the signal space;
• Dgeo(la, ib), the geographical distance between two locations, la and lb.
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When evaluating the performance of a positioning system, the statistical metrics of
the positioning error are calculated. The error of each produced estimate is defined as the
geographical distance between lgt and le.

Errorpos = Dgeo(lgt, le) (1)

When evaluating the performance of methods producing DAE estimates, the absolute
difference between the actual positioning error Errorpos and the one estimated by the DAE
method is often used as the main performance indicator. Let a DAE estimate be denoted
as DAEest. The absolute error of a DAE estimation for a single estimate is defined in
Equation (2).

ErrorDAE = |Errorpos − DAEest| (2)

In addition to the absolute error presented in Equation (2), a couple of works in the
literature have also utilized the signed error, presented in Equation (3)

Signed ErrorDAE = Errorpos − DAEest (3)

There is a multitude of metrics that have been used to evaluate the performance of
DAE methods, which are extensively discussed throughout this work.

2.1. Rule-Based Methods

Several methods have been proposed in the first category of rule-based methods over the
years. In 2009, Lemelson et al. [7] presented an investigation of how the positioning error,
which is inherent to WLAN positioning systems, can be estimated. The authors proposed
and evaluated four methods of estimating the DAE: two offline (or static) methods, using
the training set of the fingerprint algorithm before the actual usage of the positioning
system to assign an Accuracy Estimate (AE) to different zones of the area of interest and
two online (or dynamic) methods, utilizing the live measurements of signal receptions that
are meant to feed the system in order to produce position estimates. The authors of this
work [7] suggest two of the proposed methods as the best-performing ones, depending on
the dataset. The first is the offline method named ‘Fingerprint Clustering’, which uses signal
similarity to relate the AE of a position estimate with the spatial area that the cluster it
belongs to occupies. The second method that the authors recommend is the online method
named ‘Best Candidate Set’, which defines the DAE of a position estimate as the average
geographical distance of the second up to the kth nearest neighbor from the first nearest
neighbor. This work is the most commonly referenced publication on the topic, and the
proposed ‘Best Candidate Set’ method is the most commonly used baseline against which
newer methods [3,8,10] have compared. The ‘Best Candidate Set’ method, proposed by
Lemelson et al. [7], is defined as follows.

DAELemelson =
k

∑
i=2

Dgeo(l1, li)
k− 1

(4)

In 2011, Beker et al. [27] focused on an offline analysis of fingerprint maps, providing
a method for deriving heatmaps of expected localization error, assuming a Gaussian error
model, and utilizing the gradient of the fingerprints. Moghtadaiee et al. [3] proposed in
2012 a mechanism to calculate a Dilution-of-Precision-like value as the Accuracy Estimation
(AE), using only offline information of the training stage. Using a leave-one-out method
on a training set as evaluation, Moghtadaiee et al. [3] reported the average error of their
Accuracy Estimation (AE) on the training set, which is reported to be closer to the actual
mean localization error in this set, compared to the ‘Best Candidate Set’ of Lemelson et al. [7]
that was used a baseline. Neither work by Beker et al. [27] and Moghtadaiee et al. [3]
proposes a method of individualized and dynamic (online) determination of the Accuracy
Estimation for a new signal reception based on the reception’s characteristics (which is the
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focus of the current work) but rather describes the expected error in spatial zones of the
area of interest.

The work by Marcus et al. [8], published in 2013, proposes an improvement on the
‘Best Candidate Set’ method of Lemelson et al. [7]. The main novelty is not only to use
positions of the k-nearest neighbors but also to use the location estimate le, as well as
factoring in as weight wi the proximity of the nearest neighbors in the signal space, in the
fashion of a weighted kNN approach, as defined in Equation (5). The authors assumed a
Gaussian distribution of error, which is also assumed to be uncorrelated between the two
directions of the 2D space. To evaluate the proposed method, the authors only provided a
visual inspection of Q-Q plots to indicate the superior fit of the results of their proposed
method compared to the methods of Lemelson et al. [7]. The exact definition of the method
proposed by Marcus et al. [8] is defined below.

DAEMarcus =
k

∑
i=1

wiDgeo(le, li), wi =
(Dss( fe, fi))

−1

∑k
j=1(Dss( fe, f j))−1

(5)

Zou et al. [4] investigated in 2014 a number of alternatives of online DAE determination
methods based on the concept of the spatial, geographical distribution of the k nearest
neighbors (with the neighbors defined by their distance in the signal space). Therefore, the
k-nearest neighbors were selected based on their distance from the reference fingerprint
fe in the signal space Dss( fe, f ). Then, the k-nearest neighbors were shorted based on
their geographical distance Dgeo(le, li) from the location estimate le. In the evaluation
section of [4], in a simulation setting in which k = 4 was selected as the optimal value
for a kNN based positioning method, the following six alternatives were evaluated as
candidate DAE indicators: the geographical distance from the estimated position to (i) the
1st, (ii) the 2nd, (iii) the 3rd, and (iv) the 4th (geographically) most proximal locations
to the location estimate le among the nearest neighbors, as well as the (v) mean and the
(vi) variance of the above four distances. The geometric distance from the estimated
position to the furthest neighbor, i.e., the 4th in the setting studied by Zou et al. [4], is
proposed as the best-performing one, without any comparison though to an external
baseline. Preliminary experimentation with the alternatives proposed by Zou et al. [4]
indicated that the alternative of the mean distance (defined below in Equation (5)) is more
robust throughout different datasets. Evidently, the optimal k for the method (Equation (5))
can be considered as a tunable parameter.

DAEZou =
k

∑
i=1

Dgeo(le, li)
k

(6)

Elbakly and Youssef [11] presented the CONE system in 2016, which utilizes a list of
the latest (most recent) location estimates to infer the DAE based on their spatial distri-
bution. The performance of this method is compared against a baseline proposed by the
authors. More specifically, the baseline consists of using a DAE that is proportionate to
the geographical distance between the estimated position and the kth-nearest neighbor,
which practically corresponds to one of the alternatives proposed by Zou et al. [4]. In the
reported results, the proposed method does not outperform the baseline in terms of mean
absolute error of the DAE estimation, although the authors highlighted other advantages
such as the fact that the proposed method works with any positioning system and that
it rarely underestimates the error. The concept of overestimation and underestimation
of the error is discussed in detail in Section 2.3.2. The method proposed by Elbakly and
Youssef [11] has the distinct characteristic that, unlike the previously discussed works, it is
not based on the characteristics of an individual signal reception to infer a DAE value but
relies on the previous outcomes of the localization system (the previous location estimates).
Thus, it produces a sequence-based DAE estimate and not an DAE based on a single,
individual reception.
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Two works published in 2016 by Berkvens et al. [20,21] hypothesized the correlation
of conditional entropy measures with the localization error. Upon a rigorous analysis of the
subject, the presented results do not confirm the hypothesis, as the results did not reveal a
correlation that could construct a reliable method for determining the DAE. Although the
works are not confirmatory, such negative results of a reasonable hypothesis are equally
valuable contributions that enrich the knowledge of the field.

Nikitin at al. [5] proposed an offline AE determination method named ACCES, which
is based on the Cramer–Rao Lower Bound ratio. The proposed method was compared
against a naive baseline proposed by the authors, called Fingerprint Spatial Sparsity Indicator
(FSSI). For the performance evaluation and comparison of the two methods, a rather
complex custom similarity metric (ranging within [−1, 1]) was introduced, which utilizes
the Dynamic Time Wrapping of the two timeseries (actual and estimated error). The results
indicate that the values of the custom similarity metric, for the two methods (the proposed
ACCES and baseline FSSI) are similar, ranging up to 0.4.

In a fairly recent work (2019), Li et al. [10] proposed an error estimation method in the
context of a broader multisensor, hybrid system. The authors utilized the method proposed
by Lemelson et al. [7] as a baseline, proposing an improvement over this baseline method,
named “Weighted DSF”. The differentiation of this method from that of Lemelson et al. [7]
relies on calculating a weighed average of likelihoods instead of a simple average of
Euclidean distances. Moreover, the authors presented a signal-strength-based DAE, which
relates stronger Received Signal Strength (RSS) values to a higher confidence over the
position estimates, and a geometry-based DAE, relating localization accuracy to the geometry
of the measurements. Lastly, they also tested combinations of the above methods, such as
their linear combination or the selection of the highest value among the estimates of all
the above-discussed methods. An extensive experimentation concluded that the proposed
“Weighted DSF” method enjoys the highest correlation with the actual positioning error,
compared to all other discussed methods. Unfortunately, despite the appealing nature
of the work, the description of the proposed methods in the paper’s manuscript is not
presented unambiguously enough to facilitate their reproduction in our current work.

Khandker et al. [22] proposed in 2019 an online method that, similarly to the work
of Elbakly and Youssef [11], relates the proposed metric to the spatial distribution of a
list of the latest position estimates produced by a positioning system and particularly to
their cluster radius. The authors underlined as a limitation of their proposed method the
fact that it requires consecutive position estimates at roughly the same location for the
method to perform efficiently. Moreover, the authors observed a (not fully characterized)
dependence of the method from the training set size. As mentioned above, the work by
Khandker et al. [22], similarly to that of Elbakly and Youssef [11], is different from the
main volume of relevant works presented before, as they produced a sequence-based DAE
estimate and not an DAE based on a single, individual reception.

The concept of estimating the accuracy of the location estimates of positioning systems
has also been studied and utilized by works that focus on handoff methods. The handoff
may concern switching between indoor and outdoor environments and performing the
respective transition to the available technology in each environment or simply switching
between technologies independently of the indoor/outdoor status, based on other criteria.
For instance, the method proposed by Lin et al. [13] selects the most energy-efficient avail-
able technology that satisfies the accuracy requirements of the user. The user requirements
are expressed as a user-defined threshold of acceptable accuracy. The authors utilized a con-
stant value of typical error for each technology that is available in a system. In the presented
test setting of [13], the technologies were GPS, Bluetooth, and WiFi. Thus, Lin et al. [13]
utilized a static and constant AE for each of the available technologies of their system to
achieve energy efficiency by also conforming to some accuracy-related constraints.

The same team of authors (Zou et al.) that proposed in 2014 the previously presented
DAE method [4] had firstly proposed a more simplified concept [14] in 2013. That work [14]
proposed a handoff algorithm that aimed to smoothly handover the control between a
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WLAN-based positioning system and a positioning system of another technology. As a
proxy of a DAE that would operate as a reliability indicator, the authors used the distance
in the signal space between the received fingerprint and its closest neighbor in the training
set (Dss( fe, f1)). The authors presented an experimental way of defining the threshold
values of the reliability indicator for the dual-threshold method proposed in their work [14]
and demonstrated the efficiency of their method by evaluating the handoff performance.

In a similar fashion, Anagnostopoulos et al. [15] presented a handoff algorithm that
compares the accuracy estimates of the available technologies in order to handoff the
control between them. Anagnostopoulos et al. [15] presented their switching algorithm in
a setting where the target is a smooth transition between the indoor technology (Bluetooth
based IPS) and the outdoor one (GPS). In this setting, the authors used the system provided
DAE of GPS, while they utilized a simple heuristic for the DAE of the indoor, Bluetooth-
based positioning system. A propagation model was utilized to infer estimates of spatial
distances between the mobile device and all received base stations. The distance estimates
fed a ranging positioning method to infer location estimates. Incorporating these distance
estimates of the distances between the mobile device and the received basestations, the
authors utilized the estimated spatial distance from the third closest detected basestation,
as a proxy to the DAE. The focus in both [14,15] was on distinguishing whether the
mobile device is within the service area of a certain technology or not. These works did
not explicitly evaluate the performance of the DAE per se but only examined the way
that the evaluated handoff algorithms perform, facilitated by the proposed proxies to
DAE estimates.

2.2. Data-Driven Methods

Unlike the first category of rule-based methods, which has offered a variety of works for
over more than a decade, the second category concerning the data-driven methods has only
recently started its emergence.

A fairly early proposal of a data-driven method of DAE dates back to 2007, when
Dearman et al. [6] proposed a Multiple linear Regression (MR) approach. Dearman et al.
suggested the utilization of designer-selected features, extracted from various combinations
of the values of RSS fingerprints from the training set. Indicatively, the authors mentioned,
among others, the strongest RSS value, the average of the three strongest RSS values or the
number of received base stations. These features were used to train a model, which was
subsequently used to dynamically predict the localization error of a location estimate, based
on the individual signal reception that produced it. Moreover, apart from the data-driven
method of DAE, the authors of [6] also evaluated a static method of providing accuracy
estimates, named Zonal Based Error Estimation. Based on the assumption that estimates in a
certain location, and in its proximity, have a relatively stable error, they collect historical
statistics of error, which they later associate with location estimates. More particularly, they
collected the historic localization error values around the area of a location estimate (from a
dataset they consider available) and provided as the AE the median error value (ZB50), or
any other percentile that the system designer prefers to choose. For instance, the 75th and
90th percentiles are indicated as ZB75 and ZB90, respectively. Unfortunately, only a high
level description of the two proposed methods was developed by the authors of [6], while
further details, such as the exact set of features actually used in MR method or how many
historical errors are used in the ZB method, are not revealed.

A recent sequence of works, by Lemic, Handziski, and Famaey [16], Lemic et al. [9],
and Lemic and Famaey [17], has revived the data-driven approach. A sizeable volume
of available data can greatly facilitate the analysis and the performance of data-driven
methods. The availability of large datasets, such as the outdoor datasets of Low-Power
Wide-Area Networks (LPWANs) presented by Aernouts et al. [19], facilitates such ap-
proaches. The experimentation of the proposed methods by [9,16,17] utilize these outdoor
datasets as well as a simulation-based dataset of an indoor WiFi setting.
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The first work of the abovementioned trilogy, by Lemic, Handziski, and Famaey [16]
reintroduced, studied in depth, and enriched the concept of a data-driven approach of
determining the DAE, 12 years after its first appearance by Dearman et al. [6]. The au-
thors initially utilized as input to the regression-based DAE determination, the raw RSS
measurements that also feed the regression-based position estimation task. Additionally,
they also examined the introduction of the position estimate itself as an extra input feature
to the regression task assigned to determine the DAE, an addition which systematically
improves the accuracy of the outcome. The predictive performance of several well-known
regression algorithms (linear regression with regularizers, kNN, SVN, and Random Forests)
in estimating the positioning error of location estimates is evaluated in a simulation-based
Wi-Fi setting.

In 2019, Lemic et al. [9] extended the previous work, with an in-depth analysis of the
same idea, utilizing both simulation-based data and real data from Wi-Fi and LPWAN
measurements, respectively, and showcasing the capabilities of the regression-based ap-
proaches. In a work that naturally extends the previous one [9], Lemic and Famaey [17]
evaluated the performance of Neural Networks (NN) in addressing the same regression
problem of DAE determination. The presented results suggest that the NN approach
outperforms kNN, which was the best-performing method of the previous work [9].

Anagnostopoulos and Kalousis [12] presented an analysis of various aspects of the
data-driven DAE determination and utilization. Initially, the authors discussed the fact
that choosing to use in a system a data-driven approach of determining the DAE brings
the obligation of splitting the available training data into two subsets: one for training
the positioning model and one for the DAE determining model. They proposed a method
of overviewing the performance of the two models for various portions of the training
set assigned to each of the two models and indicated how the selection is dependent on
the use case. Moreover, they extensively discussed a use case of DAE utilization, where
a percentage of the most trustworthy position estimates were selected to be used. In that
use case, a subset of position estimates was selected based on the DAE-based confidence
that the system claims over them. Lastly, the authors indicated the importance of locally
examining the performance of the model, since the overall statistics from a big dataset
might even out or overshadow important facts related to the local performance of the
model in various spatial areas.

2.3. Baselines, Metrics, and Evaluation Methodologies
2.3.1. Baselines

In this subsection, we enlist and discuss the baselines used by all relevant works and
summarize this information in Table 1.

In the work by Dearman et al. [6], the authors used two naive baselines. The first
approach, named Stats95, is to use a constant value, corresponding to the 95th percentile
of error in the training set, as the constant prediction. The second baseline (Random)
corresponds to randomly picking the error of an estimate on the training set. Similarly,
Lemelson et al. [7] utilized a simple random error estimation algorithm as a baseline,
proposing sampling uniformly in the arbitrary range from zero to ten meters. Lemel-
son et al. [7] cite the work of Dearman et al. [6], without referring, however, to the proposed
methods of nor to the baselines used by that previous work.

The work of Beker et al. [27] is presented as a proof of concept, and it does not contain
any external baseline. Both works of Moghtadaiee et al. [3] and Marcus et al. [8] used the
Best Candidate Set method, proposed by [7], as their baseline. As the work of Marcus et al. [8]
proposed an improvement of the method of Lemelson et al. [7], they adequately chose the
latter as their baseline. More specifically, the authors of Marcus et al. [8] not only compared
with the main method proposed by [7] but also with its two alternatives, which utilize
the notion of maximum geographical distance of neighbors instead of their mean distance.
Moghtadaiee et al. [3] compared their offline, static method, against the dynamic method
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of Lemelson et al. [7]. Both works [3,8] presented a rather limited set of evaluation metrics
(further discussed in Section 2.3.2) which does not facilitate a conclusive comparison.

Zou et al. [4] (2014) only presented a comparative evaluation of the various alternatives
they proposed based on the geographical distance of the estimated position from the
(geographically) most proximal locations among the nearest neighbors, without reporting
any external baseline. Similarly, Khandker et al. [22] did not report any external baseline.

Elbakly and Youssef [11] (2016) compared their proposed method against a baseline,
namely GP-Tailored, that is described as being ‘tailored to the used localization system’ [11].
In this baseline, the DAE ‘is estimated proportionally to the distance between the estimated user
location and the furthest grid point within the top k candidate grid points’ [11], which, from its
description, appears to be identical to the method previously proposed by Zou et al. [4],
which nevertheless is not cited. Moreover, Nikitin at al. [5] presented a custom naive
baseline, called fingerprint Spatial Sparsity Indicator (FSSI). FSSI is defined as the area of a
circle with a radius equal to the distance from the location estimate to the geometrically
nearest training fingerprint. Practically, FSSI is proportional to the square of one of the
alternatives proposed by Zou et al. [4].

Li et al. [10] compared the various alternative methods they propose, as well as their
proposed combinations, against two baselines. The first naive baseline corresponds to the
use of a constant value as the Accuracy Estimate. The second baseline in the Best Candidate
Set was proposed by [7], which is mentioned as Distance between Similar Fingerprints of (DSF).
The selection of the second baseline comes naturally, since the best-performing proposed
method by Li et al. [10], is an adaptation of the method proposed in [7].

Table 1. Baselines used by related works, for comparatively evaluating their accuracy estimates.

Publications Baselines

Dearman et al. [6] (1) Stat95: Constant value, equal to the 95th percentile of the error in the training data
(2) Random: A random error estimation from the training data

Lemelson et al. [7] Random value, sampled from a uniform distribution, in a range (see Section 2.3.1)

Beker et al. [27] -

Moghtadaiee et al. [3] Best Candidate Set, proposed by [7]

Marcus et al. [8] Best Candidate Set, proposed by [7] + its two alternatives

Zou et al. [4] -

Elbakly and Youssef [11] ‘Distance between the estimated user location and
the furthest grid point within the top k grid points’, similar to [4]

Nikitin at al. [5] Custom baseline ‘FSSI’: the distance from the location estimate to the geometrically
nearest training fingerprint, similar to [4]

Li et al. [10] (1) A constant value (CT)
(2) Best Candidate Set, proposed by [7]

Khandker et al. [22] -

Lemic, Handziski, Famaey [16] Custom metric, based on the use of an (unreferenced in its details) static performance benchmark

Lemic et al. [9] Custom metric, based on a static performance benchmark

Lemic and Famaey [17] Custom metric, based on a static performance benchmark
Regression methods proposed in [9]

In the sequence of works that study the data-driven approach of DAE determina-
tion [9,16,17], the most recent ones build on top of the previous ones. For instance, the
most recent work [17] studied the use of neural networks and compared their performance
with the other machine learning methods (such as kNN, SVM, and Random Forest) studied
in the previous work [9]. In these works [9,16,17], two naive baselines are used, both
of which utilize information from a “static performance benchmark” dataset, which is not
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clearly associated with a specific subset of the dataset used nor to some external reference.
Specifically, the localization error of the aformentioned “static performance benchmark” is
utilized in both baseline methods. The first baseline method uses the average localization
error of the benchmark as the constant DAE estimate (similarly to the 95th percentile of
training error used as a baseline by Dearman et al. [6]). In the second baseline, the DAE is
associated with the localization error of its geographically nearest ground-truth location
appearing in the benchmark.

2.3.2. Evaluation Metrics and Methodologies

As discussed so far the concept of the online error estimation of the location estimates
that positioning systems have been sporadically studied in the literature of the field for
over more than a decade. In addition to the small overlap of common baselines used in
these works, as summarized in Table 1, a similarly low consistency can be observed in the
metrics used to evaluate the performance of the proposed methods (Table 2).

Table 2. Evaluation metrics and plots used by related works (the * indicates an adjustment of the
metric or plot).

Publications

Absolute Error Signed Error Visual Inspection Correlation
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Dearman et al. [6] * + Custom
Plots

Lemelson et al. [7] * + + + +

Beker et al. [27] Error
Heatmaps

Moghtadaiee et al. [3] Mean AE
Marcus et al. [8] +

Zou et al. [4] + Est. selection
de la Osa et al. [28] +

Elbakly and Youssef [11] + + + + + +
Berkvens et al. [20] +
Berkvens et al. [21] + + +

Nikitin at al. [5] + Custom
Metric

Li et al. [10] + + Hand-off
Eval.

Khandker et al. [22] * Custom
plots

Lemic, Hand., Fam. [16] + + Stud. res.
Lemic et al. [9] + + Stud. res.

Lemic and Famaey [17] + + Stud. res.
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Several events have been established by the indoor positioning community, in which
different positioning systems are evaluated in a consistent framework, with the use of
the public datasets, and with well-defined quantitative metrics. A typical example is the
IPIN competition of the yearly IPIN conference [18]. Moreover, there exist other events as
well that contribute to this direction, such as the Perfloc by NIST [29] and the Microsoft
international indoor localization competition [30]. The competitions mainly focus on
comparing the accuracy of the location estimates. There has been no common framework
in which the DAE estimates of positioning systems are consistently compared. An early
reference to this potential is made by a framework of evaluating [28] and tuning [31,32] the
positioning systems, proposed in 2016, where the evaluation of the DAE [28] is listed as
one of the metrics that the proposed framework can evaluate and tune. Nevertheless, in
the experimentation sections of this framework, only the evaluation of location estimates
is exemplified.

In this subsection, we present the metrics used by the relevant works of the field and
discuss their complementarity and their utility which depends on the business case at hand.

The first work, chronologically, that deals with the dynamic accuracy estimation is
that of Dearman et al. [6] (2007). The evaluation metrics reported by Dearman et al. [6]
correspond to the 25th, 50th, 75th, and 95th percentiles of error of the DAE estimates which
appear in a custom plot, which is quite similar to what a common boxplot would depict.
The same plot, indicating these percentiles of error, is used in the work of Lemelson et al. [7],
while a few other metrics are separately reported in [7], such as the mean and the standard
deviation of error. Moreover, Lemelson et al. [7] propose the interesting idea of a plot of the
signed error, in addition to that of the absolute error. In this plot, the two kinds of errors that
concern the overestimation and the underestimation of the actual localization error by the DAE
are distinctly represented. The authors elaborate on this concept, explaining how different
business cases might prefer one of the two types of errors. For example, an application
that must alert the user when the estimated error is above a certain threshold of acceptable
accuracy, might prefer an overestimation of error. On the other hand, ‘an application that
sends the user information about shops in his proximity might prefer an underestimation of the error
to avoid annoying the user with too many messages’ [7]. Lastly, the theoretical bounds of time
complexity and memory requirements of the proposed methods were also discussed in [7].

Beder et al. [27] exemplified their approach only with the use of heatmaps, without
reporting any quantitative evaluation metrics. Moghtadaiee et al. [3], unlike other works,
did not present an evaluation of their method based on estimating how each individual
accuracy estimate deviates from the actual error of the respective location estimate, to then
draw statistical metrics, such as the mean or the median AE error. By contrast, the mean
value of all the AE estimates of their proposed static method is compared against the DAE
estimates of the dynamic method of Lemelson et al. [7], as well as against the actual mean
localization error. The fact that the mean value of the AE provided by [3] is closer to the
actual mean localization error than the mean DAE value of the other method [7] and is
used as the argument to claim a superiority of the proposed method over the baseline.
Nevertheless, when evaluating the quality of individual estimates of DAE, the mean value
of the DAE estimates is not a reliable nor a representative evaluation metric.

The work of Marcus et al. [8], which proposes an improvement on the method of
Lemelson et al. [7], only presents the visual inspection of Q-Q plots to claim superior
approximation of the observed errors compared to the baseline. Similarly, Zou et al. [4] did
not report quantitative metrics, but they based their analysis in the visual inspection of the
plots they presented in their work. More particularly, they presented a scatter plot where
the actual localization error is plotted against the one estimated by their proposed DAE
method, averaged over multiple repetitions of a simulated scenario of localization. The
adequacy of the alternatives of the proposed method was evaluated by Zou et al. [4] by
examining whether the visual inspection of the plot suggests a monotonic relationship of
the two plotted quantities and by the slope of the said relationship. Lastly, Zou et al. [4]
presented a custom plot where the idea of selecting a subset of the most accurate position
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estimates is introduced. In that presented plot, the CDF of the positioning error was
presented with different curves, each of which corresponds to a percentage of the most
accurate estimates, selected based on the proposed DAE estimate. The fact that the curves
of the error of subsets of location estimates have lower localization error is used in the
argumentation supporting that the proposed DAE method indeed learns to distinguish
between estimates of low and high error.

Elbakly and Youssef [11] offered a rather diverse set of evaluation metrics. The au-
thors reported the mean error of the proposed method and that of the baseline used,
while they also presented their error CDFs. Interestingly, the concept of error overestima-
tion/underestimation that were discussed by Lemelson et al. [7] was further analyzed,
and interesting relevant evaluation metrics are introduced. Firstly, in addition to the CDF
which depicts the absolute error, the authors presented the CDF of the signed error (firstly
used by [7]), to indicate with positive and negative values, the underestimating and the
overestimating type of error, respectively. There are three relevant proposed metrics. The
first one is the overestimation percentage (or, as it is descriptively mentioned, the ‘percentage
of estimates inside the circle’), which corresponds to the percentage of DAE estimates that
estimated a greater value than the actual localization error (and thus the true position
would be inside the error estimation circle depicted around the position estimate). The
second is the median overestimated error, which is the median value or the errors from all the
cases where the DAE estimated a higher value than the actual positioning error. The third
metric is the median underestimated error that complements the statistics for this type of error.
After discussing the different strengths and weaknesses of the two compared methods,
based on their diverse set of selected metrics, Elbakly and Youssef underlined that ‘the
designer should take into consideration the different metrics, as opposed to the absolute error metric
only—typically used in the literature, when making their decision’ [11].

Berkvens et al. [20] proposed a very intuitive and meaningful metric, which is the
correlation coefficient of Pearson (ρ) and its p-value. The intention is to see how well the
actual localization error correlates with the estimates of the proposed DAE method. In
their work [20], the conditional entropy, which is hypothesized that it can be used as a
proxy to a reliable DAE value, is used to calculate Pearson’s ρ. Moreover, a scatterplot
is presented, depicting the quantities whose correlation is under examination. In their
subsequent work [21], the authors utilized the same category of scatterplots, to further
examine their hypothesis.

Nikitin et al. [5] introduced a rather complex custom evaluation metric. Dynamic Time
Wrapping (DTW) is used to infer a custom similarity metric between two time series. The
first one is the sequence of estimates by the AE method under evaluation. The second one
is the sequence of the actual localization errors, as measured in the trajectories of the used
testing environment. The discussion of the results based on the proposed metric does not
significantly enrich the intuition of the reader about the performance of the method under
evaluation. This work also proposed the visual inspection of the time series of the AE and
the actual error, through time, during a trajectory. The same type of time series is also
selected to be plotted in the work of Li et al. [10]. Nevertheless, Li et al. [10] additionally
proposed the utilization of the Pearson correlation coefficient to quantify this relation. Lastly,
the DAE proposed by Li et al. [10] is also evaluated indirectly, by the performance of the
hybrid positioning system, since the proposed DAE determines the handoff mechanism
among the multiple technologies used.

Khandker et al. [22] did not report commonly used quantitative metrics to evaluate
the performance of the proposed method. The evaluation is made by the visual inspection
of a custom plot. More particularly, the produced DAE values are regrouped in range
groups (per 5 m) and plotted against the mean actual localization value of each group, in a
similar fashion to the plots by Zou et al. [4] and Berkvens et al. [20]. The authors underlined
that a monotonic increase is observed among the DAE range groups and the actual mean
localization error of the estimates of each of these groups, as evidence of the proposed
method’s adequacy.
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In the recent sequence of works that study data-driven methods [9,16,17], the error
distribution of the methods under evaluation is presented in the form of boxplots. Moreover,
in [9,16], the authors performed an exploratory data analysis, presenting the Q-Q plot of
prediction errors, and the plot of Studentized residuals, identifying outliers, and discussing
potential ways to mitigate this issue.

2.3.3. Discussion of Baselines and Metrics Used in the Literature

The detailed discussion of the Sections 2.3.1 and 2.3.2, and the intuitive summary of
Tables 1 and 2, bring to light the fact that despite the multitude of interesting ideas that
have been proposed, the topic of DAE determination suffers in terms of comparability of
results and of completeness of reporting. The new knowledge rarely builds on top of the
existing one, as the consistent comparison with previous works is absent in most cases (see
Table 1), weakening the comparability of results and the strength of the claims regarding
the performance improvements that a new method brings. Moreover, the comparability,
reproducibility, and reusability of proposed methods would be facilitated by openly sharing
their code implementation, but alas, none of the existing literature discussed has an open-
code policy. Lastly, some of the works do not offer sufficient information through a complete
reporting of the details of their proposed method, which would facilitate their implantation.

Moreover, the inconsistent use of a diverse set of metrics among different works, as
well as the often limited number of reported metrics in each work (see Table 2), do not help
in obtaining a clear picture about the comparative performance of the existing methods nor
do they facilitate a holistic overview of each method’s potential. It has been sporadically
mentioned [7,11] that different metrics might be more adequate in evaluating the suitability
of DAE methods in different use-cases, and therefore, they may provide a different answer
as to which DAE methods are preferable for use. Moreover, the results and the conclusions
of a comparison of two DAE methods performed by using a certain type of dataset and a
certain metric and might not hold if a different setting is used. These issues motivated the
current work, which aims to provide the platform for a consistent, holistic comparison of
the various existing DAE methods, allowing the designer of IPS to choose the metrics and
the datasets that are relevant to the use case for which a DAE method is to be selected.

3. Benchmarking: Materials and Methods
3.1. Datasets

There has been an increasing tendency to publicize fingerprint datasets which can
be used for the evaluation and the consistent comparison of positioning systems. Several
recent works in the field of indoor and outdoor positioning [19,33–35] have underlined the
importance of the reproducibility of the experiments and the comparability of the results of
the field.

Characteristically, Montoliu et al. [33] underlined that ‘many papers in the literature
trying to solve the indoor localization problem, each approach presents its estimated results using its
own experimental setup and measures’ [33], before mentioning that ‘In the Pattern Recognition
and Machine Learning research fields, the common practice is to test the results of each proposal using
several well-known datasets’ [33], emphasizing the necessity of the adoption of this practice
in positioning research as well. The availability of several datasets has enabled researchers
of the field to present works where positioning methods are consistently compared with
the use of multiple datasets [36–38].

In this work, we utilize two outdoor and two indoor datasets for benchmarking
DAE methods. The datasets have different characteristics in terms of the number of
measurements, of their spatial density, and of the technology used. By using these datasets,
the DAE methods are evaluated in a diverse group of settings. The indoor datasets were
selected to be single-floor, so that the error analysis can be focused on the 2D plane, without
having to deal with (or to disregard) the potential floor detection error, since the DAE
commonly refers to the 2D error. The selected datasets are introduced below, while their
characteristics are summarized in Table 3.
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Table 3. Features of the selected datasets. The columns report the amount of fingerprints, the number
of Access Points (APs), the size of the area where fingerprints where collected, and the number of
fingerprints per reference (or measurement) point.

Dataset # Fingerprints # APs Area f/r.p.

Sigfox [19,39] 14,378 84 ∼53 km2 1

LoRaWAN v1.3 [19,39] 130,430 72 ∼53 km2 1

LoRaWAN v1.3 reduced [12,19,39,40] 55,375 72 ∼53 km2 1

DSI [26] (radio map, traj.) (1369, 348) 157 100 m × 18 m (6, 1)

DSI reduced (radio map, traj.) (230, 348) 157 100 m × 18 m (1, 1)

MAN [24,25] 14,300 28 15 m × 36 m 110

MAN reduced 166 28 15 m × 36 m 1

3.1.1. Sigfox Outdoor Dataset

The first dataset is an outdoor dataset of Received Signal Strength (RSS) values,
collected in the urban and suburban area of Antwerp, Belgium, and it is based on the Sigfox
technology. The dataset was published by Aernouts et al. [19,39] in 2018. The authors
indicated their motivation by mentioning that: ‘With these datasets, we intend to provide the
global research community with a benchmark tool to evaluate fingerprinting algorithms for LPWAN
standards.’ [19]. The dataset was collected by hardware that was mounted on vehicles of
the Belgian postal service, in the context of a project related to air quality measurements.
The fingerprints were collected in an area of approximately 53 square kilometers, though
most of them lay in the central area of Antwerp, which is approximately half the size of the
full area. The hardware used contained a Sigfox module, whose signal exchanges with the
gateways form the fingerprints from which position estimates are derived. Moreover, a
GPS receiver was also included in the hardware, whose position estimates were used in the
collected dataset as the ground truth. The locations are provided in the global geographical
reference system, by latitude and longitude values, as provided by the GPS module used.
The authors underlined certain limitations of this design choice when the datasets are used
for fingerprinting localization. Apart from the inherent error that a GPS estimate can have,
the fact that the hardware is mounted on moving vehicles, combined with the fact that there
is a delay of a few seconds between the production of a GPS estimate and its transmission
through the Sigfox protocol to the gateways, further hinders the reliability of what is
claimed as ground truth. Nevertheless, having underlined this fact, it is worth mentioning
that the inaccuracy of the GPS estimates is estimated to the order of a few tens of meters,
while the accuracy of the Sigfox RSS method ranges at a couple of hundred meters.

The dataset was published as one block of data, while its random division in three sub-
sets, the train/validation/test sets, which was used to exemplify its usage in [19], was not
published. In our previous work [41], in which we utilized the Sigfox dataset to analyze the
preprocessing and hyperparameter tuning steps to optimize the achievable localization per-
formance, we publicized the train/validation/test sets [42] to facilitate the reproducibility
of our results as well as to enable consistent future comparisons. Therefore, in the current
work, we use that previously published split [42] of the dataset of Aernouts et al. [19,39].
It is noteworthy that throughout the current work, the training data are further split into
two training sets: one for training the position system and a second one for training the
data-driven DAE methods. The resulting datasets and the relevant code are available
in [23].

3.1.2. LoRaWAN Outdoor Dataset

The outdoor LoRaWAN dataset of RSS values was collected using the same methodol-
ogy, and it was published in the same work [19,39] as the Sigfox dataset presented above.
The initial version of the LoRaWAN dataset (v1.1), presented in [19], suffers from the draw-
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back that, due to limitations of the network provider, every message held RSSI (Received
Signal Strength Indicator) information of only three receiving gateways, even for the cases
where more gateways had received the message. This issue was resolved in the new dataset
(v1.2), published in the Zenodo repository [39], as the values of all receiving gateways were
fully reported. Lastly, in the latest version (v1.3), the location information of the gateways
was added.

Similarly to the Sigfox dataset, we used the LoRaWAN dataset in a previous work [12],
in which we analyzed the data-driven approach of DAE. In that work, we publicized the
train/validation/test sets [40] to enable consistent comparison with future works, through
the use of the same subsets. Another important point is the message selection that took
place, which was related with the number of receiving gateways. ‘Fingerprinting techniques
are often compared to their counterpart, the ranging techniques such as multilateration, which
require a minimum of three receiving gateways to produce a unique position estimate’ [12]. Even
though satisfactory results can be obtained with fingerprinting methods when using mes-
sages with fewer than three receiving gateways, in our previous work [12], we reduced
the dataset by only using the messages with at least three receiving gateways. A total of
75,054 messages with fewer than three receiving gateways were dropped, while 55,375 mes-
sages were retained to be used. Another recent work that used this dataset followed the
same practice [43] of keeping messages with at least three receiving gateways. After the
above-described message selection, a common train, validation, and test set split was used
in [12], where 70% of the dataset was for training purposes, 15% for validation, and 15% as
a test set. These are the public sets [40] that are used in the current work. As mentioned
in the Sigfox dataset, here as well, the training data are further split into two training sets:
one for training the position system and a second one for training the data-driven DAE
methods. The resulting datasets and the relevant code are available in [23].

3.1.3. DSI Indoor Dataset

The DSI dataset [26] is a dataset of measurements taken from a Wi-Fi interface, targeted
for experiments of indoor positioning based on Wi-Fi. The dataset was collected on the
first floor of Building 11 of the University of Minho, Portugal, back in May 2016, and it was
published by Moreira at al. [26] in 2020. The ground-truth locations, which were indicated
by the people taking the measurements are provided in a 2D reference system, whose origin
was chosen for convenience so that all measurements in the coverage area are non-negative.
The units used to describe locations in the reference system are meters. The RSSI values
read by each Wi-Fi AP were recorded, while nondetected APs were assigned an arbitrarily
low value (−150), selected by the designers of the data collection. The dataset also included
the timestamp of each fingerprint.

The authors provided two sets of samples. In the first one, which the authors call ‘radio
map’, samples were collected at a homogeneous grid of points, while the second one, named
‘trajectory’, was collected along the trajectory of a moving pedestrian. In the ‘radio map’ set,
in most locations, six sample fingerprints were collected, while in the‘trajectory’ set there
is a single fingerprint per location, by principle. The ‘radio map’ includes a total number
of 1369 samples in 230 distinct locations, while the ‘trajectory’ includes a total number of
348 samples in 348 distinct locations. Data from 157 APs are reported.

In the current work, we used a reduced version of the ‘radio map’ set, by randomly
selecting only one sample per location. The ‘trajectory’ set was divided into the two training
sets that train the positioning and the DAE model of the data-driven methods, respectively.
The reduced ‘radio map’ set was used to create the validation and test sets. Having samples
from the same location in both training sets would have been problematic for the data-
driven method, while having them in both the validation and the test sets would have
undermined the evaluation process. For the above reasons, the reduced dataset was used.
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3.1.4. MAN Indoor Dataset

The MAN dataset is a Wi-Fi dataset for testing indoor positioning systems. The dataset
was collected in 2006 in the corridors of an office building in the campus of the University
of Mannheim, and it was published in 2008 by King et al. [24,25]. The dataset contains
measurements from a single floor. The arbitrary origin of the reference system is chosen so
that non-negative values are provided for the ground-truth locations, in meters, which are
the units used.

The original dataset has a great volume of samples per location. For the same reason
discussed in Section 3.1.3 regarding the DSI dataset, we chose to reduce the dataset by
randomly keeping only one sample per sample per location. This leaves us with 166
samples in 166 locations. A total of 28 access points are identified in the dataset. We used
the same logic for dividing the data into two training sets, a validation and a test set, as
discussed in the previous datasets. More particularly, 70% of the data are used for training
(that are subsequently equally split into two training sets), 15% for validation, and 15%
for testing.

3.2. Existing Methods and Baselines Used

We now present the existing methods that are evaluated in the current work, as well as
the naive baselines that are used. The naive baselines set a lower bound of performance that
the proposed methods are expected to exceed. Moreover, as we report multiple evaluation
metrics, a broad overview is provided regarding the relative advantages of the proposed
methods and their superiority against simple baselines.

3.2.1. Existing Methods Studied

• Method by Lemelson et al. [7] (DAELemelson): We use the Best Candidate Set method
proposed Lemelson et al. [7], which is the main method that has been used as a
baseline by subsequent publications [3,8,10]. The method was presented in Section 2.1
and defined in Equation (4).

• Method by Marcus et al. [8] (DAEMarcus): This method proposed by Marcus et al. [8]
is presented as an improving modification of [7], which it uses as its baseline. The
method was presented in Section 2.1 and defined in Equation (5).

• Method by Zou et al. [4] (DAEZou): This simple and intuitive method proposed by
Zou et al. [4] was presented in Section 2.1 and was defined in Equation (6). As seen
in Tables 1 and 2, this work offered no comparison against a baseline and reported a
minimum evaluation in terms of evaluation metrics.

• Data-driven method (DAEDD): In this approach, a second training set, distinct from
the one used to train the positioning model, containing the same features (RSSI
values from the same APs), is used to train a regression model. We utilize the Extra
Trees method, as an indicative well-performing relevant algorithm. The data-driven
approach is studied, in variations, in several works [6,9,12,16,17].

• Data-driven method, incorporating the location estimation (DAEDDL): in this ap-
proach, the location estimate resulting from the positioning model is used as an
additional feature for the DAE determination. This approach was proposed by
Lemic et al. [16] and was used in subsequent works [9,17].

We implemented all relevant published methods that propose a Dynamic Accuracy
Estimation method, with the aim of performing a consistent comparison. The methods by
Beker et al. [27], Moghtadaiee et al. [3], and Nikitin et al. [5], propose offline methods of
AE, characterizing the expected error in various zones of the area of coverage, rather than
dynamically evaluating the expected error of each signal reception. Moreover, the methods
by Elbakly and Youssef [11] and Khandker et al. [22] are sequence-based methods that rely
on the distribution of the most recent position estimates to provide an accuracy estimate
regarding the next position estimate. These methods do not rely on a single signal reception
that can single-handedly produce a DAE, as do the methods that we focus on. Moreover,
their evaluation is not possible by means of common datasets, especially by their random
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separation into train, validation, and test sets, since they require a trajectory of consecutive
signal receptions, to produce an estimated trajectory accompanied by the corresponding
AE claims provided by the proposed methods. The works by Berkvens et al. [20,21] have
not formulated a method of determining a DAE, as they present negative results on their
hypothesized correlation between conditional entropy measures and positioning error.
Lastly, the interesting work by Li et al. [10], which claims an improvement over the method
of Lemelson et al. [7], did not provide a reporting of their proposed method that was
unambiguous and sufficient enough to allow its reproduction.

3.2.2. Baselines Used

There are four naive baselines that are used in this work. To produce the values for
these baselines, a set that remains otherwise unused was utilize. As mentioned earlier, the
available training data were split into two subsets: one for training the positioning model
and one for training the data-driven DAE model. This second training subset remains
unused by the workflow of all methods except the data-driven ones (DAEDD, DAEDDL).
Therefore, that subset is utilized here as a previously unseen set to determine the values of
the baseline methods. The four baselines used are the following:

• DAE constant mean (DAEcmn): The mean positioning error of a set that was unseen
in training time is used as the constant estimate of error.

• DAE constant median (DAEcmd): Similar to DAEcmn, with the difference that the
median error is used instead of the mean;

• DAE uniform random (DAEur): A randomly sampled value from a uniform distribu-
tion in the range between zero and the mean positioning error in a previously unseen
set is assigned to characterize the DAE of each estimate;

• DAE normal random (DAEnr): A randomly sampled value from a normal distribution
is assigned to characterize the DAE of each estimate. The distribution is centered at
the value of the mean positioning error in a previously unseen set, while it is scaled
by one quarter of the standard deviation of the positioning error in that set.

Similar ideas for baselines have been used in the related literature. Dearman et al. [6]
used a constant value baseline the 95th percentile of the training error, while they also
proposed an, otherwise unspecified, random value baseline as well. Lemelson et al. [7]
used a randomly sampled value from a uniform distribution in the arbitrarily selected
range between zero and ten meters. Lastly, Li et al. [10] also used a constant value baseline,
with a value selected by the authors ‘according to the statistics of preliminary data’ [10].

4. Results

In this section, we present the performance of all studied DAE methods and baselines in
the four datasets presented in Section 3.1. We used a train, validation, and test set separation,
using the same public set split from previous works, when that is available. Moreover,
we split the train sets into two, equally sized, randomly sampled, training sets (train1 and
train2) for the purposes of training the two models of the data-driven methods of DAE
determination. Therefore, the first training set train1 is used to train the positioning model,
while the second one train2 is used to train the DAE model, similarly to previous related
works [6,9,12,16,17]. It is noteworthy that train1 is used for the position estimation used
by all the methods. On the other hand, train2 is only used by the data-driven methods
of DAE determination, while it remains unused for the rule-based methods. In this way,
the positioning performance is the same for all the DAE methods that aim to estimate the
accuracy of the position estimates produced by the same positioning system. The set train2 is
also used as a previously unseen set to provide statistics for the baselines DAEcmn, DAEcmd,
DAEur, and DAEnr, which were introduced in Section 3.2.2. Lastly, it should be noted that
for each dataset the k parameter of all rule-based methods (Equations (4)–(6)) is tuned.

The Extra Trees method is the method used by the data-driven methods of DAE
determination as well as by the positioning model. Preliminary results show that this
method maintains a good performance across different datasets of various sizes, without
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requiring fine-tuning and optimization, as for instance a Neural Network approach. The
Extra Trees method constitutes a good representative candidate for the data-driven methods,
in their comparison with the rule-based methods and the selected baselines. A detailed
evaluation of various machine learning methods for selecting the optimal data-driven
approach for each particular dataset at hand is out of the scope of this work.

4.1. Tests on the Sigfox Dataset

This subsection presents the performance of the studied methods and baselines when
using the outdoor Sigfox dataset (Figures 2–7).

The obtained results are presented in Table 4, in which the best-performing method
for each metric is indicated in bold. A more intuitive representation, which facilitates
comparisons among methods, is provided by the radar plot of Figure 2. The results indicate
a consistent superiority of the data-driven approach (DAEDD and DAEDDL) across all
metrics of the absolute DAE error, with the exception of the median error achieved by
DAEZou. Regarding the rule-based methods, DAELemelson consistently achieves the lowest
performance, while DAEZou and DAEMarcus are relatively close, with DAEZou performing
better at the lower error percentiles while DAEMarcus does at the higher ones.

Table 4. The performance of all studied methods and baselines, based on various evaluation metrics,
on the validation set of the Sigfox dataset. The first five columns report statistics (mean, median, 75th
percentile, 90th percentile, and standard deviation) of the absolute DAE error. The next column “ov%”
describes the percentage of DAE overestimation (percentage of estimates where the actual location is
“inside the DAE circle”). The mean and median DAE error of the overestimated estimates are reported
under “ov_ mn” and “ov_ md”, respectively. The same statistics for the underestimation case are
provided under “un_ mn” and “un_ md”, respectively. Lastly, Pearson’s correlation coefficient and
Spearman’s (rank) correlation coefficient between the DAE values and the actual positioning errors
are reported in the last two columns. The best performance for each metric is highlighted in bold.

Method Mean Median 75th 90th std ov% ov_md ov_mn un_md un_mn Pearson Spear.

DD 232 127 247 528 347 67 116 188 160 319 0.68 0.74

DDL 217 114 235 504 346 66 103 175 137 297 0.69 0.78

Lemelson 403 236 537 1002 508 67 330 487 100 234 0.61 0.67

Marcus 268 139 356 664 393 70 186 272 49 258 0.63 0.77

Zou 268 113 335 714 424 64 155 279 62 250 0.58 0.76

CMN 362 288 401 560 432 71 282 266 325 597 0.00 NaN

CMD 318 180 266 736 493 52 158 150 263 501 0.00 NaN

UR 344 189 352 812 512 41 156 165 242 470 −0.02 0.00

NR 378 289 449 644 437 69 278 289 336 576 0.03 0.03

Figures 3 and 4 depict the distribution of the absolute DAE errors in the form of box-
plots and of Cumulative Distribution Functions (CDFs), respectively. These representations
facilitate the relative performance comparison of various methods in different points of the
error distribution, providing a good overview of said distribution.

In terms of error overestimation/underestimation, the data-driven methods (DAEDD
and DAEDDL) have smaller overestimation errors. Intuitively, this means that for the cases
where the estimated DAE circle around the position estimate include the ground-truth
position inside the circle, the data-driven methods achieve the minimum distance (in
average) between the ground truth position and the circle’s circumference. On the other
hand, DAEZou and DAEMarcus achieve a very low mean underestimation error. Figure 5,
which reports the CDF of the signed error, facilitates the overview of the two types of error.

In general, the results of the Sigfox dataset indicate that, with the exception of
DAELemelson, all methods outperform the baselines in terms of absolute DAE error of



Sensors 2022, 22, 1088 19 of 39

mean overestimation and mean underestimation. Two baselines present a low overesti-
mation error (DAEcmd and DAEur), a fact that can easily be explained by their definition.
More particularly, DAEcmd by definition provides a constant low value as its DAE estimate
and, thus, cannot exceed the actual positioning error by far. Similarly, DAEur provides a
uniformly random value in a low range of values.

Figure 6 depicts the relation between the actual positioning error (Errorpos) and the
one estimated by several DAE methods (DAEest). Moreover, the correlation coefficients of
Pearson and Spearman, which quantify the correlation of values and of ranks, respectively,
are reported in each subplot of Figure 6. The data-driven method DAEDDL outperforms the
rule-based ones in both correlation coefficients. The methods DAEZou and DAEMarcus have
a rank correlation coefficient that is better than DAEDD and close to the one of DAEDDL,
while their performance in Pearson’s coefficient is much lower than both the data-driven
methods. Intuitively, this can be interpreted as follows: DAEZou and DAEMarcus manage
to sort the position estimates (from more to less accurate) equally efficiently as DAEDDL,
without being as accurate as DAEDDL in the exact estimated value.

Figure 2. A radar plot of most of the relevant metrics for the DAE evaluation of various methods, on
the validation set of the Sigfox dataset. Methods are depicted in continuous lines while baselines are
in dashed lines. This plot depicts metrics and values of all methods, as reported in Table 4.

These observations regarding the correlations are also related with the results of
Figure 7. Figure 7 represents the performance of the positioning system, when a selection
of a subset of the most accurate position estimates is used. The selection takes place based
on the ranking of the estimates according to the accuracy indicator provided by the DAE
method. The horizontal axis reports the percentage of position estimates that are kept,
while the vertical axis reports the mean positioning error of the corresponding subset. All
methods, with the exception of DAELemelson, present a similar performance, of an almost
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monotonic reduction of positioning error, as smaller subsets of estimates are selected. This
fact indicates that all methods learn, to a certain extent, to differentiate location estimates
of higher or lower accuracy.

Figure 3. Boxplots indicating the distribution of the absolute DAE error of all studied methods and
baselines, in the validation set of the Sigfox dataset. The green triangles indicate the mean values
while outliers are depicted as black circles.

Figure 4. The Cumulative Distribution Function (CDF) of the absolute DAE error (in meters), for all
studied methods and baselines, in the validation set of the Sigfox dataset.
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Figure 5. The Cumulative Distribution Function (CDF) of the signed DAE error (in meters) for
all studied methods and one baseline, in the validation set of the Sigfox dataset. Negative values
correspond to DAE overestimating the error (“ground-truth position inside the DAE circle”), while
positive values correspond to DAE underestimating the error (“ground-truth position outside the
DAE circle”).

Figure 6. Scatter plots for five DAE methods and one baseline, depicting the DAE estimates against
the actual positioning error values. Pearson’s correlation coefficient as well as Spearman’s rank
correlation coefficient are indicated for each method. The validation set of the Sigfox dataset is used.
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Figure 7. In this plot, the horizontal axis represents the percentage of location estimates selected
based on their ranking according to the DAE values. The ranking of each DAE method is depicted
with a different color. The vertical axis reports the respective mean positioning error for each selected
portion of the original dataset. The values correspond to the validation set of the Sigfox dataset.

4.2. Tests on the LoRaWAN Outdoor Dataset

The results for the case of using the LoRaWAN dataset, which are presented in this
section (Figures 8–13) , are relatively similar to the results of the Sigfox dataset.

The detailed results presented in Table 5 and their representation in the form of the
radar plot of Figure 8 indicate that the data-driven approach, and particularly the DAEDDL
method, has the best performance in terms of the absolute error metrics. Similarly to the
result of the Sigfox dataset, an exception appears in median error achieved by DAEZou,
which is the lowest one. The rule-based methods of DAEZou and DAEMarcus show very
similar performance across most metrics of absolute error. Figures 9 and 10 show how
DAEZou and DAEMarcus perform better than DAEDD and DAEDDL in the lower error
percentiles while their performance significantly degrades in the higher quartiles. The
performance of DAELemelson is by far the worst, and it appears to perform worse than most
baselines in several metrics.

The pattern of the performance of all methods with respect to the correlation coef-
ficients (Figure 12) is quite similar to the Sigfox dataset as well. The data-driven meth-
ods (DAEDD and DAEDDL) outperform all rule-based ones when using Pearson’s coeffi-
cient. Nevertheless, when using the rank correlation coefficient of Spearman, DAEZou and
DAEMarcus perform slightly better than DAEDD and slightly worse than DAEDDL. This
indicates that the two rule-based methods (DAEZou, DAEMarcus) rank position estimates
according to their accuracy equally well in the data-driven methods, while they are less
efficient for estimating the exact values of the error. The performance of DAELemelson in
terms of correlation coefficients is not as distinctively low as it is in terms of absolute error.
This could mean that it could be possible to improve its performance in terms of absolute
error with a scaling correction.
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Table 5. The performance of all studied methods and baselines, based on various evaluation metrics,
on the validation set of the LoRaWAN dataset. The first five columns report statistics (mean, median,
75th percentile, 90th percentile, and standard deviation) of the absolute DAE error. The next column “ov%”
describes the percentage of DAE overestimation (percentage of estimates where the actual location is
“inside the DAE circle”). The mean and median DAE error of the overestimated estimates are reported
under “ov_ mn” and “ov_ md”, respectively. The same statistics for the underestimation case are
provided under “un_ mn” and “un_ md”, respectively. Lastly, Pearson’s correlation coefficient and
Spearman’s (rank) correlation coefficient between the DAE values and the actual positioning errors
are reported in the last two columns. The best performance for each metric is highlighted in bold.

Method Mean Median 75th 90th std ov% ov_md ov_mn un_md un_mn Pearson Spear.

DD 149 85 198 364 210 60 88 125 77 186 0.62 0.79

DDL 138 75 181 340 202 61 77 113 69 176 0.67 0.82

Lemelson 223 125 312 573 290 64 184 269 27 144 0.56 0.76

Marcus 148 70 201 384 220 59 81 142 51 158 0.64 0.81

Zou 151 67 204 394 228 58 78 148 51 157 0.62 0.80

CMN 232 210 259 392 232 65 210 181 211 326 0.00 NaN

CMD 216 145 208 496 268 50 139 113 210 319 NaN NaN

UR 229 143 255 551 285 202 101 109 212 316 −0.01 −0.01

NR 240 197 293 423 237 64 191 190 217 326 0.01 0.00

Figure 8. A radar plot of most of the relevant metrics for the DAE evaluation of various methods, on
the validation set of the LoRaWAN dataset. Methods are depicted in continuous lines while baselines
are in dashed lines. This plot depicts metrics and values of all methods, as reported in Table 5.
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Figure 9. Boxplots indicating the distribution of the absolute DAE error of all studied methods and
baselines, in the validation set of the LoRaWAN dataset. The green triangles indicate the mean values
while outliers are depicted as black circles.

Figure 10. The Cumulative Distribution Function (CDF) of the absolute DAE error (in meters), for all
the studied methods and baselines, in the validation set of the LoRaWAN dataset.

The selection of location estimates according to their ranking, as provided based on
the DAE estimates of the studied methods, presented in Figure 13, shows no significant
difference among methods. The DAEDDL method appears to be slightly better than the
rest in selecting accurate estimates, while the DAELemelson is slightly less well performing
than the rest, without a great margin though. This is related to the value of Spearman’s
correlation coefficient which is comparably high for all methods.
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In terms of error overestimation/underestimation, the rule-based methods have a
lower underestimation error than the data-driven ones, while in the overestimation error
the DAEDDL is the lowest. Figure 11 characteristically highlights how DAELemelson has high
overestimation values (“the circle radius being much bigger than the actual positioning
error”) while DAEDD has the highest underestimation error.

Figure 11. The Cumulative Distribution Function (CDF) of the signed DAE error (in meters) for all
studied methods and one baseline, in the validation set of the LoRaWAN dataset. Negative values
correspond to DAE overestimating the error (“ground-truth position inside the DAE circle”), while
positive values correspond to DAE underestimating the error (“ground-truth position outside the
DAE circle”).

Figure 12. Scatterplots for five DAE methods and one baseline, depicting the DAE estimates against the
actual positioning error values. Pearson’s correlation coefficient as well as Spearman’s rank correlation
coefficient are indicated for each method. The validation set of the LoRaWAN dataset is used.
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Figure 13. In this plot, the horizontal axis represents the percentage of location estimates selected
based on their ranking according to the DAE values. The ranking of each DAE method is depicted
with a different color. The vertical axis reports the respective mean positioning error for each selected
portion of the original dataset. The values correspond to the validation set of the LoRaWAN dataset.

4.3. Tests on the DSI Indoor Dataset

The results on the DSI dataset are quite interesting (Figures 14–19), as they differ from
the results of the previous datasets. The DSI dataset is an indoor one, with significantly
fewer data samples than the two outdoor datasets.

As can be witnessed in the results presented in Table 6 and Figure 14, the data-driven
methods (DAEDD and DAEDDL) perform significantly worse than the rule-based ones, in
terms of the absolute error metrics. The methods of DAEZou and DAEMarcus are the best-
performing ones, followed by DAELemelson. Figures 15 and 16 indicate how the rule-based
methods outperform the data-driven ones and all the baselines at all error percentiles.

Figure 18 depicts, in the form a scatterplot, the relation between the estimated and
the real error for all studied methods. The data-driven methods (DAEDD and DAEDDL)
present a very low correlation, with both coefficients. The rule-based methods report a
correlation coefficient that is higher than that of their counterparts but with a value of
marginal significance. More specifically, DAEZou and DAEMarcus achieve a 0.53 value in
Pearson’s coefficient, while DAELemelson achieves a 0.28. In terms of the rank correlation
coefficient, DAEZou and DAEMarcus report a value of 0.42, while DAELemelson reports a
value of 0.33.

The selection of location estimates based on the studied DAE methods presented in
Figure 19 indicates the same performance pattern as the correlation coefficient of Spear-
man. The two best-performing methods are those of DAEZou and DAEMarcus, followed by
DAELemelson, while the data-driven methods are the worst-performing ones. All methods
manage to select, up to a certain extent, estimates of a lower positioning error (without
the same impressive improvement in terms of the positioning error of the selected subsets)
than what was achieved in the outdoor datasets.
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Table 6. The performance of all studied methods and baselines, based on various evaluation metrics,
on the validation set of the DSI dataset. The first 5 columns report statistics (mean, median, 75th
percentile, 90th percentile, and standard deviation) of the absolute DAE error. The next column “ov%”
describes the percentage of DAE overestimation (the percentage of estimates where the actual location
is “inside the DAE circle”). The mean and median DAE error of the overestimated estimates is reported
under “ov_ mn” and “ov_ md”, respectively. The same statistics for the underestimation case are
provided under “un_ mn” and “un_ md”, respectively. Lastly, Pearson’s correlation coefficient and
Spearman’s (rank) correlation coefficient between the DAE values and the actual positioning errors
are reported in the last two columns. The best performance for each metric is highlighted in bold.

Method Mean Median 75th 90th std ov% ov_md ov_mn un_md un_mn Pearson Spear.

DD 3.72 2.89 4.46 9.66 3.54 16.0 0.72 1.04 3.24 4.21 0.15 0.25

DDL 3.69 2.90 4.32 9.40 3.53 15.0 0.81 1.08 3.20 4.15 0.16 0.25

Lemelson 3.14 2.29 4.16 7.16 2.84 52.0 2.33 3.14 2.29 3.15 0.28 0.33

Marcus 2.91 2.31 3.55 5.46 2.87 50.0 2.12 3.32 2.39 2.50 0.53 0.42

Zou 2.91 2.30 3.52 5.50 2.92 51.0 2.14 3.29 2.35 2.51 0.53 0.42

CMN 3.73 2.59 4.94 9.49 3.56 13.0 1.37 1.35 3.01 4.08 0.00 NaN

CMD 3.94 2.88 5.23 9.78 3.61 13.0 1.08 1.06 3.30 4.38 −0.00 NaN

UR 5.16 4.18 6.69 11.75 4.06 8.0 0.61 0.89 4.43 5.52 −0.18 −0.19

NR 3.80 2.60 5.07 9.60 3.55 16.0 1.24 1.21 3.25 4.28 0.00 −0.07

Figure 14. A radar plot of most of the relevant metrics for the DAE evaluation of various methods,
on the validation set of the DSI dataset. Methods are depicted in continuous lines while baselines are
in dashed lines. This plot depicts metrics and values of all methods, as reported in Table 6.
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Figure 15. Boxplots indicating the distribution of the absolute DAE error of all studied methods and
baselines, in the validation set of the DSI dataset. The green triangles indicate the mean values while
outliers are depicted as black circles.

Figure 16. The Cumulative Distribution Function (CDF) of the absolute DAE error (in meters), for all
the studied methods and baselines, in the validation set of the DSI dataset.

In the DSI dataset, the rule-based methods have an equal separation of errors (almost
50-50 for all methods) between those of overestimation and underestimation. On the other
hand, the data-driven ones overestimate the error only 15% of the time, and when they
do, it is only by a small margin. On the other hand, the data-driven methods have a
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significantly higher underestimation error compared to their counterparts. The distribution
of the signed error and the abovementioned observations can be observed in Figure 17.

Figure 17. The Cumulative Distribution Function (CDF) of the signed DAE error (in meters) for
all studied methods and one baseline, in the validation set of the DSI dataset. Negative values
correspond to DAE overestimating the error (“ground-truth position inside the DAE circle”), while
positive values correspond to DAE underestimating the error (“ground-truth position outside the
DAE circle”).

Figure 18. Scatterplots for five DAE methods and one baseline, depicting the DAE estimates against
the actual positioning error values. Pearson’s correlation coefficient as well as Spearman’s rank
correlation coefficient are indicated for each method. The validation set of the DSI dataset is used.
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Figure 19. In this plot, the horizontal axis represents the percentage of location estimates selected
based on their ranking according to the DAE values. The ranking of each DAE method is depicted
with a different color. The vertical axis reports the respective mean positioning error for each selected
portion of the original dataset. The values correspond to the validation set of the DSI dataset.

4.4. Tests on the MAN Indoor Dataset

The last studied dataset is the indoor MAN dataset (Figures 20–25). The performance
pattern of the studied methods in this dataset is the opposite of that of the previously
studied DSI dataset. More specifically, the two data-driven methods clearly outperform all
rule-based ones by a great margin, in all metrics of absolute error. The boxplot of the error
distributions of Figure 21 as well as the CDF of Figure 22 clearly reveal this fact. Moreover,
they also reveal the fact that the best-performing methods do not clearly outperform the
naive baselines in terms of the absolute error metrics.

Figure 24 depicts the relation between the estimated and the real error for the 25 sam-
ples of the validation set. Understandably, the sample size is very small for a reliable
determination of an actual correlation. Having said that, we observe that the data-driven
methods have a Pearson’s correlation coefficient that is above 0.6, while for the other
methods, the coefficient drops below 0.4. On the other hand, the rule-based methods score
better than the data-driven ones in terms of the rank correlation coefficient, although the
fact that the values are below 0.5 does not reveal a reliable correlation. In this dataset, the
selection of location estimates based on the studied DAE method (Figure 19) does not seem
to provide any systematic improvement on any of the studied DAE methods.

In the MAN dataset, the rule-based methods overestimate the error in more than 85%
of the time but with much lower overestimation error compared to the data-driven methods.
The underestimation error of all methods is rather low, limited by the low positioning
errors in this data set. Although all methods have a rather low underestimation error,
the rule-based methods show a slightly better performance, with DAEMarcus having the
lowest error.
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Figure 20. A radar plot of most of the relevant metrics for the DAE evaluation of various methods,
on the validation set of the MAN dataset. Methods are depicted in continuous lines while baselines
are in dashed lines. This plot depicts metrics and values of all methods, as reported in Table 7.

Table 7. The performance of all studied methods and baselines, based on various evaluation metrics,
on the validation set of the MAN dataset. The first 5 columns report statistics (mean, median, 75th
percentile, 90th percentile, and standard deviation) of the absolute DAE error. The next column “ov%”
describes the percentage of DAE overestimation (percentage of estimates where the actual location is
“inside the DAE circle”). The mean and median DAE error of the overestimated estimates are reported
under “ov_ mn” and “ov_ md”, respectively. The same statistics for the underestimation case are
provided under “un_ mn” and “un_ md”, respectively. Lastly, Pearson’s correlation coefficient and
Spearman’s (rank) correlation coefficient between the DAE values and the actual positioning errors
are reported in the last two columns. The best performance for each metric is highlighted in bold.

Method Mean Median 75th 90th std ov% ov_md ov_mn un_md un_mn Pearson Spear.

DD 1.39 1.56 1.90 2.47 0.88 48.0 1.69 1.57 1.08 1.22 0.60 0.20

DDL 1.37 1.33 1.88 2.17 0.84 44.0 1.65 1.65 0.88 1.15 0.63 0.31

Lemelson 4.14 3.77 5.45 8.29 3.26 84.0 4.16 4.65 1.08 1.44 0.23 0.18

Marcus 2.85 2.16 3.99 5.60 2.29 84.0 3.05 3.22 0.87 0.89 0.39 0.46

Zou 2.89 2.21 3.67 5.77 2.28 84.0 3.02 3.26 0.96 0.94 0.39 0.45

CMN 1.52 1.07 1.91 2.68 1.38 56.0 0.91 1.35 1.17 1.73 NaN NaN

CMD 1.52 1.49 2.13 2.30 1.47 44.0 1.25 1.14 1.58 1.81 NaN NaN

UR 2.94 2.98 3.87 4.68 1.75 20.0 1.07 0.90 3.42 3.45 0.07 −0.09

NR 1.54 1.28 1.87 2.15 1.47 48.0 1.44 1.51 1.08 1.58 −0.03 0.11
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Figure 21. Boxplots indicating the distribution of the absolute DAE error of all studied methods and
baselines, in the validation set of the MAN dataset. The green triangles indicate the mean values
while outliers are depicted as black circles.

Figure 22. The Cumulative Distribution Function (CDF) of the absolute DAE error (in meters), for all
the studied methods and baselines, in the validation set of the MAN dataset.
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Figure 23. The Cumulative Distribution Function (CDF) of the signed DAE error (in meters) for
all studied methods and one baseline, in the validation set of the MAN dataset. Negative values
correspond to DAE overestimating the error (“ground-truth position inside the DAE circle”), while
positive values correspond to DAE underestimating the error (“ground-truth position outside the
DAE circle”).

Figure 24. Scatterplots for five DAE methods and one baseline, depicting the DAE estimates against
the actual positioning error values. Pearson’s correlation coefficient as well as Spearman’s rank
correlation coefficient are indicated for each method. The validation set of the MAN dataset is used.
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Figure 25. In this plot, the horizontal axis represents the percentage of location estimates selected
based on their ranking according to the DAE values. The ranking of each DAE method is depicted
with a different color. The vertical axis reports the respective mean positioning error for each selected
portion of the original dataset. The values correspond to the validation set of the MAN dataset.

5. Discussion

In this section, we proceed in a discussion of the results presented in Section 4. The
intention is to extract some generic observations regarding the performance of the studied
methods in different settings, to foster a better understanding of the studied methods and
of their evaluation, and to facilitate the development of future works on this topic or the
future utilization of the studied methods.

A first remark is that the data-driven methods, and particularly the DAEDDL that
utilizes both the raw signal receptions and the location estimate produced by the positioning
system, appear to be the best-performing ones in terms of absolute error metrics and in
terms of achieving a good correlation with the actual positioning error values they aim
to estimate. The case of the indoor DSI dataset is an exception to this observation, as the
rule-based methods prevail in that setting. In the DSI dataset, the data-driven methods are
hardly distinguished, based on their performance, from the naive baselines. This exception
could be due to the small number of training samples with which the DAE model is trained.
Nevertheless, in the MAN dataset that has even fewer data, the data-driven methods
succeed in outperforming their counterparts.

Focusing on the correlation coefficient metrics, an interesting behavior can be observed.
In the three datasets in which the data-driven methods perform generally better (Sigfox,
LoRaWAN, and MAN datasets), the performance of the data-driven methods in Pearson’s
coefficient is distinctively higher than that of the rule-based methods. On the other hand,
the performance of the rule-based methods (especially for DAEMarcus and DAEZou) in
terms of Spearman’s rank correlation coefficient is really close to that of DAEDDL and often
slightly better than that of DAEDD. This suggests that the rule-based methods manage
to rank the position estimates based on their accuracy equally well as do the data-driven
methods. This is also witnessed in Figures 7, 13, 19 and 25, where the positioning error of
selected subsets of location estimates based on various DAE methods does not suggest a
clear and systematic superiority of any DAE method compared to the others. By contrast,
despite the big differences in terms of absolute errors among the studied methods, the
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estimate selection process reveals a very similar pattern for most methods, with only
DAELemelson having, at times, a rather lower performance than the rest.

The above observation regarding the rank correlation coefficient can lead us to two
interesting conclusions. Firstly, the fact that the rule-based methods manage to efficiently
rank estimates, while they do not perform equally well in estimating the exact error value,
suggests that they could potentially be improved by the introduction of a scaling factor or
of a nonlinear transformation of their output. This process could require some calibration
data from the deployment of interest, so that the estimated values would be calibrated to
the particularities of the setting at hand. Such a transformation of the output values of
these methods could potentially close the performance gap between the two categories of
DAE methods, in terms of absolute error metrics and of Pearson’s coefficient. Practically, in
the current work, we performed another kind of calibration, by tuning for the optimal k
value (Equations (4)–(6)) of all studied rule-based methods. The calibration of a potential
transformation step could become part of the same tuning process. Secondly, the fact that
the two categories of methods perform similarly well in the estimate selection process
encourages choosing the option of the rule-based methods for such use cases, even at their
current form (without the suggested improvements), since they do not require an additional
volume of training data for their operation as the data-driven methods do. Nevertheless,
in cases where there is a profusion of available data and/or a strict requirement for the
selection of only the most accurate estimates, the DAEDDL method appears to be the
best option.

A comparison of the two data-driven methods (DAEDD and DAEDDL) reveals that in
all three datasets where they perform well, DAEDDL systematically outperforms DAEDD
across all metrics. Therefore, in cases were DAE could be learned from a sufficient amount
of available training data, the addition of the location estimate appears to systematically
improve the performance, as is also suggested in previous works [9,16,17]. Nevertheless,
it should be noted that methods such as the ensemble methods (such as the Extra Trees
method used in the current work) or neural network architectures, manage to handle
incommensurable features, such as RSSI values and locations that the DAEDDL method
utilizes. On the other hand, when using methods such as kNN, one needs to carefully
manage the integration of such incommensurable features.

When comparatively evaluating the rule-based methods, the results allow us to con-
firm the claim made by Marcus et al. [8] in their work. The method that Marcus et al.
proposed is indeed an improvement over their baseline, which was DAELemelson. Inter-
estingly, both DAEMarcus and DAEZou manage to systematically outperform DAELemelson
across all metrics and all datasets, with the exception of a few cases of underestima-
tion/overestimation error metrics, which are not as relevant when examined in isolation.
The methods DAEMarcus and DAEZou show a similar performance in several metrics across
all studied datasets.

From the results of this study, it appears that the rule-based methods have a higher
tendency toward overestimation errors than their counterparts, while the data-driven
methods appear to perform worst when evaluated based on the underestimation error. It
would be very interesting to evaluate this performance again with the potential introduction
of the scaling step to the rule-based methods, which was suggested earlier in this section.

As a general remark, we consider it imperative for designers of IPS to evaluate the
relative merits of all methods at a certain setting, when aiming to select one of them for
a given deployment of an IPS. The characteristics of the deployment and the volume of
the available data can affect the performance of the studied methods. Moreover, according
to the use cases that are aimed, different evaluation metrics might be more relevant than
others. For instance, Spearman’s correlation coefficient could be used for scenarios where
an estimate selection is desired, while Pearson’s correlation coefficient could better capture
the efficient tracking of the error values by the DAE values. Similarly, for applications that
wish to raise a flag or trigger an alarm in certain cases, the appropriate prioritization of
the type of error (overestimation versus underestimation error) is imperative. Overall, the
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current work, and its code implementation that is openly shared [23], facilitates the quick
prototyping of all relevant, previously published, reproducible works, with a variety of
evaluation metrics.

6. Conclusions and Future Work

In this work, we presented a benchmark of the methods of Dynamic Accuracy Esti-
mation of positioning systems. Initially, we provided a comprehensive overview of the
presented works that are related with the determination of accuracy estimation methods.
We defined a consistent terminology, which was used to present the different methods in
a way that their similarities and differences become clear. We considered it imperative
to homogenize the different ways with which the previous works were presented, in a
common framework. The rare use of previous methods as baselines and the diverse set
of evaluation metrics chosen among the relevant literature were clearly highlighted. To
address these issues, this work discusses in detail and uses all relevant evaluation metrics,
in four public datasets. Moreover, the current work is the first one that provides the code
implementation of DAE methods. This facilitates the interested reader to use a dataset of
their choice and to evaluate all relevant presented methods of DAE determination based
on the metrics that suit their use case.

We hope to facilitate the research community in researching these methods, in con-
sistently and reproducibly comparing existing and new methods, and in establishing the
state of the art of the problem at hand. We hope that this benchmarking work functions as
a steppingstone, toward better DAE methods that are holistically evaluated. We also aim to
assist IPS designers to easily perform a comparison of the implemented methods and to
select the method that best fits their setting and their use case requirements.

Regarding future directions, we are interested in exploring the idea introduced in
Section 4 in the discussion of the results. The idea suggests that since the rule-based
methods perform well in ordering the position estimates according to their estimated
error but fail to accurately estimate the value of that error, a tuned transformation of
their output could potentially improve their performance. Moreover, we intend to investi-
gate ways in which we could consistently compare the methods studied in this work, with
sequence-based methods, such as those of Elbakly and Youssef [11] and Khandker et al. [22].
Furthermore, while the current manuscript was under the finalization procecss, an interest-
ing work was presented by Antonio Perez-Navarro [44] in the IPIN 2021 conference, which
used a theoretical approach utilizing error propagation theory to approximate the error
of a single point when using the kNN method for positioning. We intend to further study
this work, in the context of the future utilization of the presented benchmark framework.
Lastly, we intend to explore new methods of DAE determination, being facilitated by the
benchmarking infrastructure of the current work, for a quick and holistic evaluation.
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The following abbreviations are used in this manuscript:

GNSS Global Navigation Satellite Systems
GPS Global Positioning System
DAE Dynamic Accuracy Estimation
LBS Location-Based Services
IoT Internet of Things
LPWAN Low-Power Wide-Area Networks
IPS Indoor Positioning System
AE Accuracy Estimation
kNN k-Nearest Neighbors
NN Neural Network
DSF Distance between Similar Fingerprints
SVM Support Vector Machines
IPIN Indoor Positioning and Indoor Navigation
CMN Constant Mean
CMD Constant Median
UR Uniform Random
NR Normal Random
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