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Abstract: This paper proposes a new technique for performing 3D static-point cloud registration
after calibrating a multi-view RGB-D camera using a 3D (dimensional) joint set. Consistent feature
points are required to calibrate a multi-view camera, and accurate feature points are necessary to
obtain high-accuracy calibration results. In general, a special tool, such as a chessboard, is used
to calibrate a multi-view camera. However, this paper uses joints on a human skeleton as feature
points for calibrating a multi-view camera to perform calibration efficiently without special tools.
We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D joint set
obtained through pose estimation as feature points. Since human body information captured by the
multi-view camera may be incomplete, a joint set predicted based on image information obtained
through this may be incomplete. After efficiently integrating a plurality of incomplete joint sets into
one joint set, multi-view cameras can be calibrated by using the combined joint set to obtain extrinsic
matrices. To increase the accuracy of calibration, multiple joint sets are used for optimization through
temporal iteration. We prove through experiments that it is possible to calibrate a multi-view camera
using a large number of incomplete joint sets.

Keywords: point cloud; 3D registration; RGB-D; joint set; pose estimation

1. Introduction

Recently, RGB-D sensors (cameras) combining RGB and depth sensors have become
common and are widely used in various fields. The RGB-D camera helps to accurately
and quickly extract the shape of an object and the 3D structure of the surrounding environ-
ment. RGB-D cameras have developed various fields such as SLAM and navigation [1,2],
tracking [3,4], object recognition and localization [5], pose estimation [6], and 3D model
registration [7]. The color components of the RGB-D camera are obtained using the RGB
camera. On the other hand, depth information is obtained using various methods such
as time-of-flight (ToF) cameras, laser range scanners, and structured-light (SL) sensors [8].
RGB-D cameras include the Azure Kinect of Microsoft [9], the Phoxi 3D of Photoneo [10],
the Zivid Two of Zivid [11], the Helios of Lucid [12], and the RealSense of Intel [13]. These
cameras have various properties (operational time, depth accuracy, cost, sensing method)
according to their intended usage. Since human pose estimation is used for extrinsic cali-
bration, the sensing method of using a laser is not suitable for this study, although it has
a high degree of depth accuracy. The temporal calibration and registration for humans
in motion require a high frame rate to capture and calculate depth map and RGB image,
so a camera that uses a long operation time is not suitable for this study. For reliable and
accurate scene representation using RGB-D cameras, intrinsic calibration of each camera
and extrinsic calibration between two sensors are required. Recently, intrinsic parameter
sets are being determined in advance, and these values are stored in non-volatile memory
inside the device. In applications that perform imaging using multiple RGB-D cameras,
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such as real-time scanning/integration and capturing 3D geometry models, extrinsic cali-
bration between multiple cameras is very important [14]. Since RGB-D cameras acquire
both RGB and depth information, calibration between multi-view RBG-D cameras uses
depth information, unlike the classical method such as multi-view camera-based calibration
using only RGB information.The multi-view installation implies the existence of multiple
cameras and simultaneous shooting. When performing calibration using RGB information
and depth information simultaneously, the depth information generation method and
process are considered [15]. To this end, we use a 3D human joint set (skeleton) as feature
points to calibrate multi-view RGB-D cameras.

Various studies have been conducted to obtain accurate camera parameters. Methods
can be classified into a structured light-based depth-sensing method [16–18], and a ToF
camera-based calibration method for depth sensing [19–22]. Considering noise removal,
pattern generation, sensor quality, depth error prediction and correction, and thermal and
environmental distortion [23] for successful calibration, it is not easy to clearly define the
scope of the calibration technique. For calibration, there are methods of using a chessboard
and using feature points of an image without using a chessboard. However, once a
multi-view camera system is installed, it is very cumbersome to recalibrate due to the
physical movement of the camera. In using a chessboard, it is necessary to bring a 2D or
3D chess board and perform a calibration after capturing an image while moving. The
method of finding feature points after photographing an object and performing calibration
using the feature point has the advantage of not requiring a chessboard. Still, there is a
difficulty in finding an exact and consistent feature point. Moreover, it has properties that
change the result. The human pose has been considered a good candidate for the feature
point. The various approaches to calibration based on the human pose estimation have
been researched. Lee et al. proposed a robust registration method of multiple RGB-D
cameras. They used a human-body tracking system with the Azure Kinect SDK to estimate
a coarse global registration between cameras. To overcome global registration errors, they
propose a registration refinement procedure for removing calibration mismatches [24].
Takahashi et al. proposed an algorithm for estimating 3D human poses from multi-view
videos captured by unsynchronized and uncalibrated cameras by relaxing the reprojection
errors to avoid optimizing to noised observations and introduce a geometric constraint
on the prior knowledge that the reference points consist of human joints [25]. Yoon et al.
studied a targetless method for calibrating the extrinsic parameters among multiple cameras
and a LiDAR sensor for object pose estimation, which exploited any objects of unspecified
shapes in the scene to estimate the calibration parameters in a single-scan configuration [26].
In these previous works, there was no attempt at temporal calibration and no application of
3D reconstruction with which to verify the numerical accuracy of extrinsic parameters in the
application. This paper develops a new methodology for temporally calibrating multiple
cameras, randomly located in space without a special calibration board, using joints as
feature points [27], and then reconstructing point clouds captured from multiple cameras.
Especially, we use incomplete skeletons for extrinsic calibration and enhance the extrinsic
parameters by temporally updating them using gradient descent of the loss function.

This paper is organized as follows. First, Section 2 describes obtaining a camera
transformation matrix based on an optimization function used for registration between joint
sets. Then, Section 3 proposes a calibration algorithm. Section 4 shows the experimental
results, and Section 5 concludes our thesis.

2. Multi-View Extrinsic Calibration Based on Human Pose

This section describes the multi-view camera system we use and how to obtain extrin-
sic parameters using a human pose.

2.1. Multi-View Camera System

The multi-view camera system places several cameras at arbitrary positions in space
and scans an object. To generate a 3D volumetric model, we install eight cameras in space.
Eight cameras face the center of the space; four cameras below and four cameras above.
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Since extrinsic calibration is performed for multi-view cameras, the cameras do not need
to be installed in precise locations. Figure 1 shows the layout of the multi-view camera
system we use. The cameras are arranged in consideration of the type and performance of
the RGB-D sensor and the size of an object to be scanned. The maximum scanning quality
and the number of frames per second depend on the RGB-D sensor’s characteristics. We
discuss the RGB-D sensor using Azure Kinect, a relatively low-cost ToF sensor [28].

Figure 1. Distributed camera system for scanning photorealistic 3D volumetric model based on
point cloud.

2.2. Extrinsic Calibration

First, a 3D human pose of Figure 2 is used to find a matching point in an RGB image
input from multiple cameras. Figure 1 gives an example of a human, and Figure 3 is the
result of displaying the joints for feature points [29]. Since the performance of a pose
estimation based on deep learning is sensitive to the condition of the object, the feature
point by the pose estimation may have lower accuracy than the case of the special board.
In order to obtain 3D coordinates of the feature points, calibration between the depth and
the RGB image is performed, and 3D coordinates of the matching points are obtained from
the depth map [29].

Figure 2. Joints as feature points in human pose estimation.
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(a) (b)

Figure 3. Initial parameter generation through joint set selection and primary joint alignment
(a) before calibration, (b) after calibration.

Next, we use a method for obtaining extrinsic parameters of each camera using match-
ing coordinates in point cloud sets for registration [30]. These parameters are calculated
using an optimization algorithm such that the squared Euclidean distance (SED) of the
matched coordinates is minimal. The transformation matrix of the coordinate system
includes parameters for rotation angles and translation values for each of the x, y, and
z axes. After setting one camera as the reference coordinate system, the parameters for
converting those of other cameras to the reference coordinate system are obtained. Xre f
represents the coordinates of the reference camera and Xi represents the coordinates of the
remaining cameras. Ri→re f and ti→re f represent the rotation and translation matrix from
each camera to the reference camera. The initial Ri→re f is a unit matrix and ti→re f is all zero.
When Equation (1) is applied with the initial parameter, the result is Xi, and converges to
Xre f during optimization [31].

X
′
i = Ri→re f Xi + ti→re f (1)

The loss function to be optimized is the average value of SED of Xre f and X
′
i . Equation (2)

represents the error function.

fError =
1
N

N

∑
j=0
‖Xre f (j)− X′i(j)‖2

2 (2)

The process of differentiating the loss function with respect to the coordinate transfor-
mation parameters and updating the parameter to minimize the function can be expressed
as Equation (3). α is a learning rate constant, and a value of 0.01 was used. Pn+1 and Pn are
parameters in the n+1 and n-th iterations, respectively.

Pn+1 = Pn − α
∂ fError

∂Pn
(3)

When the parameters of each camera are obtained after the convergence of Equation (3),
the transformation from the camera coordinate system to the world coordinate system
can be performed using Equation (4), and the point cloud can be aligned based on the
unified coordinate system. represents world coordinates (reference camera coordinates),
and represents camera coordinates [30,31].

PC = R× PW + t (4)
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3. Proposed 3D Static Reconstruction

In this section, we propose a graphics pipeline that can reconstruct a point-cloud-based
3D model using a 3D joint set in a multi-view camera system. Our system assumes that
the cameras are fixed at some positions for all frames, and the human moves between
the cameras.

3.1. Extrinsic Calibration

Figure 3 shows a conceptual diagram of a transformation matrix between cameras
using a 3D joint set in a multi-view camera system environment. This paper uses an
Azure Kinect as the RGB-D sensor, and the human pose is estimated using Azure Kinect’s
SDK [32] and MediaPipe [33]. Joints acquired based on each camera coordinate system
are not aligned in space. However, if the coordinate transformation matrix between the
two cameras is obtained using the method described in Section 2, the result shown in
Figure 3b can be obtained. In the process of matching the joint set predicted by the two
cameras, a coordinate transformation matrix between the two cameras is obtained, and the
two cameras can be aligned based on one common world coordinate system.

Next, the proposed extrinsic calibration will be described. Both methods can output a
3D joint set. However, it does not matter which pose estimation algorithm is used for each
camera, and it does not matter if a different algorithm is used for each camera. Therefore,
the joint set obtained for each camera may not have all the joints. If the estimated joint set
has a subset of the entire joints, there is no problem performing calibration using only the
acquired joints. The external calibration algorithm proposed by us is summarized using
the flowchart in Figure 4.

Figure 4. Proposed joint-based extrinsic calibration.

A reference joint set is first selected among the joint sets. Although the selection of
the reference joint set does not affect the overall performance much, in general, one of the
joint sets with the most joints is selected as the reference joint set. next, the target joint set is
chosen in order that many joints overlap with the joints of the reference joint set. These two
joint sets are first aligned with respect to their primary joints (vertebra and pelvis). The
primary joints are defined as the two or three vertebra and pelvis joints. The used pose
estimation algorithm decides the number of the joints because pose estimation algorithms
may have different human skeletons. Next, based on the optimization function described
in Section 2.2, the coordinate transformation parameters of the camera are obtained while
matching two joint sets. This process is repeatedly performed for all joint sets, and this
process is repeatedly performed for many frames until it converges to a constant error
value. Finally, when the error converges, the parameter is determined as the final coordinate
transformation parameter. The process of optimizing extrinsic parameters using multiple
frames is explained using Figure 5.

In Figure 5, the proposed technique for multiple frames is visually expressed. Using a
joint set in multiple frames, each camera’s external parameters (Param#N) are obtained.
Each camera can capture only a part of the human depending on the location where it is
installed and can estimate only some joints of the joint set. For this reason, the number of
the estimated joints as the feature points for extrinsic calibration can be variable, so it does
not matter that the estimated joints are incomplete for each human. If the number of the
estimated joints is less than the minimally required feature points (four joints in this paper),
the skeleton should not be used in extrinsic calibration. If the joint set of a certain camera
does not satisfy the minimum requirement, the calibration for this camera can be temporally
continued in the next frames until the extrinsic parameter of the corresponding camera is
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estimated. As explained earlier, the extrinsic calibration is performed with overlapping
joints of multiple frames. Joint sets without primary joints are excluded from calibration,
and if there are fewer than four overlapping joints, calibration is performed after selecting
a new reference joint set. After the finally acquiring and selecting the external parameters
(Param#N), 3D static registration is performed using the joint set information predicted
from each camera.

Considering the case of two cameras, 3D human pose is estimated from two 3D
sensors. The joints of the joint set obtained through this are regarded as feature points,
and calibration is performed using 3D joint sets obtained from two 3D sensors. As for the
calibration result, the 3D pose estimation used depends on the quality of the estimated
3D joint set. To alleviate this dependence, this process should be repeated over time. In
addition, an algorithm that compensates for estimation failures that irregularly occur in 3D
pose estimation results may be needed.

Figure 5. Temporal camera selection and parameter updating for the joint-based extrinsic calibration.

3.2. 3D Registration

This section describes the overall process for 3D registration. When the transformation
parameters of the multi-view cameras are previously obtained, 3D registration may be
automatically performed. As described above, to perform calibration using a joint set, we
use several frame sets. First, joint sets for these multiple frame sets are estimated (initial
joint set generation). Then, joints of joint sets estimated from multiple frames are selected
as feature points (human pose-based feature-point generation). First, one frame set is
selected from among several frame sets. In this frame set, a joint set obtained from one
camera is selected as a reference joint set, and one of the remaining joint sets is selected as a
target joint set. When selecting two joint sets, at least three or more joints, including the
reference joint, should satisfy the corresponding condition. Next, the two selected joint sets
are aligned based on the primary joint. Through this, transformation parameters between
the two cameras are obtained. This process is repeatedly performed for several frames and
is performed until the transformation parameters converge (extrinsic calibration). Since the
unaligned multi-view camera system is distributed at an arbitrary location, all or parts of
the object may be included in the image acquired by each camera according to the size or
location of the object. In the worst case, all cameras may capture only a subset of objects.
In the case of a multi-view camera, as the object moves, the part of the object that each
camera can capture may vary. In this case, extrinsic calibration is performed only with
partial information captured by each camera. When extrinsic calibration is completed, a 3D
model is generated by integrating the 3D point cloud using the transformation matrix (3D
static registration) [34]. In Figure 6, the 3D static reconstruction algorithm is depicted.

Through the proposed calibration process, all cameras except one at the reference
position have optimized coordinate transformation parameters [Ri→re f ∗ Si→re f | ti→re f ],
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where Si→re f is a scaling matrix. These extrinsic parameters are applied to the point cloud
obtained from each camera to align with the reference coordinate system, which is a simple
affine transformation. This process is defined as 3D registration. Equation (5) is a process of
transforming the point cloud to the reference coordinate system by applying the coordinate
transformation parameter [Ri→re f ∗ Si→re f | ti→re f ] to the point cloud generated by the ith
camera. Here, PCi is the coordinates of the point cloud obtained from the ith camera, and
PCre f is the coordinates of the point cloud transformed to the reference coordinate system.
When all point clouds acquired by RGB-D cameras are aligned regarding the reference
coordinate system, a 3D volumetric model by multi-view RGB-D cameras is generated. The
result of transforming the coordinates using the extrinsic parameter corresponds to the 3D
static registration result. This result is the same as the generated 3D model.

PCre f = [Ri→re f ∗ Si→re f | +ti→re f ]PCi (5)

Figure 6. The proposed algorithm for 3D static registration.

4. Experimental Result

This section describes the experimental results of the proposed calibration technique
for human pose-based 3D static registration. First, the experimental environment is intro-
duced, and then the numerical results of the calibration for each camera are shown. Finally,
the effectiveness of the proposed method is demonstrated by showing the 3D registration
results generated using the camera matrix obtained through calibration.

4.1. Environment

Figure 7 shows a picture of the experimental environment. For the experiment,
eight Azure Kinects with a total of eight ToF (time of flight) RGB-D (depth) sensors were
used. The camera can be located in various positions, and we experimented by placing
two cameras on four sides. Eight cameras are input to one workstation through an optical
cable-type USB 3.0 interface. Our system could operate the 3D registration in real-time
(30 frames per second).

(a) (b)

Figure 7. Experimental environment (a) capturing, (b) camera system.

4.2. 3D Pose Estimation Result

The resulting images captured by each camera and the extracted joint set are summa-
rized in Figures 8 and 9. We estimated human poses for two humans using two different
methods (SDK of Azure Kinect, MediaPipe). Figure 8 is the result of human pose estimation
using the SDK provided by Azure Kinect, and Figure 9 is the estimation result using the
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deep learning solution provided by MediaPipe. Both methods can estimate 3D pose using
depth in common. In the two figures, (a) is the RGB image output from eight cameras, (b)
is the depth images, and (c) is the result estimated using (a) and (b). Since the two methods
express the joint set differently, Figures 8c and 9c show different shapes. An important
point to observe in Figures 8c and 9c is that each camera cannot capture the entire object
(person). According to the relative position of the camera and the object (person), each
camera can only capture a part of the person and can estimate only the joint set of part of
the person. The proposed method performs calibration using the joint of an incomplete
joint set with only partial information as feature points.

(a)

(b)

(c)

Figure 8. 3D pose estimation result using the SDK of Azure Kinect (a) RGB image, (b) calibrated
depth image, (c) estimated joint set in eight view-points.

(a)

(b)

(c)

Figure 9. 3D pose estimation result using the deep learning of MediaPipe (a) RGB image, (b) calibrated
depth image, (c) estimated joint set in eight view-points.

4.3. Extrinsic Calibration Result

Figure 10 shows the optimization process of camera parameters using the joints of
the joint set obtained from 8 viewpoints. After the optimization is completed through the
process shown in Figure 10, 3D registration is possible in real-time using the 3D point
cloud. Considering the optimization process of viewpoint 1 (reference) and viewpoint 2
(target), a transformation matrix is a obtained so that the overlapping joints of viewpoint 1
and viewpoint 2 can be overlapped in 3D coordinates in space. That is, an optimized
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matrix that can move the joint of viewpoint 2 to viewpoint 1 is obtained. The proposed
algorithm performs optimization to obtain camera parameters for multiple frames. The
experiment was conducted to stop the optimization when the error for the transformation
result between the two viewpoints by the camera matrix obtained through optimization
convergence to a constant value. In the case of the Azure Kinect in Figure 10a, optimization
was carried out over about 30 frames (about 1 min). The position error by the transformation
matrix finally converges to an average of 3.48 mm. In the case of Azure Kinect in Figure 10b,
optimization progressed over about 74 frames (about 2.5 min). Finally, the position error by
the transformation matrix converged to an average of 4.42 mm. This experiment confirmed
that a transformation matrix with an error of about 3 to 4 mm could be obtained regardless
of the type of 3D human pose estimation algorithm. In Figure 10, the frame numbers
corresponding to the x-axis represent frames for significant updates.

(a) (b)

Figure 10. Optimization result of camera parameter based on joints of human 3D joint set (a) SDK of
Azure Kinect, (b) deep learning model of MediaPipe.

Before calibration, joint sets generated from eight viewpoints are each scattered in
space. This is because the cameras are not calibrated. By merging eight joint sets into one
joint set, the cameras are aligned in a common coordinate system. That is, the joint set aligns
the camera, and the camera aligns the joint set again. Figure 11 shows the result of aligning
the objects of Figure 8 through the calibration process. When the 30th frame is reached, the
positions of the joint sets converge to almost the same three-dimensional coordinates. That
is, the camera transformation matrix in the 30th frame is practically optimized.

(a) (b) (c) (d)

Figure 11. Progress of calibration and 3D joint set estimation according to frame. Each raw corre-
sponds to a view-point of a 3D model. (a) initial joint sets, (b) joint sets in the 15th frame, (c) joint sets
in the 21st frame, (d) joint sets in the 30th frame.

Figure 12 shows the result of aligning the objects of Figure 9 through the calibration
process. When the 74th frame is reached, the positions of the joint sets converge to almost
the same three-dimensional coordinates. That is, the camera transformation matrix in the
74th frame is practically optimized. For ease of calibration and optimization, the face,
fingers, and feet joints were excluded from the calculation.
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4.4. Extrinsic Calibration Result

This section describes the 3D registration results after multi-view extrinsic calibration.
3D registration was performed using the Charuco board, for which we already know
the size and all 3D information. Figure 13 shows the 3D registration results using the
3D Charuco board. Figure 13a is the result before calibration, and Figure 13b–d is the
3D registration results using the camera transformation matrix by extrinsic calibration
at frames 15, 21, and 30, respectively. As to the optimization progresses, the error of
the camera transformation matrix is decreased, and the quality of the 3D registration is
continuously improved. In Figure 13a, the point clouds by each camera were not aligned,
but in Figure 13b, the point clouds were well-aligned, and the 3D Charuco board model
was well registered.

(a) (b) (c) (d)

Figure 12. Progress of calibration and 3D joint set estimation according to frame. Each raw corre-
sponds to a view-point of a 3D model. (a) initial joint sets, (b) joint sets in the 18th frame, (c) joint sets
in the 73rd frame, (d) joint sets in the 74th frame.

(a) (b) (c) (d)

Figure 13. Calibration and registration result of the Charuco box (a) before calibration, (b) after
15 frames, (c) after 21 frames, (d) 30 frames.

In order to quantitatively evaluate the effect of the proposed extrinsic calibration on the
3D registration performance, Figure 14 shows the registration error of the Charuco board
by the proposed algorithm. The registration error is estimated by the Euclidean distance
between the ground truth (the physically measured or computer-generated model) and
the registered model. First, we located two models in the 3D virtual space and calculated
the 3D point-to-point distance corresponding to the error (or difference) between the two
models. Then, we repeated locating two models and calculating distance until finding the
minimum mean distance. The 3D point-to-point distance is defined as the distance between
the nearest points of the two models. In Figure 14, the initial mean error of 0.816 m is
reduced to 0.0203 m after 30 frames and the initial standard deviation of 0.613 m is reduced
to 0.0163 m. Since this experiment selected 1024 feature points existing in the Charuco
board, it may have very high accuracy.

Figure 15 shows the results of the 3D registration of the Moai statue. We printed the
Moai statue in Figure 15c with a 3D printer and used it in the experiment. In other words,
we know all the 3D information of the actual Moai statue. It is rather difficult to judge
the results of the three-dimensional point cloud as a two-dimensional image. However, it
can be seen that the result of Figure 15c is very similar to the original object of Figure 15a.
Figure 15c has the mean distance of 2.284 cm and the standard deviation of 4.036 cm.
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Therefore, a 3D object could be expressed with a relatively accurate 3D graphics model
using the proposed method.

Figure 14. Numerical result of 3D registration error of the Charuco board.

(a) (b) (c)

Figure 15. Calibration and registration result of the Moai statue (a) original 3D model, (b) after
calibration, (c) superimposition of (a,b).

Figures 16 and 17 show the results of 3D point cloud generation using the proposed
technique. Figure 16a is the point cloud taken using eight RGB-D sensors. Figure 16b
is the point cloud result obtained by 3D registration using the transformation matrices
obtained after optimization for 15 frames. Figure 16b,c show the 3D registration results
after 21 frames and 30 frames, respectively. In the case of Figure 17, the optimization result
was converged upon after more frames were required. When comparing Figures 16 and 17,
although the number of frames required for optimization is different, the 3D registration
results are visually similar in quality.

(a) (b) (c) (d)

Figure 16. Generated point cloud (human #1) (a) before calibration, (b) after 15 frames, (c) after
21 frames, (d) 30 frames.
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(a) (b) (c) (d)

Figure 17. Generated point cloud (human #2) (a) before calibration, (b) after 18 frames, (c) after
73 frames, (d) 74 frames.

5. Conclusions

In this paper, when multiple cameras are located in space, we propose an algorithm
that automatically calibrates multi-view cameras and performs 3D registration when a
person is present. In other words, it uses the fact that the human pose can be estimated
relatively consistently. In the process of matching the positions of the joint sets obtained
from each camera, a camera transformation matrix between the cameras was obtained.
Through this, all cameras could be positioned in a common-world coordinate system, and
a 3D model could be expressed using a 3D point cloud. Using the pose estimation based
on deep learning may increase the complexity of the extrinsic calibration and decrease the
accuracy of the feature points by the dependency for the surficial condition of an object.
The process of finding the relationship between the cameras used an optimization function,
and as a result, the proposed calibration had an error of about 3 cm to 4 cm. We measured
quantitative accuracy by experimenting on two objects for which we know the correct
information. In the case of the 3D charcoal board, the mean and standard deviation of the
registration error by calibration could be lowered to about 2.03 cm and 1.63 cm. In the case
of the Moai statue, it was confirmed that the mean and standard deviation could be reduced
to about 2.2849 cm and 4.0363 cm or less, respectively. Finally, it was verified that a relatively
accurate 3D point cloud could be generated through an experiment on a photorealistic
person. Therefore, we have shown that the presence of a person can successfully generate a
3D point cloud without the use of a special chess board or Charuco board.

Author Contributions: Conceptualization and methodology, B.-S.P. and Y.-H.S.; software and hard-
ware, B.-S.P.; data curation, W.K. and J.-K.K.; writing—review and editing, E.S.H. and D.-W.K.; project
administration and funding acquisition, Y.-H.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported Year 2021 Culture Technology R&D Program by Ministry of
Culture, Sports and Tourism and Korea Creative Content Agency (Project Name: Development of
social XR showroom technology for the distribution of cultural products by one-person enterprises
and small business owners, Project Number: R2021070007, Contribution Rate: 100%).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D mapping with an RGB-D camera. IEEE Trans. Robot. 2013, 30, 177–187.

[CrossRef]
2. Labbe, M.; Michaud, F. Online global loop closure detection for large-scale multi-session graph-based SLAM. In Proceedings

of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014;
pp. 2661–2666.

3. Munaro, M.; Menegatti, E. Fast RGB-D people tracking for service robots. Auton. Robot. 2014, 37, 227–242. [CrossRef]
4. Choi, C.; Christensen, H.I. RGB-D object tracking: A particle filter approach on GPU. In Proceedings of the 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 1084–1091.

http://doi.org/10.1109/TRO.2013.2279412
http://dx.doi.org/10.1007/s10514-014-9385-0


Sensors 2022, 22, 1097 13 of 14

5. Tang, J.; Miller, S.; Singh, A.; Abbeel, P. A textured object recognition pipeline for color and depth image data. In Proceedings of
the 2012 IEEE International Conference on Robotics and Automation, St Paul, MI, USA, 14–18 May 2012; pp. 3467–3474.

6. Munea, T.L.; Jembre, Y.Z.; Weldegebriel, H.T.; Chen, L.; Huang, C.; Yang, C. The progress of human pose estimation: A survey
and taxonomy of models applied in 2D human pose estimation. IEEE Access 2020, 8, 133330–133348. [CrossRef]

7. Zollhöfer, M.; Stotko, P.; Görlitz, A.; Theobalt, C.; Nießner, M.; Klein, R.; Kolb, A. State of the Art on 3D Reconstruction with
RGB-D Cameras. Comput. Graph. Forum. Wiley Online Libr. 2018, 37, 625–652. [CrossRef]

8. Giancola, S.; Valenti, M.; Sala, R. State-of-the-art devices comparison. In A Survey on 3D Cameras: Metrological Comparison of
Time-of-Flight, Structured-Light and Active Stereoscopy Technologies; Springer: Berlin/Heidelberg, Germany, 2018; pp. 29–39.

9. Yun, W.J.; Kim, J. 3D Modeling and WebVR Implementation using Azure Kinect, Open3D, and Three. js. In Proceedings of
the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea,
21–23 October 2020; pp. 240–243.

10. Photoneo. Phoxi 3D Scanner. Available online : https://www.photoneo.com/phoxi-3d-scanner/ (accessed on 8 January 2022).
11. Zivid. Zivid Two. Available online: https://www.zivid.com/zivid-two (accessed on 8 January 2022).
12. Lucid. Helios2, the Next Generation of Time of Flight. Available online: https://thinklucid.com/helios-time-of-flight-tof-camera/

(accessed on 8 January 2022).
13. Zabatani, A.; Surazhsky, V.; Sperling, E.; Moshe, S.B.; Menashe, O.; Silver, D.H.; Karni, Z.; Bronstein, A.M.; Bronstein, M.M.;

Kimmel, R. Intel® realsense™ sr300 coded light depth camera. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42, 2333–2345.
[CrossRef] [PubMed]

14. Kim, J.; Caire, G.; Molisch, A.F. Quality-aware streaming and scheduling for device-to-device video delivery. IEEE/ACM Trans.
Netw. 2015, 24, 2319–2331. [CrossRef]

15. Basso, F.; Menegatti, E.; Pretto, A. Robust intrinsic and extrinsic calibration of RGB-D cameras. IEEE Trans. Robot. 2018, 34, 1315–1332.
[CrossRef]

16. Khoshelham, K.; Elberink, S.O. Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 2012,
12, 1437–1454. [CrossRef] [PubMed]

17. Mikhelson, I.V.; Lee, P.G.; Sahakian, A.V.; Wu, Y.; Katsaggelos, A.K. Automatic, fast, online calibration between depth and color
cameras. J. Vis. Commun. Image Represent. 2014, 25, 218–226. [CrossRef]

18. Staranowicz, A.N.; Brown, G.R.; Morbidi, F.; Mariottini, G.L. Practical and accurate calibration of RGB-D cameras using spheres.
Comput. Vis. Image Underst. 2015, 137, 102–114. [CrossRef]

19. Zheng, K.; Chen, Y.; Wu, F.; Chen, X. A general batch-calibration framework of service robots. In Proceedings of the International
Conference on Intelligent Robotics and Applications, Wuhan, China, 15–18 August 2017; Springer: Berlin/Heidelberg, Germany,
2017; pp. 275–286.

20. Lindner, M.; Schiller, I.; Kolb, A.; Koch, R. Time-of-flight sensor calibration for accurate range sensing. Comput. Vis. Image Underst.
2010, 114, 1318–1328. [CrossRef]

21. Kuznetsova, A.; Rosenhahn, B. On calibration of a low-cost time-of-flight camera. In Proceedings of the European Conference on
Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 415–427.

22. Ferstl, D.; Reinbacher, C.; Riegler, G.; Rüther, M.; Bischof, H. Learning Depth Calibration of Time-of-Flight Cameras. In Proceed-
ings of the the British Machine Vision Conference 2015, Swansea, UK, 7–10 September 2015; pp. 102–111.

23. Perez-Yus, A.; Fernandez-Moral, E.; Lopez-Nicolas, G.; Guerrero, J.J.; Rives, P. Extrinsic calibration of multiple RGB-D cameras
from line observations. IEEE Robot. Autom. Lett. 2017, 3, 273–280. [CrossRef]

24. Lee, S.h.; Yoo, J.; Park, M.; Kim, J.; Kwon, S. Robust Extrinsic Calibration of Multiple RGB-D Cameras with Body Tracking and
Feature Matching. Sensors 2021, 21, 1013. [CrossRef] [PubMed]

25. Takahashi, K.; Mikami, D.; Isogawa, M.; Kimata, H. Human Pose as Calibration Pattern: 3D Human Pose Estimation with Multiple
Unsynchronized and Uncalibrated Cameras. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 18566–18567. doi: 10.1109/CVPRW.2018.00230.
[CrossRef]

26. Yoon, B.H.; Jeong, H.W.; Choi, K.S. Targetless Multiple Camera-LiDAR Extrinsic Calibration using Object Pose Estimation.
In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 13377–13383. doi: 10.1109/ICRA48506.2021.9560936. [CrossRef]

27. Fukushima, N. Icp with depth compensation for calibration of multiple tof sensors. In Proceedings of the 2018-3DTV-Conference:
The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Helsinki, Finland, 3–5 June 2018; pp. 1–4.

28. Desai, K.; Prabhakaran, B.; Raghuraman, S. Skeleton-based continuous extrinsic calibration of multiple RGB-D kinect cameras.
In Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, The Netherlands, 12–15 June 2018; pp. 250–257.

29. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [CrossRef]
30. Kim, K.J.; Park, B.S.; Kim, J.K.; Kim, D.W.; Seo, Y.H. Holographic augmented reality based on three-dimensional volumetric

imaging for a photorealistic scene. Opt. Express 2020, 28, 35972–35985. [CrossRef] [PubMed]
31. Kim, K.J.; Park, B.S.; Kim, D.W.; Kwon, S.C.; Seo, Y.H. Real-time 3D Volumetric Model Generation using Multiview RGB-D

Camera. J. Broadcast Eng. 2020, 25, 439–448.
32. Microsoft. Microsoft, Quickstart: Set Up Azure Kinect Body Tracking. Available online: https://docs.microsoft.com/en-us/

azure/kinect-dk/body-sdk-setup (accessed on 26 June 2019).

http://dx.doi.org/10.1109/ACCESS.2020.3010248
http://dx.doi.org/10.1111/cgf.13386
https://www.photoneo.com/phoxi-3d-scanner/
https://www.zivid.com/zivid-two
https://thinklucid.com/helios-time-of-flight-tof-camera/
http://dx.doi.org/10.1109/TPAMI.2019.2915841
http://www.ncbi.nlm.nih.gov/pubmed/31094683
http://dx.doi.org/10.1109/TNET.2015.2452272
http://dx.doi.org/10.1109/TRO.2018.2853742
http://dx.doi.org/10.3390/s120201437
http://www.ncbi.nlm.nih.gov/pubmed/22438718
http://dx.doi.org/10.1016/j.jvcir.2013.03.010
http://dx.doi.org/10.1016/j.cviu.2015.03.013
http://dx.doi.org/10.1016/j.cviu.2009.11.002
http://dx.doi.org/10.1109/LRA.2017.2739104
http://dx.doi.org/10.3390/s21031013
http://www.ncbi.nlm.nih.gov/pubmed/33540791
http://dx.doi.org/10.1109/CVPRW.2018.00230
http://dx.doi.org/10.1109/ICRA48506.2021.9560936
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1364/OE.411141
http://www.ncbi.nlm.nih.gov/pubmed/33379702
https://docs.microsoft.com/en-us/azure/kinect-dk/body-sdk-setup
https://docs.microsoft.com/en-us/azure/kinect-dk/body-sdk-setup


Sensors 2022, 22, 1097 14 of 14

33. GOOGLE. MediaPipe Pose. Available online: https://google.github.io/mediapipe/solutions/pose.html (accessed on 30 January 2022 ).
34. Kwolek, B.; Rymut, B. Reconstruction of 3D human motion in real-time using particle swarm optimization with GPU-accelerated

fitness function. J. Real-Time Image Process. 2020, 17, 821–838. [CrossRef]

https://google.github.io/mediapipe/solutions/pose.html
http://dx.doi.org/10.1007/s11554-018-0825-5

	Introduction
	Multi-View Extrinsic Calibration Based on Human Pose 
	Multi-View Camera System
	Extrinsic Calibration 

	Proposed 3D Static Reconstruction 
	Extrinsic Calibration
	3D Registration

	Experimental Result 
	Environment
	3D Pose Estimation Result
	Extrinsic Calibration Result
	Extrinsic Calibration Result

	Conclusions 
	References

