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Abstract: Drowsiness is not only a core challenge to safe driving in traditional driving conditions
but also a serious obstacle for the wide acceptance of added services of self-driving cars (because
drowsiness is, in fact, one of the most representative early-stage symptoms of self-driving carsickness).
In view of the importance of detecting drivers’ drowsiness, this paper reviews the algorithms of
electroencephalogram (EEG)-based drivers’ drowsiness detection (DDD). To facilitate the review,
the EEG-based DDD approaches are organized into a tree structure taxonomy, having two main
categories, namely “detection only (open-loop)” and “management (closed-loop)”, both aimed at
designing better DDD systems that ensure early detection, reliability and practical utility. To achieve
this goal, we addressed seven questions, the answers of which helped in developing an EEG-based
DDD system that is superior to the existing ones. A basic assumption in this review article is that
although driver drowsiness and carsickness-induced drowsiness are caused by different factors, the
brain network that regulates drowsiness is the same.

Keywords: drivers’ drowsiness detection; EEG; machine learning; brain stimulation; closed-loop algorithms

1. Introduction

Driver drowsiness is a major safety concern. For example, the U.S. National Highway
Traffic Safety Administration (NHTSA) reports that about 2.5% of the fatal crashes during
the period 2005–2015, which resulted in 9142 deaths, were due to drivers’ drowsiness [1].
Although recent statistics show that there is a decreasing trend in drowsy driving-related
fatalities, the number of deaths per se is still heartbreaking, with 785 in 2018 and 697 in
2019 [2]. Driverless cars seem to be a ground-breaking and once-and-for-all solution for
the driver drowsiness issue. This is especially pertinent given that General Motors, the
vehicle tech giant, has already started its self-driving services in San Francisco [3]. Similarly,
Baidu, a Chinese tech giant, is promoting its driverless taxi services in Beijing [4]. Driven
by these tech giants, the market of driverless cars is expected to reach USD 42 billion by
2025 [5]. However, the aforementioned “once-and-for-all” is actually a misnomer, since self-
driving would produce a new problem—self-driving-induced carsickness [6]. Drowsiness
is, in fact, one of the most representative early-stage symptoms of carsickness [7]. Self-
driving-induced carsickness refers to motion sickness experienced when drivers become
passengers, to engage in in-car entertainment activities (e.g., reading and watching movies)
or activities related to social productivity (e.g., working). These activities or services can
radically improve passenger journeys but, unfortunately, this is only limited to those who
do not experience motion sickness. Therefore, early warnings from drivers’ drowsiness
detection (DDD) may not only help reduce drivers’ drowsiness being a cause for accidents
in traditional driving scenarios, but would also address a serious obstacle in the widespread
acceptance of driverless cars. This is particularly imperative in semi-self-driving scenarios,
requiring drivers to rapidly take over the control of the car once the self-driving control
system is out of its capacity, when facing complicated road situations or in the context
of implicit traditional carsickness, originally suppressed by driving behavior (shifted
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attention) but becomes explicit as the driver becomes a passenger. Thus, DDD approaches
presented in this review article are significant references to help design a better DDD
system, regardless of conventional driving conditions or emerging self-driving scenarios.

The standard clinical tests for measuring sleepiness are the Multiple Sleep Latency Test
and the Maintenance of Wakefulness Test, combined with polysomnography datasets [8].
These measurements are very expensive and cumbersome to perform, because they require
at least eight channels, outlined here: four electroencephalograms (EEG), two electroocu-
lograms (EOG), one electromyogram (EMG), and one electrocardiogram (ECG) [8]. For
the detection of drivers’ drowsiness, many methods have been proposed, which include
the vehicle-based methods (such as the lane departure warning system (LDWS) [9,10]
and the steering wheel movement (SWM) system [11–13]), video-based methods (such
as the detector of the degree (percentage) of eyelid closure over the pupils, over time
(PERCLOS) [14–16]), and physiological signal-based methods (such as those based on the
variability of the ratio of low frequency to high frequency in heart rate [17,18] and EEG
(brain waves) [19]). Williamson et al. and Golz et al. reviewed on-road fatigue monitoring
technologies in 2005 and 2010, respectively [20,21]. Reviewing the existing sensor-based
DDD systems [22], Sahayadhas et al. believed that physiological sensor-based signals offer
the most reliable means of detection, because they indicate the true internal state of the
driver. Brown et al. reviewed vehicle-based sensor technologies for DDD [23], but their
reviews pay little attention to the EEG, although it is a non-invasive physiological means of
measuring brain activity and has the closest relationship to drowsiness [8]. Particularly,
under similar performing conditions, EEG is reported to perform better than any other
physiological signal [24].

Figure 1 shows a generalized block diagram of a typical EEG-based DDD system. In
this kind of system, EEG sensors are used to record the noise-contaminated and weak brain
bio-potentials. The signals are filtered, amplified and digitized by the EEG acquisition part
of the system, until they become clearer and stronger. After that, a pattern recognition
techniques-based algorithm will further process these EEG signals for estimating drowsi-
ness levels (open-loop DDD) or for managing drivers’ drowsiness level (closed-loop DDD),
via the user interface. Considerable work has been done by some previous authors [25–27]
on the general aspects of EEG sensors and the acquisition part, but we focus here only on
DDD algorithms. Additionally, some unresolved problems as in [25–27], such as the EEG
montages, including the number, location and type of the EEG channels, are also reviewed.

Figure 1. Block diagram of a typical EEG-based DDD system.

We propose a taxonomy (Figure 2) to address the open-loop and closed-loop problems
of EEG-based DDD algorithms. The taxonomy of open-loop problems is based on the
standard pattern recognition processing chain, which is introduced in [28]. Availing
internet searches, using the tag words “drivers’ drowsiness” or “drowsiness”, on IEEE
Xplore, ScienceDirect, and SpringerLink, addressed seven fundamental questions relating
to the development of better and more reliable DDD algorithms.

(1) Which is the most suitable EEG montage for DDD?
(2) Which is the most suitable time window length for extracting EEG feature?
(3) Which is the best EEG feature for DDD?
(4) Which is the best decision-making (DM) model for DDD?
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(5) Which is the most reliable ground truth for DDD?
(6) Which methods can be used to enhance the driver’s attention?
(7) Which attention-enhancing methods has the longest duration?

Figure 2. Hierarchical taxonomy for EEG-based DDD algorithms dealing with seven primary research
questions and corresponding selection criteria for these questions.

The criteria followed in selecting these seven questions was based on the three follow-
ing aspects:

(1) Practical utility (addressed by questions (1, 6 and 7))
(2) Early-detection of driver drowsiness (addressed by questions (2, 3 and 4))
(3) Reliability (addressed by question (5))

2. Taxonomy

The open-loop and closed-loop problems relating to the field of EEG-based DDD
algorithms can be organized into a taxonomy, as shown in Figure 2. The components of
this taxonomy are briefly discussed below:

2.1. Data Sensing

Our focus here is on the EEG montages (e.g., the number, location and type of the EEG
channel) to be used in DDD. EEG montages have a close relationship with the difficulty in
wearing the headset and to power consumption. Unlike the well-documented montages
in a clinical sleep-scoring system [29], there is no standard montage document for EEG-
based DDD. Therefore, to design a low-power and simple-to-use algorithm, the primary
requirement is to identify the right type of EEG montages.

2.2. Data Processing

Another issue we focused on was the feature extraction method, which is used to
generate a set of features from raw EEG signals. The other related issue is the length of
time window, because it determines the frequency of EEG features generation, which is
important in the ability of early detection.

2.3. Data-to-Knowledge

This research content involves an understanding of the generated features. How-
ever, unlike the application-dependent problems (e.g., data sensing and processing), DM
methods are more general, i.e., DM algorithms can be used for a wide range of features.
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Therefore, instead of focusing on the mathematical model, we focused on detection ac-
curacy and the type of DM model (i.e., two-class classification, multi-class classification
or probability estimation). The type of the DM model can indicate the ability of early
detection of the DDD algorithm. For example, a two-class classification model only deter-
mines whether the driver is drowsy or not, it cannot further evaluate the driver’s degree of
drowsiness; a multi-class classifier can be used to estimate the severity of drowsiness so
that it can provide the drivers with an early warning of drowsiness. The other focus here
is the ground truth. Ground truth is used to label truly alert and drowsy events, which
is very important for developing the supervised machine learning based DM model. The
reliability of ground truth determines the reliability of the developed DM model.

2.4. Methods to Enhance Attention

Our focus here was to review the closed-loop DDD algorithms, which includes meth-
ods to enhance drivers’ attention. This kind of algorithm not only detects drowsiness, but
also tries to arouse the driver, via effective feedback, which is a real-world DDD solution
having strong practical utility.

2.5. Duration of Enhanced Attention

As we know, the best solution for drowsiness is rest. Therefore, the acceptable duration
of enhanced attention by arousing feedback must allow drivers to have enough time to
drive to the nearest parking area (PA) or service area (SA). Hence, our focus here was
to further investigate the methods mentioned in (4) and find out the longest duration
of enhanced attention after arousing feedback. This is the critical factor in developing a
successful closed-loop DDD algorithm.

3. Open-Loop Problems
3.1. Data Sensing
3.1.1. Number of EEG Channels

The number of EEG channels used in DDDs varies widely, as shown in Table 1.
However, most (58%, 32 out of 55) use single-channel or two-channel EEG signals, while
only a few use more than five-channel EEG signals (24%, 13 out of 55).

3.1.2. Location of EEG Channels

Figure 3 shows the EEG 10–20 international system, which is adapted from EEGLAB
Toolbox (ver. 7.1.3.13b), using the built-in official location file (Standard-10-20-Cap81.locs) [30].

Figure 3. The widely used EEG electrode locations. Totally, 81 EEG channel locations are presented,
in which the red circles refer to commonly used occipital region.
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Many studies (42%, 8 out of 19) have used the occipital region (e.g., O1, O2, Oz) for
single-channel EEG. For two-channel or multi-channel EEG, there is no obvious preference
for channel location. For example, the locations can cover all EEG channel locations,
including the occipital, parietal, temporal, central and frontal regions. However, the
occipital region is the most favored, as at least one occipital location is combined with other
locations for the majority of two-channel or multi-channel studies (69%, 18 out of 26).

3.1.3. Type of EEG Channels

For single-channel EEG, the majority (53%, 10 out of 19) used bipolar channel (e.g., O1&O2),
whereas for two-channel EEG, the majority (55%, 6 out of 11) used unipolar channel
(e.g., C3, P3). For multi-channel EEG, they all used unipolar channels.

3.1.4. Discussion

In real-world DDD application, the EEG headset is usually wireless and powered by
a battery. As we know, the more sensing channels used, the more power is consumed.
Therefore, single channel should be the most favored number of channels for an EEG-based
DDD algorithm.

Regarding the channel position, Lin et al. pointed out that the EEG changes at occipital
and central regions have a strong correlation to drivers’ drowsiness [31]. The most popular
EEG channel for DDD is located in the occipital region; the occipital EEG is highly correlated
to the driver’s level of vigilance [32]. The physiological reasoning behind the “success”
of the occipital region is associated with the visual cortex. The visual cortex, which is
responsible for processing visual information, is located in the occipital region of the brain.
When the drivers transition from alert status to drowsy status, the duration and frequency
of their sideways glances increase. Their eyes become glazed and the degree of their eye
opening decreases, to the extent of becoming an almost complete closure, and the duration
of their eye closure increases [33]. These drowsiness-related eye movements blur the
visual field and reduce visual input, causing EEG changes (e.g., the increased α wave) [34],
where [34] is the work from our group.

Table 1. Fifty-four Studies on EEG-based DDD listed with montages, as well as time windows for
feature extraction, if applied.

Ref. Number of Channel Channel Position (1) Time Window

[31] 33 - 1 min

[35] 19 F1, F2, F7, F8, F3, F4, T3, T4, C3, C4, T5, T6, P3 1 s

[36] 1 O1 or O2 1 s

[37] 1 Fp1 10 s

[38] 4 - -

[39] 2 C3, P3 10 s

[40] 1 C3 5 s

[41] 1 Fp1 & Fp2 -

[42] 6 Fp1, Fp2, T5, T6, O1, O2 4 s

[43] 1 Oz 8 s

[44] 26 - 5 s

[45] 1 - 2 min

[8] 1 C3 or C4 30 s

[46] 1 C3 & O1 30 s

[47] 2 F7 & T3; F4 & C4 -

[48] 16 - 1 min
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Table 1. Cont.

Ref. Number of Channel Channel Position (1) Time Window

[49] 1 O1 1 min

[50] 2 C4, O2 10 s

[51] 2 Fp1 & Fp2; T3 & T4 -

[52] 1 Fp1 & Fp2 2 s

[53] 29
Frontal (F: 3, 1, z, 2, 4; Fc: 3, 1, z, 4),

Central (C: 3, 1, 2, 4; Cp: 3, 1, z, 2, 4) and
Posterior-occipital (P: 3, 1, z, 2, 4; Po: 3, z, 4; O: 1, z, 2)

20 min

[24] 3 Fz, T8, Oz 1 min

[54] 2 C4, O2 1 min

[55] 19 - 2 s

[56] 1 O1 & O2 1 min

[57] 1 O1 & O2 30 s

[58] 4 Forehand 10 min

[59] 8 Fp1, Fp2, F3, F4, P3, P4, O1, O2 10 s

[60] 1 Fp1 10 s

[61] 1 P3 20 s

[62] 6 Occipital 1 s

[63] 14 F7, F8, T3, T4, T5, T6, F3, F4, C3, C4, P3,
P4, O1 and O2 1 s

[64] 2 Fz & Cz; Pz & Oz -

[65] 21 - 30

[66] 1 C4 & P4 1 min

[67] 4 Occipital -

[68] 1 Fp1 & Fp2 2 s

[69] 3 Fz, Cz, Oz 2 s

[70] 3 Fz, T8, Oz 10 s

[71] 2 Fz, Oz 1 min

[72] 3 (Fp1, C3, O1) or (Fp2, C4, O2) 30 s

[73] 14 - 1 s

[74] 1 O1 & O2 <1 s

[75] 2 Fz & Cz; Pz & Oz 1 min

[76] 1 O1 & O2 1 min

[77] 4 Occipital 2 s

[78] 2 Fz, Pz -

[79] 2 Fz, Oz 1 min

[80] 1 - 5 s

[81] 2 Fz & Cz; Pz & Oz 30 s

[82] 19 - 2 s

[83] 1 Fp1 1 s

[84] 1 O1 & O2 30 s

[85] 14 - -
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Table 1. Cont.

Ref. Number of Channel Channel Position (1) Time Window

[86] 18
Posterior-occipital (CPZ, CP2, P1, PZ, P2, PO3, POZ,

PO4, O1, OZ, O2) and
Temporal (FT7, FT8, T7, T8, TP7, TP8)

8 s

(1) Symbols “&” and “,” relate respectively to bipolar channel (e.g., bipolar single channel: O1 & O2) and unipolar
channel (e.g., unipolar two channels: Fp1, Fp2); Symbol “;” is used to separate one bipolar channel from the other
(e.g., bipolar two channels: Fz & Cz; Pz & Oz).

One challenge for occipital EEG is that the occipital region is hairy. In real-world
applications that involve the usage of dry electrodes, the bodily movements of the drivers,
such as rubbing the eyes and face, yawning, and moving restlessly on the chair, would
influence EEG signal quality and result in unreliable measurements [87], where [87] is the
work from our group. This problem can be solved by integrating the motion sensor into the
headset and using it together with EEG to detect drivers’ drowsiness facilitates enrichment
of the contextual information lost by EEG [88], where [88] is the work from our group.

The type of EEG channels used may consist of either a unipolar or a bipolar channel
(Figure 4). In the case of a unipolar channel, each electrode records the potential difference,
which is compared to that of a neutral electrode, connected to an ear lobe or mastoid. Bipolar
measurements show the potential difference between two paired electrodes. Currently, the
majority of DDD studies focus on the EEG difference between alert and drowsy statuses,
and few of them reported the hemisphere superiority phenomenon. Therefore, the bipolar
channel may provide sufficient information for EEG-based DDD. However, for EEG-based
emotion recognition research, for example, a unipolar channel is more suitable because it is
necessary to compare the EEG changes between the right and left hemispheres [89].

Figure 4. The type of EEG channels. Bipolar type (top) and unipolar type or monopolar (bottom).

3.2. Data Processing

A wide range of EEG features relevant to DDD can be grouped into the following six
categories: pure time domain-based features, fast Fourier transform (FFT)-based features,
higher-order statistics (HOS)-based features, wavelet-based features, other time-frequency-
based features, and hybrid features. Among these, the most popular features are FFT-based
features (71%); the most commonly used length of time windows to extract these features
are 1 min (25%), 30 s (16%), 1 s (14%) and 2 s (13%).

3.2.1. Time Domain Features

Barring the fractal dimension, only a few approaches use time domain features alone to
identify the characteristics of EEG time series that vary between the alert and drowsy states.
Usually, time domain features are used in combination with FFT- or wavelet-based features.
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Fractal Dimension (FD)

A frequently used measure of complexity is the fractal dimension (FD). Some studies
use the FD alone to detect drowsiness. For example, Michail et al. [39] computed the FD
values of an EEG signal, using Higuchi’s method [90]. Their results show that the FD values
tended to decrease as the subjects became drowsy. Tantisatirapong et al. [47] employed
two algorithms to calculate the FD (variance fractal dimension (VFD) and detrended
fluctuation analysis (DFA)). They found that the VFD method is superior to other methods
for analyzing alertness and drowsiness patterns.

Other Time Domain Features

Table 2 summarizes the other time domain features that are used in EEG-based DDD,
with the following notation: xk ∈ {x1 . . . xN}. The notation denotes the kth EEG time
samples x, in which N is the number of x. The mean, first derivative, second derivative,
variance, covariance matrix, window length and sampling rate of x are respectively denoted
by µ,

.
x,

..
x, var, S, t and fs.

Table 2. The summary of the time domain features used in EEG-based DDD.

Features Mathematic Expression

Statistical measure

Maximum (Max) [80] Max = xk ∈ {x1 . . . xN}
Minimum (Min) [80] Min = xk ∈ {x1 . . . xN}

Standard deviation (STD)
[76,81–83] σ =

√
1
N

N
∑

k=1
(xk − µ)2

Root mean square (RMS) [70] RMS =

√
∑N

k=1 (xk)
2

N

Integration [42,44,75,80] Integration =
N
∑

k=1
|xk|

The Number of Zero-Crossing (NZC) [42,46,70,80]
NZC(x) =

N−1
∑

k=1
s(xk, xk+1)

s(xk, xk+1) =

{
1
0

i f (xkxk+1) < 0
i f (xkxk+1 ≥ 0

}

Hjorth parameters [70]

Activity : Act = ∑N
k=1 (xk−µ)2

N

Mobility : Mob =

√
var(

.
xk)

var(xk)

Complexity : Com =
Mob(

.
xk)

Mob(xk)

Barlow parameters [70]

Absolute Mean Amplitude : MA = ∑N
k=1(|xk |)

N

Mean Frequency : MF =
1
N ∑N

k=1|
.
xk|

MA

Spectral Purity Index : SPI = ∑N
k=1|

.
xk|

∑N
k=1|

..
xk|

Auto regressive model coefficients(ARMC) [70]

xk+1 = c +
N
∑

k=1
φkxk + εk+1

where c is the intercept and ϕ is ARMC which specifies how much
the xk contributes to the xk+1. εk+1 is assumed to be the random

zero mean noise.
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Table 2. Cont.

Features Mathematic Expression

Entropy

Shannon entropy (SE) [36,45,75]
SE(x) =

−
N
∑

k=1
p(xk)×logb p(xk)

logb M
where p(xk) represents the probability that the xk occurs anywhere
in the EEG samples x. The p(xk) is estimated by a histogram method

where the x is linearly divided into M bins.

R’enyi entropy (RE) [37,45,60] Hα(x) = 1
1−α log(

N
∑

k=1
p(xk)

α)

where α is the order, α ≥ 0 and α 6= 1

Mean comparison test (MCT) [61]

M(i) = µ1−µ2(i)√
σ2

1
t1
+

σ2
2 (i)
t2

where µ1 indicates the fixed reference window, µ2(i) indicates the
ith dynamic window.

Mahalanobis Distance (MD) [43] M(x) =
√
(x− µ)TS−1(x− µ)

3.2.2. FFT-Based Features

Assuming that the EEG signal is stationary, FFT can be applied to extract the EEG
features. FFT-based features are generally FFT power features from different EEG frequency
bands, including the Delta band (δ: 0 to 4 Hz), Theta band (θ: 4 to 7 Hz), Alpha band (α: 8 to
12 Hz), Beta band (β: 12 to 30 Hz) and Gamma band (γ: 30 to >100 Hz). These band power
features can be directly fed to a DM model to detect driver’s drowsiness. Alternatively, the
relative band power, various band power equations, or the log band power features can
also be used. Also, a few approaches combine FFT and time- or other frequency-domain
feature extraction methods to generate novel EEG features for DDD. We call this method as
“FFT+”. Table 3 summarizes these FFT-based features.

Table 3. The summary of the FFT-based features used in EEG-based DDD.

Features Mathematic Expression References

Pure Band Equation (PBE)

θ/β [44,50,56]

θ/(α + β) [51]

(θ + α)/β [44,51]

(θ + α)/(α + β) [44,51]

θ/α [73,79]

δ/α [73]

α/β [44,58,85]

(0.6 * θ + 0.4 * α)/(0.5 * β) [52,69]

(α + β)/δ [45]

(δ + θ)/(α + β) [48]

Relative Band Power (RBP)
RBP(zi) =

Power(zi)

∑5
i=1 Power(zi)

× 100%,

where, zi = {δ, θ, α, β, γ}.
[19,61,66,82]

Log Band Power LogM, where M ∈ {8, 9, 10, 11, 12 Hz} or {10, 11, 12, 13, 14 Hz} [26]

Log(α − θ) [71]

Pure Band Power (PBP)

Among the five EEG frequency bands, θ, α, and β bands are more popular than δ and γ
bands for detecting drowsiness. The physiological reasons for this are as follows [16,25,40]:
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(1) when the driver transitions from the alert to the sleepy state, β power decreases;
(2) when the driver is in a relaxed state, with his or her eyes closed, α power becomes abun-
dant; (3) when the driver enters the standard sleep state, β and α powers gradually diminish,
giving rise to θ power. Numerous studies have been carried out using PBP as an EEG
feature for DDD. For example, Chae et al. [58], Kim et al. [59] and Yang et al. [91] employed
α power as the single feature, while Sun et al. [79] used α and β powers, and Lin et al. [62]
and Wang et al. [67] used θ and α powers as double features. Park et al. employed the
following three features: θ, α, and β powers [49]. Cao et al. [35] and King et al. [44] used
the following four features: δ, θ, α, and β powers. Liu et al. used all five EEG band powers,
from δ to γ [92].

PBE

There are several PBEs in EEG-based DDD (see Table 3). These equations consist
of different pure/weighted band powers, and their outputs are used as input features
for DDD.

RBP

“Relative band power” implies that the authors used EEG power percentages, instead
of the absolute EEG power values, as the input features for DDD. The RBP is calculated
by dividing the FFT power of one EEG band by the aggregate FFT power of all the EEG
bands employed, as shown in Table 3. Picot et al. used the RBP of α and β [61], Zhang et al.
and Awais et al., an RBP of δ to β [66,82] and Papadelis et al., an RBP of all five EEG band
powers [19].

Single-Hz Band Power (SHBP) and LBP

Unlike the five commonly used frequency band powers (δ to γ), the frequency band
power can also be computed in small equal-sized bins. For example, Yu et al. used two-
band power features in a 1 Hz resolution bin, which have averages of 1 to 4 Hz power, and
9 to 11 Hz power [72]. Putilov et al. employed SHBP values in the frequency range of 1 to
16 Hz, as 16 features [71]. The normalizing of the EEG band power to the logarithmic scale
was first reported in [93,94]. The EEG band power correlates with the wake–sleep transition
more linearly in the logarithmic scale than in the linear scale. Lin et al. confirmed this
phenomenon by using the five best single-Hz width LBPs that are near the α band (e.g., 8
to 12 Hz or 10 to 14 Hz) [26]. Also, Putilov et al. proposed a novel drowsiness indicator,
which showed the difference between the log-transformed α power and θ power [71].
Lin et al. employed SHBP values in the frequency range of 1 to 30 Hz as features [77].

FFT+

Reddy et al. used the SE of the power spectrum, based on the steady state visually
evoked potentials (SSVEP), to detect drivers’ drowsiness [36]. For an alert subject, the
power spectrum is narrow and has the peak frequency at the flicker rate of the steady
pattern, while for an inattentive subject, this peak is no longer prominent. Also, the SSVEP
was more evenly spread over the spectrum, and the authors calculated the SE of the power
spectrum of SSVEP. If the subject becomes drowsy, the SE will increase, relative to that of
the alert state. In this study, the steady state stimulus (LED) is placed on the car’s rear
view mirror.

Lin et al. presented a technique for which they combined the MD to detect driver’s
drowsiness [43]. They employed the MD of θ (termed MDT) and the α power spectrum
(termed MDA) as a measure of drowsiness, by analyzing the variations in MD over time.
Specifically, if the driver is alert, his or her EEG spectra in the θ and α rhythms will follow a
multivariate normal distribution, which can be characterized in the alert models. Next, the
deviation of the driver’s state will be assessed continuously from the alert model by using
MD. If the driver remains alert, his or her EEG spectra in θ and α rhythms should match
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with those of the alert model. Otherwise, if the driver becomes drowsy, then his or her EEG
spectra will deviate from those of the respective model and, hence, MD will increase.

Picot et al. combined RBP and MCT to detect drivers’ drowsiness [61]. They employed
the MCT value of relative α and β powers as a new drowsiness indicator (see the last two
rows of Table 2). The calculation of MCT requires a fixed reference window (60 s length)
and a moving window (20 s length). The RBP features of the fixed window are calculated at
the beginning of the driving session for each driver, when the driver should be fully awake.
The RBP features of the moving window are calculated as time goes by and compared with
(subtracted by) the values of the fixed window every 10 s. The advantage of this method is
that it is so normalized that the same detection threshold can be used for different drivers.
Hence, they believe that the method is robust to inter- and intrapersonal differences, as also
to age-related differences that may influence drowsiness detection.

Hal et al. divided α and β bands into the following four sub-bands: low α (7.5 to
9.25 Hz), high α (10 to 11.75 Hz), low β (13 to 16.75 Hz), and high β (18 to 29.75 Hz).
Then, eight features, comprising the mean and STD of each sub-band, were extracted [83].
Hu et al. employed the dominant frequency (DF), average power of the dominant peak
(APDP), center of gravity frequency (CGF), frequency variability (FV), and mean power
frequency (MPF) from δ band to β band as features [69]. Reports of using the MPF feature
can also be found in [57,84]. Aboalayon et al. proposed a method that uses integrated EEG
(IEEG), SE, and STD, extracted from all the five EEG bands (δ to γ) as features [75].

A few approaches focus only on the characteristics of α band. For example, Simon et al.
proposed an algorithm to extract α spindle, which is a short narrow band, bursting in α
band [53]. They evaluated various α spindle-related features, including the spindle rate,
duration, spectral amplitude, and peak frequency. All the spindle features outperformed the
pure α power, thus establishing the spindle rate as the best feature. Pritchett et al. explored
α rhythm by analyzing its burst duration, mean amplitude, relative amplitude, amplitude
variance, wave duration variance, wave similarity, and slope smoothness [50]. Kalauzi et al.
proposed a method for analyzing the phase information of α rhythm [63]. They treat α
rhythm as a stable frequency with variable amplitude signals and one carrier frequency
(CF), allowing for the calculation of α CF phase shifts (CFPS) and the development of CF
phase potentials (CFPP). They find that the greatest changes in α CFPS, CFPP, and phase
locking occur in subjects’ frontal regions, while transitioning from the awake state to the
drowsiness state.

3.2.3. HOS-Based Features

Unlike the Fourier power spectrum (2nd-order statistics), the bispectrum (Bis) consists
of 3rd-order statistics, which preserve the Fourier phase information. The Bis can be
estimated by measuring the 3rd-order cumulant of the EEG samples and then taking a
2D-Fourier transform (as shown in Equation (1)).

Bisx(ω1, ω2) =
τ1=+∞

∑
τ1=−∞

τ2=+∞

∑
τ2=−∞

Cx(τ1, τ2)e−j(τ1ω1+τ2ω2) (1)

Abeyratne et al. proposed a Bis-based novel feature for detecting drowsiness [8],
using a single-channel EEG. They employed a single-dimensional slice of the Bis, defined as
Bisx(ω, φω + ρ), to estimate the bispectrogram time series (BTS) and find that the amplitude
of BTS at f = 20 Hz (ξ20) offers an ability to detect micro-sleep events (the drowsy events
before standard sleep Stage I). This slice is inclined to the ω1-axis at an angle tan−1φ and
has shifted from the origin, along ω2-axis by ρ(−π < ρ < π).

Based on this finding, the sleepiness index (SI) is further defined to measure drowsi-
ness, as shown in Equation (2), where A() denotes the amplitude of BTS, S0 the amplitude
threshold for detecting micro-sleep, Time() the time maintained, and Timetotal the total time.

SI =
Time(A(ξ20) > S0)

Timetotal
(2)
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SI has a range of 0 to 1 and is very similar to the PERCLOS video-based feature. PER-
CLOS assesses drowsiness by measuring slow eyelid closure and estimating the proportion
of time during which the eyes remain 80% closed over a 1-min interval (high sensitivity),
3-min interval (medium sensitivity) or 5-min interval (low sensitivity) [15]. The formula
indicating high sensitivity is given by Equation (3), where ECD is the degree of eye closure.

PERCLOS =
Time(ECD ≥ 80%)

1 min
(3)

3.2.4. Wavelet-Based Features

Assuming that the EEG signal is non-stationary, wavelet transform can be applied to
extract the EEG features. In EEG-based DDD, the wavelet-based features are generated in
the following two ways: discrete wavelet transform (DWT) and wavelet packet transform
(WPT). The DWT decomposes the given signal into a set of approximate (Ai) and detailed
(Di) coefficients of level i (i = 1, . . . , n). The frequency range of each level is calculated as
shown in Equation (4) [17], where n is the notation of the index of the level and fs is the
sampling rate for the signal.

Frequency_range =
(

1
2n+1 ∼

1
2n

)
× fs (4)

The regular wavelet decomposition method may not always yield the best results in
recognizing patterns [95]. Therefore, a WPT decomposition can be used. WPT decomposes
not only the approximate coefficients, but also the detailed coefficients. Therefore, the
information (high frequency) which is lost in DWT can be retrieved by using WPT. This
explains why WPT is favored in EEG-based DDD.

Band Power

Using Equation (15), the DWT or WPT method can also categorize the EEG signals
into δ to γ frequency bands. For example, Akin et al. decomposed the EEG signal into three
levels by using DWT and also extracted PBPs in δ to β bands as features [40]. Gupta et al.
used DWT to decompose the EEG signal into four levels and employ PBP in a band (no
specific information) and BPE 9 as features [45]. Lee et al. divided the EEG signal into six
levels by employing WPT and using PBP in δ to β band and BPE 1, 3, 4 and 7 as features [96].

Wavelet+

We used Wavelet+, just as FFT+ (see Section 3.2.2), to represent the feature extraction
methods that combine wavelet transform and time or other frequency domain feature
extraction methods for generating novel EEG features. For example, Gupta et al. extracted
SE and RE from each band (δ to β) as features [45]. Lee et al. employed the CGF and FV
from each band (δ to β) as features, and then a mutual information (MI) technique to select
the most descriptive features for further classification [96]. Khushaba et al. decomposed
the EEG signal via WPT, using the symmlet 5 (“sym5”) wavelet and constructed features by
using the normalized logarithmic energy of the wavelet packet coefficients [24]. In feature
selection, both Khushaba et al. and Daphne et al. used a fuzzy mutual information-based
method for WPT analysis (FMIWPT) [24,64]. Tsai et al. introduced feature extraction via
DWT, using the Daubechies 2 (“db2”) wavelet, extracting NZC and IEEG from each band (θ
to β). In this case, a total of 36 features were extracted for classification [42]. Gurudath et al.
divided the EEG signal into five levels, using “db3”-based DWT to extract the mean,
median, variance, STD, and mode of the bands (δ to γ) as features [81]. Murugappan et al.
decomposed the EEG signals into four bands (δ to β), using WPT, after which they used
FFT to extract the band power and spectral centroid (SC) from the above frequency bands.
In this work, four wavelet functions (“db4”, “db8”, “sym8”, and “coif5”) were used, of
which “db4”was found to be the best one, in terms of the band power feature [73].
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3.2.5. Other Time-Frequency-Based Features

Yoshida et al. proposed a novel feature, called Instantaneous Equivalent Bandwidths
(IEBW), based on positive time-frequency distributions (PTFD) [47,60]. The method using
the IEBW involves the tracking of the bandwidth changes of random signals. They applied
IEBW for EEG analysis and found that the EEG signal for the period when the subjects
were trying to remain in the awake state, by fending off sleepiness, has a wider bandwidth
than that of the signal for the period of the normal onset of sleep.

3.2.6. Hybrid Features

A comparison of the FFT+ and Wavelet+ features reveals that there is nothing new in
the generation of hybrid features. The authors employ different feature extraction methods
and feed these extracted features directly to the classifier. For example, Khushaba et al.
proposed the time domain autoregressive (TDAR) features, which combine time-domain
features and FFT features [70]. These features include the NZC of the EEG raw data (one
feature), Hjorth parameters (three features), RMS (one feature), ARMC (ten features), the
spectral moments (four features), waveform length (one feature), and Barlow parameters
(three features). Garcés et al. [46,80] first used FFT to extract features, such as the central
frequency (CenF), peak frequency (PF), ratio H/L (RH/L), the first and third quartile
frequency (Q1F and Q3F), spectral STD, the maximum frequency (MF), interquartile range
(IR), asymmetry coefficient (AC) and kurtosis coefficient (KC). They then employed the
“db2”-based DWT to extract ZC and IEEG from each band (θ to β). In addition, they also
took into consideration the time domain features, including the max, min, and STD values
of the EEG signals.

3.2.7. Discussion

Most of the EEG features for DDD are based on the traditional EEG frequency bands,
regardless of whether they are generated by FFT or Wavelet methods. Only a few studies
extracted novel features. For example, a new feature, ξ20, was generated by bispectrum
analysis with a 30-sec time window [8]. Based on the “gold standard” of scoring sleep, this
feature can track the gradual development of drowsiness (micro-sleep events) until standard
sleep Stage I. Another novel feature, IEBW, was generated by PTFD analysis with a 10-sec
time window [37]. This feature can differentiate between the wakefulness maintenance
state against sleepiness and the normal onset of sleep. These two studies quantitatively
proved the unreliability of those studies which directly categorize drivers’ drowsiness as
the normal onset of sleep (the first 30 s of sleep Stage I), such as in [46,66,72,75,80]. However,
the two features require intensive computation and, thus, their real-time performance needs
to be further evaluated.

The length of the time window for feature extraction is directly related to the timeliness
function of the DDD system. For example, heart rate variability (HRV) is the widely-used
drowsiness indicator for ECG and photoplethysmogram signals [51]. The lengths of mini-
mum and regular time windows for HRV analysis are 3 min and 5 min, respectively [97]; in
contrast to this, we find that 1 min is the most favored length of time window for EEG-based
DDD methods. From the viewpoint of timeliness, the EEG signal is more suitable for DDD
applications. The physiological reason behind the shorter time window for EEG analysis is
its direct relationship to drowsiness. Critically, for EEG per se, the novel feature with the
shortest time window is the best; that is, PTFD with a 10-sec time window.

3.3. Data-To-Knowledge

We next consider ground truth and DM models.

3.3.1. Ground Truth

Ground truth is used to label truly alert and drowsy events, which is important for
developing the DM model for DDD. Table 4 lists the ground truths used in previous studies;
in Table 4, KDS, KSS, ESS and RK stand for Karolinska drowsiness scoring, Karolinska
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sleepiness scale, Epworth sleeping scale and Rechtschaffen and Kales. The ground truths
1~3, 11 and 22 are perhaps effective in recognizing general purpose, inattentive driving
patterns, including drunk driving, stressful driving and distracted driving, but in com-
parison to ground truths 10, 14, 15 and 17, they may not be so suitable for DDD. Ground
truth 8 is too dangerous to implement. Ground truths 9 and 19 are well-known standards
for scoring the sleep stage, which is not directly related to drowsiness. Other ground
truths listed in Table 4 are self-assessment-based, which are not reliable. To the authors’
best knowledge, among the ground truths listed in Table 4, PERCLOS is the only method
verified for real life applications [14,15,23]. In addition, [23] recommends a novel ground
truth, termed PERCLOS+, which combines PERCLOS and SWM for early detection of
drivers’ drowsiness.

Table 4. Ground Truths used in EEG-based DDD.

DM Model No. Ground Truth

Threshold/Binary

1 Subjects’ response time to lane departure event [43,67,92]

2 Subjects’ response time to sound simulation [42]

3 Subjects’ collision rates with time [58]

4 Subjects’ self-assessment [52,68] (Subjects press a button, placed next to them, when feeling drowsy)

5 Subjects’ self-assessment [69] (Alert: KSS < 8 and KDS = 0; Fatigue: KSS ≥ 8 and KDS ≥ 50)

6 Subjects’ self-assessment [53] (Alert: KSS < 8.5; Drowsy: KSS ≥ 8.5)

7 Subjects’ self-assessment [42] (Alert: KSS < 7; Drowsy: KSS ≥ 7)

8 Subjects abort driving due to severe fatigue [53,85]

9 RK (Wake, Stage I) [46,66,76,80]

10 Facial features that are manually identified by video recording [56] (Drowsiness: Wierewille scale ≥ 3)

11 Authors’ self-assessment, based on the subjects’ response during the experiment (The subjects need to
accurately count the number of a visual stimulus shown [36])

12 Authors’ self-assessment, based on the experimental video recording and the subjects’ self-assessment [44]

13 Authors’ self-assessment, based on subjects’ eye and head movements [35]

14 Assessment of Driver’s Vigilance and Warning according to Traffic Risk Estimation (AWAKE): Index ≥ 1
represents drowsiness [61]

15 PERCLOS [76]

Multi-class

16 Subjects’ self-assessment (ESS) [55,59] (Alert: ESS < 8; Drowsy: 8 ≤ ESS ≤ 11; Severe drowsy: ESS ≥ 24)

17 Facial features that are manually identified by video recording (Wierewille scale) [24,70,79]

18 Self-assessment (KSS) [71]

19 RK (Wake, Stage I, Stage II) [72]

20 Authors’ self-assessment, based on their own experience [73]

21 Unknown sleep scoring standard [40]

Regression

1 Subjects’ response time to lane departure event [62,77]

17 Facial features that are manually identified by video recording [50] (Wierewille scale)

22 Subjects’ driving error index [31]

Probabilistic

15 PERCLOS [86,87]

23 Self-assessment [56,84] (Subjects press buttons on the steering wheel when feeling arousal, a little bit
drowsy and drowsy)

Transfer 1 Subjects’ response time to lane departure event [98]

3.3.2. DM Models
Pure Threshold-Based Model

Threshold-based methods, though not ideal for detection tasks [21], have been studied
by many because of their simplicity. Table 5 shows the detection accuracies obtained by
using threshold-based models. The accuracy (Acc), specificity (Spec) and sensitivity (Sens)
listed in Table 5 were calculated using Equation (16), where TP is true positive, TN is true



Sensors 2022, 22, 1100 15 of 26

negative, FP is false positive, and FN is false negative. Therefore, Sens indicates how well
this classifier can recognize a driver being in the drowsy state, and Spec, a driver being in
the alert state. Equation (5) is also applied to Table 4.

Acc =
TP + TN

TP + FN + FP + FN
× 100%

Sens =
TP

TP + FN
× 100%

Spec =
TN

TN + FP
× 100% (5)

Table 5. EEG-based DDD Accuracies obtained by using Pure Threshold-based Models and Various
Features and Ground Truths.

Ref. No. Features Acc
(%)

Sens
(%)

Spec
(%)

GND Truth
No.

[54] FFT+: a wide range of α band - 74.4 95.5 10

[52] BPE: #8 90.4 - - 4

[49] PBP: θ~β bands 83.8 - - -

[43] FFT+: MDT and MDA 82.8 - - 1

[83] FFT+: mean and STD
extracted from α and β bands 81 - - 9

Binary Classification Model

Similar to the threshold-based methods, binary classification methods categorize
the extracted features into the following two classes only: alert and drowsy. However,
the binary classification results may be better than those obtained with threshold-based
methods, because machine learning techniques can make the decision plane more flexible
and match more complicated cases. Table 6 lists the detection accuracies obtained by
previous studies, using binary classifiers, where RBF, SVM, ANN, FI and LDA stand,
respectively, for radial basis function, support vector machine, artificial neural network,
fuzzy interference and linear discriminant analysis.

Table 6. EEG-based DDD Accuracies obtained by using Binary Classification Models and Various
Features and Ground Truths.

Ref. No. Features Models Acc
(%)

Sens
(%)

Spec
(%)

GND Truth
No.

[72] SHBP (1~27 Hz) and BPE: #5 RBF-SVM 97.48 - - 9

[76] RPB: α band Linear-SVM 95.22 100 93.8 15

[85] Wavelet: WPT features that are selected by
CSP method SVM 94.2 - - 8

[44] BPE: #1, 3, 4, 7 and PBP: δ~β selected by
PCA and fish score SVM 92.2 - - 12

[42] Wavelet+: NZC and IEEG extracted from
θ~β bands ANN - 90.91 79.1 2

[77] FFT+: IEEG, SE and STD extracted from
δ~γ bands SVM 92.5 85 100 9

[69] FFT+: DF, APDP, CGF, FV and MPF
extracted from δ~β bands RBF-SVM 75 86 64 5

[61] FFT+: RBP-based MCT values FI - 84.6 82.1 19
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Table 6. Cont.

Ref. No. Features Models Acc
(%)

Sens
(%)

Spec
(%)

GND Truth
No.

[80]

Hybrid: three features from time-domain
(Max, Min, STD); ten features from

FFT-based methods (CenF, PF, RH/L, Q1F,
Q3F, spectral STD, IR, MF, AC and KC);

Wavelet-based methods (IEEG and NZC
from θ~β bands)

LDA-ANN - 83.6 87.4 9

[35] PBP: δ~β bands ANN 81.49 80.53 82.44 13

[36] FFT+: SE extracted from SSVEP-based
power spectrum

Single-layer
feed-forward ANN 72.5 - - 11

Multi-Class Classification Model

The multi-class classification system can estimate drowsiness levels and provide
drivers with a much earlier warning than that possible with the threshold-based or bi-
nary classification system. Table 7 lists the detection accuracies obtained by previous
studies, using the multi-class classifier, where FNPA stands for fuzzy neighborhood
preserving analysis.

Table 7. EEG-based DDD Accuracies obtained by using Multi-class Classification Models and Various
Features and Ground Truths.

Ref. No. Features Models Acc
(%)

GND Truth
No.

[24]

Wavelet+: Normalized log
energy of the

wavelet-packet coefficients
that are selected by

FMI method

LDA 97%
(5 levels) 17

[39] Wavelet: band power Multilayer
perceptron ANN

95~96%
(3 levels) 21

[70] Hybrid features: TDAR,
selected by FNPA RBF-SVM 93%

(5 levels) 17

[64]

Wavelet+: Normalized log
energy of the

wavelet-packet coefficients
selected by FMI method

SVM 91%
(5 levels) 1

[73] Wavelet+: FFT band power
and SC generated by WPT Subtractive FI 84.41%

(4 levels) 21

Regression Model

Unlike the threshold-based and classifier-based methods, which merely estimate dis-
crete labels, the regression model can estimate a continuous dependent variable (e.g., the
driving performance indicator) by using one or more independent variable (e.g., extracted
EEG features) and can, thus, increase the detection resolution. The commonly used meth-
ods for estimating the performance of the proposed regression model are the squared
correlation coefficient, denoted by r2, and the root mean square error (RMSE). Table 8 lists
the detection accuracies that can be attained by using the regression models, where SVR,
MLR and SONFIN stand, respectively, for receiver support vector regression, multiple
linear regression and self-organizing neural fuzzy inference network.
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Table 8. EEG-based DDD Accuracies obtained by using Regression Models and Various Features and
Ground Truths.

Ref. No. Features Models Acc
(%)

GND Truth
No.

[77] LBP: Log-transformed
SHBP (1–30 Hz) RBF-SVR

r2 = 0.932
and

RMSE = 0.124 (s)
1

[31]

Wavelet+: Normalized log
energy of the

wavelet-packet coefficients,
selected by FMI method

MLR r2 = 0.778 22

[62] PBP: θ and α power SONFIN
r2 = 0.613

and
RMSE = 0.360 (s)

1

[50]

FFT+: α burst duration,
mean amplitude, relative

amplitude, amplitude
variance, wave duration

variance, wave
similarity, slope

smoothness measurement

MLP r2 = 0.272 17

Probabilistic Model

Several researchers employed a probabilistic model to predict driver drowsiness. For
example, the dynamic Bayesian theory-based posterior probabilistic models (PPM) are
proposed with PBP features by [91], and with FFT+ features by [57,84]. However, no men-
tion was made of detection accuracies. Let “+1” and “−1” represent, respectively, drowsy
driving class and alert driving class. The posterior class probabilities, i.e., P(class = +1|

→
x )

can represent the probability of drowsy driving. Therefore, the primary advantage of the
PPM is that it enables the estimation of the relative severity of drivers’ drowsiness. In
this case, the probabilistic mode-based system would have the potential to combat drivers’
drowsiness at an early stage, when feedback might be most effective. However, very
few works are included in this aspect. Li et al. and Zheng et al. proposed a SVM-based
and continuous conditional neural fields (CCNF)-based PPM in 2015 and 2017, respec-
tively [86,87]. Based on the same ground truth as PERCLOS, they obtained 83.78% and
88% accuracy for early-detection of driver drowsiness, using RBP-based and FFT+-based
features, respectively.

Transfer Model

The transfer model is a new development of the aforementioned traditional DMs.
The fundamental difference between the transfer model and traditional DMs is that the
transfer model allows the feature space and distribution in training and testing data to be
different [98]. Therefore, the generalizability of the developed DMs could be improved.
Thus, considering the nature of the moment-to-moment change and individual differences
of EEG, transfer model-enhanced DMs are necessary for the development of EEG-based
DDD. However, few works focus on this topic. In 2015, Lin et al. developed a transfer
learning-enhanced regression model for EEG-based DDD. By using SHBP features and
ground truth 1, this model obtained 70% accuracy, which is higher than the traditional
regression model-based 65% accuracy [98].

3.3.3. Discussion

Timeliness is a big challenge to DDD. To address this problem, one needs to adopt
not only a shorter data processing time window, but also a smart DM model that ensures
timely estimation of drivers’ drowsiness. Our review of the existing DM models of EEG-
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based DDD shows that they can be classified into the following five categories: pure
threshold-based models, binary classification models, multi-class classification models,
regression models and probabilistic models. Of these, the multi-class classification model,
which classifies drivers’ drowsiness into several levels, is obviously better than threshold-
based or binary classification models. However, it is still inferior to the probabilistic
model (or regression models), which transforms the drowsiness level to any value of (0,1)
(or a continuous variable), instead of discrete labels. However, from the perspective of
real-life applications, the higher the resolution of the device used for DDD, the more the
computations (thus, more power consumption) required.

Considering all the models, we found that their best detection rates, except that
of the probabilistic and transfer model, could exceed 90%. However, the models and
the extracted features, which could achieve the best detection rate for each category, do
not show any consistency, as evidenced by the following results: BPE 8 for threshold
category (Acc = 90.4%), the combination of SHBP and BEP 5 and RBF-SVM model for
binary classification category (Acc = 97.48%), Wavelet+ and LDA model of multi-class
classification category (Acc = 97%) and LBP and RBF-SVR model for regression category
(Acc = 93.2%). In addition, from the perspective of cross-category, we identified four studies
for ground truth 1 [44,63,65,78] and four for ground truth 9 [73,77,81,84]. We found that
the best overall accuracy for ground truth 1 was obtained using an RBF-SVR model, using
log-transformed SHPB (1~30 Hz) features (Acc = 93.2%), and that for ground truth 9 by an
RBF-SVM model, using SHPB (1~27 Hz); and BPE 5 features (Acc = 97.48%). While great
performance is achieved by ground truth 9, this method categorized driver drowsiness as
sleep onset, even when a fatal traffic accident could have already occurred.

4. Closed-Loop Problems
4.1. Methods for Vigilance Enhancement

The methods for vigilance enhancement to enhance drivers’ attention include visual, vi-
brational, auditory and non-invasive electronic current-based brain stimulation techniques.
Specifically, for visual feedback, the display of an alert icon is proposed [99]. However,
Belz et al. [100] found that drivers are less sensitive to visual feedback, because they have
to pay continuous attention to road conditions and the dashboard. For vibrational feedback,
a built-in vibration sensor in a wristband device (e.g., smartwatch) is proposed [99], but not
experimentally validated. For auditory feedback, Lin et al. proposed a 1750 Hz tone-burst,
after comparing it with 500 Hz and 3000 Hz tone-burst [38]. They show, in a simulator,
that when the drivers are drowsy, the 1750 Hz auditory feedback could decrease θ and α
power in the occipital region [101]. Brain stimulation-based methods, which increase the
drivers’ attention and concentration by stimulating the brain with small amounts of direct
electronic current [102–106], are worth considering in this regard. The electrodes could be
placed on F3 and F4 or non-hairy forehead Fp1 and Fp2 (in accordance with EEG 10-20
International System [104–106]). It is important to note that [106] did stimulation at the
stage of early drowsiness, when the intervention might be the most effective and necessary.

4.2. Duration of Enhanced Attention

Lin et al. mentioned that the 1750 Hz auditory feedback could maintain driver’s
attention for up to 40 s [67], a time lag that is enough to stop the vehicle safely, whereas
with alternating current-based methods, such as cranial electrical stimulation, the attention
maintenance could reach 4 h [102]. It is very important to note that the maximum duration
of enhanced attention is reported by [103], in which it could reach 6 h with direct current-
based methods, such as transcranial direct current stimulation (tDCS). According to the
standard space of each freeway rest area (about 20 km) [107], and assuming the average car
speed is 80 km/h on the freeway, we can easily calculate that an acceptable duration of en-
hanced attention would be 25 min. From this point of view, auditory feedback [67] is not an
acceptable solution for closed-loop DDD on the freeway, while tDCS approaches [103,106]
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can basically benefit drowsy drivers on the freeway. Table 9 shows the details about the
methods to enhance attention.

Table 9. Performance Comparison of Approaches for Vigilance Enhancement.

Ref. Core
Approach

Max Duration of
Enhanced

Vigilance Level
Technical Parameters

Intervening at
Slightly

Drowsiness
Moment

Including
Neurofeedback

[67] Auditory 40 s EEG-guided 1750 Hz tone per sec No Yes

[103] Caffeine 2 h - No No

[103] tDCS 6 h Hairy area;
30 min and fixed 2 mA session No No

[105] tDCS - Hairy area;
20 min and fixed 1.5 mA session No No

[106] tDCS 23 m
Non-hairy area;

EEG-guided stimulation duration
and fixed 2 mA

Yes Yes

4.3. Discussion

Besides the long-lasting effect, another advantage of using brain stimulation methods
is that they can work together with EEG neurofeedback approaches innately to form a real-
time closed-loop solution for driver drowsiness management. However, like the distracted
driving caused by visual, vibration or auditory methods, or the caffeine addiction caused by
energy drinks to the drivers, brain stimulation methods have their own side effects, such as
tingling, itching and burning sensations. More importantly, the specific stimulation area is
still an open question. Based on the existing studies, frontal areas seem to be the commonly
used areas. This is most likely because the brain’s frontal lobe is in charge of cognitive
control abilities [108], whose enhancement can indirectly suppress the development of
drowsiness or reduce the awareness of drowsiness. Actually, apart from the stimulation
area, the type of electric current is also an open question. This is especially pertinent
given that a more recent study adopted transcranial alternating current stimulation (tACS)
to improve participants’ driving performance in a driving video game [109,110]. Like
tDCS, tACS is a non-invasive brain stimulation technique that delivers weak electric
currents through the scalp, on the order of 1–2 mA. However, as its name implies, tACS
delivers sinusoidal alternating current, rather than direct current. This brings another open
question, that is, which frequency of the alternating current should be used. Although 6
Hz-theta frequency was used in [109,110], a more comprehensive review article about tACS
pointed out that the frequency of tACS used for attention improvement is generally less
consistent [111]. We suggest that future studies should take SHBP or LBP-based single-Hz
EEG features into consideration, to establish the frequency parameter for tACS. To be
more specific, authors could manipulate those single-Hz EEG features one by one until a
significant causal link can be established. Regarding the aspect of practical utility, compared
to the aforementioned feedback methods, the following are the hurdles that may impede
the use of current-based brain stimulation methods:

(1) The inconvenience of using wet electrodes (usually saline-soaked sponge electrodes)
on hairy regions;

(2) The relatively longer stimulation time required before it takes effect (10–30 min).
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5. Research Challenges

Unresolved problems remain.

5.1. Open-Loop Algorithms
5.1.1. The Generalizability

EEG data characteristics vary widely between individuals [62]. Particularly, the drowsi-
ness processes vary from person to person [112]. Therefore, a generalized DDD algorithm
that can overcome the inter-individual differences should be developed. Research on gen-
eralized features [61] and DM models [62,98] is scarce, and so is the case of generalizability
of the DDD algorithms across different ground truths (e.g., two ground truths used in [53]).
Johnson’s group committed to detecting drowsiness by using a generalized algorithm [113].
To develop such an algorithm, first, they proposed ensuring maximum stability and inter-
individual generalizability by using a large sample size (e.g., 135 participants in their study)
and individualizing the model and, secondly, different cognitive tasks should be applicable
across each subject.

5.1.2. The Early-Detection

EEG signal is weak and highly vulnerable to motion artifacts, particularly when dry
sensors are used. Therefore, developing an algorithm that is robust enough to extract
features from motion artifacts contaminated early drowsy symptoms, such as yawning
or rubbing the face or eyes, is still a challenging task. Additionally, while the continuous-
output-type DM models (e.g., probabilistic models and regression models) are used for
increasing the resolution of drowsiness detection and for detecting drowsiness early, their
validation is constrained for want of corresponding ground truth. At present, only discrete
output-type ground truths are available.

5.1.3. The Practical Utility

Papadelis et al. [114] held the view that, since some modern cars have already been
equipped with the built-in eye leads sensors, an EOG-based approach would be more
driver friendly and efficient than an EEG-based system and, therefore, should attract greater
attention from the industry. Indeed, most of the commercially available DDD systems
in the market are video-based [115]. However, the video-based system is not favored
much because of the limitations caused by its brightness and face-to-camera distance [34].
Additionally, the recent advances in EEG dry sensors, low-power integrated circuits and
wireless communication technologies enable EEG-based DDD transit from research to
practical use; for example, an EEG-based commercial solution is already available for the
professional drivers of the coal mines in Australia [116]. These drivers can have their brains
monitored in the workplace by simply wearing the cap. With the development of wireless
and wearable EEG devices, we believe that EEG-based DDD, under naturalistic driving
conditions, is a more promising research area.

As regards the comparison of EEG-based DDD solutions with those of the other
existing approaches, Sommer et al. [115], using simulated driving experiments, report
that the combination of EEG and EOG (EEG/EOG) is better than video-based PERCLOS.
Based on a naturalistic driving condition, and comparing other physiological signals,
Papadelis et al. [114] concluded that EEG/EOG outperforms ECG and EMG. In contrast to
this, Khushaba et al. [24], using a simulated experiment, claimed that EEG/ECG is better
than EEG/EOG. They further contend that EEG is the best signal if these physiological
signals are used individually. However, the need for comparison of EEG and individual
physiological signals, under naturalistic driving conditions, remains unfulfilled.

5.2. Closed-Loop Algorithms

The causal link between EEG biomarkers and drivers’ drowsiness levels is the key
to a successful closed-loop DDD system. A critical step to verify this causal link is to use
neuromodulation approaches, including tDCS and tACS, to directly manipulate those EEG
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biomarkers found in open-loop approaches. However, apart from prior work from our
group [106], we did not find similar studies to rigorously verify the causal relationship
between those EEG features and drivers’ drowsiness. Thus, future studies can be planned
on this topic, in order to design a reliable closed-loop DDD system.

6. Conclusions

For synthesizing the algorithm-level infrastructure, we have organized this article into
open-loop studies and closed-loop studies. The open-loop studies are structured into the
following three steps: data sensing, data processing and data-to-knowledge. The closed-
loop studies are structured in terms of the following two important fields of real-world
DDD solution: the methods to enhance attention and the duration of enhanced attention.

On reviewing these techniques, we arrive at the following conclusions:

(1) From the point of view of early detection of drivers’ drowsiness, advanced features,
such as HOS (with 30-s time window) and PTFD (with 10-sec time window), are more
robust than the traditional EEG frequency bands-based features. In addition, the
continuous output-type DM models (e.g., probabilistic models and regression models)
outperform the commonly used discrete output-type DM models (e.g., threshold,
binary and multi-class classification models).

(2) From the point of view of practical utility, the bipolar single channel in the occipital
region is the most suitable EEG montage for DDD research. tDCS technology is most
effective in boosting alertness. Its duration of enhanced attention is long-lasting, when
compared to that of visual, vibrational and auditory feedback methods.

(3) From the point of view of reliability, PERCLOS+ provides the most reliable ground
truth for the development and verification of real-time DDD algorithms.
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