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Abstract: Heart failure (HF) exacerbations, characterized by pulmonary congestion and breath-
lessness, require frequent hospitalizations, often resulting in poor outcomes. Current methods for
tracking lung fluid and respiratory distress are unable to produce continuous, holistic measures
of cardiopulmonary health. We present a multimodal sensing system that captures bioimpedance
spectroscopy (BIS), multi-channel lung sounds from four contact microphones, multi-frequency
impedance pneumography (IP), temperature, and kinematics to track changes in cardiopulmonary
status. We first validated the system on healthy subjects (n = 10) and then conducted a feasibility
study on patients (n = 14) with HF in clinical settings. Three measurements were taken throughout
the course of hospitalization, and parameters relevant to lung fluid status—the ratio of the resistances
at 5 kHz to those at 150 kHz (K)—and respiratory timings (e.g., respiratory rate) were extracted. We
found a statistically significant increase in K (p < 0.05) from admission to discharge and observed
respiratory timings in physiologically plausible ranges. The IP-derived respiratory signals and lung
sounds were sensitive enough to detect abnormal respiratory patterns (Cheyne–Stokes) and inspi-
ratory crackles from patient recordings, respectively. We demonstrated that the proposed system
is suitable for detecting changes in pulmonary fluid status and capturing high-quality respiratory
signals and lung sounds in a clinical setting.

Keywords: wearable sensing; lung sounds; impedance pneumography; bioimpedance spectroscopy;
cardiorespiratory monitoring; fluid status; heart failure; sensor fusion

1. Introduction

Heart failure (HF), which affects over 6 million Americans, imposes a significant bur-
den on patients and healthcare systems due to the more than 1 million hospitalizations per
year [1]. Acute decompensated HF, typified by the presence of pulmonary edema, dyspnea,
and abnormal lung sounds [2], frequently results in hospitalizations that are associated with
increased mortality [3]. Though medical treatment can effectively mitigate symptoms of de-
compensation, approximately 40% of discharged patients still show signs and symptoms of
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HF [4]. Therefore, systems that enable efficient tracking of cardiopulmonary status through-
out the course of hospitalization could alert clinicians to worsening or improvement, allow
for more aggressive management, and reduce the duration of hospitalization.

Existing techniques for evaluating cardiopulmonary status usually consist of single-
point measurements, such as manual lung auscultation or radiographic imaging, which
only supply qualitative metrics regarding a patient’s health [5,6]. The absence of practical
methods for tracking pulmonary edema and extracting respiratory waveforms, typically
measured with obtrusive spirometers or face masks [7], likewise presents a consider-
able challenge for quantifying respiratory deterioration. Therefore, wearable systems
that can conveniently and continually track physiological parameters relevant to car-
diopulmonary health are promising adjuncts to conventional methods. Specifically, a
multimodal system that monitors fluid status through bioimpedance spectroscopy (BIS),
lung acoustics via multi-location digital auscultation, and respiratory activity using multi-
frequency impedance pneumography (IP) could enable comprehensive tracking of car-
diopulmonary function.

Prior work has illustrated the efficacy of these individual modalities for capturing
salient cardiopulmonary health markers. BIS has previously been employed in the detection
of pulmonary fluid accumulation in patients with HF [8,9]. Similarly, digital lung ausculta-
tion enables the quantification of acoustic properties that have long been used to distinguish
cardiopulmonary disorders [10,11], and promising results have recently been reported from
single- [12] and multi-channel lung sounds recordings [13,14]. Lastly, IP has been used
to accurately estimate respiratory parameters which have shown relevance for assessing
pulmonary function [15,16] and evaluating the risk of breathing disorders [17]. Though
these signals have demonstrated utility when used independently, they are commonly
measured with expensive benchtop equipment that precludes expediency and extended
assessments. Only recently has work been dedicated to the development of systems suit-
able for multimodal cardiopulmonary monitoring, but none have been tested in clinical
populations [18–20]. Moreover, the fusion of these cardiopulmonary sensing modalities
and their resulting clinical impact have been sparsely investigated. Therefore, the role and
efficacy of multimodal wearables for cardiopulmonary sensing warrants further investiga-
tion, particularly in patients with respiratory distress such as HF, COVID-19, pneumonia,
or acute respiratory distress syndrome (ARDS).

In this work, we present a novel wearable multimodal sensing system for capturing
simultaneous lung sounds from four sites on the anterior and posterior sides of the chest,
IP-derived respiratory waveforms, and BIS-based fluid measurements to assess cardiopul-
monary health status, with concurrent kinematic and temperature data. We first validated
the system in 10 healthy subjects, demonstrating the ability to acquire high-quality signals.
Then, we conducted an in-clinic study on 14 patients with HF and acquired three measure-
ments during hospitalization, including admission and discharge, to evaluate the feasibility
of our system for tracking changes in pulmonary fluid distribution and extracting pertinent
respiratory markers and sounds. By addressing the scarcity of practical cardiopulmonary
monitoring techniques, the system proposed in this work can potentially equip clinicians
with valuable indicators of cardiopulmonary health that lead to better titration of care and
improved patient outcomes.

2. Materials and Methods
2.1. System Adaptation for Respiratory Sensing

We adapted our joint health monitoring multimodal sensing system [21] to suit wear-
able respiratory sensing in clinical settings. Briefly, the system is composed of two main
subsystems: the audio and main boards. The audio board samples data from four audio
channels simultaneously, while the main board records data from two inertial measurement
units (IMUs), two temperature sensors (Temps), and an electrical bioimpedance (EBI) front-
end. The system can operate in either continuous or spectroscopy mode, each uniquely
capturing pertinent physiological information, which determines what sensors are active
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and the sampling scheme that is employed. The following sections address the updates
and modifications made to the system.

2.1.1. Hardware Modifications

To enable lung sounds measurements, which are commonly believed to cover the
frequency range from 50 Hz to 2500 Hz [2], we modified the analog front-end (AFE) of
the audio board to decrease the filter’s lower cut-off frequency to have sufficiently wide
bandwidth (32 Hz–20 kHz). The rest of the audio board specifications remained unchanged
from the previous version [21].

The impedance portion of the main board, originally designed to measure EBI of joints,
was refined in [16] to measure transthoracic EBI. The AFE was replaced with the AD5940
integrated circuit (Analog Devices, Cambridge, MA, USA). This integrated circuit generates
a sinusoidal 450 mVpeak excitation signal, constrained by current-limiting resistors to meet
the IEC 60601-1-11 safety guidelines [22], and measures the delivered current and resulting
voltage drop across the tissue with a four-electrode configuration using standard 3M
electrodes (3M, St. Paul, MN, USA). For each current and voltage measurement, 18-bit
real and imaginary values are returned, which can be calibrated [23] to form a complex
impedance. The operational modes, detailed further in Section 2.1.5, determine the EBI
measurement parameters, such as excitation frequency, and the resulting sampling rate.
Table 1 summarizes the electrical specifications of the updated main board.

Table 1. Main board electrical specifications.

Parameter Value

Average Power Consumption
Sleep 0.5 mA
Continuous Mode 27.6 mA
Spectroscopy Mode 16.8 mA

Battery Life (with 500 mAh Battery)
Sleep 41.6 days
Continuous Mode 18 h
Spectroscopy Mode 30 h

Number of Measured Frequencies
Continuous Mode 4
Spectroscopy Mode 32

Sampling Rate 1

Continuous Mode 16 Hz
Spectroscopy Mode 0.5 Hz
Frequency Range 5–150 kHz

Excitation Voltage 450 mVpeak
Mean Resistance (R) Error 0.50 Ω
Mean Reactance (X) Error 0.44 Ω
Noise Floor 2 7.8 mΩ

1 Sampling rate defined per measured frequency. 2 Computed as standard deviation of measurements of a fixed
56 Ω load.

2.1.2. Packaging Design

The redesigned form factor consists of a central circuit housing (7.90 × 6.92 × 3.52 cm,
122 g), professionally injection-molded with thermoplastic polylactic acid (PLA) material
(Proto Labs, Maple Plain, MN, USA), that connects to each sensor independently (Figure 1a).
The housing was fabricated in a semi-transparent material to provide visual feedback to
users through LEDs and provide support for attachment to the arm or clothing via Velcro
strap or metal clip, respectively. As in the previous version, the circuit housing hosts the
main and audio boards, a pair of 500 mAh batteries, and mechanical switches to both
initiate/stop recording and control the operation mode. In this work, we reoriented the
PCBs and incorporated right-angle connectors so that all connections enter the circuit
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housing from the same side and at the same angle (Figure 1b). Such arrangement improves
cable management and organization and facilitates connection to the sensors.

Figure 1. (a) Overview of the redesigned system for respiratory monitoring. A central circuit housing
connects to each sensor independently and can be attached to the arm via Velcro strap. The semi-
transparent material of the box provides visual feedback through LEDs. The system contains four
audio channels, 2 IMUs (1 reference), 2 temperature sensors (1 reference), and 2 pairs of EBI electrode
wires. (b) Central circuit housing hosting the audio and main boards PCBs, 2 500 mAh batteries,
and mechanical switches to initiate/stop recordings and control the operation mode. All connectors
enter the box from the same side via right-angle connectors. (c) Custom 3D-printed microphone case
to provide constant backing force. The contact microphones (BU-23173-000, Knowles Electronics
LLC., Itasca, IL, USA) were professionally overmolded in a 77 A durometer silicone. (d) Placement of
multimodal sensors utilized in this work. (e) Exemplary recording from a selected subset of sensors
during a deep breathing maneuver.

To allow for modular placement of sensors, we detached the sensors connected to
the main board from their previous cases, resulting in independent pairs of sensors (IMU
and Temp) and EBI snap electrode cables. For both the IMUs and Temps, a single sensor
was left for measurement directly on the skin, and the remaining one was placed in the
circuit housing for reference measurements. The sensors in direct contact with the skin
were professionally overmolded and assembled (Winchester Interconnect, Norwalk, CT,
USA) to provide sealing. This encasement not only prevents the skin from interacting with
circuit components, but also moisture and sweat from damaging the sensors, allowing for
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sanitization. The reference sensors, on the other hand, were protected by enclosing them
in custom 3D-printed flexible cases utilizing a 95 A Cheetah 3D printer filament (Cheetah
95 A TPU, NinjaTek, Manheim, PA, USA) and then secured with epoxy.

2.1.3. Acoustic Design

We developed a new microphone attachment solution with the previously used low-
noise and wide-bandwidth contact microphones (BU-23173-000, Knowles Electronics LLC.,
Itasca, IL, USA) at its core. Our group previously compared air microphones and contact
microphones for the purpose of knee sounds measurements, and we showed that air
microphones are more prone to background noise and that the acoustic energy attenuation
through air reduces the signal-to-noise ratio [24]. For lung sounds measurement, when an
air layer is used as the propagation medium between a diaphragm and the acoustic sensor
(e.g., electret microphone), signal degradation is also expected due to their high sensitivity
to environmental sounds [25]. Therefore, contact microphones—such as the ones used in
this work—are inherently less sensitive to environmental sounds than their air-coupled
counterparts because they couple directly to skin.

To provide solder joint protection and water-proofing capabilities, necessary qualities
to deploy the system in uncontrolled clinical settings, the contact microphones were pro-
fessionally overmolded in a 77-shore hardness (A-scale) durometer silicone (Winchester
Interconnect, Norwalk, CT, USA). In prior work [26], we found this durometer to be ap-
propriate for preserving linearity and ensuring a bandwidth within the frequency range
of interest for lung sounds. While adding this silicone layer between the sensor and skin
may result in acoustic energy reflection due to the acoustic impedance mismatch of the
boundaries, silicone rubber has been utilized as an acoustic conduction material in custom
auscultation devices due to having an acoustic impedance that is much greater than that
of air but similar to the acoustic impedance of skin, thereby minimizing ambient noise
coupling and maximizing vibration transmission [25,27]. Thus, the overmolded contact
microphones utilized in this work provided virtual direct coupling to skin and acoustic
isolation from airborne sounds.

While the overmolded microphones provide a convenient and robust way of measur-
ing lung sounds with high quality, uncontrolled backing force on the contact microphones
has recently been shown to change the frequency response of a contact microphone signifi-
cantly [28] and is not recommended for measuring lung sounds with contact-type acoustic
sensors [29]. Given the potential application of our system to people in bed, possibly in a
supine posture, a well-controlled backing force was necessary to standardize the acoustic
measurements. To address this, we designed a custom rigid enclosure, 3D-printed in PLA
material, to provide constant backing force. The custom cases (3.97 × 3.97 × 1.37 cm)
consist of a base layer, containing a slit that exposes the microphone sensing surface, and a
lid that is secured via three screws (Figure 1c). The overmolded microphones were inserted
into the base case, and then the remaining cavity was filled with non-conductive foam
to generate a constant force pushing the microphones towards the skin when the lid is
secured. To check the effects of the designed case on the transfer function of the overmolded
microphones, we conducted shaker vibration testing following the procedure described
in [28] and found no significant differences (Figure S1).

Note that we decided not to use any adhesives between the contact microphone and
the skin, as prior work showed that they alter the frequency response of the microphone [28].
Instead, we used 3M Transpore surgical tape (3M, St. Paul, MN, USA) to effectively secure
the microphone casings against the skin (Figure 1a). Several adhesion alternatives were
evaluated, and we found this tape to provide the best adhesion to various skin surfaces,
especially on hairy and sweaty skin.

2.1.4. Sensor Placement

Figure 1d shows the sensor placements used in this work. The EBI electrode pairs, each
consisting of one voltage and one current electrode, were placed on opposite portions of
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the thorax at the intersection of the midaxillary and 5th intercostal line, all lying in the same
horizontal plane. The voltage electrodes were positioned anterior relative to the current
electrodes, separated by an approximated distance of 5 cm. The resistive component of
the EBI signals measured from similar electrode configurations has formerly exhibited
strong linearity with lung volume [30] and has also been employed in prior thoracic BIS
studies [31]. To acquire multi-channel lung sounds data, we placed the microphones over
the anterior right upper and lower chest quadrants (CH1-2) and posterior left and right
lower chest quadrants (CH3-4). This placement follows the computerized respiratory
sound analysis (CORSA) recommendations for multi-channel lung auscultation [32]. The
temperature sensor was placed close to the armpit, providing surface skin temperature
readings. Additionally, while the IMU was initially designed to provide postural and
kinematic information relative to the reference sensor, we placed the IMU on the xiphoid
process to also capture respiratory-related chest movements. Although multiple sensors
and wires were placed around the chest due to the multimodal nature of the system, the
wires were long enough to allow unrestricted natural breathing motion. Figure 1e shows
the recordings of a selected subset of sensors during a deep breathing maneuver.

2.1.5. System Operational Modes

For this work, firmware was developed to enable the main board to alternate between
two operational modes: (1) spectroscopy mode, measuring BIS across a logarithmically
distributed range of 32 excitation frequencies from 5 to 150 kHz, and (2) continuous
mode, concurrently capturing the multi-frequency IP signal at four frequencies (5, 50, 100,
150 kHz). The BIS excitation frequencies were selected to encapsulate the distinctive tissue
impedance properties at low and high frequencies, which have previously been employed
to assess pulmonary fluid status [33,34], whereas the excitation frequencies for continuous
IP measurements were selected in accordance with prior work from our group, which
demonstrated strong correlations to respiratory waveforms acquired from gold-standard
methods [16]. The system can perform a sweep of the 32 frequencies every 2 s or sample
an individual frequency every ~15.6 ms, dictating a sample rate of 16 Hz for each of the
four excitation frequencies in the continuous measurement mode. When continuous mode
on the main board is active, simultaneous measurements are acquired from both IMUs
(100 Hz), both Temp sensors (1 Hz), the EBI front-end (16 Hz× 4), and the four microphones
(46.875 kHz × 4) from the audio board. Alternatively, spectroscopy mode samples only
the main board’s sensors, using a different EBI sampling scheme (1 sweep/2 s), with the
audio board remaining idle. Data collected from either operational mode are stored onto
an SD card, where they can be retrieved via a USB interface for subsequent analysis. If no
measurement is active, the system resides in a low-power sleep mode to preserve battery
life. Table 1 details the differing current consumption characteristics of these modes.

2.2. In-Lab Validation of System

We obtained approval from the Georgia Institute of Technology Institutional Review
Board (IRB) to evaluate the system on human research participants (H20329). Written
consent was obtained from 10 (6 males, 4 females) young and healthy volunteers (age:
25.30 ± 2.41 years, weight: 73.83 ± 15.39 kg, height: 175.31 ± 14.07 cm) with no history of
cardiopulmonary disorders.

To validate our system against a ground truth auscultation device, a commercial digital
stethoscope (Eko CORE, Eko Devices, Oakland, CA, USA) in diaphragm mode was placed
next to Ch3 (Figure 1d), and both systems recorded simultaneously while the participants
took deep breaths over a 30 second period. The participants were in sitting position, and
a nose clip was used to enforce mouth breathing [32]. The average lung sound spectra
from both systems were calculated across all subjects and plotted together. Additionally,
three spectral features were extracted from each spectrum, namely the spectral peak (Fmax)
and the frequencies that contain 50% (F50) and 95% (F95) of total the spectral power. This
analysis was carried out in MATLAB R2020b (MathWorks, Natick, MA, USA).
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The validation of the IP signals acquired with our system as respiratory surrogates
was demonstrated in previous work [16], where we found that these IP-derived respiratory
signals are highly correlated to tidal volume (TV) and can accurately estimate respiratory
timings. The BIS measurement accuracy was evaluated with known impedances, which
were designed to be in the same range of values as common thoracic impedances, and the
corresponding errors are reported in Table 1.

2.3. Proof-of-Concept Clinical Study

After validating the system on healthy controls, we obtained approval from the Emory
University School of Medicine IRB (IRB00000794) and the Grady Oversight Committee to
collect data from 14 (9 males, 5 females) patients with HF. The population demographics
are detailed in Table 2. All patients (n = 14) provided verbal consent prior to data collection,
which was conducted entirely at Grady Memorial Hospital in Atlanta, GA. Patients were
excluded in the presence of other substantial comorbidities, such as chronic asthma, chronic
obstructive pulmonary disorder (COPD), major lung injury, or history of chronic tobacco or
marijuana use, or if the patient had an implantable cardioverter defibrillator (ICD).

Table 2. Patient demographics.

Parameter Patient Data
(n = 14)

Age (years), mean (SD) 50.2 (11.5)
Sex, n (%)

Male 9 (64)
Female 5 (36)

Height (cm), mean (SD) 174.1 (10.1)
Weight (kg), mean (SD) 124.1 (55.3)

BMI (kg/m2), mean (SD) 41.2 (19.1)
Race, n (%)

Black 13 (93)
White 1 (7)

Patients were recruited near admission with the intention of collecting three measure-
ments across the duration of their hospitalization: within 24 h of admission, 24 h after
the initial measurement, and finally within 12 h prior to discharge. Data collection times
were distributed as such to allow patient treatment, particularly the prescribed diuretics,
to decrease intraparenchymal fluid levels and improve respiratory status [2]. The device
was placed as shown in Figure 1a,d for each measurement, which consisted of one minute
of the previously described spectroscopy mode and seven minutes of continuous mode
measurement. Prior to the start of recordings, the patients were told to stay in the posture
most comfortable for them. To maintain consistency across all recordings, the patients were
asked to remain in the same posture as the first day. Additionally, to capture a represen-
tative depiction of the patient’s health status, no instructions were provided regarding
the rate and depth of breathing. Following the completion of the protocol, the system
was removed and sanitized. The duration of the measurements was selected to ensure an
ample number of breaths were recorded for extracting respiratory parameters while also
minimizing the impact on the typical workflow of the hospital. If patients were unable or
chose not to continue in the study, then no further measurements were taken. In total, 32
measurements were collected from the 14 patients: three measurements from eight subjects,
two measurements from two subjects, and one measurement from four subjects.

2.4. Signal Visualization and Interpretation

The continuous multimodal data from the proof-of-concept clinical study were plotted
simultaneously to observe the multi-channel lung sounds as a function of their location
(Ch1-4) and their associated respiratory phases (inspiration and expiration) provided by the
IP-derived respiratory signal. Prior to visualization in time and time–frequency domains
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(spectrogram), lung sounds measurements were resampled to 6 kHz using a finite impulse
response (FIR) antialiasing low-pass filter. Then, the signals were filtered using a zero-phase
minimum-order FIR band-pass filter in the passband 100 Hz to 1000 Hz. These frequency
cut-offs were selected to suppress heart sounds interference below 100 Hz [29] and hospital
room noises (e.g., alarms, television, speech) that were clearly heard above 1.8 kHz due
to relatively low acoustic power of lung sounds above that frequency. To calculate the
spectrograms, short-time Fourier transform (STFT) was employed with 300 ms windows
and 95% overlap. These STFT windowing parameters were selected experimentally to
improve the quality of the time–frequency visualizations since a wide range of values
have been reported in the literature, including 500 ms windows with 50% overlap [35]
and widow sizes of 16, 32, 64, 128, 256, and 512 ms with 75% overlap [36]. Instances of
abnormal breathing patterns and lung sounds found in the proof-of-concept recordings are
presented, and a corresponding interpretation is provided. The accelerometer data were
pre-processed following the steps in Section 2.5.1.

2.5. Signal Processing
2.5.1. Continuous Data

A signal processing pipeline was developed in MATLAB R2020b (MathWorks, Natick,
MA, USA) to process the continuous data. In this work, only the 100 kHz IP signal was
processed due to its high signal quality as well as being a commonly used IP frequency,
although the same steps apply to any of the IP signals.

The raw IP signals were first linearly resampled to 100 Hz with an anti-aliasing low-
pass filter. Then, the signals were filtered with a Kaiser window FIR filter in the passband
0.1 Hz to 0.8 Hz, corresponding to a respiratory rate (RR) of 6 breaths per minute (bpm)
and 48 bpm, respectively (Figure 2).

Figure 2. Multi-frequency impedance pneumography (IP) signal processing pipeline. After filtering
the signals, breaths are detected, and their signal quality is assessed. This assessment employs overlap-
ping windows to enable breath-by-breath evaluations with the SQI published in (Charlton et al., 2021)
at its core. A final stage of plausibility assessment ensures that only breaths yielding physiologically
plausible respiratory rates (RR) are deemed as good quality. These good breaths are then used to
extract amplitude (Rpki/e) and timing features (Ti/e, RR). Outliers are finally removed if any of the
features lay outside ±4 median absolute deviations (MAD) from the overall median.

To detect breath onsets, we windowed the signals (26 s windows, 80% overlap) and
then extracted valid breaths from each window following the steps in [37]. Overlapping
was used to avoid missing truncated breath candidates during windowing. The identified
breath onsets across all windows were fused into a unique set of onsets. An inter-breath
interval (IBI) was defined as the time spanning between two valid breath onsets.
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After identifying the set of IBIs, we evaluated the signal quality of the corresponding
breaths based on their relative morphology and duration. First, a set of overlapping win-
dows (26 s windows, 80% overlap) was created {X0, Xτ , . . . , Xkτ}, where
τ = (1− 0.8) ∗ 26 = 5.2 s and k = {0, 1, 2, . . . }. Overlapping windows were used to
allow breaths to appear in multiple windows. We then used a modification of the signal
quality index (SQI) presented in [37] to assign binary quality labels to each window. The
original SQI parameters were adjusted empirically to better suit our dataset. The parameter
changes are the following: (1) the window length was reduced to 26 due to higher-than-
normal RRs, (2) the minimum correlation to a breath template was set to 0.7, and (3) the
coefficient of variation of breath durations was set to 0.5. The resulting binary label of a
given window (Xkτ) was then replicated to its constituent breaths (SQIXkτ) to enable a
stage of breath-by-breath quality evaluations across all overlapping windows. To create the
final quality labels (SQIX), all breaths’ labels were fused through a logical OR operation,
i.e., a breath is considered “good” if it was found to be “good” in any window. As a last
step in the signal quality assessment, we calculated RR as 60/IBI for all detected IBIs and
assessed their physiological plausibility. “Bad” breaths were defined as those resulting
in a RR lower than 4 bpm or greater than 60 bpm and thus were discarded from further
processing. Visual inspection was conducted on all recordings to check the quality of the
accepted breaths.

Following quality assessment, respiratory timings and amplitude features were ex-
tracted on a breath-by-breath basis. The RR was calculated as above, while the tim-
ing features inspiration time (Ti) and expiration time (Te) were extracted as in previous
work [16,38]. Further, the expiration-to-inspiration ratio (Te:Ti) was calculated to provide
insight into the relative contribution of each phase to the breathing cycle, which relates
to ventilation [39] and breathing regularity [38,40]. The amplitude features inspiration
peak (Rpki) and expiration peak (Rpke) were also calculated as in previous work [16]. As
a final stage, a simplified version of the feature-based outlier rejection approach in [38]
was employed, in which we flagged values lying outside ±4 median absolute deviations
(MAD) from the overall median for each feature separately and then fused them to create a
single set of “good” IBIs from which the final features were computed.

Due to the well-known dependency of IP on electrode placement [31,41] and pos-
ture [42], the estimation of lung volume markers (e.g., TV) from IP-derived amplitude
features requires calibration with a ground truth spirometer signal [16,30,42]. In this work,
however, the absolute amplitude features (Rpki and Rpke) were only used for the feature-
based outlier rejection stage of the processing pipeline and were not utilized as lung volume
markers. Since only respiratory timings (RR, Ti, and Te) were compared, the slight dif-
ferences in electrode placement and posture across recordings should have no significant
effect on the results. Therefore, no calibration procedure was needed.

2.5.2. Spectroscopy Data

A representative BIS curve was formed by averaging all measured sweeps from a
measurement session, totaling to approximately 30 individual sweeps, to negate variability
due to respiration or movement. One patient with only one measurement session was
not included in the BIS analysis due to an error during the data collection. For all other
subjects, each measurement session resulted in a single averaged BIS curve being computed.
Commonly, such BIS measurements are utilized in electrical models of tissue, such as the
Cole model [43], to extract parameters including the extra- and intracellular resistance
(Re and Ri). However, due to confounding factors in the acquisition of thoracic BIS
measurements [44,45] which can result in positive phase errors at high frequencies [46],
Cole modeling may not be an appropriate method of analysis. As an alternative, the
resistance measured at low frequencies—which relates to extracellular paths—and at high
frequencies—which encompasses both extra- and intracellular paths—were employed
in place of the Re and Ri parameters, respectively. This method simplifies the analysis
and avoids the error inherent to the extrapolation required by Cole modeling. Thus, the
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resistance at 5 kHz (R5k) and at 150 kHz (R150k) were extracted from the averaged BIS
curve. Finally, the ratio of R5k to R150k, denoted hereafter as K, was computed to provide
meaningful insight into the distribution and accumulation of fluid between extra- and
intracellular spaces, which is often exacerbated in patients with HF [34]. Comparable
whole body BIS methods employ similar rationale when comparing extracellular water
(ECW) to total body water (TBW) to detect fluctuations in fluid status for patients with
HF [47]. While BIS measurements are sensitive to changes in posture and dependent
upon consistent electrode placement, the reproducible electrode configuration employed in
this study allowed for consistency across recordings. Inter-subject variability also heavily
influences the raw resistance values measured during BIS, as discussed in Section 2.5.1, but
our analysis normalized the measurements when taking the ratio of low to high frequencies,
thus mitigating the differences in patients’ thoracic resistances and allowing for equivalent
comparisons to be made.

2.6. Statistical Analysis

Statistical analysis was carried out in Python and MATLAB R2020b (MathWorks,
Natick, MA, USA) to evaluate differences between the admission and discharge data. The
two data groups were first tested for normality with the Shapiro–Wilks test [48]. If both
groups were normally distributed, two-tailed paired t-tests were utilized; otherwise, the
Wilcoxon signed-rank test was performed where the assumption of normality was not
upheld. A p-value lower than 0.05 was considered statistically significant for this work.

3. Results and Discussion
3.1. Acoustic Validation against Eko CORE

The results from the acoustic validation against the Eko CORE digital stethoscope are
illustrated in Figure 3 and Table 3. The spectral comparison in Figure 3 shows that both
spectra peak around the same frequency and have similar frequency content below 400 Hz.
The marked difference in spectral power above 400 Hz was anticipated due to the limited
frequency range of normal lung sounds (95% of the spectral power lies below 500 Hz [49])
and the embedded noise-canceling capabilities of the Eko CORE. These observations are
confirmed by the spectral features extracted from both spectra (i.e., Fmax, F50, and F95),
which are reported in Table 3. The slight difference of only 4.98 Hz in Fmax corroborates
the agreement between the spectral peaks of both systems, which are consistent with the
spectral peak of normal lung sounds reported in the literature [49]. Similarly, the differences
in F50 and particularly F95 highlight the noise-canceling capabilities of the Eko CORE and
the frequency response of the stethoscope diaphragm that concentrate most of the acoustic
energy around the peak frequency of normal lung sounds. This aggressive attenuation
provided by the Eko CORE, which is also found in other commercial digital stethoscopes
such as Thinklabs One, has been demonstrated to attenuate high-pitched sounds [50].
Thus, the increased spectral power that our system provides at higher frequencies could
be particularly advantageous for capturing lung sounds with frequency content beyond
the passband of conventional stethoscopes, including fine crackles (>650 Hz) and wheezes
(>400 Hz) [10,51].

The similarities of lung sounds captured with our system and the Eko CORE were
also confirmed in the time and time–frequency domains (Figure S2).

3.2. Results from Proof-of-Concept Clinical Recordings
3.2.1. Detecting Changes in Pulmonary Fluid Status

Figure 4a demonstrates a statistically significant (p < 0.001, Wilcoxon signed-rank)
increase in K from admission (K = 1.27 ± 0.12) to discharge (K = 1.32 ± 0.15). For the
patients with both measurements available (n = 8), we observed an increasing trend in all
but one patient. The magnitude of the average increase in K is consistent with previous
work that examined changes in the ratio of the extra- and intracellular resistances in patients
with HF and those undergoing pleural effusion [34]. In general, as the patients experience
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diuresis and transition to a compensated state, the overload of pulmonary fluid can be
assumed to subside as per HF discharge criteria [2]. Thus, the increase in K suggests that
this metric of fluid distribution can track the progression, and perhaps the effectiveness, of
the applied treatment. For the only patient with a decreasing trend, given that they had
the highest BMI (97.2 kg/m2) of all the patients, we hypothesize that tracking pulmonary
edema specifically, as opposed to general thoracic fluid, in such patients with considerably
enlarged thoraxes might require greater sensitivity or additional segmental measurements.
Alternatively, this particular patient’s pulmonary edema may not have decreased from
admission to discharge. However, in this study, there were no gold-standard markers of
fluid volume to compare against, so specific quantification of edema cannot be made.

Figure 3. Validation against the Eko CORE digital stethoscope. The mean and standard deviations for
both spectra are plotted. The data were obtained from 10 healthy volunteers with both sensors close
to each other and over the posterior left lower chest quadrant. Both systems recorded simultaneously
while the participants took deep breaths over a 30–s period in sitting position.

Table 3. Spectral features extracted from custom system and Eko CORE digital stethoscope.

Parameter Custom
Mean (SD)

Eko CORE
Mean (SD)

Fmax (Hz) 118.21 (3.50) 123.19 (9.91)
F50 (Hz) 212.67 (60.11) 150.14 (14.79)
F95 (Hz) 946.84 (170.36) 272.94 (20.09)

As the BIS measurements encompass the entirety of the thoracic cavity, it is difficult
to relate changes in EBI directly to fluid in the lungs, which is typically only possible
via segmental EBI, necessitating the use of more electrodes and complex hardware [8,33].
However, variations in K not only indicate the flux of fluid in extracellular spaces, which
is associated with edema, but also the redistribution of fluid back into the appropriate
intracellular compartments [34,52]. This allows for a more sensitive measure of fluid
changes and offers insight regarding the location of fluid accumulation. A secondary
outcome from the use of this analysis is the lack of dependency on obtaining measurements
from a large number of excitation frequencies, as only two measurements, a pair of low-
and high-frequency measurements, are needed. Thus, the continuous measurement mode
described in this work could also be utilized to also capture fluid status in addition to
respiratory waveforms, simplifying the firmware further and reducing the amount of data
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required. Overall, this simplified BIS analysis could provide clinicians with indications
of fluid retention and signs of acute decompensation or, alternatively, transition to a
compensated state.

Figure 4. Results from proof-of-concept clinical recordings. (a) Differences between the admission
and discharge groups for K (the ratio of the resistances at 5 kHz and 150 kHz) showing a statistically
significant increase (p < 0.001, Wilcoxon signed-rank) from K = 1.27 ± 0.12 to K = 1.32 ± 0.15. This
statistically significant increase in K indicates the reduction of pulmonary fluid or its redistribution
into the appropriate intracellular compartments. (b) Differences in the mean RR from admission to
discharge groups showing a slight decrease from 23.12± 5.53 bpm to 22.73± 6.85 bpm, not statistically
significant. (c) Differences in the mean Te:Ti ratio showing a slight increase from 1.10 ± 0.27 to
1.23 ± 0.32, not statistically significant. * denotes a p-value lower than 0.05 and was considered
statistically significant for this work.

3.2.2. Extraction of Respiratory Health Markers

For the first time, to the best of our knowledge, we demonstrated the use of IP to
capture breath-by-breath respiratory features in an HF population. Figure 4b,c show the
differences in mean RR and mean Te:Ti between the admission (n = 14) and discharge (n = 8)
groups. We found a slight decrease in the mean from 23.12 ± 5.53 bpm to 22.73 ± 6.85 bpm
for RR and a slight increase from 1.10 ± 0.27 to 1.23 ± 0.32 for the mean Te:Ti, both
statistically insignificant (p > 0.05, Wilcoxon signed-rank). Beyond the differences (or
lack thereof) in these markers from admission to discharge, these results show that the
values extracted are in physiologically plausible ranges. The mean RR was above the
normal range in adults (12–20 bpm [53]), as expected in decompensated HF patients [54].
Similarly, the mean Te:Ti values close to 1:1, with some values lower than one, indicate
the need for increased ventilation since a greater portion of the breathing cycle is spent in
inspiration (where gas exchange occurs) as compared to the normal 2:1 ratio [39]. These
results suggest that the proposed system can be utilized to extract relevant respiratory
markers in a clinical setting.

3.2.3. Cheyne–Stokes Respiration (CSR)

A 240 s segment of multimodal data obtained from patient 13 in which they were
breathing following the CSR pattern, is illustrated in Figure 5a. Simultaneously recorded IP
(IP100 kHz), chest motion in the dorsoventral direction (ACCDV), and lung sounds (Ch1-4)
are plotted. The sensors placement described above was used and reproduced in Figure 5c
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for clarity. CSR is a distinctive breathing pattern characterized by cyclic events in which the
breathing goes from gradual hyperpnea (deep breathing) to gradual hypopnea (shallow
breathing), bounded by apneic periods (cessation of breathing) [55]. The CSR pattern is a
common finding in HF patients, associated with increased mortality that is even higher
when occurring during daytime [56]. The two respiratory estimates shown in Figure 5a
(IP100 kHz and ACCDV) illustrate five CSR events, and while the 240 s scale complicates
the visualization of the corresponding lung sounds activity, the increase in amplitude and
seemingly spiking activity during each CSR event is an indication of the correlated activity
between the respiratory estimates and the lung sounds channels. The morphological
differences across channels are mainly due to the following well-known properties of lung
sounds: (1) lung sounds measured over the chest wall are critically dependent on the origin
of the sounds along the respiratory tract and the path that these sounds travel to reach the
acoustic sensor (including primary airways, parenchyma, bones, muscle, fat tissue, or a
combination of these) [57]; and (2) lung sounds are dependent on the airflow rates achieved
during the recording [58]. For example, normal lung sounds have been demonstrated to
have an intensity that is higher in the upper chest than in the lower, in inspiration than in
expiration, and in the left side than in the right side [49]. Thus, since in this study, each
channel was placed across different chest locations and the sounds were not elicited (i.e.,
no breathing depth or rate was enforced), we expected the lung sounds waveforms in each
channel to be unique. The correlation to the respiratory activity is more evident in Ch1, 2,
and 4 than in Ch3 because the audio quality of Ch3 was considerably lower compared to
the other channels, suggesting that this microphone could have been weakly attached to
the skin during this recording. Nevertheless, all lung sounds channels showed correlation
to the respiratory signal surrogates in Figure 5b, where we show the first CSR event from
Figure 5a in a higher time resolution. The amplitude changes triggered at each inspiratory
and expiratory onset illustrate the quality of the multimodal data on a breath-by-breath
level. The mean BIS curve for this patient is also shown in Figure 5d. These findings suggest
that the multimodal system presented in this work provides sufficient signal quality to
detect clinically valuable perturbations in breathing patterns while also capturing high
quality lung sounds.

Furthermore, the continuous multimodal data visualization of the CSR pattern seems
to illustrate the flow–sound relationship of lung sounds: as the breathing depth (and
airflow) increases in each CSR event, so does the intensity of the measured sounds. In [58],
this flow–sound relationship was found to be predominantly linear in healthy subjects. To
gain a better insight into this mechano-acoustic behavior, in Figure 6, we visualized the
time and time–frequency characteristics of the first CSR event in Figure 5. The observed
frequency range of the sounds and their correspondence to the IP-derived respiration
signal suggest that the sounds measured follow a flow–sound relationship, as expected.
Additionally, we observed short periodic sounds during the apneic part of the CSR event,
where lung sounds are absent. These are heart sounds and were expected because Ch1 was
placed at the upper right chest, close to the aortic area in heart sounds auscultation [59].
Heart sounds are also present in other channels, but their acoustic energy above 100 Hz
(the cut-off frequency of the high-pass filter used to mitigate heart sounds interference)
will be relatively low for locations farther away from relevant cardiac auscultation points.
When their relative energy is significant, they appear as low-pitched sounds of short
duration, as illustrated in Figure 6. These results suggest that we could utilize a subset of
the microphones to capture heart sounds as well.
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Figure 5. Abnormal breathing pattern finding from the proof-of-concept clinical recordings. (a) Seg-
ment of multimodal data obtained from patient 13, in which they were breathing following the CSR
pattern. (b) Seven–second segment from the first CSR event in (a). (c) Placement of sensors used in
the recordings. (d) Mean BIS curve for this patient.

Figure 6. Time and time–frequency visualization of the first CSR event in Figure 5 for Ch1 (anterior
right upper chest quadrant). The time–frequency visualization was obtained through STFT analysis
using 300 ms windows and 95% overlap.

3.2.4. Inspiratory Crackles

Figure 7 shows instances of inspiratory crackles found in the posterior left lower
chest quadrant (Ch3) recordings from patient 9. Both the time and time–frequency vi-
sualizations show sounds with the classical characteristics of crackles: explosive and
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discontinuous sounds [10,11,51]. Furthermore, crackles are commonly heard at the pos-
terior lung bases [10], which is the case for the sounds depicted in Figure 7. While the
presence of crackles is interesting on its own, the breathing context provided by the concur-
rent IP-derived respiratory signal greatly further enriches the finding because the specific
phase in which crackles occur and the percentage of the phase occupied by them are both
critical pieces of information that can help in differential diagnosis [10]. Notably, crackles
during inspiration are commonly found in congestive heart failure (CHF) patients [10,51].

Figure 7. Finding of inspiratory (INS) crackles from Ch3 (posterior left lower chest) contextualized
by the concurrent IP-derived respiratory signal (IP100 kHz) (top). Time (middle) and time–frequency
(bottom) representations of the recorded sounds are shown. The time–frequency visualization was
obtained through STFT analysis using 250 ms windows and 95% overlap.

Beyond crackles, the breathing context is generally a fundamental characteristic in
the description of lung sounds, and descriptions such as “strongly-inspiratory” or “Mid
inspiration/expiration” are commonly found in the literature [10,51]. Therefore, we could
leverage this breathing context information for the classification of a variety of lung sounds
and for signal quality evaluation. During traditional lung auscultation, such contextual-
ization occurs in real time as the sounds are elicited. For wearable auscultation systems,
however, that information is only available through concurrent respiration monitoring or
flow signals. To the best of our knowledge, the system proposed in this work is the first to
show simultaneous high-quality respiratory data (breathing context) and multi-channel
lung sounds (spatial context) in a wearable form factor.

4. Limitations and Future Work
4.1. Study Limitations

This study should be considered a demonstration of the feasibility of multimodal
respiratory sensing systems due to the small cohort size. In addition, the limited amount of
continuous data (7 min), which was constrained to suit the hospital’s workflow, that was
acquired during each measurement session and the lack of ground truth pulmonary con-
gestion markers make it difficult to draw explicit conclusions regarding subtle changes in
respiratory activity. Longer monitoring sessions should be employed to determine whether
acute changes in respiratory timings, pattern, or sounds can be detected. Furthermore,
extended measurements would allow for better tracking of the fluid dynamics during the
course of hospitalization.
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4.2. Hardware Improvements

Though we demonstrated the capabilities of our system to capture insightful, high-
quality multimodal data, it required a packaging solution that is not optimal for convenient,
extended measurements. In order to capture all of the modalities with the proper anatomical
sensor placements generalized to both low- and high-BMI patients, the resulting prototype
system used lengthy cabling and a large housing for the electronics. While designing a
system that is suitable for multimodal sensing across a diverse population is inherently
difficult, there are several straightforward enhancements that can be made to improve the
form factor and usability of the system. For instance, the microphones can be packaged
in less bulky casings while still maintaining the proper bandwidth and sensitivity that
is necessary for detecting lung sounds. Further, the number of microphones could be
reduced. We found that Ch2 (anterior right lower chest quadrant) yielded generally low-
quality recordings because it is an anatomically difficult location on which to secure the
microphones with tape, particularly on high-BMI patients. Thus, a simplified system
could only contain three microphones while still capturing spatially contextualized lung
acoustics. Likewise, to mitigate the obtrusiveness of the EBI cables spanning across the
thorax, a chest-worn electrode configuration, as used in [16], could be adopted to reduce
electrode distancing and wire length. These refinements would allow for simplified sensor
attachment and enable a low-profile design. To improve battery life and reduce audio
processing overhead, the audio channels could be sampled at 8 kHz, which is the minimum
sampling rate of the ADC used, while still having a bandwidth well beyond the lung
sounds frequency range.

4.3. Lung Sounds Quality, Analysis, and Multimodal Fusion

Despite our efforts to mitigate the coupling of environmental sounds into the lung
sounds recordings through the selection of contact microphones, the design of silicone
overmolds and custom casings, and the careful selection of a robust backing tape, we found
hospital room noises to be clearly audible at frequencies above 1.8 kHz. While low-pass
filtering of the signals to 1000 Hz cancels these environmental noises, some lung sounds may
reach frequencies above this cut-off frequency. We also found other noise sources within
the frequency band of lung sounds which are not possible to remove with classic filtering
approaches. Some of these noise sources could include rubbing or tapping, poor attachment
to skin, and other bodily sounds. Thus, in addition to optimizing the filter parameters,
in the future, we will explore signal quality assessment approaches to determine which
breaths are of sufficient quality for processing. We will also explore approaches to provide
stronger acoustic insulation and attachment of skin to the micro-phones.

After developing the processing pipeline to accurately extract breath onsets and
confirming the correspondence between the IP-derived respiratory signal and the multi-
channel lung sounds, we will now focus on fusing these signals. The IP signal will enable
automatic segmentation of the lung sounds recordings into breaths (and phases) for which
we can compute temporal and spectral features. These features can be used for quality
assessment and for classification purposes. The breathing contextualization provided by
the IP-derived respiratory signal can also be leveraged by machine learning models as a
feature or label, depending on the application. Similarly, due to the change in morphology
of the sounds at different chest locations, the location of the channels could be a relevant
feature on its own. Furthermore, flow estimates have been accurately derived from the
IP-derived respiratory signals [15] and thus could be used to study flow–sound dynamics.

5. Conclusions

We have presented the validation of a novel suite of sensing modalities for assessing
cardiopulmonary health status and demonstrated its feasibility for clinical deployment in a
study with hospitalized patients with HF. The fidelity of the respiratory markers extracted
from the clinical data indicate the ability of the multimodal system to detect changes in lung
fluid levels and breathing patterns. Similarly, the multi-channel lung sounds were shown to
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be of sufficient quality to capture underlying changes in lung structural health. In the future,
advancements in multimodal data fusion and machine learning approaches can expand
the clinical relevance of our system. Furthermore, despite the marked frequency of patient
readmissions due to decompensated HF [60], few studies have explored the feasibility of
at-home monitoring to stratify the risk of exacerbations. Thus, future studies can assess
the utility of this system, or a simplified version, for at-home daily-living pulmonary
fluid status and cardiorespiratory monitoring, thereby addressing the significant gap that
exists in the current state of clinical care. Beyond HF, we believe that this system also
has the potential to evaluate cardiorespiratory health in patients with other respiratory
complications, such as COPD, COVID-19, ARDS, and pneumonias in general.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22031130/s1, Figure S1: Transfer function comparison between plain overmolded micro-
phones and overmolded microphones inside the custom case, Figure S2: Time–frequency visualization
of a 30 s segment of lung sounds recorded with our system (top row) and the Eko CORE digital
stethoscope (bottom row).
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42. Młyńczak, M.; Niewiadomski, W.; Żyliński, M.; Cybulski, G. Assessment of calibration methods on impedance pneumography
accuracy. Biomed. Eng. Biomed. Tech. 2016, 61, 587–593. [CrossRef]

43. Grimnes, S.; Martinsen, O. Bioimpedance and Bioelectricity Basics. 2011. Available online: https://books.google.com/books?
hl=en&lr=&id=v3EuUjoqwkkC&oi=fnd&pg=PP1&dq=Bioimpedance+and+bioelectricity+basics&ots=OZOlX7plVh&sig=
0gwPoJIWNgOByV6X4l6cswHAk1M (accessed on 1 November 2021).

44. Callaghan, M.F.; Lund, T.; Roitt, I.M.; Bayford, H.R. Positive phase error from parallel conductance in tetrapolar bio-impedance
measurements and its compensation. J. Electr. Bioimpedance 2010, 1, 71–79. [CrossRef]

45. Grimnes, S.; Martinsen, G.Ø. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors.
J. Phys. Appl. Phys. 2006, 40, 9–14. [CrossRef]

46. Orschulik, J.; Hochhausen, N.; Czaplik, M.; Santos, S.A.; Leonhardt, S. Walter Impact of lung pathologies on bioimpedance
spectroscopy measurements-an experimental study. Int. J. Bioelectromagn. 2020, 22, 1–19.

47. Sakaguchi, T.; Yasumura, K.; Nishida, H.; Inoue, H.; Furukawa, T.; Shinouchi, K.; Miura, H.; Miyazaki, K.; Hamano, G.;
Koide, M.; et al. Quantitative assessment of fluid accumulation using bioelectrical impedance analysis in patients with acute
decompensated heart failure. Circ. J. 2015, 79, 2616–2622. [CrossRef]

48. Rosner, B. Fundamentals of Biostatistics, 7th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2011.
49. Oliveira, A.; Marques, A. Respiratory sounds in healthy people: A systematic review. Respir. Med. 2014, 108, 550–570. [CrossRef]
50. Mclane, I.M.; Emmanouilidou, D.; West, J.; Elhilali, M. Design and Comparative Performance of a Robust Lung Auscultation

System for Noisy Clinical Settings. IEEE J. Biomed. Health Inform. 2021, 25, 7. [CrossRef]
51. Andrès, E.; Gass, R.; Charloux, A.; Brandt, C.; Hentzler, A. Respiratory sound analysis in the era of evidence-based medicine and

the world of medicine 2.0. J. Med. Life 2018, 11, 89–106.
52. Kanai, H.; Sakamoto, K.; Haeno, M. Electrical measurement of fluid distribution in human legs: Estimation of extra- and

intra-cellular fluid volume. J. Microw. Power 1983, 18, 233–243. [CrossRef]
53. Rolfe, S. The importance of respiratory rate monitoring. Br. J. Nurs. 2019, 28, 504–508. [CrossRef]
54. Goetze, S.; Zhang, Y.; An, Q.; Averina, V.; Lambiase, P.; Schilling, R.; Trappe, H.-J.; Winter, S.; Wold, N.; Manola, L.; et al.

Ambulatory respiratory rate trends identify patients at higher risk of worsening heart failure in implantable cardioverter
defibrillator and biventricular device recipients: A novel ambulatory parameter to optimize heart failure management. J. Interv.
Card. Electrophysiol. 2015, 43, 21–29. [CrossRef]

55. Brack, T.; Randerath, W.; Bloch, K.E. Cheyne-Stokes Respiration in Patients with Heart Failure: Prevalence, Causes, Consequences
and Treatments. Respiration 2012, 83, 165–176. [CrossRef]

56. Brack, T.; Thüer, I.; Clarenbach, C.F.; Senn, O.; Noll, G.; Russi, E.W.; Bloch, K.E. Daytime Cheyne-Stokes Respiration in Ambulatory
Patients with Severe Congestive Heart Failure Is Associated with Increased Mortality. Chest 2007, 132, 1463–1471. [CrossRef]

http://doi.org/10.1109/IEMBS.2007.4352882
http://doi.org/10.1088/0967-3334/35/6/917
http://www.ncbi.nlm.nih.gov/pubmed/24846392
http://doi.org/10.5617/jeb.5611
http://doi.org/10.1109/EMBC44109.2020.9176456
http://doi.org/10.3390/s21010057
http://doi.org/10.1016/j.bspc.2020.102339
http://doi.org/10.1109/TBME.2021.3108135
http://doi.org/10.1378/chest.100.2.494
http://doi.org/10.1017/S0033291717003890
http://doi.org/10.1007/978-3-642-03885-3_191
http://doi.org/10.1515/bmt-2015-0125
https://books.google.com/books?hl=en&lr=&id=v3EuUjoqwkkC&oi=fnd&pg=PP1&dq=Bioimpedance+and+bioelectricity+basics&ots=OZOlX7plVh&sig=0gwPoJIWNgOByV6X4l6cswHAk1M
https://books.google.com/books?hl=en&lr=&id=v3EuUjoqwkkC&oi=fnd&pg=PP1&dq=Bioimpedance+and+bioelectricity+basics&ots=OZOlX7plVh&sig=0gwPoJIWNgOByV6X4l6cswHAk1M
https://books.google.com/books?hl=en&lr=&id=v3EuUjoqwkkC&oi=fnd&pg=PP1&dq=Bioimpedance+and+bioelectricity+basics&ots=OZOlX7plVh&sig=0gwPoJIWNgOByV6X4l6cswHAk1M
http://doi.org/10.5617/jeb.142
http://doi.org/10.1088/0022-3727/40/1/S02
http://doi.org/10.1253/circj.CJ-15-0723
http://doi.org/10.1016/j.rmed.2014.01.004
http://doi.org/10.1109/JBHI.2021.3056916
http://doi.org/10.1080/16070658.1983.11689328
http://doi.org/10.12968/bjon.2019.28.8.504
http://doi.org/10.1007/s10840-015-9983-6
http://doi.org/10.1159/000331457
http://doi.org/10.1378/chest.07-0121


Sensors 2022, 22, 1130 20 of 20

57. Kraman, S.S. Sound Transmission Through the Human Body. In Breath Sounds; Priftis, K.N., Hadjileontiadis, L.J., Everard, M.L.,
Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 105–118. [CrossRef]

58. Kraman, S.S. The relationship between airflow and lung sound amplitude in normal subjects. Chest 1984, 86, 225–229. [CrossRef]
59. Karnath, B.; Thornton, W. Auscultation of the heart. Hosp. Physician 2002, 38, 39–45.
60. Dharmarajan, K.; Hsieh, A.F.; Lin, Z.; Bueno, H.; Ross, J.; Horwitz, L.; Barreto-Filho, J.A.; Kim, N.; Bernheim, S.M.; Suter, L.G.; et al.

Diagnoses and timing of 30-Day readmissions after hospitalization for heart failure, acute myocardial infarction, or pneumonia.
JAMA J. Am. Med. Assoc. 2013, 309, 355–363. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-71824-8_7
http://doi.org/10.1378/chest.86.2.225
http://doi.org/10.1001/jama.2012.216476
http://www.ncbi.nlm.nih.gov/pubmed/23340637

	Introduction 
	Materials and Methods 
	System Adaptation for Respiratory Sensing 
	Hardware Modifications 
	Packaging Design 
	Acoustic Design 
	Sensor Placement 
	System Operational Modes 

	In-Lab Validation of System 
	Proof-of-Concept Clinical Study 
	Signal Visualization and Interpretation 
	Signal Processing 
	Continuous Data 
	Spectroscopy Data 

	Statistical Analysis 

	Results and Discussion 
	Acoustic Validation against Eko CORE 
	Results from Proof-of-Concept Clinical Recordings 
	Detecting Changes in Pulmonary Fluid Status 
	Extraction of Respiratory Health Markers 
	Cheyne–Stokes Respiration (CSR) 
	Inspiratory Crackles 


	Limitations and Future Work 
	Study Limitations 
	Hardware Improvements 
	Lung Sounds Quality, Analysis, and Multimodal Fusion 

	Conclusions 
	References

