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Abstract: In this paper, the dehazing algorithm is proposed using a one-channel grayscale depth 
image generated from a LiDAR point cloud 2D projection image. In depth image-based dehazing, 
the estimation of the scattering coefficient is the most important. Since scattering coefficients are 
used to estimate the transmission image for dehazing, the optimal coefficients for effective dehazing 
must be obtained depending on the level of haze generation. Thus, we estimated the optimal 
scattering coefficient for 100 synthetic haze images and represented the distribution between the 
optimal scattering coefficient and dark channels. Moreover, through linear regression of the 
aforementioned distribution, the equation between scattering coefficients and dark channels was 
estimated, enabling the estimation of appropriate scattering coefficient. Transmission image for 
dehazing is defined with a scattering coefficient and a grayscale depth image, obtained from LiDAR 
2D projection. Finally, dehazing is performed based on the atmospheric scattering model through 
the defined atmospheric light and transmission image. The proposed method was quantitatively 
and qualitatively analyzed through simulation and image quality parameters. Qualitative analysis 
was conducted through YOLO v3 and quantitative analysis was conducted through MSE, PSNR, 
SSIM, etc. In quantitative analysis, SSIM showed an average performance improvement of 24%. 
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1. Introduction 
Haze is a phenomenon in which the visible distance is reduced due to dust, smoke 

particles, and polluting particles in the atmosphere. Particles in the atmosphere scatter 
light; thus, images obtained in these environments decrease contrast and, eventually, 
deteriorate visibility. Recently developed automatic navigation systems rely heavily on 
vision sensors [1]. If the input image is in poor condition, the overall system will suffer. 
Therefore, dehazing technology, which can obtain clear images, can benefit systems such 
as image classification [2–5], image recognition [6–10], visual odometry [11,12], and 
remote sensing [13–15]. 

Currently, the most commonly used sensors for robots and vehicles include light 
detection and ranging (LiDAR) and camera. The sensors allow the performance of visual 
odometry, LiDAR odometry, SLAM, autonomous navigation, etc. For these purposes, 
they can be used as visual-only [11,12,16,17], LiDAR-only [18,19], or fused [20]. When the 
LiDAR and visual are fused, the two sensors are used complementarily to increase 
robustness of the system [20]. Even with the increase in robustness, damage to the 
resulting values can occur if the input data obtained from the sensors are inherently in 
poor condition. Therefore, it is necessary to make quality input data to prevent this 
degradation. 
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We can attach cameras to numerous platforms such as vehicles, drones, and robots 
to get image data. If the weather allows, we can get clear images such as Figure 1a. In this 
case, dehazing is unnecessary for effective vision-based processes. However, in the event 
of haze due to smoke or fine dust in the atmosphere, such as in Figure 1b, utilizing such 
processes becomes challenging [21]. Therefore, the contrasts from images obtained in a 
hazed environment should be enhanced. 

  
(a) (b) 

Figure 1. Clear image and hazy image: (a) clear image; (b) hazy image. 

Each image pixel value in hazy images can be expressed with atmospheric scattering 
model, a linear combination of the pixel values from actual image, transmission image, 
and airlight [22–24]. Airlight and transmission images are required to perform scene 
radiance recovery through the scattering coefficient model. 

Traditional algorithms use color attenuation prior [25] and dark channel prior [26] to 
create a transmission image, whereas recent research uses deep learning to perform 
dehazing. The proposed method succeeds traditional methods, with its contribution in 
utilizing depth image and scattering coefficient to perform dehazing. 

Existing methods for obtaining depth images include using stereo camera or depth 
camera. More recent research adopts deep learning in obtaining depth images from 
monocular images through training of existing depth images [27]. In this paper, the depth 
image is obtained by 2D projection of LiDAR point cloud. In this way, by obtaining a 
depth image through LiDAR and performing dehazing on vision data, we would like to 
propose a more complementary and robust LiDAR–vision fusion system. 

Our contribution is as follows: (1) Proposal of a depth image-based dehazing 
technique available in LiDAR–vision fusion systems; (2) Proposal of a scattering 
coefficient estimation technique through the DCM-scattering coefficient model. 

An outline of the paper is as follows. Section 2 outlines the theoretical background of 
dehazing and the related works applied to the proposed method. Section 3 outlines the 
overall description of the proposed method, and Section 4 summarizes the analysis of the 
simulation results obtained through the proposed method. Finally, Section 5 briefly 
describes the conclusions, the limitations of the proposed method, and the future works 
for improving the limit. 

2. Image Dehazing 
2.1. Related Works 

Image dehazing has always been a popular method to obtain clear images for image 
processing. Due to its popularity, numerous methods of dehazing have been proposed. 
Assumption-based and prior-based methods are typically used. Tan et al. [28] found that 
the contrast was higher for images without haze than those with haze. Thus, Tan et al. [28] 
performed single image dehazing by maximizing the local contrast for single images. 
Fattal et al. [29] discovered that pixels of image patches typically exhibit a one-
dimensional distribution, and used it to recover the scene transmission. Huo et al. [30] 
performed dehazing with the white balance algorithm and the atmospheric illuminance 
prior. Zheng et al. [31] performed dehazing with patch adaptive structure decomposition 
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and multi-exposure image fusion. He et al. [26] uses the assumption that pixels without 
haze tend to have a meager intensity value for at least one channel out of three RGB 
channels. 

He defined this channel as the dark channel and used it to create a transmission 
image. The method from He is the most widely used and considered a standard in 
dehazing. Zhu et al. [25] proposed a color attenuation prior-based method to generate a 
depth image from a hazy image. Here, the transmission image used to obtain the dehazed 
image was obtained through the relationship between the depth image and the 
transmission image. 

Recently, learning-based methods have also been proposed [32–37]. Cai et al. [32] 
proposed an end-to-end dehazing using a convolutional neural network (CNN) model. 
This was done by estimating the transmission image using the BReLU and Maxout 
activation functions. Ren et al. [33] performed dehazing by using multiscale CNN to 
estimate the transmission image. In addition, Li et al. proposed AOD-NET [34] and Dehze-
cGAN [35] using the generative adversarial network. 

In this paper, the proposed method uses a depth image to obtain the transmission 
image. During the process, the required scattering coefficient is obtained by estimating 
through the relationship between dark channel and scattering coefficient. Then dehazing 
is performed using the obtained transmission image. 

2.2. Atmospheric Scatterming Model 
Due to the light scattered by the atmosphere, and the atmospheric light, the hazy 

image looks blurry, as shown in Figure 2. This phenomenon can be explained by Equation 
(1) [22–24]. 

( ) ( ) ( ) ( )(1 ( ))I x J x t x A x t x    (1)

where x  represents a two-dimensional vector, comprised of the position of each pixel in 
the image. ( )J x  is an image before being distorted by haze, which is the ultimate result 
we want to obtain through the above equation. ( )I x  is the hazy image and ( )t x  is the 
transmission image, representing the proportion of light that reaches the camera through 
the atmosphere. A  is airlight, and it is assumed that all pixels in the image have the same 
value. 

 
Figure 2. Atmospheric scattering model. 

From Equation (1), we can see that the information ( )I x  from the camera is lost as 
the actual information ( )J x  and the signal reflected from the target pass through the 
atmosphere, leaving only the ( ) ( )J x t x  level. In addition, ( )(1 ( ))A x t x  caused by 
atmospheric light sources is mixed, resulting in haze, shown in Figure 1b. 

Through Equation (1), Equation (2) can be derived to obtain dehazed image ( )J x : 

( ) ( )(1 ( ))( )
( )

I x A x t xJ x
t x

 
  (2)
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As the distance between the object and the camera increases, the atmosphere between 
the camera and the object becomes thicker. In other words, when the scattering coefficient 
is a constant, the further the distance, the worse the haze becomes. Through this 
relationship, Equation (3) can be obtained. 

( )( ) d xt x e   (3)

where   is the scattering coefficient, which is a constant indicating the level at which 
light is scattered due to fine particles. ( )d x  is the depth image, x  is the distance 
between the target and the observer to the pixel, and ( )t x  is the transmission image. 

2.3. Dark Channel Prior 
According to He et al. [26], for pixels without haze, most of the three RGB channels 

tend to have low values for at least one channel. For channels exhibiting this tendency, 
the author defines it as the dark channel, hence, such prior using them referred to as the 
dark channel prior. The following Equation (4) defines the dark channel for image ( )J x : 

{ , , } ( )
( ) min ( min ( ( )))dark c

c r g b y x
J x J y

 
  (4)

where darkJ  is the dark channel of image and ( )cJ y  is the color channel of the pixel x  

of image. ( )x  is a set of pixels within a specific range centered on pixel x . 
The equation shows that the value of the dark channel, which corresponds to a 

specific pixel x  of the image, is the smallest value of the pixels around x . In He et al. 
[26], the pixel which has a small dark channel value is primarily one of the following three 
cases: (1) shadow area caused by object; (2) colorful object or surface; or (3) black or dark 
object or surface. 

Dark channel images generally have small pixel values because natural images 
without haze are darkened by color or shadow [26]. However, if haze occurs, these objects 
will become blurry and invisible, resulting in a large dark pixel value and a white dark 
channel image. Based on these notions, we can identify the haze intensity of the image. 

2.4. Guided Filter 
The guided filter uses a guide image as an edge-preserving smoothing filter to 

perform smoothing without distorting key information of the entered image [38]. The 
filter assumes that the output images can be modeled linearly with guide images and 
linear coefficients. 

,i k i k kq a I b i      (5)

i i iq p n   (6)

where iq  is the output image, iI  is the guide image, and ka  and kb  are linear 

coefficients constant within k . Since the linear coefficient ( , )k ka b  in Equation (5) must 

be determined, Equation (5) is modeled as Equation (6) where ip  is the input image and 

in  is the noise in the image. Then, we define the cost function to obtain linear coefficients 
through finding a solution that minimizes the cost function. The cost function is defined 
in Equation (7). 

2 2( , ) (( ) )
k

k k k i k i k
i

E a b a I b p a





     (7)
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where   is the regularization parameter, which prevents ka  from growing infinitely. 
The solution to minimize Equation (7) is Equations (8) and (9). 

2

1

k
i i k k

i
k

k

I p p

a 




 








 (8)

k k k kb p a    (9)

where 2 ,k k   is the variance and mean of iI  within the k  region.   is the 

number of pixels in the region k . Lastly, kp  is defined in Equation (10). 

1

k
ik

i
p p

 
   (10)

After obtaining linear coefficients via Equations (8) and (9), the output image iq  can 

be calculated. In this equation, the size of the region k  and   affect edge-preserving 
and smoothing the output image. 

3. Image Dehazing Based on LiDAR Generated Grayscale Depth Prior 
The structure of the proposed dehazing method is shown in Figure 3. First, hazy 

image and point cloud are used as input data. Through a relationship in Section 3.1, the 
point cloud is projected and converted into a depth image. When projecting the point 
cloud, the point cloud of the LiDAR must be projected within the camera frame through 
the calibration of the camera and LiDAR. Thereafter, the scattering coefficient is estimated 
through a relationship in Section 3.2 by using the image with haze as an input image. The 
dark channel image used in Section 3.2, obtained from the hazy image, is also used to 
estimate the atmospheric light. Finally, the transmission image is estimated through the 
depth image and the scattering coefficient, and after refining the transmission image by 
applying the guided filter in Section 3.3, the dehazing is performed according to Equation 
(13). 

 
Figure 3. Flowchart of the proposed method. 

3.1. Point Cloud Projection 
In this study, synthetic haze image generation and verification of dehazing algorithm 

are performed using a KITTI dataset [39]. In order to generate depth images required for 
the dehazing algorithm, the point cloud of the KITTI dataset was projected into an image 
[37]. Using the calibration data from the dataset, the projection, rotation, and translation 
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matrices can be obtained, and the point cloud in 3D format projects into 2D through the 
relationship shown in Figure 4. 

 
Figure 4. Point cloud 2D projection. 

First, when a point in the 3D space is represented as [ , , ,1]TX Y Z , its position on the 

2D image is expressed in [ , ,1]Tx y  where X , Y , and Z  refer to the coordinates of a 
point cloud in the world frame, and x  and y  are image pixel coordinates in the camera 
frame. To perform a projection, points in the 3D space belonging to the world frame 
should be represented within the camera frame. This can be expressed by multiplying the 
world frame’s rotation with the matrix extrinsic matrix for translation. 

Then, [ , , ,1]TX Y Z  can be projected onto a two-dimensional plane by normalizing 
the obtained values and multiplying them by the intrinsic matrix containing focal length 
(f , f )x y  and principle points (c ,c )x y . Figure 5 is a 2D depth image obtained through 
point cloud projection. 

The LiDARs used in the KITTI dataset are mechanical spinning LiDARs with 360-
degree coverage. These LiDARs have a high point cloud density, but when the point cloud 
is matched for that image, they are sparse, as shown in Figure 5, and depth image using 
these sparse data is challenging to use. Therefore, by increasing the size of the projected 
point cloud, this sparsity should be lowered. Figure 6 is the depth image depending on 
the different sizes of point cloud. 

 

 
(a) (b) 

Figure 5. Result of point cloud projection: (a) projected 2D point cloud; (b) 3D point cloud. 

  
(a) (b) 

  
(c) (d) 

Figure 6. Generated grayscale depth image with different size of point cloud: (a) size = 1; (b) size = 
3; (c) size = 5; (d) size = 7. 
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3.2. Scattering Coefficient Estimation 
To obtain a transmission image for dehazing from depth image, a scattering 

coefficient is required. However, it is not easy to obtain an accurate scattering coefficient 
with only the image obtained from camera. Therefore, using synthetic haze image and 
ground truth image, a model that can estimate the scattering coefficient should be 
obtained. 

The synthetic haze images required for this were synthesized based on the 
atmospheric scattering model using the KITTI dataset [39] and depth images. The depth 
image used for the synthesis was generated by monodepth2 [40]. 

Figure 7 shows that haze is generated throughout the images. Thus, estimating the 
dark channel of hazy image and calculating average brightness is higher than when 
calculated in a no-haze situation. This can be confirmed in Figure 8. Such a relationship 
allows us to model equations that obtain the scattering coefficient from the dark channel’s 
average brightness. In this study, this average brightness is called the dark channel means 
(DCMs). To model the equation, an optimal scattering coefficient value for the haze image 
should be obtained. This can be obtained by performing dehazing of each value of the 
scattering coefficient, gradually increasing the scattering coefficient, and comparing the 
obtained results with the ground truth. Comparison of images is performed by calculating 
the mean square error (MSE) for pixels of each image, and when the mean square error 
becomes the smallest, the value at that time is set as the optimal scattering coefficient. 

  
(a) (b) 

Figure 7. Synthetic haze image with ground truth: (a) ground truth; (b) synthetic haze image. 

  
(a) (b) 

Figure 8. Generated dark channel depending on different intensity of haze: (a) dark channel; (b) 
hazy image. 
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Algorithm 1 is pseudocode for estimating optimal scattering coefficients. The input 
data of the algorithm is ground truth image (GT), hazy image (hazy), and depth image 
(depth) (line 3). The algorithm initializes the scattering coefficient to 0 and 0.01 (line 1 and 
2), incrementally increases them (line 16 and 17), and dehazing is performed using 
Equation (2) (line 10 and 11) and Equation (3) (line 7 and 8). 

After dehazing, MSE is obtained through the dehazed image and GT (line 13 and 14). 
When MSE becomes the smallest (line 5), the scattering coefficient is determined as the 
optimal scattering coefficient (line 20). 

Using the method in Algorithm 1, the optimal scattering coefficient for each hazy 
image is estimated. Next, we obtain the DCM of each hazy image and create a distribution 
chart using the DCM and the optimal scattering coefficient. The following Figure 9 refers 
to a scattering coefficient—DCM distribution chart obtained by the synthetic KITTI haze 
dataset. In Figure 9, the x-axis represents the DCM, and the y-axis represents the scattering 
coefficient. 

A total of 100 synthetic haze images were used to obtain the scattering coefficient 
model. This is the result of synthesizing 20 types of images in 5 stages depending on th 
level of haze generation. Figure 10 shows synthetic haze images with varying scattering 
coefficients of step 5. 

Using the distribution of the DCM-optimal scattering coefficient for 100 hazy 
synthetic images, the relationship between the two variables can be derived. 

0.0174* 0.5919DCM    (11)

Equation (11) is a model obtained by linear regression of the DCM-optimal scattering 
coefficient distribution for 100 synthetic images. 

Algorithm 1 Estimate   
1: 1 0   
2: 2 0.01   
3: Input: GT, hazy, depth 
4:  For 1 2MSE MSE  do 
5:     1 1trans transmission( ,depth) .(3)eq       
6:     2 2trans transmission( ,depth) .(3)eq      
7:     1 1dehaze dehazing(hazy,trans ) .(2)eq      
8:     2 2dehaze dehazing(hazy,trans ) .(2)eq      
9:     1 1MSE MSE(dehaze ,GT)  
10:     2 2MSE MSE(dehaze ,GT)  
11:     1 1 0.01    
12:     2 2 0.01    
13: end for 
14: return 1 0.01   

 
Figure 9. Distribution of DCM-optimal scattering coefficient. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 10. Synthetic image generated from difference of scattering coefficient: (a)   = 0; (b)   = 
0.001; (c)   = 0.0015; (d)   = 0.002; (e)   = 0.0025; (f)   = 0.003. 

3.3. Transmission Image Refine 
The transmission image of the atmospheric scattering model can be obtained by 

Equation (3). The raw transmission image is estimated using the depth image and the 
scattering coefficient, obtained by point cloud 2D projection and Equation (11), 
respectively. 

The raw transmission image is estimated as shown in Figure 11c. Since the 
transmission image is generated from the depth image via point cloud 2D projection, the 
raw transmission image shows the block effect in He et al. [26]. Therefore, the raw 
transmission image obtained through Equation (3) should be refined. To refine the 
transmission image, the hazy image and raw transmission image are used, and the guided 
filtering is performed. 

  
(a) (b) 

  
(c) (d) 

Figure 11. Refine transmission image: (a) hazy image; (b) grayscale depth image generated from 
point cloud projection; (c) raw transmission image from grayscale depth image; (d) refined 
transmission image. 

3.4. Background Parameter 
Background parameters are used to prevent dehazing performance degradation due 

to differences in detection range between camera and LiDAR. If an object can be seen from 
the camera, but is outside the detection range of LiDAR, the pixel value of the 
transmission image is 1 for the absence of point cloud, so dehazing is not effective. 
Therefore, for places where point cloud does not exist, it should be set to a value between 
the maximum pixel value that point cloud can have and the original maximum pixel value 
of 255. The compensation process for an empty space in which the point cloud does not 
exist is performed through a background parameter. Figure 12 is the result of the 
transmission image after applying the background parameter. 
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(a) (b) 

  
(c) (d) 

Figure 12. Comparison applying background parameter: (a) before applying; (b) transmission image 
generated from (a); (c) applying background parameter; (d) transmission image generated from (c). 

The background parameter was set to 195 because it was the most effective after 
several times of dehazing through real-world haze photographs. It is impossible to set the 
parameter through quantitative analysis because there is no ground truth image for the 
actual haze occurrence image. Therefore, the background parameter was set by a heuristic 
approach. Figure 13 is the result of dehazing through several background parameters. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Dehazed results at various background parameters: (a) hazy input; (b) 120; (c) 195; (d) 
255. 

3.5. Scene Radiance Recovery 
3.5.1. Estimation of Atmospheric Light 

Generally, the appropriate value for atmospheric light in the hazy image would be 
the strongest pixel value within the image. In this case, however, it has the disadvantage 
of not being able to distinguish white objects. To compensate for these shortcomings, the 
dark channel prior is used. After obtaining the dark channel prior from the hazy image, 
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the top 0.1% of the brightest pixels are drawn from the dark channel. We can consider 
these pixels as the most hazy pixels. So, among these pixels, the brightest pixel in the input 
image ( )I x , is selected as the atmospheric light ( )A x . 

3.5.2. Dehazing Process 
The 2D depth image is obtained through projection of the point cloud, and the 

scattering coefficient is obtained through the DCM—scattering coefficient equation. 
Transmission images can then be obtained through the acquired depth image and the 
scattering coefficient. Thus, scene radiance recovery can be performed through the 
atmospheric scattering model. 

( ) ( )( ) ( )
( )

I x A xJ x A x
t x


   (12)

To avoid noise generation due to the transmission image, it is necessary to set the 
lower bound of the transmission image. The equation in which the lower bound is added 
can be expressed as follows. 

( ) ( )( ) ( )
max{ ( ),0.1}
I x A xJ x A x

t x


   (13)

4. Simulation 
The dehazing algorithm was written in Python, and simulations performed on the 

Intel i5-3470@3.20GHz, 8GB RAM. In simulation, the improvement of the image was 
determined by comparing the mean square error (MSE), peak signal-to-noise ratio 
(PSNR), image enhancement factor (IEF), and structural similarity index measure (SSIM) 
[41] of the hazy image and dehazed image. In addition, our proposed algorithm was 
quantitatively and qualitatively compared to existing algorithms, such as He et al. [26], 
Tan et al. [28], and Fattal et al. [29]. 

4.1. Quantitative Analysis of Dehazing Improvement Quality 
Dehazing improvement performance of the proposed algorithm is quantitatively 

analyzed using performance improvement parameters. When the synthetic haze image is 
composed,   is set to 0.003 and atmospheric light is set to 210. Figure 14b is the synthetic 
haze image and Figure 14c is the result of dehazing. 

Performance analysis of three pairs of hazy images and dehazed images was 
performed via PSNR, SSIM, and MSE. First, performance analysis for hazy image and 
ground truth image is shown in GT-Hazed in Tables 1–3 and performance analysis for 
ground truth and the dehazed image is shown in GT-Dehazed in Tables 1–3. The PSNR 
and SSIM of GT-Dehazed were higher than those of GT-Hazed, and the MSE of GT-
Dehazed were lower than that of GT-Hazed. Therefore, the analysis results from the image 
analysis parameters show that all three images have been improved. 

   

   

   
(a) (b) (c) 

Figure 14. Hazy image with ground truth and dehazed image: (a) ground truth; (b) hazy image (c) 
dehazed image. 
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Table 1. Quantitative analysis of improvement using first row image from Figure 14 

 GT-Hazed GT-Dehazed Improvement (%) 
PSNR (dB) 14.68 24.44 66.43 

SSIM 0.8349 0.9658 15.68 
MSE 0.0341 0.0036 −89.41 

Table 2. Quantitative analysis of improvement using second row image from Figure 14 

 GT-Hazed GT-Dehazed Improvement (%) 
PSNR (dB) 13.14 25.19 91.63 

SSIM 0.7373 0.9525 25.48 
MSE 0.0485 0.0031 −93.81 

Table 3. Quantitative analysis of improvement using third row image from Figure 14. 

 GT-Hazed GT-Dehazed Improvement (%) 
PSNR (dB) 15.41 23.866 54.92 

SSIM 0.8066 0.8502 5.410 
MSE 0.0288 0.0041 −85.76 

4.2. Quantitative Comparison of Different Dehazing Algorithm 
We performed a quantitative performance analysis between the existing dehazing 

algorithm and the proposed algorithm. Existing algorithms used for comparison of 
performance are Tan et al. [28], Fattal et al. [29], and He et al. [26]. Analysis of the resulting 
images was conducted via MSE, PSNR, IEF, and SSIM as shown in Tables 4–6. Figure 15 
shows an input image, synthetic haze image, and a dehazing image generated from the 
proposed and existing algorithms, respectively. 

The proposed algorithm is designed to make the MSE smallest. Thus, if the DCM of 
the hazy image input does not deviate significantly from the model of DCM and scattering 
coefficient, the proposed method achieves the smallest MSE of the four methods. In 
addition, as MSE became smaller, other performance parameters were improved. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. Dehazing result of various algorithms: (a) hazy image; (b) ground truth; (c) Fattal’s 
method; (d) He’s method; (e) Tan’s method; (f) proposed method. 
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Table 4. Comparison result 1 using upper image from Figure 15. 

 PSNR (dB) IEF SSIM MSE 
Fattal et al. 16.56 1.542 0.8033 0.0221 

He et al. 17.60 1.955 0.8711 0.0174 
Tan et al. 14.00 0.8543 0.6079 0.0398 
Proposed 24.44 9.451 0.9658 0.0036 

Table 5. Comparison result 2 using middle image from Figure 15. 

 PSNR (dB) IEF SSIM MSE 
Fattal et al. 15.86 1.867 0.7113 0.0260 

He et al. 17.14 2.508 0.9073 0.0193 
Tan et al. 14.00 1.219 0.6601 0.0398 
Proposed 25.19 16.01 0.9252 0.0030 

Table 6. Comparison result 3 using lower image from Figure 15. 

 PSNR (dB) IEF SSIM MSE 
Fattal et al. 17.05 1.461 0.6803 0.0197 

He et al. 18.19 1.900 0.8828 0.0152 
Tan et al. 15.10 0.9326 0.6314 0.0309 
Proposed 23.87 7.015 0.8502 0.0041 

5. Experiments 
Based on the proposed algorithm, we performed dehazing using the DENSE dataset 

[42] from Ulm University in case of natural fog. 

5.1. Comparison of Dehazing Results 
Ground truth of object detection is as shown in Figure 16. Figure 17 shows the results 

of the proposed and existing algorithms and Figure 18 shows the results of qualitative 
evaluation with YOLO V3 using dehazed results. We confirmed that dehazing was 
correctly performed under real haze and fog conditions through the dataset. In addition, 
through YOLO V3 object detection, we also confirmed that the image was improved after 
dehazing. 

 
Figure 16. Ground truth of object detection. 
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(a) (b) (c) (d) (e) 

Figure 17. Results of various algorithms: (a) hazy input; (b) proposed; (c) Fattal; (d) He; (e) Tan. 

     
(a) (b) (c) (d) (e) 

Figure 18. Qualitative comparison of various algorithms: (a) hazy input; (b) proposed; (c) Fattal; (d) 
He; (e) Tan. 

5.2. Time Consumption 
We compared computing time for 1920 × 1024 pixel images. The algorithms were 

written in Python and performed on the Intel i5-3470 CPU @ 3.2Ghz, 8GB RAM. The 
proposed algorithm took approximately 0.47 s per image. He’s algorithm took about 0.4 
s, Tan’s algorithm took about 0.2 s, and Fattal’s algorithm took about 75 s. Table 7 
represents the progressing time and frame per second (FPS). 

Table 7. Time consumption of each algorithms. 

 Proposed He * Tan Fattal 
Time (s) 0.47 0.4 0.2 75 

FPS 2.1 2.5 5 0.013 
* Guided filter used (not soft matting). 

6. Conclusions 
We present a method for performing dehazing via LiDAR depth image and DCM-

scattering coefficient model. The proposed algorithm obtains the scattering coefficient 
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model through the DCM and scattering coefficient relationship. Dehazing is then 
performed through the scattering coefficient and point cloud projection depth image 
obtained from LiDAR. Through simulations, we confirmed that the dehazed image is 
obtained effectively. In the simulation, MSE showed improvement over conventional 
algorithms, and PSNR and IEF, which are dependent on MSE, have also shown 
improvements. Furthermore, SSIM, an important parameter used in image recognition, 
showed an average improvement of about 24% over conventional algorithms. 

However, the proposed algorithm has a problem to solve. First, when estimated 
using DCM, the scattering coefficient was able to perform dehazing effectively on most 
haze images, but using only pixel value mean may be unreliable. If there are many colorful 
objects in the near distance, the DCM can still be low, even with much haze. Consequently, 
it will deviate from the scattering coefficient estimation model, which results in dehazing 
being ineffective. Such problems of DCM could be addressed by CNN and by supervised 
learning for image and effective scatter coefficient. 

In addition, because the depth image is obtained through LiDAR, dehazing may not 
work effectively if LiDAR malfunctions. We will improve these existing problems through 
further research. Moreover, there is a real-time problem. As of now, there are difficulties 
in operating in real time. This occurs because the imaging operation is performed simply 
with CPU only. Therefore, it is planned to secure real time by making it possible to operate 
in parallel through GPU operations through future research. 
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