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Abstract: The applications of Unmanned Aerial Vehicles (UAVs) are rapidly growing in domains
such as surveillance, logistics, and entertainment and require continuous connectivity with cellu-
lar networks to ensure their seamless operations. However, handover policies in current cellular
networks are primarily designed for ground users, and thus are not appropriate for UAVs due to
frequent fluctuations of signal strength in the air. This paper presents a novel handover decision
scheme deploying Deep Reinforcement Learning (DRL) to prevent unnecessary handovers while
maintaining stable connectivity. The proposed DRL framework takes the UAV state as an input for a
proximal policy optimization algorithm and develops a Received Signal Strength Indicator (RSSI)
based on a reward function for the online learning of UAV handover decisions. The proposed scheme
is evaluated in a 3D-emulated UAV mobility environment where it reduces up to 76 and 73% of
unnecessary handovers compared to greedy and Q-learning-based UAV handover decision schemes,
respectively. Furthermore, this scheme ensures reliable communication with the UAV by maintaining
the RSSI above −75 dBm more than 80% of the time.

Keywords: Unmanned Aerial Vehicles (UAV); Deep Reinforcement Learning (DRL); Proximal Policy
Optimization (PPO); handover decision; mobility management

1. Introduction

Unmanned Aerial Vehicles (UAVs) are now increasingly used in industries such as
agriculture, entertainment, logistics, and surveillance due to their high speed, maneuver-
ability, and agility. A consistent and good network connection is necessary for successful
and persistent operation in all these application, and it requires an efficient mobility man-
agement scheme. However, cellular networks are designed to provide services to ground
User Equipment (gUE), not the other way around. In 5G mobile networks, the cells have
much smaller footprint which increases the signaling cost due to frequent handovers and
makes it difficult to maintain functional connectivity with UAVs. Additionally, 3D move-
ments of UAVs at high speed are different than the movement patterns and speeds of
gUEs. These characteristics of cellular networks and UAVs make mobility management
a challenging task, and require a handover decision scheme for UAVs that takes these
characteristics into account.

The selection of a target Base Station (BS) for gUE in conventional mobility manage-
ment is based on the RSSI value of the BSs. Once the difference between received RSSI from
current and target BSs crosses a defined threshold, where the RSSI of the target BS is higher,
the handover to the target BS is performed [1]. This conventional handover mechanism is
suitable for gUE because the main beams of the cellular antennas are directed towards the
ground, and the transition of signal strength from one cell to another is relatively smooth. In
contrast, weak and inconsistent lobs of side beams provide intermittent network coverage
to UAVs [2] that causes ping-pong handovers [3] under conventional handover mechanism.
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To provide continuous stable connectivity under these limited conditions, the handovers in
UAVs to the optimal target BS must be executed at the appropriate time.

The above-mentioned challenges of a conventional handover were confirmed by
a recent study in which the authors analyzed UAV handovers under various speeds
and altitudes [4]. Their results showed that the handover failure rate increased with
increases in the speed and altitude of the UAV. Similarly, the handover probability with
changing altitude values was measured through probabilistic geometric analysis in [5].
These studies confirm the influence of speed and altitude on UAV mobility management
and the importance of UAV mobility models such as Straight Line (SL), Random Walk
(RW), and Random Way Point (RWP) for designing UAV mobility [6]. Analysis of UAV
mobility with respect to various factors is well covered in recent studies, however, there are
only few schemes presented to improve the handover performance in UAVs.

The handover performance was improved in a study that used a model-free Rein-
forcement Learning (RL) algorithm to dynamically tilt BS beams to improve the signal
strength to the UAVs [7]. The SL mobility model used in this study does not capture the
real environment in which a high-degree tilt of beams is required for high-altitude UAVs,
which may affect the service of terrestrial UEs. Instead of altering the network to improve
the handover performance, a Q-learning-based handover decision scheme (QHD) for UAVs
was presented in Chen et al. [8] that used RW mobility model with constant UAV speed and
altitude. The RL handover decision algorithm aims to reduce the number of handovers and
improve signal quality, which are two conflicting objectives, and limits the performance
of the algorithm with joint increment in the weight values. Preliminary results in our
previous work [9] showed that better performance is achievable with the single objective of
handover reduction.

In this paper, we propose a Deep Reinforcement Learning (DRL)-based UAV handover
decision (UHD) scheme that overcomes the limitations in the aforementioned studies. A
UHD takes the RSSI of the surrounding BSs and the current state of the UAV as inputs for
a Proximal Policy Optimization (PPO) algorithm within a DRL framework to determine
the optimal target BS and handover time. A 3D emulation environment for UAV mobility
with UHD is implemented in Unity framework [10], and the results confirmed that a UHD
improves communication due to a higher handover reduction rate in comparison to those
of existing schemes. The UHD achieves this handover reduction rate with a slight RSSI
drop but still maintains it in a range for stable and good data rates. Additionally, the
efficacy of the PPO algorithm and proposed reward function is highlighted by a three-times
faster convergence towards optimal results than the QHD scheme. In summary the major
contributions of the proposed UHD are as follows:

• Dynamic optimization of the UAV handover decision through the proposed DRL
framework with PPO algorithm determined the moment for UAV handover execution
and enabled the UAV to maintain stable communication with high data rates.

• Reduction in redundant handovers with the proposed reward function that learns
to ignore RSSI fluctuations and maintain connectivity to increase UAV flight time by
conserving energy from reduced handover signaling.

• Accelerated convergence to an optimal handover decision enabled through a simpli-
fied reward function and variance control in the PPO algorithm that reduced overall
handovers and increased UAV life.

• 3D UAV environment implementation with the DRL framework to evaluate the pro-
posed UHD, and the results showed that UHD outperformed the current greedy
approach and QHD by a 76 and 73% reduction in handovers, respectively.

The rest of this paper is structured as follows. Section 2 discusses recent UAV and
mobility management related studies along with an explanation of DRL. Section 3 presents
the proposed UHD scheme architecture and thoroughly describes the designed DRL frame-
work for UHD. The emulation results are detailed in Section 4, and Section 5 concludes
the paper.
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2. Literature Review and Background

Mobility studies for UAVs are mostly done from two perspectives. The first group
of studies discuss mobility of UAVs to provide network services to gUEs, and the second
group focuses on handover decisions and triggering mechanisms for UAVs during flight.
This section first presents a literature review for these two groups of studies and then
describes RL and DRL in detail.

2.1. Literature Review

The agility of UAVs enables them to be used in variety of ways to supplement cellular
networks or provide an altogether independent network to gUEs [11]. In particular, the
communication between vehicles and roadside units suffers from broken links and delays,
so a UAV-based relay network was proposed in Khabbaz et al. [12] to improve communica-
tion. To compensate for UAV mobility patterns and to determine the path availability, delay,
and data rate of a UAV relay network, mobility and analytical models were proposed, and
their results showed a 30–55% increase in path availability [12]. Similarly, a UAV-based
ad hoc flying network was proposed to the facilitate data-centric Internet-of-Things (IoT)
applications with a focus on a distributed routing framework for reliable data delivery [13].
QoS parameters such as UAV velocity, link availability, load capacity, and delay were used
in a neuro-fuzzy interference system for efficient path selection and with a mobility model
for a routing framework.

UAVs can be used to deploy an independent wireless network for gUE in remote
locations or in natural disasters. Base stations are mounted on UAVs that fly over a defined
area controlled through a mobility control algorithm [14]. The aim of the control algorithm
is to reduce the distance between the mounted base stations and gUEs to achieve line of
sight for increasing throughput up to 82%. This study was extended by the same authors,
who redesigned the UAV mobility algorithm to improve spectral efficiency [15]. The results
showed that spectral efficiency of up to 34% was achieved with a consumer drone moving
at minimal speed. An important factor for achieving high data rates between UAVs and
BSs is the quality of the aerial wireless channel. A channel model based on constructive
and destructive interfaces predicts the aerial wireless channel and its SNR to schedule a
subset of gUEs that maximize network use [16]. Testbed results showed a 56% increased
throughput of 802.11n-based WiFi hotspot with predicted wireless channel gUE scheduling.

The mobility characteristics of UAVs played an important role in all of the aforemen-
tioned studies. To conduct a realistic and practically viable UAV study, it is essential to
design UAV mobility models that are close to real mobility patterns. A mobility model
for a UAV-mounted base station was studied in [17], where the initial position of the base
station was modeled as a Poisson point process, and each UAV base station moved in
a straight line in a random direction. This model was inspired by UAV studies in the
third-generation partnership project (3GPP), which measures time-varying interference
field at gUEs through stochastic geometry and uses it to calculate time-varying coverage
probability and data rates [17]. A similar study by the same authors calculated the data
rates for gUEs using time-varying interference fields when UAVs moved based on a RWP
mobility model [18]. A system-level analysis of UAV base stations based mobile network is
conducted using different mobility models in a finite 3D space, where constraints such as
small-scale fading for line-of-sight and non line-of-sight propagation, and multi-antenna
operations are taken into account [19].

Deep learning (DL)/Machine Learning (ML) approaches have recently achieved
promising results for mobility management of gUEs [20–22]. In UAVs, a policy gradi-
ent based DRL utilizes the RSSI from gUEs to address the mobility management of UAV
base stations for improved data rates in 3D-space [23]. The proposed DRL agent success-
fully distinguishs between line-of-sight and non line-of-sight environments and adjusts
UAV speed and altitude accordingly to maximize the data rates under given environmental
constraints. In case of UAV mounted base stations, the focus is to improve the communica-
tion from UAVs to gUEs, however, for simple UAVs it is important to receive strong and
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reliable signal from cellular BSs which is challenging due to complex air-to-ground path loss
model. A study solves this problem by proposing RL based dynamic adjustment of antenna
tilt angles at the BSs [7]. The antennas are tilt upwards to improve connectivity of UAVs,
and are tilt downwards to provide the mandatory services to gUEs with good throughput.
The results confirm that dynamic tilting of the antennas improve the connection at UAVs
and reduce the handovers that otherwise occur due to unstable connectivity [7].

The mobility management and communication protocols in current cellular networks
are all designed for gUEs and are not appropriate for UAVs. A recent study shows that
frequency of handovers in UAVs increase with the higher altitude and suggests the need for
new handover decision mechanism for UAVs for better connectivity [24]. To overcome this
problem, the authors in [8] propose a RL based handover decision mechanism based on the
RSSI of the next BS but at the same time penalize the RL agent for making the handover. By
associating separate weights for handovers and the RSSI of next BS, the RL agent actually
tries to minimize the handover while maintaining a high RSSI, which are two conflicting
objectives. For this to work, one weight value has to decrease by same magnitude by which
the other one increases, but this is not enforced by the system and can cause sub-optimal
performance when both weight values are either increased or decreased. In this paper we
fixed this problem by using a single handover weight value and showed that it provides
better results in comparison to Chen et al. [8].

2.2. Deep Reinforcement Learning Background

RL is a machine-learning method in which the agent trains by trial and error. A
model/algorithm in the agent learns by taking actions on the environment based on its
state, as shown in Figure 1. The environment represents the intended system, and the state
consists of parameter values that define the environment at the given time. The selection
and execution of an action by the agent for a given state of the environment is based on a
given policy implemented in the algorithm, and with that result the environment moves to
the next state. If the next state moves the environment towards the desired objective, the
agent receives a positive reward value calculated through a predefined reward function;
otherwise, the agent is penalized with a negative reward value for taking the wrong
action. The repetition of this process enables the algorithm to continuously learn to select
actions that yield maximum rewards corresponding to the input state. Q-learning [25] is a
most widely used RL algorithm that maintains a table of Q-values for all possible actions
for corresponding states where Q-values are calculated by using reward values and the
Q-function.

The agent in DRL uses a Deep Neural Network (DNN) to optimize its action for
a given state of the environment and continuously trains the DNN based on rewards.
Multiple DRL algorithms have been proposed over the years, and they can be classified into
off-policy and on-policy. Off-policy algorithms are similar to Q-learning and use the epsilon
greedy method to explore and update the policy by obtaining a reward value for the action.
Deep Q-Network (DQN) [26] and Double Deep Q-Network (DDQN) [27] are the notable
examples of off-policy algorithms. DQN uses the Q-network and Q-target DNNs instead of
the Q-table to learn from the received rewards to select the action, and these DNNs enable
DQN to learn large-scale environments with continuous states. A DDQN resolves the DQN
problem of overestimating the Q-value by separately updating the weights of selection
(Q-network) and evaluation (Q-target) DNNs.

One limitation of DRL off-policy algorithms is their long convergence time to optimal
values, and this is due to the epsilon greedy method and the variance between Q-values.
The on-policy algorithms tackle this limitation by using the gradient update method to re-
vise current policy during exploration. Representative examples include the Asynchronous
Advantage Actor Critic A3C [28] and Proximal Policy Optimization (PPO) [29] algorithms.
The A3C algorithm uses two networks, the advantage value network (critic) and the policy
network (actor), to compensate for large variance values. PPO improves upon the fast A3C
convergence by proposing a natural policy gradient update by the clip-method, which is
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computationally complex for real tasks due to second-order optimizations, and the PPO clip
method reduces this complexity by computing a natural policy gradient through first-order
derivative with soft constraints.

(a) (b)

Figure 1. Illustrative comparison between Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL). (a) RL with Q-table for policy update. (b) DRL with neural network for policy update.

3. UAVs Handover Decision with Deep Reinforcement Learning

The goal of the proposed UHD scheme is to design a handover execution policy that
ensures enforcement of necessary handovers at UAVs while maintaining stable connectivity
with the ground cellular network. The mobility of UAVs is a three-dimensional (3D)
trajectory with variable altitude, and during the flight they perform one or more handovers
to maintain communication, as shown in Figure 2. The UHD scheme monitors a received
RSSI from BSs at a UAV in a sampling period, and after every period determines whether
or not to perform a handover to the target BS with strongest RSSI. In addition to the RSSI,
the UHD takes into account several other factors such as location, position, direction, and
speed of UAVs while making the handover decisions. In the case of a positive handover
decision, the system initiates the control signaling procedure to disassociate the UAV
from the current BS and associate it with the target BS. Although the proposed UHD
scheme manages handover decision requirements for multiple UAVs, the rest of this paper
presents and evaluates a UHD from the perspective of single UAV for clearer understanding
and precision.

The conventional RSSI based handover criterion for gUEs works well; however, for
a UAV it is notalways suitable to connect to a BS with the strongest RSSI because during
the fligh the signal strength of the surrounding BSs abruptly and frequently fluctuates
at the UAV [30], resulting in frequent and unnecessary handovers. Moreover, signal
strength fluctuations often lead to ping-pong handovers that degrade service quality and
cause additional control signaling. One way to solve these issues is to increase the RSSI
difference threshold between current and target BSs, but this makes the UAV continue
its association with the current BS even after the drop in RSSI value below the feasible
communication range. Hence, only threshold adjustment is an inadequate solution, and
UAV handover management requires a mechanism that takes into account the variable
nature of the network and characteristics of UAV while making handover decisions. The
UHD is designed to perform efficient handover decisions that eliminate unnecessary
handovers while maintaining the required RSSI for stable communication.

The proposed UHD scheme uses DRL to make optimal handover decisions during a
UAV flight to maintain stable and continuous communication while keeping the number of
handovers under check. It is worth noting that the signal strength for stable communication
is directly proportional to the number of handovers. Therefore, reducing the number of
handovers negatively effects the signal strength and requires a delicately designed tradeoff
between stable communication and handover frequency. To this end, we designed the
objective function of the proposed DRL algorithm so that it flexibly increases or decreases
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the handover frequency to control the signal quality inversely. This ensures that two
conflicting objectives, signal quality and handover frequency, are always inversely related
in the objective function and that the system does not simultaneously improve the values
of these conflicting objectives. We employed PPO as a DRL algorithm for the learning of
the proposed objective function.

Figure 2. UHD architecture with 3D UAV environment.

PPO is an on-policy DRL algorithm that uses memory to store environment states that
are used by value and policy neural networks to train and take an action. In contrast to
off-policy algorithms, which use a Q-value to estimate the reward, the value network V in
PPO accomplishes this reward estimation. The estimated rewards V(St) and V(St+1) from
the value network V for the input states St and St+1, respectively, are used along with the
reward value Rt from the environment to calculate an advantage value (D) (5). The value
network trains by using the Mean Squared Error (MSE) loss function (6) over D which
aims to reduce the temporal difference between V(St) and γV(St+1) + Rt, where γ is a
discount rate.

Dt = γV(St+1) + Rt −V(St) (1)

As shown in (1), V derives V(St) and V(St+1), which are the expected values of the
predicted rewards from the input states St and γSt+1, respectively; thus, V updates toward
minimizing the temporal difference between V(St) and γV(St+1) + Rt.

LossMSE =
1
N

N−1

∑
l=0

D2
t+l (2)

The policy network π in PPO trains by using the Generalized Advantage Estimator
(GAE) [31], a modified advantage-value function (DGAE) that reduces the variance of the
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estimated reward values. In contrast to Dt, which uses only the discount rate γ, DGAE

adds another variable λ to strike a compromise between bias and variance. DGAE is an
accumulation of reward values for next n states and is calculated by using (3).

DGAE = ∑N−1
l=0 (1− λ)λl D̂t+l , where (D̂t+N−1 = ∑N−1

l=0 γl Dt+l)

= ∑N−1
l=0 (γλ)l Dt+l

(3)

On-policy based DRL algorithms accumulate rewards at each step and determine
the policy that maximizes rewards through a gradient update. However, if the newly
discovered reward is an outlier value, the bias is added in the learning network when
it is updated to this outlier value. This results in a large error in estimating the general
reward, and a reduction in the convergence rate due to the increase in the variance between
predicted rewards. To update π and limit the variance of predicted rewards gradually, PPO
uses δ (4), which is a probability ratio of each action (At) by stochastic new policy π and
stochastic old policy π′ in state St.

δ =
π(At | St)

π′(At | St)
(4)

δ and DGAE are used to calculate the loss (Lossclip) (5) for the policy network π in PPO.
Additionally, δ is used to calculate clip function (6), where hyperparameter ε limits the
value of δ to either 1− ε or 1 + ε if δ is lower than 1− ε or greater than 1 + ε, respectively.
The clip function returns an unchanged value of δ if (1− ε) ≤ δ ≤ (1 + ε). This enables
the hyperparameter ε to set the size of the gradient and facilitate a gradual update of the
policy network that results in a faster convergence than from other on-policy algorithms.

LossClip = E[min(δ× DGAE, Clip(δ)× DGAE)] (5)

Clip =


δ← (1− ε) if δ < (1− ε)

δ← (1 + ε) if δ > (1 + ε)

δ otherwise

(6)

The proposed UHD architecture consists of a PPO agent with trajectory memory and
a 3D UAV environment. Since the agent requires environmental UAV data to learn the best
handover decision policy, it receives the UAV state and reward from the environment and
stores them in the trajectory memory till it is full. The full trajectory memory is transmitted
to the policy and value networks as the training data. The value network is trained in the
direction of reducing the temporal difference of the expected values from each time. As a
result, the value network returns the expected values of the predicted rewards based on the
input states, and calculates the advantage values D and DGAE, whereas the policy network
is updated by finding the ratio δ, which is the ratio between the old state-probability policy
π′ and the continuously updated stochastic policy π. By this process, the clip method is
used for gradual policy network change. Therefore, through policy π, the UHD determines
the best target BS for a UAV to execute the handover. The complete training procedure of
UHD through the PPO algorithm is described in Algorithm 1.
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Algorithm 1: UHD training procedure.
Input : Number of steps N, trajectory memory M, random network weights ω

and ω′, state St, discount rate γ, signal strength RSSIn′ , handover weight
WHO

Output : Trained value and policy networks
// Step 1: Initialization

1 Value network V with ω: V(ω)
2 Policy network π with ω′: π(ω′)
3 State St=0 ← (x0, y0, z0, v0, d0, n0)
4 for till N do

// Step 2: Exploration based on old policy π′

5 for t=0 to |M| − 1 do
6 At ← n′

7 Rt ← RSSIn′ × (1−WHO)− IHO ×WHO
8 Mt ← (St, St+1, At, Rt)

// Advantage D estimation with function Adv
9 Dt ← ADV(Mt)

10 D ← D · Dt //append
// Generalized Advantage Estimation DGAE with function GAE

11 DGAE
t ← GAE(γ, λ, Dt)

12 DGAE ← DGAE · DGAE
t //append

// Step 3: Learning
13 for each Epoch do
14 LossMSE ← MSE(D)

15 V(ω)← GradientDecentUpdate(ω, LossMSE)

16 δ← π(At |St)
π′(At |St)

17 Lossclip ← CLIP(δ, DGAE)

18 π(ω′)← GradientDecentUpdate(ω′, Lossclip)

19 π′ ← π

The goal of the PPO algorithm in a UHD is to make handover decisions that reduce
the overall number of decisions while maintaining stable communication with the UAV.
The value and policy networks in the agent learn based on the state and reward values,
which depend upon the actions of the agent. Therefore, we designed state, action, and
reward functions in a UHD to encourage a learning framework to execute a handover only
when necessary. This not only reduces the overall number of handovers but also curtails
the control signaling load on the system. The formal definitions of state, action, and reward
in a UHD are as follows.

State: The UAV state at time t represents the state space of the environment and
consists of 3D positioning (xt, yt, zt), velocity vt, direction dt, and the ID of the currently
associated BS nt. In addition to RSSI values, state information enables UHD to take probable
trajectory and altitude of UAV into account while making handover decision. This helps in
decreasing the handovers and mitigates the ping-pong effect. The UAV state is formally
defined as

St = [(xt, yt, zt), vt, dt, nt]. (7)

Action: The decision to execute the handover defines the action space of a UHD. A
positive handover decision implies that the UAV is disassociated from the current BS and
has associated with the target BS after completing the standard handover control-signaling
procedures in the cellular network. Otherwise, the UAV keeps its association with the
current BS. On this account, a positive or negative handover decision can be determined
based on the ID of the next BS (n′) from the UHD. In particular, if n′ matches the current BS
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ID, then it is a negative handover decision; otherwise, it is positive. Accordingly, a UHD
action space is defined as

At = n′. (8)

Reward: The UHD learns the desired handover behaviour based on the reward space
and takes appropriate action during a UAV flight. The reward space penalizes the UHD
agent with a weight WHO for making a positive handover decision (IHO = 1). At the same
time, handovers are necessary for maintaining stable connectivity with the UAV; hence,
the UAV agent must get a positive reward for making a necessary handover decision. This
requirement is incorporated into the reward space by reducing the weighted signal strength
of next BS (RSSIn′ × (1−WHO)) from the initial penalty IHO ×WHO. The weighted value
(1−WHO) for RSSIn′ achieves inverse proportionality between the signal strength and
handovers and attains a balance between stable UAV connectivity and handover frequency.
The reward space can be formally defined as follows:

Rt = RSSIn′ × (1−WHO)− IHO×WHO , (9)

where

IHO =

{
1 in case of handover
0 otherwise.

(10)

The UHD reward function uses the weight WHO to reduce dependence on only the
RSSI value for a handover decision, so WHO is a penalty for finding a balance between
RSSI and handover. For example, a large WHO value in (9) diminishes the influence
of the RSSI in a reward calculation, and as a result reduces the number of handovers.
Conversely, as the WHO value decreases, the influence of the RSSI increases as a reward,
and handovers due to the RSSI increase. This shows that WHO determines the trade-off
between stable UAV connectivity and handovers. As a result, the UHD reward function
determines the dependence of the RSSI according to the WHO value and learns by receiving
a penalty subjected to the presence or absence of a handover, thereby satisfying the balanced
handover condition between the two.

The overall operation of a UHD for mobility management during a UAV flight is
described through an example shown in Figure 3. At position 1© in the figure, (a) and (b)
are two candidate BSs for initial UAV attachment, and conventional method with greedy
algorithm would have selected (a) due to higher RSSI. Whereas, UHD state and reward
functions also factor in UAV speed and direction in addition to the RSSI for selecting the
target BS, hence, it selects (b) as the target BS. This allows UHD to eliminate an unnecessary
handover to (b) later in the case of conventional method. At position 2©, the RSSI from BSs
(c) and (d) become strong enough to warrant a handover: again, based on UAV position
and direction, UHD selects (c) despite the higher RSSI of (d). Similarly, at position 3©,
the UHD selected (f) as the target BS over BSs (e) and (g) for the same reasons. At the
final position 4©, UHD uses the RSSI and directional information to understand that that
UAV is moving away from BS (f) and executes the handover to BS (h) even though BSs
(f) and (g) have similar RSSI values. This demonstrates that the proposed UHD scheme
successfully removes unnecessary handovers during a UAV flight and maintains stable
connectivity to enable more seamless communication with good data rates. The benefits of
UHD include reduced control signaling cost, service disruption, and energy consumption
due to the fewer number of handovers, and it is applicable to multiple UAVs in a same
network environment.
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Figure 3. Operational explanation of a UHD with example handovers during a UAV flight.

4. Results and Analyses

This section begins with details of the implementation of a 3D UAV mobility environ-
ment, and then presents a performance evaluation of a UHD. The handover reduction rate
and connection stability are the main criteria for the evaluation against QHD and greedy
conventional handover decisions.

4.1. Implementation

The evaluation of a proposed UHD scheme requires a 3D UAV environment, and
we implemented one using the Unity 3D framework, a C#-based simulator with a game
engine that provides 3D- and 2D-development environments. In particular, we developed a
hexahedron UHD environment consisting of an area 6× 6× 0.3 km3 by using the Unity3D
2019.4.13f1 version. Uniformly deployed 45 BSs covered the whole area with no service
outages, and the coverage diameter of each BS was defined as 1.5 km per the microcell
specification in an urban setting [32]. During the complete flight (trajectory) in the emulated
environment, the UAV continuously monitored the RSSIs of the detected BSs and sent a
measurement report to the agent to update the handover decision policy.

Signal strength model: The UHD environment was developed in a Unity3D framework,
which lacks the implementation of network stack and signal propagation models. This
meant that the RSSI of BSs at the UAV had to be calculated by implementing a path loss
propagation model. In our emulated UHD environment, there are no objects that block
UAV line-of-sight communication with the BSs during the complete trajectory. Moreover,
the coverage area of BSs overlap with each other in a way that there are no dead zones in
UHD environment. This allows us to calculate RSSI by using a simple propagation model
and distance (dist) between UAV and BS [33], as defined in (11).

RSSI = −10n log10(distance) + α, (11)

where n is the path loss exponent and its value is set as 2 for a UAV in a UHD environment,
and α is the transmitter power with value −10 [33]. During the UAV trajectory, the RSSI
was calculated using (11) where the value of dist continuously changed with a change in
UAV position (x,y,z) and was measured through: distance =

√
(x− xo)2 + (y− yo)2 + z2,

where xo and yo defined the BS location.
Mobility Model: The proposed UHD scheme enforces policy-based handover decisions

on UAVs during flight along the given trajectory. In reality, a UAV trajectory is either
predefined or controlled by a remote pilot. However, to implement a trajectory in a UHD
environment, the UAV flies from a starting point to a destination using an RWP mobility
model [18,34], which requires destination, speed, and direction to be randomly chosen. To
implement an RWP, (1) start and destination points of the UAV trajectory are randomly
selected in the environment; (2) three intermediate destinations between the starting and
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destination points are randomly selected, as shown in Figure 4. The UAV flies in a straight
line from the starting point to the first intermediate destination (as shown in Figure 4) with
a constant velocity in the range of 54–72 km/h based on the average speed of industrial
UAVs [35]. Upon reaching the first intermediate destination, the UAV changes direction
along the shortest path to second intermediate destination, which also includes altitude
variation, and randomly selects the velocity value from the preset range. This process
continues till the UAV completes a trajectory by reaching its destination, and then repeats
the procedure for different trajectories. It is worth mentioning that the UHD is trajectory
agnostic and depends only on the RSSI and current UAV state to make a handover decision;
hence, UAV trajectories in a real environment do not affect UHD performance.

Figure 4. UAV movement in a UHD environment using a Random Way Point (RWP) mobility model.

The Implementation of signal strength and mobility models enable a UAV to move
from initial point to destination and calculate the RSSI during the trajectory. UAV states
and rewards based on this mobility and RSSI information are used by a PPO algorithm to
learn and update the handover decision policy. The maximum number of UAV states in an
experiment are 2,000,000, and the number of states in a trajectory vary depending upon
length of the trajectory (i.e., one experiment consisted of many trajectories). The trajectory
memory size M is defined as 1024, which implies that the value and policy networks are
updated once 1024 states are stored in the trajectory memory. The learning rate for gradient
update of the networks is 0.0003, and the UHD uses a 0.99 value for both the discount
factor γ and variable λ. The hyperparameter ε for curtailing the drastic variation in policy
generally has a value between 0.1 and 0.3; in our experiment it was set at 0.2. Moreover,
Table 1 summarizes the definitions and values of parameters used in the experiments. The
results from the UHD scheme were compared with the QHD handover decision policy [8]
and the greedy scheme in a conventional handover mechanism.
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Table 1. Parameter definitions and values.

Parameter Definition Value

N Total number of UAV states and their
corresponding actions during the training 2,000,000

M The trajectory memory size that defines
the policy update interval 10,240

η
Learning rate of PPO that determines the
gradient step size 0.0003

ε
Cut off threshold for difference between
old and new PPO policies 0.2

λ A variable used in the calculation of GAE 0.9

γ Discount rate for the calculation of GAE 0.9

IHO Handover indicator function 1 or 0

WHO
The handover weight value for calculating
reward function 0.1, 0.5, 0.9

Rt Reward value obtained at step t –

St UAV state at step t {(xt, yt, zt), dt, vt, nt}

At Action by PPO algorithm at step t Next BS ID (n′)

(xt, yt, zt) Position of UAV at step t (0–6 km, 0–6 km,
0–0.3 km)

dt Direction of UAV movement at step t vector representation

vt UAV speed at step t 54–72 km/h

4.2. Results

The networks in a DRL algorithm are generally initialized with random values and
require an exploration phase where they learn from the reward values of corresponding
actions and converge towards optimal policy. As the exploration happens while the system
is online, it is important that this algorithm converge to optimal value as soon as possible.
Figure 5 compares the convergence time of a PPO algorithm in a UHD and Q-learning in a
QHD scheme [8] for different WHO values in the reward function. The results show that use
of single weight value WHO in a UHD avoids the conflicting objectives and enables the PPO
algorithm to converge 3.5 times faster than the QHD: the UHD takes about 100 episodes
to converge, whereas the QHD takes about 800–1200. Here, each episode represents a
single trajectory, and different WHO values show broadly similar convergence rates for
both the UHD and QHD. The clipping method in the PPO algorithm controls the wide
variations in policy and helps it to converge with a higher rate. Moreover, the convergence
and handover decisions of a UHD further improve with multiple UAVs as more data with
diverse characteristics is collected in the trajectory memory in a shorter time.

A single UAV handover has an associated handover delay during which communi-
cation is stalled due to the exchange of control signaling between the BS and UAV. The
occurrence of frequent handovers to maintain high signal quality not only disrupts the
communication but also increases the control signaling cost. Hence, reducing the number
of handovers to those only necessary results in more seamless UAV communication. To
this end, Figure 6 showcases the average number of handovers by a UHD, QHD, and
greedy conventional schemes in 30 episodes during the exploitation phase after explo-
ration. The UHD achieved 76% and 73% handover reduction compared to greedy and QHD
schemes, respectively, with the highest system penalty for making a handover decision (i.e.,
WHO = 0.9). When the handover decision penalty was minimal (i.e., WHO = 0.1), the UHD
performance was much closer to that of the QHD or greedy schemes, and for WHO = 0 all
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three schemes had the same performance. The UHD showed a high handover reduction
rate with an increase in WHO, whereas at the same time the QHD performance stalled due
to independent weights for handovers and the RSSI in the reward function. The high RSSI
weight value restricted the QHD’s reduction of unnecessary handovers even when the
WHO value increased. The results in Figure 6 illustrate this.

Figure 5. Convergence rate comparison between UHD and QHD methods with handover weight
(WHO) values 0.1, 0.5, and 0.9.

Figure 6. Comparative analysis among UHD, QHD, and greedy methods for the average number of
handovers (HOs) in the exploitation phase.

The average number of handovers showed the overall performance of the UHD, but
did not provide detailed insight into UAV handovers in the trajectory. We addressed this
by showing a cumulative distribution function of UHD handovers during a trajectory for
0.1, 0.5, and 0.9 WHO values in Figure 7, and compared them with the greedy approach.
The results confirmed the findings of Figure 6, and showed that the UHD significantly
reduced handovers in comparison to the greedy approach when WHO was 0.9. The number
of handovers increased and became closer to th egreedy approach when the WHO value
decreased to 0.5 and 0.1. These results highlighted the better performance of the UHD
reward function, which used a single handover weight value to control the handovers and
the RSSI at the UAV. The higher weight value made the UHD maintain the connection with



Sensors 2022, 22, 1200 14 of 17

the current BS and compromisef on signal quality, whereas the lower weight value inclined
the HD towards attaining a better signal quality by making more frequent handovers. In
summary, by eliminating conflicting goals, the UHD enables UAVs to maintain either high
signal quality or more seamless communication depending upon the service requirements.

Figure 7. Handovers in a trajectory under greedy and UHD methods with 0.1, 0.5, and 0.9 WHO values.

The UHD reduced the handovers in a trajectory by persistently maintaining a connec-
tion with the current BS. This could also be perceived as a drawback of the scheme if the
connection persists even after the signal quality deteriorated below the stable communi-
cation threshold (RSSI < −85 dBm) as shown in Table A1 in Appendix A. To analyze the
effects of handover reduction on the RSSI at the UAV, we measured the RSSI of the current
BS at the UAV during a trajectory under the greedy scheme and the UHD with WHO values
0.1, 0.5, and 0.9. The results in Figure 8 illustrate that the greedy scheme maintained a good
to excellent RSSI (−70 dBm to −60 dBm) at the UAV throughout the trajectory. However,
the UHD with a lenient handover curtailing policy (WHO = 0.1) reduced handovers by 28%
while maintaining a good RSSI above −70 dBm for more than 90% of the trajectory. For a
more strict handover curtailing policy (WHO = 0.5), the RSSI at the UAV for most of the
trajectory dropped but still remained in the good signal strength range of −75 to −60 dBm
for high data rates. The biggest drop in the UAV RSSI comes with the highest reduction
in handovers with WHO = 0.9, but more than 90% of the trajectory RSSI values stayed
above the fair signal strength of −80 dBm for reliable communication. From this, it can be
concluded that the proposed DRL framework in a UHD successfully achieves the tradeoff
between reduced frequency of handovers and signal strength for reliable communication.

Figure 8. RSSI at the UAV during a trajectory under greedy and UHD methods with 0.1, 0.5, and 0.9
WHO values.
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The elimination of unnecessary handovers not only facilitates stable communication
but also reduces control signaling costs for the mobile operator. An analytical analysis of
handover signaling costs in one trajectory for the UHD, QHD, and greedy conventional
method is shown in Figure 9. The cost is calculated by using the number of handovers
in a trajectory and the number of signaling messages exchanged between the UAV and
BS for a single handover [36]. The results showed that the UHD reduceds the signaling
cost for a UAV in a trajectory maximum by 120 and 112% in comparison to the greedy
and QHD methods, respectively, with WHO = 0.9. Even when the handover weight value
was low (WHO = 0.1), the UHD achieveds 32 and 29% lower signaling cost than the
greedy and QHD methods, respectively. These results showed that the UHD significantly
reduced the network signaling load and reduced energy consumption in UAVs due to
fewer transmissions, which increase UAV flight time.

Figure 9. Control signaling cost comparison among UHD, QHD, and greedy methods with 0.1, 0.5,
and 0.9 WHO values.

5. Conclusions

This paper proposed a DRL-driven UAV handover decision scheme for seamless
communication in a 3D environment that reflects the realities of UAVs. In a 3D environ-
ment with a RWP movement model based on UAV characteristics, a UHD eliminated
unnecessary handovers caused by fluctuating received signal strengths from nearby BSs
while maintaining stable communication. In particular, a proposed DRL framework with
a PPO algorithm successfully achieved a tradeoff between signal strength and handover
frequency. The results showed that use of a single handover weight value enabled the UHD
to manage the tradeoff and reduce handovers up to 73% comparing to the QHD method,
while maintaining a fair signal strength above −80 dBm. This reduction in handovers
resulted in a 29–12% decrease in handover signaling cost comparing to the QHD for WHO
values 0.1 and 0.9, respectively. We are currently improving our UAV mobility environment
by incorporating more sophisticated wireless transmission models in urban settings and
energy consumption models. In the future, this study will be extended to massive UAV
fleet scenarios and even to gUE mobility management.
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Appendix A

Table A1. Relation between RSSI and datarate.

RSSI (dBm) Signal Strength Description

−65 ≤ RSSI Excellent Strong signal with maximum data speeds
−75 ≤ RSSI < −65 Good Strong signal with good data speeds
−85 ≤ RSSI < −75 Fair Fair but useful, fast and reliable data speeds may be attained
−95 ≤ RSSI < −85 Poor Performance will drop drastically

RSSI < −95 No signal Disconnection
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