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Abstract: Inspired by the Ormia Ochracea hearing mechanism, a new direction of arrival estimation
using multiple antenna arrays has been considered in spatially colored noise fields. This parasitoid
insect can locate s cricket’s position accurately using the small distance between its ears, far beyond the
standard array with the same aperture. This phenomenon can be understood as a mechanical coupled
structure existing between the Ormia ears. The amplitude and phase differences between the received
signals are amplified by the mechanical coupling, which is functionally equivalent to a longer baseline.
In this paper, we regard this coupled structure as a multi-input multi-output filter, where coupling
exists between each pair of array elements. Then, an iterative direction-finding algorithm based on
fourth-order cumulants with fully coupled array is presented. In this manner, the orientation of the
mainlobe can direct at the incident angle. Hence, the direction-finding accuracy can be improved
in all possible incident angles. We derive the Cramér-Rao lower bound for our proposed algorithm
and validate its performance based on simulations. Our proposed DOA estimation algorithm is
superior to the existing biologically inspired direction-finding and fourth-order cumulants-based
estimation algorithms.

Keywords: direction of arrival estimation; ormia ochracea; fourth-order cumulants; cramér-rao lower
bound

1. Introduction

Presently, direction of arrival (DOA) estimation has attracted intensive interest in target
localization with radar, sonar and microphone systems [1–7]. A variety of methods have
been proposed in the literature, which differ by type of measured parameter. Traditional
parameters include the amplitude [8] and phase [9,10] of the signal. To estimate the DOA of
multiple signals with the same frequency, the DOA estimation algorithms based on antenna
array have attracted significant attention over the past few decades. Ref. [11] proposed a
DOA estimation algorithm using the linear subspace, which is called MUSIC. On the other
hand, maximum likelihood (ML) estimation may also be used in multiple-signal DOA
estimation. With the development of sparse signal representation and compressed sensing,
a series of new DOA estimation methods have been proposed [12–15]. Ref. [12] presented a
recursive weighted least-squares algorithm named FOCUSS for DOA estimation. In [13], a
sparse recovery method based on `1-norm minimization is proposed, which can handle
closely spaced correlated signals with known numbers. Moreover, a joint sparse recovery
strategy solves a similar problem using a mixed `2,0 norm approximation with fewer
snapshots [14]. The relevance vector machine (RVM) is another sparsity-inducing technique
based on Bayesian learning [16]. The RVM-based beamforming method introduced in [17]
can remove the undesirable effects of signal correlation and limited snapshots, whereas
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its resolution capability may be even worse than MUSIC in some scenarios. To solve the
DOA estimation problem better, an efficient ML method based on a spatially overcomplete
array output formulation is proposed [18]. The DOA is estimated by the reconstructed
array output using a refined 1-D searching procedure. In recent decades, a promising
technique called machine learning has been widely used in the DOA estimation problem
as well [19–21]. These methods establish training sets with a DOA label first, and then
derive a mapping from the array outputs to the DOA with existing machine-learning
techniques. It has been shown that these methods can reduce computation complexity and
perform comparably with the subspace-based methods. However, in general, the theoretical
performance of most existing algorithms merely relies on the aperture of antenna arrays and
the number of antenna elements, which is difficult to further improve with a given array.

Recently, a parasitoid tachinid fly called Ormia Ochracea has appealed to researchers
due to its accurate localization ability of the field cricket using the cricket’s call. The DOA
estimation accuracy of the female Ormia can achieve 2◦ using the small distance between
its ears [22,23], far beyond the performance of existing algorithms under similar conditions.
Experimental research indicates that the remarkable estimation performance of the Ormia’s
auditory system arises from a special coupled structure between its ears, which amplifies
the interaural difference in intensity and arrival time [24,25].

Inspired by the coupled structure of the Ormia’s auditory system, a biologically in-
spired small-aperture array for direction-finding has been discussed from acoustic and
radio perspectives [26–30]. A biologically inspired miniature silicon condenser microphone
diaphragm has been designed in [31], which exhibits good directionality and sensitivity. In
the radio application, a two-element coupled array is designed as a circuit connecting the
received antennas, which mimic the coupled structure between the Ormia’s ears [32–34].
In [33], the parameters of circuit elements were determined by the tradeoffs between phase
amplification and its output power level. Furthermore, the coupled structure has been
extended to multiple sensors. A mechanical coupled structure for triple sensors was pro-
posed in [35], which connects inputs by springs and dash-pots. In the above research, the
coupling is achieved by mechanical or circuit structure. In fact, the coupled structures for
multiple-sensor arrays are quite complicated and normally hard to implement, especially
when the number of sensors increases. Meanwhile, once the structure is determined, the
model parameters are difficult to change, which makes it inflexible in practical applica-
tion. By contrast, from the signal-processing perspective, the coupled structure can be
implemented as a digital filter in [36–38]. Literature [36] analyzes the performance of an
interferometer using two digitally coupled antennas, and implements a direction-finding
prototype to verify the theoretical analysis. A multi-input multi-output filter designed
for multiple antennas has also been studied in [37,38]. Unfortunately, the accuracy im-
provement brought by biologically inspired coupling merely exists within a certain range
of DOA, which is in inverse proportion to the aperture of the array [36]. However, most
of the existing studies assume, either explicitly or implicitly, that the DOA locates the
range of accuracy improvement, and the DOA estimation outside the range is not analyzed.
Moreover, the received noises are correlated after biologically inspired coupling. Since the
coupling matrix is given before DOA estimation, traditional ML estimation can be applied
when the noises are whitened [37,38]. However, the estimation performance degrades
when the received noise is an unknown-colored Gaussian, due to the nonidealities of the
receiving channels [39]. Since the colored Gaussian noise can be greatly suppressed by
the fourth-order cumulants (FOC), the DOA estimation methods based on the FOC have
attracted an extensive attention, and have been developed in past decades [40,41]. The
modified MUSIC algorithms based on the FOC were presented in [42,43]. To reduce the
computation complexity of the FOC matrix, ref. [44] downsized the matrix by substituting
the beamforming output for the array output, whereas a joint second- and fourth-order
DOA estimation method was proposed in [45]. As for the coherent signals, pre-processing
techniques such as forward–backward averaging have been applied to improve estimation
accuracy [46]. However, the DOA estimation outside the accuracy improvement range is
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still unsolved with the existing FOC-based DOA estimation methods. Finally, the existing
coupled structure for multiple sensors only considers the coupling between neighboring
sensors in the array [37,38], and it requires further research for better performance.

In this paper, we consider biologically inspired direction-finding using the coupled
array. In contrast to the existing antenna array coupled by its immediate neighboring
elements, we research the coupling between each pair of array elements. The design of this
coupled array can improve DOA estimation accuracy even further. Then, we implement
the coupled structure as a multi-input multi-output digital filter. As mentioned in our
prior research [36], the range of accuracy improvement for biologically inspired direction-
finding is in inverse proportion to the aperture of the array; thus it can cover all possible
incident angles for the Ormia’s ears, which are extremely compactly spaced compared to
the wavelength of the sound. However, as for antenna arrays in practice, to achieve the
resolution capability for multiple signals and high estimation accuracy, the aperture cannot
be as closely spaced as the Ormia’s. This would restrict the range of accuracy improvement
significantly. To expand the range of accuracy improvement, we propose an iterative FOC-
based estimation method with fully coupled array (IFOCE-FC). In this method, a phase
adjustment strategy based on an iterative scheme is used for incident angles outside the
range of accuracy improvement. Then, a FOC-based estimation approach is used to estimate
the DOA with the phase-adjusted signals in the presence of correlated received noise.
Hence, the IFOCE-FC algorithm can improve the resolution capability and DOA estimation
performance for all possible incident angles. The Cramér-Rao lower bound (CRLB) for the
proposed algorithm is derived as well. Simulations validate that the proposed algorithm
outperforms the existing biologically inspired direction-finding method [37] and FOC-based
MUSIC algorithm [42] in the presence of spatially colored noise.

The remainder of this paper is organized as follows: Section 2 reviews the prin-
ciple of biologically inspired direction-finding using a uniform linear array (ULA) and
demonstrates the tradeoffs between array aperture and direction-finding range. Section 3
introduces the fully coupled structure for multiple antennas and the biologically inspired
array processing. Then, the iterative FOC-based DOA estimation method with fully cou-
pled array is proposed in Section 4. Section 5 analyzes the theoretical performance of the
proposed algorithm. We extend our analysis to the uniform circular antenna array (UCA)
in Section 6 as well. In Section 7, using Monte Carlo simulations, we compare the proposed
algorithm with the existing estimation method and demonstrate its improvement in the
estimation performance. Finally, we provide our conclusions in Section 8.

Please note that the incoming signal is assumed to satisfy the narrowband array
assumption, which means the propagation time of the signal across the array is much
smaller than the reciprocal of signal bandwidth [47]. The assumption ensures that the
difference between received signals are merely brought by the carrier phase.

2. Background
2.1. Mathematical Model

Biological research in [25] indicates that the outstanding direction-finding performance
of the Ormia Ochracea arises from a special mechanical coupled structure in its auditory
system, which is shown in Figure 1. This structure consists of springs and dash-pots, with
the symmetrical parameters on the bilateral organs. It can be seen that the Ormia’s ears are
coupled through the central pivot with rigid bars.

According to the mechanical model mentioned above, the mathematical model of
biologically inspired coupled structure can be obtained when the applied forces and springs
displacement are changed to the electrical signals [25,37]:[

k0 + kc kc
kc k0 + kc

][
y1
y2

]
+

[
c0 + cc cc

cc c0 + cc

][
ẏ1
ẏ2

]
+

[
m0

m0

][
ÿ1
ÿ2

]
=

[
x1(t, φ)
x2(t, φ)

]
(1)

where m0, k0, kc, c0 and cc account for the effective mass, spring and dash-pot constants of
the mechanical model, respectively. The detailed corresponding relation is demonstrated
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in Figure 1. xi(t, φ), i = 1, 2 and yi(t, φ), i = 1, 2 are the input and output signals, whereas
ẏi and ÿi, i = 1, 2 denote the first and second derivative of the output signals versus time.

Figure 1. Photograph of the Ormia’s auditory system and its correspondence relationship with the
mechanical model. It consists of springs and dash-pots, which reflects the tympanic membrane and
the coupled structure.

We can solve the differential equations and obtain the transfer function by applying
the Fourier transform to (1) with zero initial values, as given in [37,38]:[

Y1(jωc)
Y2(jωc)

]
= HI(jωc)

[
X1(jωc)
X2(jωc)

]
=

1
P(jωc)

[
D(jωc) −N(jωc)
−N(jωc) D(jωc)

][
X1(jωc)
X2(jωc)

]
(2)

where ωc is the center frequency of received signals. D(jωc), N(jωc) and P(jωc) can be
expressed by the parameters {m0, k0, kc, c0, cc}mentioned above:

D(jωc) = −m0ω2
c + (c0 + cc)jωc + k0 + kc

N(jωc) = cc jωc + kc

P(jωc) = D2(jωc)− N2(jωc)

(3)

The transfer function of the coupled structure can be regarded as a two-input two-
output filter system. According to the frequency response of the Ormia’s ears, the coupling
amplifies the amplitude and phase differences between its two inputs, accompanied by
a sacrificing at the power of output signals. Combining these two factors, the coupled
structure can improve the direction-finding accuracy by as much as four times compared
to the no-coupling standard array [36].

2.2. The Range of Biologically Inspired Direction-Finding

The CRLB of biologically inspired DOA estimation error for a two-antenna array is
derived in [36]. To demonstrate the effect of coupling, we compare the CRLB of the bio-
logically inspired coupled array with the standard antenna array assuming zero coupling,
i.e., HI(jωc) = IM. We define ε as the theoretical accuracy improvement brought by the
biologically inspired coupling:

ε(θ) =

√
CRLBS(θ)

CRLBB(θ)
(4)

where CRLBS(θ) and CRLBB(θ) are the CRLB of DOA estimation error for standard array
and biologically inspired coupled array. When ε > 1, the theoretical performance of
coupled array is better than the standard array, whereas for ε < 1, the relation will be
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opposite. We notice that the theoretical accuracy improvement is greater than 1 when
the incident angle evaluates in a certain range, which also means the improvement is
obtained at the expense of sacrificing the range of direction-finding. Changing the length
of the baseline, we can examine the range of direction-finding with different array aperture.
Figure 2 demonstrates that the biologically inspired coupled structure is suitable for short
baseline scenarios, whereas the range of direction-finding for long baseline decreased
significantly. Since the large-aperture array is widely used for multiple-signal resolution
and high-accuracy DOA estimation, this phenomenon will greatly restrict the application
for biologically inspired coupling.
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Figure 2. The relationship between the range of direction-finding and the length of baseline.

3. Biologically Inspired Fully Coupled Array

In this section, the coupled structure of the Ormia Ochracea is extended to the M
sensors array with a similar mechanical principle. In [37], the author proposed a coupled
structure such that each sensor is coupled to its immediate neighboring sensors, whereas in
this paper, we assume that the coupling exists between each pair of sensors. The mechanical
model of five sensors coupled structure is given in Figure 3. The rigid bars connecting
each sensor are omitted in this picture. The solid lines correspond to the coupling between
adjacent sensors, whereas the dotted lines correspond to the rest of the coupling. The
corresponding transfer function of a M sensors array can be generalized as a matrix:

HI(jωc)
−1 =


D̃(jωc) Ñ(jωc) · · · Ñ(jωc)
Ñ(jωc) D̃(jωc) · · · Ñ(jωc)

...
...

Ñ(jωc) Ñ(jωc) · · · D̃(jωc)

 (5)

where D̃(jωc) and Ñ(jωc) can be expressed as:

D̃(jωc) = −m0ω2
c + [c0 + (M− 1)cc]jωc + k0 + (M− 1)kc

Ñ(jωc) = cc jωc + kc
(6)
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Figure 3. Schematic of five-sensor mechanical coupled structure. The coupling exists between each
pair of sensors.

It can be noticed that the coupled structure for multiple sensors is complicated, es-
pecially when the number of sensors is increased. Fortunately, as discussed in [36], the
coupled structure can be implemented in digital form with less power attenuation under
the same phase amplification ability. Thus, we implement the coupled structure for antenna
arrays as a multiple-input multiple-output filter. The signals received by each antenna
are coupled together, leading to the amplification of the amplitude and phase difference
between the output signals.

According to the narrowband assumption mentioned in the final part of Section 1,
the incoming signals can be approximated as a summation of components that are pure
in frequency, i.e., s(t) = ∑Gs

g=1 sg(t), where Gs is the number of such pure frequency
components. Both s(t) and sg(t) are Q× 1 vectors, which indicates that Q signals incident
to the array simultaneously.

Since convolution of the biologically inspired coupled filter with the above component
results in the multiplication of the time domain incoming signals with the coupled filter
computed at the corresponding frequencies of the components [48], the output of the
coupled structure for the g-th component is then given as

yg(t) =

 yg
1(t)
...

yg
M(t)

 = HI(jωg)

 xg
1(t)
...

xg
M(t)

 = HI(jωg) ·
[

A(θ)sg(t) + eg
e (t) + eg

a(t)
]

(7)

where A(θ) = [a(θ1) · · · a(θQ)] is the array manifold with θ as the DOA vector for the
incoming signals. ωg is the signal frequency of the g-th component. eg

e (t) and eg
a(t) are

the M× 1 vectors represent the environment noises and amplifier noises corresponding to
the g-th component. Assuming that the difference of HI(jωg) is ignorable in the range of
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narrow bandwidth, whose value can be approximated to HI(jωc). Then, the overall output
of the coupled structure is given by

y(t) =
Gs

∑
g=1

HI(jωg) ·
[

A(θ)sg(t) + eg
e (t) + eg

a(t)
]

≈ HI(jωc) ·
Gs

∑
g=1

[
A(θ)sg(t) + eg

e (t) + eg
a(t)

]
= HI(jωc) ·

[
A(θ)

Gs

∑
g=1

sg(t) +
Gs

∑
g=1

eg
e (t) +

Gs

∑
g=1

eg
a(t)

]
= HI(jωc)[A(θ)s(t) + ee(t) + ea(t)]

(8)

where ee(t) and ea(t) are the summed environment noises and amplifier noises. In the
following analysis and simulations, the bandwidth is evaluated to ensure the correctness
of (8).

It should be noticed that (8) is free of any array structure constraint; however, we focus
on the ULA in this section. The extension to UCA is proposed in Section 6. Hence, the array
manifold is given as

A(θ) =


1 · · · 1

e−j 2πd sin θ1
λ · · · e−j

2πd sin θQ
λ

...
...

e−j 2π(M−1)d sin θ1
λ · · · e−j

2π(M−1)d sin θQ
λ

 (9)

where d is the distance between the adjacent antennas and λ represents the signal wave-
length. In this section, the first antenna is set as the reference, thus its corresponding
baseline length equals to zero.

It can be seen that the environment and amplifier noises are coupled with the incoming
signals together in (8), which brings the correlation to the output noises. Meanwhile,
unknown-colored noises may be received from the environment as well. Therefore, an
algorithm with unknown covariance matrix of the received noises must be applied in the
following sections.

To formulate the DOA estimation problem conveniently, we introduce the statistical
assumption corresponding to the model.

• the source vector s(t) follows a zero-mean Gaussian distribution with unknown Q×Q
covariance matrix Rs.

• the spatial colored environment noise ee(t) is zero-mean Gaussian distributed with
unknown covariance matrix Pe. The matrix is parameterized by the M2× 1 real-valued
vector whose elements are denoted as 〈Pe〉mm, <[〈Pe〉mn] and =[〈Pe〉mn], where 〈·〉mn
is the matrix element in m-th row, n-th column and m > n. On the other hand, the
amplifier noise is considered to be homogeneous white Gaussian noise generally,
whose covariance matrix is equal to Pa = σ2

a IM, where σ2
a is the unknown variance of

amplifier noise [37]. In addition, the environment noise is assumed to be independent
of the amplifier noise.

• s(t), ee(t) and ea(t) are uncorrelated in different snapshots.

4. Proposed Algorithm

In this section, an iterative FOC-based DOA estimation method with fully coupled
array (IFOCE-FC) is proposed to demonstrate the application of biologically inspired
coupling. The method consists of two parts: an iterative phase adjustment strategy used to
expand the range of biologically inspired direction-finding, and a FOC-based estimation
approach used to estimate the DOA with the correlated received noises. The basic idea
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of this method is changing the orientation of the mainlobe to aim at the incident angle.
Therefore, the DOA to be estimated would fall within the range of biologically inspired
direction-finding and the estimation accuracy can be improved by biologically inspired
coupling. It is an iterative process that the DOA can be estimated with better accuracy in
each iteration.

4.1. Algorithm Description

Since the IFOCE-FC is an iterative method, we assume that the m-th iteration is
proceeded currently. We define the incident angle of j-th signal in the m-th iteration as
θ
(m)
j and the input signals of biologically inspired coupled structure as x(m)(t). Hence, the

corresponding output signals can be obtained by ỹ(m)(t) = HI(jωc)x(m)(t). The incident
angle θ

(m)
j can be estimated by the FOC of ỹ(m)(t) when the correlated noise exists, whose

covariance matrix is unknown.
The FOC matrix can be estimated by the finite samples of ỹ(m)(t), which is given by

Ĉ(m) =
1
N

N

∑
n=1

(
ỹ(m)(t)⊗

(
ỹ(m)(t)

)∗)(
ỹ(m)(t)⊗

(
ỹ(m)(t)

)∗)H

−
[

1
N

N

∑
n=1

ỹ(m)(t)⊗
(

ỹ(m)(t)
)∗]
·
[

1
N

N

∑
n=1

(
ỹ(m)(t)⊗

(
ỹ(m)(t)

)∗)H
]

−
[

1
N

N

∑
n=1

ỹ(m)(t)
(

ỹ(m)(t)
)H
]
⊗
[

1
N

N

∑
n=1

ỹ(m)(t)
(

ỹ(m)(t)
)H
] (10)

where N is the number of samples.
It can be noticed that Ĉ(m) is a Q2 × Q2 matrix, whose rank is equal to Q2. On all

accounts, Ĉ(m) is a Hermitian matrix, but not positive definite. The eigenvalues of Ĉ(m) can
be divided into two groups, in which M2 −Q2 of them are related to the received noises,
whereas the rest relate to incoming signals with arbitrary signs.

The signal and noise subspace can be obtained by the singular value decomposition
(SVD) of the FOC matrix [40,42], which can be expressed as

Ĉ(m) =
[
US UE

][ΣS
ΣE

][
VS
VE

]
(11)

where ΣS and ΣE denote the diagonal matrix containing the singular values of Ĉ(m). US
and UE are the matrices given the left singular vectors as their columns, whereas VS and
VE given the right singular vectors. It is known that the columns of UE are orthogonal
to the columns of [HI(jωc)A(θ)]⊗ [HI(jωc)A(θ)]∗. Using this property, the DOA can be
estimated by the minimization of the null spectrum:

θ̂
(m)
j = arg min

θ

F(θ) = arg min
θ

[ā(θ)⊗ ā(θ)∗]HUEUH
E [ā(θ)⊗ ā(θ)∗] (12)

where ā(θ) = HI(jωc)a(θ). Equivalently, the DOA can be estimated by the maximization
of 1/F(θ) as well.

To reduce the incident angle in the next iteration, a phase adjustment strategy is
applied to x(m)(t). Using the estimated result θ̂

(m)
j , the corresponding phase difference

between the antenna and reference is

φ̂
(m)
i,j =

2π(i− 1)d sin θ̂
(m)
j

λ
(13)

where the subscript i denotes the i-th antenna.
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Then, we define a phase adjustment matrix Ψ
(m)
j , which is given by

Ψ
(m)
j = diag(Ψ(m)

j ) =


ejφ̂(m)

1,j

ejφ̂(m)
2,j

. . .

ejφ̂(m)
M,j

 (14)

where the diagonal of Ψ
(m)
j is obtained by the estimation of φ̂

(m)
i,j , which also means Ψ

(m)
j =[

ejφ̂(m)
1,j , ejφ̂(m)

2,j , · · · , ejφ̂(m)
M,j

]T
.

Hence, the input and output signals of biologically inspired coupled structure for
(m + 1)-th iteration are

x(m+1)(t) = Ψ
(m)
j x(m)(t) (15)

ỹ(m+1)(t) = HI(jωc)x(m+1)(t) = HI(jωc)Ψ
(m)
j x(m)(t) (16)

According to (9) and (15), we can obtain a more detailed expression

x(m+1)(t) = Ψ
(m)
j x(m)(t) = Ψ

(m)
j A

(
θ(m)

)
s(t)

=



1

ej
2πd sin θ̂

(m)
j

λ

. . .

ej
2π(M−1)d sin θ̂

(m)
j

λ





· · · 1 · · ·

e−j
2πd sin θ

(m)
j

λ

...

· · · e−j
2π(M−1)d sin θ

(m)
j

λ · · ·


s(t)

=



· · · 1 · · ·

e−j
2πd

(
sin θ

(m)
j −sin θ̂

(m)
j

)
λ

...

· · · e−j
2π(M−1)d

(
sin θ

(m)
j −sin θ̂

(m)
j

)
λ · · ·


s(t) = A

(
θ(m+1)

)
s(t)

(17)

Therefore, the corresponding incident angle of j-th signal for x(m+1)(t) is given by

sin θ
(m+1)
j = sin θ

(m)
j − sin θ̂

(m)
j (18)

It can be seen from (18) that the phase adjustment strategy is essentially changing the
orientation of the mainlobe and reducing the included angle between the mainlobe and
original incident angle. In this case, it is more likely to locate in the range of biologically
inspired direction-finding.

We assume that the IFOCE-FC method terminates at k-th iteration according to the
termination condition introduced in the next part. Thus, the total phase adjustment matrix
Ψj can be expressed as

Ψj =
k−1

∏
m=0

Ψ
(m)
j (19)

The original incident angle θj can be estimated by the iteration results mentioned
above:

θ̂j = arcsin(
k

∑
m=0

sin θ̂
(m)
j ) (20)
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The initial input signals x(0)(t) are equal to the original array outputs x(t) without
phase adjustment, whereas θ

(0)
j represents the original incident angle θj. However, it should

be pointed out here that θj may not locate the range of biologically inspired direction-
finding, hence the DOA estimation method based on standard array has better performance
than the biologically inspired coupled array in the first iteration step. We can obtain θ̂

(0)
j by

(12) with HI(jωc) set as an identity matrix IM.
Please note that the phase adjustment matrices are fixed in the following iterations

once they have been obtained; thus, the estimation error of θj is merely determined by
the estimation result in the final iteration, which means the accuracy does improve by
biologically inspired coupling. Figure 4 demonstrates the flow chart of the IFOCE-FC
method.

x(t)

Phase Adjustment

θj  Estimation

(No Coupling)

Matrix Ѱj
(0) 

BIC  θj
(1) Estimation

Phase Adjustment Matrix Ѱj
(1) 

...

BIC θj
(k-1)

 Estimation

Matrix Ѱj
(k-1) 

x
(1)(t)

Phase Adjustment

x
(k-1)(t)

θj Estimation

θj
(k)

 EstimationBICx
(k)(t)

Figure 4. Flow chart corresponding to the IFOCE-FC method, where BIC denotes the module of
biologically inspired coupling.

For multiple incoming signals, a different phase adjustment matrix Ψj, j = 1 . . . Q
can be obtained. Then, the DOA is estimated by (20) under the corresponding phase
adjustment, respectively.
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4.2. Convergence Analysis

As for an iterative algorithm, convergence analysis needs to be executed. As we
analyzed earlier, the iteration process is repeated with the decreased incident angle θ

(m)
j .

Hence, in this part, we analyze the probability density function (PDF) of the incident angle
in each iteration and give its termination condition.

Let
ζ
(m)
j = sin θ

(m)
j

ζ̂
(m)
j = sin θ̂

(m)
j

(21)

We assume that ζ̂
(0)
j follows the Gaussian distribution, with the mean equal to sin θj

and the standard deviation is denoted as σj. Then, according to (18), ζ
(1)
j for x(1)(t) is

zero-mean Gaussian distributed with standard deviation equal to σj.

f1(ζ
(1)
j ) =

1
σj
√

2π
exp

− ζ
(1)2

j

2σ2
j

 (22)

Estimation of ζ
(1)
j is obtained by biologically inspired direction-finding as an unbiased

estimator and its standard deviation equals σj/ε(arcsin ζ
(1)
j ).

In the m-th (m ≥ 2) iteration step, the prior PDF of ζ
(m−1)
j is defined as fm−1(ζ

(m−1)
j ).

Similarly, the conditional PDF for ζ̂
(m−1)
j under specific ζ

(m−1)
j is

festm−1(ζ̂
(m−1)
j |ζ(m−1)

j ) =
ε(arcsin ζ

(m−1)
j )

σj
√

2π
e
−

(ζ̂
(m−1)
j −ζ

(m−1)
j )2ε(arcsin ζ

(m−1)
j )2

2σ2
j (23)

where its standard deviation is decreased by the biologically inspired coupling with the
scaling factor ε(arcsin ζ

(m−1)
j ).

Then we can evaluate ζ
(m)
j and its conditional PDF is given by

fm|m−1(ζ
(m)
j |ζ

(m−1)
j ) =

ε(arcsin ζ
(m−1)
j )

σj
√

2π
exp

−
(

ζ
(m)
j ε(arcsin ζ

(m−1)
j )

)2

2σ2
j

 (24)

Considering all the possible values for ζ
(m−1)
j , the prior PDF of ζ

(m)
j can be expressed

as:

fm(ζ
(m)
j ) =

∫ 1

−1
fm|m−1(ζ

(m)
j |ζ

(m−1)
j ) fm−1(ζ

(m−1)
j )dζ

(m−1)
j (25)

Please note that the probability distribution shown in (25) changes in each iteration.
Hence, we can analyze the convergence of iteration in the perspective of probability. It
can be terminated when the change of PDF between adjacent iterations is ignorable. The
prior PDFs of ζ

(m)
j in each iteration are plotted in Figure 5 with the SNR of received signals

equal to 5 dB and d = λ
2 . We can observe that the prior PDF becomes sharper as the

standard deviation decreases significantly when the iteration step is less than 5. The
prior PDF remains unchanged when the number of iterations is greater than 5. Although
the estimation result may be different if the iteration keeps going, the accuracy remains
unchanged. In this manner, the iteration can be considered to be converged. It should
be pointed out here that the convergence is analyzed in terms of estimation performance,
rather than the estimation results.
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Figure 5. The probability density function of ζ
(m)
j in each iteration.

We further examine the estimation performance of the proposed algorithm with
different numbers of iterations. The estimation error is measured by the root mean-square
error (RMSE), which is defined as

RMSE(θj) =

√√√√ 1
Mc

Mc

∑
n=1

(θ̂j,n − θj)2 (26)

where θ̂j,n is the DOA estimation for j-th signal in the n-th simulation. Mc denotes the
number of Monte Carlo simulations and we take Mc = 500. Let θ = 30◦ and the iteration
number vary from 0 to 10. Figure 6 shows the resulting RMSE with various SNR. It can be
seen that the algorithm converges quickly under the given conditions. Furthermore, the
algorithm converges faster when the SNR increases.
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Figure 6. The RMSE of DOA estimation versus the number of iterations.
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In general, the iteration terminates when at least one of the following conditions
are met:

• the variation of prior PDF between the adjacent iterations drops below a threshold

ξth1:
∫ 1
−1| fm(ζ)− fm−1(ζ)|2dζ ≤ ξth1

• the number of iterations reaches the maximum threshold mmax: m ≥ mmax

5. CRLB

Inspired by [49], we present the derivation of CRLB for the DOA estimation error
considering the phase adjustment to the received signals. First, we define the output signals
of the coupled structure when the phase adjustment terminates as ỹ(t) and we can obtain
its covariance matrix, which is determined as

R = E[ỹ(t)ỹ(t)H ] = Ã(θ)Rs Ã(θ)H + Γ (27)

where Ã(θ) and Γ equal to

Ã(θ) = HI(jωc)Ψj A(θ) = H̃I(jωc)A(θ) (28)

Γ = HI(jωc)Ψj(Pe + σ2
a I)ΨH

j HI(jωc)
H = H̃I(jωc)(Pe + σ2

a I)H̃I(jωc)
H (29)

with H̃I(jωc) = HI(jωc)Ψj. Since the environment noise is assumed to be spatially nonuni-
form, the coupled noise can be statistically correlated accordingly. Hence, both Pe and Γ are
non-diagonal matrix.

Then, we denote the unknown parameters as η

η =
[
θT rT

s γT
]T

(30)

where rs contains the real and imaginary parts of the elements in Rs and γ corresponds to
the elements of Γ.

According to the conclusion in [50], the Fisher information matrix of η for stochastic
incoming signals is given by

J(η) = N ·
(

∂rv

∂ηT

)H
·
[(

R−1
)T
⊗ R−1

]
· ∂rv

∂ηT (31)

where rv is the vectorization of R. This operation is denoted as vec(·) and rv can be
expressed as

rv = vec(R) =
M

∑
n=1

BnRen (32)

where Bn is a M2 ×M column-wise block matrix, with an identity matrix only in the n-th
block and others are zeros. en is the n-th canonical basis vector, with n-th element equal to
1 and others are 0.

Using (27) and (29), we can calculate rv as:

rv =vec(R) = vec
(

Ã(θ)Rs Ã(θ)H + Γ
)
=
[
Ã(θ)∗ ⊗ Ã(θ)

]
· vec(Rs) + vec(Γ)

=
[
Ã(θ)∗ ⊗ Ã(θ)

]
· vec(Rs) +

[
H̃I(jωc)

∗ ⊗ H̃I(jωc)
]
·
[
vec(Pe) + σ2

a · vec(IM)
] (33)

We can obtain
[
(R−

1
2 )T ⊗ R−

1
2

]
· ∂rv

∂ηT , which is written as a row-wise block matrix

[
(R−

1
2 )T ⊗ R−

1
2

]
· ∂rv

∂ηT =
[
(R−

1
2 )T ⊗ R−

1
2

]
·
[

∂rv

∂θT

∣∣∣∣∣ ∂rv

∂rT
s

∂rv

∂γT

]
=
[

G
∣∣∣W

]
(34)
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where the partial derivatives are evaluated as follows

∂rv

∂θT =

[
∂Ã(θ)∗

∂θT ⊗ Ã(θ) + Ã(θ)∗ ⊗ ∂Ã(θ)

∂θT

]
· vec(Rs) (35)

∂rv

∂rT
s
=
[
Ã(θ)∗ ⊗ Ã(θ)

]
· ∂vec(Rs)

∂rT
s

=
[
Ã(θ)∗ ⊗ Ã(θ)

]
· X (36)

∂rv

∂γT =
∂vec(Γ)

∂γT = Y (37)

with the matrix X and Y satisfy the expressions: vec(Rs) = Xrs and vec(Γ) = Yγ.
Then, the Fisher information matrix in (31) can be rewritten as

J(η) = N ·
[

GHG GHW
W HG W HW

]
(38)

Using the matrix inversion equation in [51], the CRLB of DOA estimation error is
given as

CRLB(θ) =

[
GHG−GHW(W HW)−1W HG

]−1

N
=

(
GH ·Π⊥[W ] ·G

)−1

N
(39)

6. Algorithms Extension to UCA

In this section, we extend our analysis to the UCA and derive the corresponding CRLB
of both azimuth and elevation estimation error.

Similar to the array manifold of ULA in (9), the corresponding matrix for UCA is
given as

A(ϕ, β) =


e−jφ1,1 · · · e−jφ1,Q

e−jφ2,1 · · · e−jφ2,Q

...
...

e−jφM,1 · · · e−jφM,Q

 (40)

where ϕ and β are the azimuth and elevation vector for incoming signals. φi,j is modified
as the phase difference between the i-th antenna and reference on the center of the array for
j-th signal,

φi,j =
2πr cos β j cos(ϕj − µi)

λ
(41)

where r is the radius of UCA and µi is the azimuth angle of the i-th antenna.
The procedures of estimation are the same as we proposed in Section 4, but a two-

dimensional search is required to determine the azimuth and elevation for UCA.
To compute the CRLB of the estimation error for azimuth and elevation, we modify

the unknown parameters as

η =
[
ϕT βT rT

s γT
]T

(42)

Then, the row-wise block matrix in (34) can be modified in the form as

[
(R−

1
2 )T ⊗ R−

1
2

]
· ∂rv

∂ηT =
[
(R−

1
2 )T ⊗ R−

1
2

]
·
[

∂rv

∂ϕT
∂rv

∂βT

∣∣∣∣∣ ∂rv

∂rT
s

∂rv

∂γT

]
=
[

G
∣∣∣W

]
(43)

The partial derivatives of rv with respect to ϕ and β are given by

∂rv

∂ϕT =

[
∂Ã(ϕ, β)∗

∂ϕT ⊗ Ã(ϕ, β) + Ã(ϕ, β)∗ ⊗ ∂Ã(ϕ, β)

∂ϕT

]
· vec(Rs) (44)
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∂rv

∂βT =

[
∂Ã(ϕ, β)∗

∂βT ⊗ Ã(ϕ, β) + Ã(ϕ, β)∗ ⊗ ∂Ã(ϕ, β)

∂βT

]
· vec(Rs) (45)

Similar to (39), we can obtain the CRLB of both azimuth and elevation estimation error.
The diagonal of this matrix contains the minimum possible variance that the azimuth and
elevation estimator can achieve.

7. Numerical Results

In this section, we present the Monte Carlo simulation results with the existence
of multiple signals and spatially colored noise to demonstrate the performance of the
proposed algorithm. In this simulation, both the ULA and UCA are used to estimate the
DOA. The number of elements for antenna array equals 9, i.e., M = 9. The frequency
of incoming signals equals 30 MHz, whereas the bandwidth equals 0.3 MHz. Thus, the
incoming signals satisfy the narrowband array assumption. The covariance matrix Pe of
the environment noise is given by

〈Pe〉mn = σ2
e exp

[
−(m− n)2ξ

]
(46)

where σ2
e is the main diagonal element of Pe and ξ = 0.3. The value of σ2

e is determined by
the SNR. In this paper, we define the SNR as

SNR =
tr[A(θ)Rs A(θ)H ]

Mσ2
a + tr[Pe]

(47)

It can be observed that Equation (47) reflects the ratio between the average power
of received signals and noises. Moreover, we assume that σ2

a = σ2
e in these simulations.

Therefore, the environment noise and amplifier noise can be generated by the above-
mentioned conditions. It should be noticed that the different relationships between noise
powers can also be used in these simulations and the proposed algorithm would not be
affected by this change.

For the coupled structure, our approach to obtain its parameters is similar to the opti-
mization proposed in [37]. The optimization maximizes the direction-finding performance
within the given range of frequency. The main difference between them is the coupling
configuration (coupling with neighboring antennas versus coupling between each pair of
antennas).

We keep the number of time samples N to 128 and the number of Monte Carlo
simulations Mc to 500. The performance of the proposed algorithm is evaluated in both
resolution capability and estimation accuracy. Finally, the computational complexity is
compared to the existing algorithms as well.

7.1. Resolution Capability

In this part, we examine the resolution capability of the proposed IFOCE-FC algorithm.
For ULA, the distance between neighboring antennas is λ

2 . Two independent signals
incident at 43◦ and 47◦ are received by the array with SNR equal to 5 dB. We conduct 5
independent experiments and plot the reciprocal of the null spectrum F(θ), respectively. We
compare the IFOCE-FC algorithm with the FOC-based MUSIC in [42], which is referred to as
FOCE and the proposed algorithm without iterative scheme (FOCE-FC). The corresponding
normalized spatial spectrum are demonstrated in Figure 7. It can be noticed that the FOCE-
FC algorithm cannot distinguish the signals, due to the incident angles outside the range
of biologically inspired direction-finding. This leads to the degradation of resolution
performance compared to the no coupled array, i.e., FOCE. However, with the effect of the
iterative scheme, the IFOCE-FC algorithm has sharper peaks at the incident angles, and it
can resolve the signals exactly.
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Figure 7. The normalized spatial spectrum for different DOA estimation algorithms in the ULA
application.

Then, throughout the simulation, we analyze the resolvable angle for different algo-
rithms. First, the resolution criterion was defined in [52] as the following inequality

κ(θ1, θ2) = F(
θ1 + θ2

2
)− F(θ1) + F(θ2)

2
> 0 (48)

The inequality expresses that the null spectrum magnitude at the mid-angle lies above
the line segment connecting the valleys corresponding to the two signals. Thus, the signals
are considered to be resolvable if the above inequality holds, and irresolvable otherwise.
We can count the number of resolutions and obtain the corresponding probability:

Pres =
Nr

Mc
(49)

where Nr is the number of simulations that satisfy the inequality κ(θ1, θ2) > 0. We can
notice that the resolvable angle is related to the probability of resolution. The practical
significance of the resolvable angle here can be described as the minimum angle separation
required for a prespecified resolution probability. Thus, the resolvable angle becomes larger
when the prespecified resolution probability increased. In this simulation, the resolution
probability is specified as 0.7 and 0.99. Suppose that the signals incident to the array from
the directions of 45◦ − θsep

2 and 45◦ + θsep
2 , respectively, where θsep is the angle separation

of the incoming signals. We can obtain the resolvable angle with different resolution
probability as a function of SNR, which is shown in Figure 8. Obviously, it can be seen that
the FOCE-FC algorithm cannot offer satisfactory resolution performance compared with
the IFOCE-FC and FOCE algorithms. As analyzed before, the IFOCE-FC algorithm has the
best resolution performance; thus, the resolvable angle of this method is the smallest among
all the presented algorithms. As SNR increases, the resolvable angle decreased to zero
asymptotically. It can be interpreted that the proposed algorithm is super-resolution, thus
the signals can be resolved without the existence of noises, whatever the angle separation
taken. By contrast, as SNR decreases, the angle separation required increases. A careful
examination also shows that the curves become parallel to the vertical axis asymptotically
when SNR decreased. These results indicate that the SNR thresholds exist for different
algorithms, respectively. The signals cannot be resolved regardless of the value of angle
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separation when the SNR is less than its threshold. The IFOCE-FC algorithm has the
minimum SNR threshold among the presented algorithms in this part.
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Figure 8. Comparison of different algorithms for the resolvable angle versus the SNR in the ULA
application.

In Figure 9a,b, we demonstrate the resolution capability of 3-D DOA estimation for
UCA when r = λ

2 . Similar criteria can be obtained by analogy to the inequality in (48). On
this foundation, we demonstrate the resolvable elevation for fixed azimuth and resolvable
azimuth for fixed elevation. For the former, the azimuth is set to 0◦, whereas the elevations
equal to 70◦ − βsep

2 and 70◦ + βsep
2 . For the latter, the elevation is set to 70◦, whereas the

azimuths equal to − ϕsep
2 and ϕsep

2 . Similarly, we can observe that the IFOCE-FC algorithm
has better resolution performance than the others for UCA. Compared to the results of
ULA, higher SNR is required for same resolvable angle and the SNR threshold increases as
well. In particular, the requirement SNR for azimuth resolution is greater than the elevation
resolution under same probability.
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Figure 9. Comparison of different algorithms for the resolvable angle versus the SNR in the UCA
application. (a) Resolvable elevation. (b) Resolvable azimuth.
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7.2. Estimation Accuracy for ULA

Besides the performance of resolution, we also evaluate the DOA estimation perfor-
mance of the IFOCE-FC algorithm. To evaluate the estimation error of all incoming signals,
the RMSE of each signal is averaged by

RMSEULA =

√√√√ 1
Q

Q

∑
j=1

RMSE(θj)2 (50)

The simulation analyzes the DOA estimation performance of the proposed algorithm
and its corresponding CRLB under different SNR. We compare the performance of different
algorithms, including the IFOCE-FC, the ML estimation with neighboring coupled array
(MLE-NC) proposed in [37], the FOCE-FC and FOCE. The CRLB corresponding to these
algorithms are labeled as CRLB IFOCE-FC, CRLB MLE-NC, CRLB FOCE-FC and CRLB
FOCE, respectively. The CRLB MLE-NC and CRLB FOCE-FC can be obtained by different
HI(jωc) corresponding to their respective coupled structure and Ψj = IM, whereas the
CRLB FOCE can be obtained by HI(jωc) = Ψj = IM.

In this simulation, three uncorrelated narrowband signals with equal power incident
to the array from θ = [−5◦, 0◦, 5◦], which locate in the range of biologically inspired
direction-finding, whereas the SNR ranges from −5 dB to 15 dB and the covariance matrix
Pe is determined according to (46).

The results in Figure 10 indicate that the proposed IFOCE-FC algorithm shows the
best estimation performance when the SNR is higher than 1 dB. However, the estimation
performance of the IFOCE-FC algorithm deteriorates significantly when the SNR is less
than −1 dB. A reasonable interpretation for this performance deterioration is that the
phase adjustment matrices Ψj, j = 1, 2, 3 are obtained with large estimation error on the
incident angles in each iteration, meaning that the orientation of the mainlobe cannot fall
into the range of biologically inspired direction-finding. Therefore, it may sometimes be
even worse than the performance without iterative scheme (FOCE-FC). Since the incident
signals locate the range of biologically inspired direction-finding, the FOCE-FC algorithm
has significant accuracy improvement in the given range of SNR as well. Without the
iterative scheme, it shows the best performance when the SNR is less than 1 dB. Owing to
the fully coupled array, both the IFOCE-FC and FOCE-FC algorithm has better performance
than the MLE-NC with neighboring coupled array. Meanwhile, the FOCE algorithm
without biologically inspired coupling has the worst estimation performance under the
same conditions. Compared to the results in [37], the MLE-NC algorithm cannot offer
satisfactory performance under low SNR. This degradation can be interpreted as the
underlying correlation of the received noise being completely neglected in the MLE-NC
algorithm. Thus, its object function is not suitable for the scenario with spatial colored
noise. Moreover, the IFOCE-FC algorithm attains its corresponding CRLB over the SNR
threshold of 3 dB.

To demonstrate the effect brought by the iterative scheme, we also evaluate the RMSE
of DOA estimation with respect to the incident angles. Figure 11 depicts the relation,
when SNR = 5 dB. It can be seen that the proposed IFOCE-FC algorithm provides
much better performance in the given range of incident angles than the MLE-NC and
FOCE-FC algorithms. The FOCE-FC algorithm approximates the optimal performance
merely within a finite range of incident angles. Meanwhile, the performance of FOCE-
FC and MLE-NC algorithms deteriorate significantly when the incident angles increased.
Moreover, the range of biologically inspired direction-finding for MLE-NC algorithm is
larger than the FOCE-FC algorithm, which indicates its inverse proportion to the maximum
accuracy improvement. It can be seen that the iterative scheme enhanced the adaptation of
biologically inspired direction-finding in large incident angles, so that the needs of practical
application can be satisfied.
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Figure 10. Comparison of different algorithms for the RMSE and corresponding CRLB versus the
SNR under multiple signals and spatially colored noises in the ULA application.
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Figure 11. Comparison of different algorithms for the RMSE and corresponding CRLB versus the
incident angle under spatially colored noises in the ULA application.

7.3. Estimation Accuracy for UCA

In this part, we demonstrate the performance of 3-D DOA estimation for UCA. Since
the performance of FOCE-FC algorithm is demonstrated above, we do not include it here
to avoid redundancy. In this part, we define the mean-square angle error (MSAE) as the
3-D DOA estimation error, which is exhibited in Figure 12. It is a function with respect to
the RMSE of the elevation and azimuth estimation [53]:

MSAE(ϕj, β j) = sin2(β j) · RMSE(ϕj) + RMSE(β j) (51)
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where RMSE(β j) and RMSE(ϕj) are the RMSE of the elevation and azimuth estimation
corresponding to the j-th signal. The MSAE for all incoming signals is given by

MSAEUCA =

√√√√ 1
Q

Q

∑
j=1

MSAE(ϕj, β j)2 (52)

Figure 12. The illustration of the MSAE for 3-D DOA estimation.

In this simulation, the true value of elevation β and azimuth ϕ are β = [70◦, 65◦, 60◦]
and ϕ = [−30◦, 0◦, 30◦]. Figure 13 demonstrates the MSAE of 3-D DOA estimation, together
with its corresponding CRLB as the function of SNR. Similar to the result for ULA, we
can observe that the proposed IFOCE-FC algorithm improves the accuracy compared to
the existing 3-D DOA estimation algorithms when the SNR is greater than 3 dB. We can
observe that the MSAE of FOCE algorithm is 4 times that of the IFOCE-FC algorithm when
the SNR is larger than 5 dB.
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Figure 13. Comparison of different algorithms for the MSAE and corresponding CRLB versus the
SNR under multiple signals and spatially colored noises in the UCA application.
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7.4. Computational Complexity Comparison

Finally, we compare the computational complexity of the different algorithms in
the ULA application. Suppose that three narrowband signals incident to the array have
SNR equal to 10 dB. The average CPU times of these algorithms for one simulation are
demonstrated in Figure 14. The computer used here has dual-core 2.8 GHz CPU and
16 GB RAM. As the proposed IFOCE-FC algorithm realizes the estimation of the DOA via
multi-iterations for phase adjustment, the average computational cost is most demanding.
Hence, the IFOCE-FC algorithm can be used in the system without real-time requirement
to improve the DOA estimation accuracy. Furthermore, the computational superiority
of MLE-NC becomes secondary when taking the application on long-baseline array into
consideration.
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Figure 14. Comparison of different algorithms for the average computation time versus the number
of antennas under multiple signals and spatially colored noises in the ULA application.

8. Conclusions

In this paper, biologically inspired direction-finding using the long-baseline fully
coupled array is considered. First, we demonstrate the coupled structure connecting
each pair of antennas and implement it as a digital filter. Then, to expand the range of
biologically inspired direction-finding, we propose an iterative FOC-based DOA estimation
method with fully coupled array. In this manner, the orientation of the mainlobe can
be directed at the incident angle and the accuracy improvement remains at all possible
incident angles. Moreover, the algorithm is insensitive to the spatial correlation of the
received noises. Hence, it can estimate the DOA with unknown correlation of noises.
Compared to the existing biologically inspired direction-finding algorithm and the FOC-
based MUSIC algorithm, the proposed method improves both the resolution capability and
DOA estimation accuracy in the presence of spatially colored noise.

The proposed algorithm merely considers the environment and amplifier noises in
the mathematical model. However, in practice, the inconsistencies of amplitude and phase
between the receiver channels cannot be ignored. It is necessary to modify the algorithm
to overcome these above inconsistencies in practical applications. Adjustment to our
algorithms should be investigated in future work.
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