
����������
�������

Citation: Sahlabadi, M.; Muniyandi,

R.C.; Shukur, Z.; Qamar, F.

Lightweight Software Architecture

Evaluation for Industry: A

Comprehensive Review. Sensors 2022,

22, 1252. https://doi.org/10.3390/

s22031252

Academic Editor: Francesco

Mercaldo

Received: 2 December 2021

Accepted: 27 January 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Lightweight Software Architecture Evaluation for Industry:
A Comprehensive Review
Mahdi Sahlabadi , Ravie Chandren Muniyandi , Zarina Shukur and Faizan Qamar *

Centre for Cyber Security, Faculty of Information Science and Technology (FTSM),
Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia; sahlabadi2002@gmail.com (M.S.);
ravie@ukm.edu.my (R.C.M.); zarinashukur@ukm.edu.my (Z.S.)
* Correspondence: faizanqamar@ukm.edu.my

Abstract: Processes for evaluating software architecture (SA) help to investigate problems and
potential risks in SA. It is derived from many studies that proposed a plethora of systematic SA
evaluation methods, while industrial practitioners currently refrain from applying them since they
are heavyweight. Nowadays, heterogeneous software architectures are organized based on the new
infrastructure. Hardware and associated software allow different systems, such as embedded, sensor-
based, modern AI, and cloud-based systems, to cooperate efficiently. It brings more complexities
to SA evaluation. Alternatively, lightweight architectural evaluation methods have been proposed
to satisfy the practitioner’s concerns, but practitioners still do not adopt these methods. This study
employs a systematic literature review with a text analysis of SA’s definitions to propose a comparison
framework for SA. It identifies lightweight features and factors to improve the architectural evaluation
methods among industrial practitioners. The features are determined based on the practitioner’s
concerns by analyzing the architecture’s definitions from stakeholders and reviewing architectural
evaluation methods. The lightweight factors are acquired by studying the five most commonly
used lightweight methods and the Architecture-based Tradeoff Analysis Method (ATAM), the most
well-known heavyweight method. Subsequently, the research addresses these features and factors.

Keywords: software architectural evaluation; lightweight software architecture; heavyweight
software architecture; software quality

1. Introduction

It is essential to detect software architecture (SA) problems before software develop-
ment, but it is not easy to analyze SA because of software heterogeneity and the arrange-
ment of software components [1,2]. Consequently, the problematic SA leads to project
failure; therefore, different big, upfront designs are sketched based on the experiences of
software analysts to explore the SA problems in the early phase [3]. Modern SA works
based on various Flask web servers and local Raspberry servers, connected via cloud tech-
nology to a central platform. They receive user requests and control the protocol through a
REST API to command microcontrollers and detect sensor faults. Internet of Things (IoT)
devices with resource limitations are programmed with high-complex languages, such as
Python, C++, and even Java, which significantly differ from the traditional monolithic SA.
It is very difficult to analyze the intercommunication of all those elements [4,5].

A successful software project delivers the agreed-upon functionalities in the software
within the triangle of a specific time, budget, and acceptable quality [6]. An SA plays a
vital role in this triangle since the SA initializes system design with models and analysis
to ensure that the design meets the system’s functional and non-functional requirements.
It extends and sustains the system by integrating it with other systems. Changes to the
existing requirements always happen and may change the SA, bringing massive code
rework and impacting the schedule and budget [7].

Sensors 2022, 22, 1252. https://doi.org/10.3390/s22031252 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031252
https://doi.org/10.3390/s22031252
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4862-400X
https://orcid.org/0000-0002-8999-9548
https://orcid.org/0000-0002-0390-7842
https://doi.org/10.3390/s22031252
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031252?type=check_update&version=2

Sensors 2022, 22, 1252 2 of 28

In recent years, many researchers have proposed different SA evaluation methods
to uncover SA problems systematically. Generally, SA evaluations are beneficial and
economical to detect the early stage’s risks or issues, but they are heavyweight and costly
to maintain [8]. Despite the crucial role of architectural evaluation and many SA evaluation
methods proposed by research communities, the industry only occasionally practices these
methods [9]. Researchers proposed various SA evaluation methods based on different
techniques such as scenario, simulation, etc. For example, the most popular scenario-based
methods are different versions of the ATAM, the Software Architecture Analysis Method
(SAAM), and Performance Assessment of Software Architecture (PASA). These methods,
which are expensive and time-consuming, might be applied in the different software
development stages. Moreover, the practitioners do not acquire business values for these
assessments, while several stakeholders must participate in the SA’s documentation [10].
They are inefficient in coping with this complex technical topic since they rely on limited
scenarios [11–13]. As a result, other approaches such as simulation and mathematics were
used to promote the methods; however, the architectural evaluation methods are still
heavyweight [14].

These limitations have triggered another wave of research for lightweight SA evalu-
ation methods such as lightweight ATAM, Pattern-Based Architecture Reviews (PBAR),
and Active Reviews for Intermediate Designs (ARID). It also helps to reduce the cost of
the assessment process, time, and effort by minimizing the SA documentation, formality,
and involved stakeholders. Although researchers took a step towards practitioners’ needs,
similar to the non-lightweight methods, the lightweight methods are not being used widely
in the industry [15,16].

The persistence of not using SA evaluation methods brings up the following re-
search questions: Q1: What features and influencing factors encourage the industry to use
lightweight SA evaluations? This exploratory research aims to identify the features and
characteristics that enable lightweight SA evaluations in the industry. Q2: What are the
differences between the aspects of SA’s from industry and academic backgrounds? This
study extracts differences between the following two major SA communities: practitioners
and researchers, through the comparative text analysis of SA definitions and the systematic
literature review of existing methods.

Every SA evaluation method consists of the following three main parts: SA design
and presentation concepts, SA evaluation procedures, and quality attributes (QA) of SA.
This research is aligned to identify features and factors for a solution based on them. Be-
sides, considering that SA is deeply concerned with industrial needs, this research makes
an effort to find industrial views of SA to guide the researchers. The history of the SA
standards, concepts, and definitions is discussed in the first two sections. The SA design
methods section reviews and discusses the most commonly used SA design processes,
styles, and presentations. In the SA evaluation section, all the SA evaluation methods are
briefly reviewed and examined to identify criteria for comparing SA evaluation methods.
Then, comprehensively, the most commonly used lightweight approaches are discussed
to identify their strengths and weaknesses. Ultimately, this comprehensive comparison
determines the lightweight factors of the SA evaluation methods. Then, there are dis-
cussions about the most concerning targeted QAs. In the end, the research discusses the
identified features and factors and their relationships. Then, the next section discusses
the achievements and results. Lastly, the conclusion section wraps up all the discussion.
Research generally offers an added value to SA evaluation by the evaluation approach’s
overview. It contrasts the benefits and drawbacks of proposed approaches and presents
their constraints. Furthermore, the approaches are closely interrelated and similar. As a
result, it is significant to compare existing approaches to help software architects select the
most viable option from a set of approaches.

Sensors 2022, 22, 1252 3 of 28

2. Software Architecture Definition Differences

Although SA has been used for decades, professionals still cannot refer to a single
SA definition as stakeholders recognize “architecture” based on their interests [17–20].
Therefore, it leads to different purposes for SA, where standards derive between common
vocabularies and understanding. The standard IEEE 1471, and its refined successor version
ISO/IEC/IEEE 42010: 2011, tried to address stakeholders’ concerns, but researchers and
specialists did not give major attention to these standards as they were general [21]. The SA
standards are naturally genuine standards following a “late adaption,” as they emerged
because of awareness of their usage. They are also an “open standard” that permits more
people to get involved in the standard’s definition.

Moreover, this standard may apply the same methods to a wide range of conditions,
so the stakeholders avoid SA standards [22]. As SA standards are a type of late adaption
and SA was established in the industry, academics follow it. Therefore, to challenge this
academic research, when the new SA trends originating from the industry are recognized,
this academic research can be associated with these trends. Therefore, the parties to the
standards are the academic and practitioner architect communities. This research seeks
the differences between academic and industry definitions of SA by applying the text-
analyzing technique to a web definition repository by using data mining, which identifies
new SA trends.

The Software Engineering Institute of Carnegie Mellon University provides com-
prehensive online repositories of SA definitions [23]. Retrieved data of community SA
definitions are compared with classical, bibliographical, and modern SA descriptions.
These definitions are divided into the following two groups: First, community SA, which
collects practitioners’ definitions, and second, academic and conventional definitions. First,
the keywords from the two groups of definitions are extracted, and then the buzzwords are
omitted. Second, the words are rooted, and some terms that refer to the same concept are
considered one word concerning the three elements of SA definitions (component, connec-
tor, and constraint) [24]. For instance, (connector, glue), (component, service, element, unit,
module), (constraint, limitation), etc. In the end, 127 words are recognized for each group,
and the words are ranked based on their occurrences. The most frequent keyword between
communities is “design”. Differences between the existing definitions illustrate the real
need for SA, which practical stakeholders have perceived. The result indicates “Time”,
“Cost”, “Complexity”, and ‘Distributed’ are widespread words that belong to community
SA definitions that are not in academic definitions of keyword lists.

Meanwhile, for the academic group’s sake, this study refers to Muccini et al. [25],
which conducted a systematic review by data mining techniques on the selected topics in
SA, containing 811 published studies from 1999 to 2016. The result indicates most of the
studies are concerned about “performance and security analysis”. Moreover, there are new
rising trends in SA’s agility that are mostly distributed and heterogeneous systems, which
have been investigated as an application area due to their complexity.

The default antonym of “Time”, “Cost”, and “Complexity” means lightweight, which
is fast, cheap, and straightforward [26]. “Distributed” systems are “heterogeneous” and
intricate systems that derive from complex SA [27]. It means that “Complexity” increases
the “Cost” and “Time” of the SA design and evaluation. Therefore, this research implies that
SA communities need a lightweight SA evaluation framework, which analyzes distributed
and the performance and security of heterogeneous systems.

It refers to overall performance and security, two qualities concerned with the system
execution. Security may vary radically from one case to another, but performance is broadly
the system’s responsiveness and time of interaction between software components. These
qualities are discussed in more detail in Sections 5.1 and 5.2.

3. Software Architecture Design

The lack of standards in SA presentations may cause a mismatch between the SA
presented and the actual SA. The Unified Modeling Language (UML) has become an

Sensors 2022, 22, 1252 4 of 28

international standard, ISO/IEC 19505: 2012, and has been accepted as an effective indus-
trial standard for SA [28]. However, UML notation meets the user’s needs and is flexible
enough to follow their expectations; this flexibility is embedded in semantic informality
that can be understood differently [29,30]. Some researchers [27–33] imply that UML per
se is not enough, and there is a need for a formal approach to adapt the UML. Moreover,
Rodriguez et al. [31] and Medvidovic et al. [32] proved Petri net supremacy over architec-
tural description languages (ADLs) and formal methods languages. As a result, Petri net
can bridge this gap. Additionally, Jensen et al. [33] and Emadi et al. [34] stated that timed
hierarchical colored Petri net is a compatible version of Petri net that can be utilized to
simulate complex data values and SAs [35].

Architectural patterns are an ideal complement to architectural decisions. An architec-
tural design, interchangeably called architectural style, is specified as a set of principles
besides a coarse-grained pattern abstract framework for systems [36,37]. It is a standard
solution, reused and partitioned for chronic issues in the SA area. An architectural style
thoroughly regulates the vocabulary of components and connectors. It means how they
can be together with a set of constraints. It may impose some topologic restraints on
architectural explanations [38].

Additionally, it may have some execution semantics, which can be part of the style
definition [39,40]. For the rising concern of distributed and heterogeneous software men-
tioned in the previous section, the commonly used architectural styles are client/server,
component-based architecture, domain-driven design, layered architecture, message bus,
N-tier/3-tier, object-oriented, SOA, and pipe and filter. In practice, the standard SA of a
system is mainly made up of a pattern of different architectural styles for systems [41].

Despite the popularity of domain-driven design, layered architecture, message bus,
N-tier/3-tier, and object-oriented modeling, it is challenging to scale them up. Moreover,
there is no tool to analyze or measure non-functional properties. The interconnection
mechanisms are so basic (method invocation); thus, complex interconnections are so hard
in these methods. In a nutshell, there is no clear image of system architecture before
component creation [42]. Component-based SA relieves this modeling trouble and develops
reusable off-the-shelf component-based heterogeneous systems.

In comparison with other SA styles, a component or connector has a higher level
of roughness. ISO/IEC/IEEE 42010: 2011 defines this architectural type as an effective
standard [43]. Along with component-based architecture, SOA, and pipe and filter facilitate
the handling of non-functional properties. It has the excellent capability of making com-
plex products, apart from what kind of platform or technology is used in these products.
However, in comparison, the presentation is still a problem in both styles [44–47].

4. Software Architecture Evaluation

This section examines the existing literature on SA evaluation for the last three decades
to answer research questions about SA evaluation [48]. This systematic review results in
the factors that can be used for proposing an evaluation framework.

After more than 30 years of SA evaluations, many research questions remain open
about the categorization of SA evaluations. This section determines the criteria for the
classification of SA evaluations to identify factors for SA evaluation. In this study, for the
systematic review of the literature, the terms of SA “Review”, “Evaluation”, “Analysis”,
“Assessment”, and “Validation” are used interchangeably as search keywords.

Figure 1 and Table 1 indicate that 27 credential SA evaluations have been selected to
review from IEEE, Springer, ACM, Elsevier, and Google Scholar. They are the standard
methods and techniques of SA evaluation.

Sensors 2022, 22, 1252 5 of 28

Table 1. The selected published papers in SA evaluation.

Reference Study Focus

Breivold et al. [49]
The search identified 58 studies that were cataloged as primary studies for this review after using a multi-step selection process. The studies are
classified into the following five main categories: techniques supporting quality considerations during SA design, architectural quality evaluation,
economic valuation, architectural knowledge management, and modeling techniques.

Barcelos et al. [50] A total of 11 evaluation methods based on measuring techniques are used, mainly focusing on simulation and metrics to analyze the architecture.

Suman et al. [51] This paper presents a comparative analysis of eight scenario-based SA evaluation methods using a taxonomy.

Shanmugapriya et al. [52] It compares 14 scenario-based evaluation methods and five of the latest SA evaluation methods.

Roy et al. [53] The taxonomy is used to distinguish architectural evaluations based on the artifacts on which the methods are applied and two phases of the software
life cycle.

Mattsson et al. [54] The paper compares 11 various evaluation methods from technical, quality attributes, and usage views.

Hansen et al. [55] The research reports three studies of architectural prototyping in practice, ethnographic research, and a focus group on architectural prototyping. It
involves architects from four companies and a survey study of 20 practicing software architects and developers.

Gorton et al. [56] This paper compares four well-known scenario-based SA evaluation methods. It uses an evaluation framework that considers each method for context,
stakeholders, structure, and reliability.

Weiss et al. [57] It conducted a survey based on architectural experience, which was organized into six categories. The architecture reviews found more than 1000 issues
between the years 1989 and 2000.

Babar et al. [58] It discusses the agility in SA evaluation methods.

Suryanarayana et al. [59] It states refractory adaption for architecture evaluation methods.

Lindvall et al. [60]; Santos et al. [61] These are references of reviewed papers lacking stated knowledge, which is needed in the paper or more investigation.

Oliveira et al. [62] It reviews the agile SA evaluation.

Martensson et al. [63] It reviews the scenario-based SA evaluation based on industrial cases.

Sensors 2022, 22, 1252 6 of 28Sensors 2022, 22, x FOR PEER REVIEW 6 of 27

Figure 1. The strategy for selecting credential research and SA evaluation methods.

Although SA evaluation is an important activity at any stage of the software life cycle,

it is not widely practiced in the industry [64]. Gorton et al. [65] conducted large‐scale re‐

search to identify the industrial practices of architecture evaluations to categorize SA eval‐

uations based on evaluation techniques. Table 2 indicates the investigations in architec‐

tural evaluations from the industrial aspect. The techniques and methods listed in the first

column of Table 2 are based on the frequency of use in industry; these techniques are used

in the evaluation methods. The most frequent methods of each technique are listed below,

and the quality attributes (QAs) are applied to them. These methods are elicited from sys‐

tematic literature reviews and the latest related academic papers and books.

Despite the encouraging number of basic research found (76 approaches), it is evident

that only 27‐SA evaluation approaches, regardless of their targeted QAs. This table tries to

compare the techniques of approaches. Later on, in Section 5, the target quality attributes will

be discussed. There are some reasons for such a massive decrease in the amount of research.

First, there were some identical entries for the same article when we searched in numerous

databases. Second, a large percentage of the study evaluated one or several QAs in a subtle

ad hoc way. Consequently, those studies are omitted, as they did not manuscript a repeata‐

ble evaluation process or method. Third, some studies considered both software and hard‐

ware evaluations, so they were not suitable in the current research emphasizing SA eval‐

uation approaches. Below, the techniques and methods are discussed.

 The first technique focuses on experience, where SA plays a vital role in design and

evaluation [66]. This is the most practiced technique by the industrial section [56]. Em‐

pirically Based Architecture Evaluation (EBAE) is performed late in development. At

the same time, Attribute‐Based Architectural Styles (ABAS) can run during the design

time and get integrated with ATAM [49,60,67]. Decision‐Centric Architecture Reviews

(DCAR) analyse a set of architectural decisions to identify if the decision taken is valid.

It is more suitable for agile projects due to its lightweight [62].

 The second‐most popular technique is the prototype that collects early feedback from

the stakeholders based on and enables architecture analysis to look at close‐to‐real

conditions. It may answer questions that cannot be resolved by other approaches [68].

 The third technique is a scenario‐based evaluation. SAAM is the earliest method using

scenarios and multiple SA candidates. Later on, ATAM completed SAAM by trade‐off

analysis between QAs, where ATAM uses qualitative and quantitative techniques. The

Architecture‐Level Modifiability Analysis (ALMA) and Performance Assessment of

Software Architecture (PASA) have been used to combine scenarios and quantitative

methods to boost the results [69,70].

 The fourth technique is checklists, consisting of detailed questions assessing the vari‐

ous requirements of architecture. Software Review Architecture (SAR) uses checklists

according to the stakeholder’s criteria and the system’s characteristics. The Framework

of Evaluation of Reference Architectures (FERA) exploits the opinions of experts in

Core string :
Software

architecture
evaluation

Consider Synonyms
Evaluation as [Review,

Analysis, Assessment,
Validation]

Software architecture AND Review OR Evaluation
OR Analysis OR Assessment OR Validation

Selection criteria:
comparison and
reviews of the

existing software
architecture’s

evaluation methods

Systematic Literature Review OR
Survey OR State of practice/art OR

Book OR Framework OR Classifying
OR Comparing

IEEE, ACM,
Springer, Google scholar

It should review and compare
existing methods and important

Papers which are frequently cited

Figure 1. The strategy for selecting credential research and SA evaluation methods.

Although SA evaluation is an important activity at any stage of the software life
cycle, it is not widely practiced in the industry [64]. Gorton et al. [65] conducted large-
scale research to identify the industrial practices of architecture evaluations to categorize
SA evaluations based on evaluation techniques. Table 2 indicates the investigations in
architectural evaluations from the industrial aspect. The techniques and methods listed in
the first column of Table 2 are based on the frequency of use in industry; these techniques
are used in the evaluation methods. The most frequent methods of each technique are listed
below, and the quality attributes (QAs) are applied to them. These methods are elicited
from systematic literature reviews and the latest related academic papers and books.

Despite the encouraging number of basic research found (76 approaches), it is evident
that only 27-SA evaluation approaches, regardless of their targeted QAs. This table tries to
compare the techniques of approaches. Later on, in Section 5, the target quality attributes
will be discussed. There are some reasons for such a massive decrease in the amount of
research. First, there were some identical entries for the same article when we searched in
numerous databases. Second, a large percentage of the study evaluated one or several QAs
in a subtle ad hoc way. Consequently, those studies are omitted, as they did not manuscript
a repeatable evaluation process or method. Third, some studies considered both software
and hardware evaluations, so they were not suitable in the current research emphasizing
SA evaluation approaches. Below, the techniques and methods are discussed.

• The first technique focuses on experience, where SA plays a vital role in design and
evaluation [66]. This is the most practiced technique by the industrial section [56].
Empirically Based Architecture Evaluation (EBAE) is performed late in development.
At the same time, Attribute-Based Architectural Styles (ABAS) can run during the
design time and get integrated with ATAM [49,60,67]. Decision-Centric Architecture
Reviews (DCAR) analyse a set of architectural decisions to identify if the decision
taken is valid. It is more suitable for agile projects due to its lightweight [62].

• The second-most popular technique is the prototype that collects early feedback from
the stakeholders based on and enables architecture analysis to look at close-to-real
conditions. It may answer questions that cannot be resolved by other approaches [68].

• The third technique is a scenario-based evaluation. SAAM is the earliest method using
scenarios and multiple SA candidates. Later on, ATAM completed SAAM by trade-off
analysis between QAs, where ATAM uses qualitative and quantitative techniques.
The Architecture-Level Modifiability Analysis (ALMA) and Performance Assessment
of Software Architecture (PASA) have been used to combine scenarios and quantitative
methods to boost the results [69,70].

• The fourth technique is checklists, consisting of detailed questions assessing the vari-
ous requirements of architecture. Software Review Architecture (SAR) uses checklists
according to the stakeholder’s criteria and the system’s characteristics. The Framework
of Evaluation of Reference Architectures (FERA) exploits the opinions of experts in

Sensors 2022, 22, 1252 7 of 28

SA and reference architectures. There is a need for a precise understanding of the
requirements to create the checklist [71,72].

• The fifth technique is simulation-based methods, which are very tool-dependent; the
Architecture Recovery, Change, and Decay Evaluator/Reference Architecture Repre-
sentation Environment (ARCADE/RARE) simulates and evaluates architecture by
automatic simulation and interpretation of SA [73]. An architecture description is cre-
ated using the subset of toolset called Software Engineering Process Activities (SEPA),
descriptions of usage scenarios are input to the ARCADE tool [74]. Many tools and
toolkits transform architecture into layered queuing networks (LQN) [75]. It requires
special knowledge about the component’s interaction and behavioral information,
execution times, and resource requirements [76]. Formal Systematic Software Archi-
tecture Specification and Analysis Methodology (SAM) follows formal methods and
supports an executable SA specification using time Petri nets and temporal logic [77].
It facilitates scalable SA specification by hierarchical architectural decomposition.

• The sixth category is for metrics-based techniques that need to be mixed with other
techniques, and they are not intrinsically powerful enough [78]. Here are some ex-
amples of metric-based methods. The Software Architecture Evaluation on Model
(SAEM) is based on the Goal/Question/Metric Paradigm (GQM) to organize the met-
rics. Metrics of Software Architecture Changes based on Structural Metrics (SACMM)
measures the distances between SAs endpoints by graph kernel functions [79]. Lind-
vall et al. [60] introduced late SA metrics-based approaches to compare the actual SA
with the planned architecture.

• The seventh technique, focusing on mathematical-model-based methods, is high-
lighted in the research areas, but the industry does not attend to them. Software
Performance Engineering (SPE) and path and state-based methods are used to increase
the reliability performance. These modeling methods exploit mathematical equations
resulting in architectural statistics such as the mean execution time of a component
and can be mixed with simulation [80,81].

Concisely, all the above discussion derives is that scenarios-based evaluation tech-
niques are well-investigated and broadly reviewed in research papers. It has been com-
pleted by other techniques, such as simulations and mathematical techniques, to perform
effectively. Another technique is simulation, focusing on the main components of a planned
or implemented architecture to simulate context. While mathematical techniques use
static evaluation of architectural designs, some modeling techniques originate from high-
performance computing and real-time systems. Experienced-based techniques are different
from other techniques. They are less explicit, and they are based on subjective factors,
namely, intuition and experience. This technique is based on reviewer perception, objective
argumentation, and logical reasoning. For example, an expert might recognize an availabil-
ity problem, and then they convince others through scenarios that depict the situation.

Sensors 2022, 22, 1252 8 of 28

Table 2. SA evaluation categorization.

Techniques Methods Quality Attribute Remarks

Experience-based
Experts encountered the software system’s requirements
and domain.

EBAE (Empirically Based Architecture Evaluation) Maintainability The most common technique applied to review
architecture in the industry [5], based on
expert’s knowledge and documents.

ABAS (Attribute-Based Architectural Styles) Specific QAs

DCAR (Decision-Centric Architecture Reviews) All

Prototyping-based
Incrementally prototyping before developing a product to
get to know the problem better.

Exploratory, Experimental, and Evolutionary Performance and modifiability

The delighted techniques have been applied to
review industry architecture; possibly an
evolutionary prototype can be developed into a
final product.

Scenario-based
The specific quality attribute is evaluated by creating a
scenario profile conducting a concrete description of the
quality requirement.

SAAM (Software Architecture Analysis Method)

All Scenario is a short description of stakeholders’
interaction with a system. Scenario-based
methods are widely used and well known [49].

ATAM (Architecture Trade-off Analysis Method)

Lightweight-ATAM (derived from ATAM)

ARID (Active Reviews for Intermediate Designs)

PBAR (Pattern-Based Architecture Reviews)

ALMA (Architecture Level Modifiability Analysis) Modifiability

PASA (Performance Assessment of Software Architecture) Performance

Checklist-based
A checklist includes a list of detailed questions to evaluate
an architecture.

Software Review Architecture (SAR)
All

It depends on the domain, meaning that a new
checklist must be created for each
new evaluation.FERA (Framework of Evaluation of Reference Architectures)

Simulation-based
It provides answers to specific questions, such as the
system’s behavior under load.

ARCADE/RARE (Architecture Recovery, Change, and Decay
Evaluator/Reference Architecture Representation Environment)

Performance
There is a tendency to mix simulation and
mathematical modeling to extend the
evaluation framework.

Layered Queuing Networks)

SAM (Formal Systematic Software Architecture Specification
and Analysis Methodology)

Metrics-based
It uses quality metrics to evaluate architecture and
its representation.

SACMM (Metrics of Software Architecture Changes based on
Structural Metrics) Modifiability It is not rampant in the industry. Commonly

other methods exploit metrics to boost
their functionalities.

SAEM (Software Architecture Evaluation on Model)

Design pattern, conformance with design and violations. Inter-module coupling violation.

TARA (Tiny Architectural Review Approach) Functional and non-functional

Math Model-based
By mathematical proofs and method, operational qualities
requirements such as performance and reliability are evaluated.

Path and state-based methods Reliability
It is mixed with a scenario and
simulation-based architecture to have more
accurate results.

SPE (Software Performance Engineering). Performance

Sensors 2022, 22, 1252 9 of 28

4.1. Categorizing of Software Architecture Evaluation

There is no distinctive categorization in technique-based classifications because hy-
brid architecture evaluation methods that use multiple architecture evaluation techniques
belong to different categories [82]. The selected methods’ discussions discover various
classifications, comparing them with some commonalities regarding the assessment pro-
cedure’s activities and artifacts. However, since it is not apparent which methods are the
same as the proposed solution, these methods will be analyzed to attain their common
aims and an objective mechanism. To address this problem, we have recognized a set of
criteria that can provide a foundation for comparing and assessing SA evaluation methods.

This study proposes a comparison framework to present and compare the analysis
methods to elaborate on these fundamental criteria. It has been proposed by the com-
bination of three software evaluation comparison frameworks [83,84]. In Table 3, this
comparison framework is introduced, which contains the following main components of
SA evaluation methods: context, stakeholder, contents, time, and reliability. For each com-
ponent, the related elements are identified and mentioned. Then the existing taxonomies of
these elements are generally mentioned in taxonomic comparison, and the taxonomies are
broken down in more detail in the complementary table.

Niemela et al. [85] introduced a framework to compare SA evaluation methods with
some essential criteria. These criteria are listed below from C1 to C7, which can be answered
concerning Table 3:

C1: The main goal of the method.
C2: The evaluation technique(s).
C3: Covered QAs.
C4: Stakeholder’s engagement.
C5: How applied techniques are arranged and are performed to achieve the method goal.
C6: How user experience interferes with the method
C7: Method validation

Other than these criteria, tools, and techniques, and the SA description and outcomes of
the methods are also explored. Moreover, C4, C5, and C6 are replied during the review
of the SA evaluation “process”. These criteria are used to compare the existing solution to
identify factors that increase the evaluation framework’s use.

Sensors 2022, 22, 1252 10 of 28

Table 3. Software evaluations comparison framework.

Comparison Framework

Component Elements Brief Explanation Taxonomic Comparison

Context

SA definition Does the method overtly consider a specific definition of SA? NA

Specific goal What is the specific aim of the methods?

Need for Evolution: Corrective, Perfective, Adaptive, Preventive, All applicable.

Means of Evaluation (Static): Transformation, Refactoring, Refinement, Restructuring,
Pattern change.

Means of Evaluation (Dynamic): Reconfiguration, Adaptation

Quality attributes How many and which QAs are covered by the method? QAs

Applicable stage Which is the most suitable development phase for applying the method?
Early

Late

Input and output What are the required inputs and produced outputs?
In: coarse-grained, medium, or fine SA design, views

Out: risks, issues

Application domain What is/are the application domain(s) the method is often applied?

Development Paradigm: SPL, OO, SOA, CBS

Traditional: Embedded, Real-time, Process-aware, Distributed, Event-based, Concurrent,
Mechatronic, Mobile, Robotic, Grid computing

Emerging: Cloud computing, Smart grid, Autonomic computing, Critical system, Ubiquitous

Benefits What are the advantages of the method to the stakeholders? NA

Stakeholder

Involved Stakeholders Which groups of stakeholders are needed to take part in the evaluation? NA

Process support How much support is supplied by the method to perform various activities? NA

Socio-technical issues How does the method handle non-technical (e.g., social, organizational) issues? NA

Required resources How many man-days are needed? What is the size of the evaluation team? NA

Contents

Method’s activities What are the activities to be accomplished, and in which order to reach the aims?
Means of Evolution: Static, Dynamic

Support activity: Change impact, Change history

SA description What form of SA description is needed (e.g., formal, informal, ADL, views, etc.)?

Type of Formalism

Description of Language

UML Specification

Description Aspect

Evaluation approaches What are the types of evaluation approaches applied by the method? Experience-based, Prototyping-based, Scenario-based, Checklist-based, Simulation-based,
Metrics-based, Math Model-based

Tool support Are there tools or experience repositories for supporting the method and its artifacts?

Need for Tool Support Analysis

Usage of Tool Support

Level of Automation

Sensors 2022, 22, 1252 11 of 28

Table 3. Cont.

Comparison Framework

Component Elements Brief Explanation Taxonomic Comparison

Reliability
Maturity of the method What is the level of maturity (inception, refinement, development, or dormant)? Overview or Survey, Formalism for constraint specification, Formalism for architectural analysis,

Formalism for arch and evolution, Formalism for code generation.

Method’s validation Has the method been validated? How has the method been validated? Case study, Mathematical proof, an Example application, Industrial validation

Time Time of evaluation

Stage of evolution Early, middle, and Post-deployment.

SLDC Analysis/Design, Implementation, Integration/provisioning, Deployment, Evolution

Specification-time Design-Time, Run-Time

Complementary table

Means of Evolution:
Static: Transformation, Refactoring, Refinement, Restructuring, Pattern change

Dynamic: Reconfiguration, Adaptation

Support activity:
Change impact: Consistency checking, Impact analysis, Propagation;

Change history: Evolution analysis, Versioning

Type of Formalism

Modeling language: ADL, Programming languages, Domain-specific language, Type systems, Archface, Model-based

Formal models: Graph theory, Petri-net, Ontology, State machine, Constraint automata, CHAM

Process algebra: FSP, CSP, π-calculus; Logic (Constraint language): OCL, CCL, FOL, Grammars, Temporal logics, Rules, Description logic, Z, Alloy, Larch

Description of Language

Process algebra: Darwin, Wright, LEDA, PiLar

Standards: UML, Ex.-UML, SysML, AADL

Others: ACME, Aesop, C2, MetaH, Rapide, SADL, UniCon, Weaves, Koala, xADL, ADML, AO-ADL, xAcme

UML Specification
Static: Class, Component, Object.

Dynamic: Activity, State, Sequence, Transition, Communication

Description Aspect Structural, Behavioral, Semantic

Need for Tool Support Analysis Architecture lifecycle: Business case, Creating architecture, Documenting, Analyzing, Evolving

Usage of Tool Support Simulation, Dependence analysis, Model checking, Conformance testing, Interface consistency, Inspection, and Review-based

Automation’s level Fully automated, Partially automated, Manual

Sensors 2022, 22, 1252 12 of 28

4.2. Identifying Factors for Lightweight Evaluation Method

Architecture evaluations are usually performed manually based on informal/semiformal
architecture documentation and the reviewer’s knowledge [86]. The comprehensive SA
evaluation methods, in particular ATAM, require a massive amount of cost and effort.
This problem results in lightweight SA evaluation methods. Heavyweight reviews are
long-running, documentation-based, such as technical reviews and inspections. While
lightweight runs are based on short-running processes with little architecture documenta-
tion. The criteria for lightweights have not yet been defined, and they are detectable based
on the publication’s claim. In this research, ATAM, as the best sample of heavyweight
methods, ARIS, BAR, and TARA,—ATAM, ARID, PBAR, and TARA, are lightweight to
identify factors for lightweight methods [87,88].

4.2.1. Architecture Tradeoff Analysis Method

ATAM is the most mature, sophisticated, and well-known method that various re-
searchers have devised. ATAM-based methods are flexibly used for evaluation purposes,
such as the following: seeking SA improvement opportunities, risk analysis, SA com-
parison, but generally, finding out whether the candidate SA supports business goals
adequately. ATAM-based methods engage various stakeholders with various techniques
for prioritizing requirements by cumulative voting and utility tree, then identify trade-offs
to resolve conflicts.
C1 (Main Goal): identifying SA patterns and tactics suit business derives.
C3 (Covered QAs): All QAs or any property that can affect the business goals.
C4, C5, and C6 (Process): Table 4 explains the ATAM process.
C2 (Evaluation Techniques): Based on scenario and experience.
C7 (Validation): It has been extensively validated.
Outcomes: A list of risks, non-risks, risk-themes, sensitivity points, and trade-off points.
SA description: SA styles and tactics, as well as ATAM-based methods, define a precise
template for documenting the quality scenarios.
Tools and techniques: Brainstorming and voting.
Discussion: Although it exploits a scenario-based paradigm, it engages various stakeholders
for up to six weeks and is costly. The quality scenarios and ATAM templates represent
the requirements in detail, but they are often confusing. Cumulative voting can induce
stakeholders into excessive rivalry. Moreover, its reliance on SA documentation and
the ignorance of project management paradigms makes ATAM impossible to run for
agile projects.

Sensors 2022, 22, 1252 13 of 28

Table 4. The steps of ATAM.

ATAM Step (C5) Stakeholders Engagement (C4) How User Experience Interferes with the Method (C6) Outputs

First Phase: Presentation

1. Briefing of the ATAM

Evaluation Team and All stakeholders

The stakeholders will understand the ATAM process and
related techniques. –

2. Introduction of the business drivers The stakeholders will understand the goals of businesses and
the architectural drivers (non-functional qualities affect SA). –

3. Introduction of SAs Evaluation Team and who make significant
project decisions The evaluation team will review the targeted SA. –

4. Identifying the architectural approaches Evaluation Team and software architects The team and architects will highlight architectural patterns,
tactics, and SA design. List of the candidate SAs design

5. Producing of the quality attribute tree Evaluation Team and those who make
significant project decisions

The decision-makers will prioritize their decision based on
the quality attribute goals.

The first version is based on prioritized quality
scenarios and a quality attribute tree.

6. Analyze the architectural approaches Evaluation Team and software architects
They will link the SA to primary quality attribute goals to
develop an initial analysis resulting in non-risks, risk, and
sensitivity/trade-off points.

The first version of non-risks, risks, risk themes,
trade-off points, sensitivity points

Second Phase: Testing

7. Brainstorming and prioritizing scenarios Evaluation Team and All stakeholders It will utilize the involved stakeholder’s knowledge to
expand the quality requirements. The last version of prioritized quality scenarios

8. Analyze the architectural approaches Evaluation Team and software architects Revised the achievements. The version of the of non-risks, risks, risk themes,
trade-off points, sensitivity points

Third Phase: Reporting

9. Conclusion All stakeholders It summarizes the evaluation’s achievements regarding the
business drivers introduced in the second step. Evaluation report with final results

Sensors 2022, 22, 1252 14 of 28

4.2.2. Lightweight ATAM

Costs of the ATAM-based method derived from Lightweight ATAM requires less than
6 h running. The technique is used by a development team that is familiar with ATAM, SA,
and goals.

C4, C5, and C6 (Process): The evaluation process was created by eliminating or
constraining the scope of ATAM’s activities, which is shown in Table 4. It assumes the
participants are familiar with ATAM while brainstorming and prioritizing are omitted
because of their cost.

Steps 1, 7, and 8 are omitted, and steps 2, 3, 4, 5, and 6 should be completed in 15 min.
Step 9 should be completed in 30 min.

C7 (Validation): No validation, and the method features generally are as same
as ATAM.

Discussion: The method reduces the stakeholder’s engagement, and the evaluation
process steps, but architecture evaluation still needs more formality. It relies on the stake-
holder’s familiarity and tactical knowledge, which is achieved because of the full ATAM
implementation. It is evident that by constraining the scope and depth of evaluation, a
lower effort is needed.

4.2.3. ARID

C1 (Main Goal): Detecting of SAs issues to assess the appropriateness of the chosen SA.
C3 (Covered QAs): Applicable for any QA originated from the quality scenarios.
C4, C5, and C6 (Process):

Phase 1: Meeting for preparation.

Step 1: Appointing of reviewers.
Step 2: Presenting of SA’s designs.
Step 3: Prepare seed scenarios.
Step 4: Arranging the meeting.

Phase 2: Review meeting.

Step 5: Presenting ARID.
Step 6: Presenting designed SA.
Step 7: Brainstorming and prioritizing the scenarios.
Step 8: Conducting of SA evaluation.
Step 9: Results.

C7 (Validation): One pilot experience in the industry.
C2 (Evaluation Techniques): Based on scenario and expertise.
SA description: There is no specific form of SA designs or documents.
Tools and techniques: Brainstorming and voting.
Outcomes: List of the given SA issues.
Discussion: It is a simple method to seek flaws and weaknesses in QAs of the given SA.
ARID does not explicitly state the QAs and SA styles during the analysis. The analysis
focuses on a set of properties represented by a group of quality scenarios. It has nine steps,
which are not compatible with the lightweight concept. It emphasizes an expert informal
review with no particular form of SA style. As a result, it is difficult to repeat.

4.2.4. PBAR

ATAM is the most mature, sophisticated, and well-known method that various re-
searchers have devised. ATAM-based methods are flexibly used for evaluation purposes,
such as the following: seeking SA improvement opportunities, risk analysis, SA comparison,
but generally, finding out whether the candidate SA supports business goals adequately.
ATAM-based methods engage various stakeholders with various techniques for priori-
tizing requirements by cumulative voting and utility tree, then identifying trade-offs to
resolve conflicts.
C1 (Main Goal): Detecting quality attribute issues.

Sensors 2022, 22, 1252 15 of 28

C3 (Covered QAs): Potential risks influencing QAs.
C4, C5, and C6 (Process):

1. Elicitation of essential quality requirements from user stories with the assis-
tance of developers.

2. Establishing SA’s structure by a discussion with developers.
3. Nominating architectural styles.
4. Analyzing the nominated architectural effects on the qualities.
5. Recognizing and discussing the final results.

C2 (Evaluation Techniques): It is based on scenario and experience.
C7 (Validation): Nine student small-size projects for industrial use.
SA description: There is no specific form of SA designs or documents, but SA styles are
included during the evaluation.
Tool and techniques: Informally requirement elicitation during the development team meeting.
Outcomes: It has the QAs issues, which are mismatches between QAs and SA styles.
Discussion: PBAR contains all the criteria of the lightweights. It reduces the process into
five steps that occur once in face-to-face meetings with the development team. It omits
the prioritizing requirements to help the method. PBAR requires a negligible amount of
time to run in comparison with the traditional methods. It focuses on the production step
in agile projects. It is operational in the software industry rather than the conventional
methods for companies that use agile and lean software development methodologies. It
also confines the use of this method comprehensively. The evaluation uses SA styles and
tries to find mismatches between SA styles and QAs of candidate SAs. However, it ignores
formalizing the assessment technique and merely relies on tacit knowledge of SA styles
and their impacts on QAs. Moreover, the influence of styles on QAs is not conclusive in
most cases since other factors should be taken into account.

4.2.5. TARA

C1 (Main Goal): Indicating the proper SA of crucial requirements.
C3 (Covered QAs): QAs and even functional requirements.
C4, C5, and C6 (Process):

1. The evaluator elicits essential requirements and system context.
2. The evaluator designed SA based on the previous.
3. The implementation techniques are assessed.
4. The results of the previous step should link to the requirements. Expert judg-

ment techniques are applied in this step.
5. The evaluation’s results should be collected and related based on the

predefined forms.
6. Present findings and recommendations.

C2 (Evaluation Techniques): Metric-based.
C7 (Validation): TARA has been validated in the industry.
SA description: There is no specific form of SA designs or documents, but the evaluator
should understand functional/deployment structures and system context.
Tool and techniques: The method involves automated code analysis techniques (module
dependencies, size measures, code metrics, and test coverage). For implemented software
exploits information on software execution (e.g., event logs).
Outcome: a list of crucial requirements with its relevant SA.
Discussion: TARA is a lightweight permissive method that does not exclude requirements
specification documents. It allows an evaluator to consult with the stakeholders to priori-
tize the requirements. TARA suits the implemented software since it uses code analysis
techniques with operational data. Evaluation methods mainly rely on explicit scenarios
and the architect’s knowledge, but TARA relies on the reviewer’s judgment associated with
the SA analysis evidence. Consequently, it just works well for implemented software in the
maintenance phase when it is hard to correct the flaws.

Sensors 2022, 22, 1252 16 of 28

4.2.6. DCAR

C1 (Main Goal): Suitability of architectural decisions.
C3 (Covered QAs): A set of architectural decisions.
C4, C5, and C6 (Process):

1. Preparation: The SA styles and related technologies are presented for manage-
ment and customer representatives.

2. DCAR Introduction.
3. Management presentation: The management/customer representative will be

exposed to a brief presentation to elicit the potential decision forces (the list of
architectural decisions was produced in the first step).

4. Architecture presentation: The lead architect will present potential decision
forces and potential design decisions to all participants in a very brief and
interactive session to revise the list of architectural choices.

5. Forces and decision completion: The decision forces and design decisions will
be verified based on the same terminologies for all stakeholders.

6. Decision prioritization: The decisions will be prioritized based on partici-
pant’s votes.

7. Decision documentation: The most important decisions will be documented
in applied architectural solutions, the addressed problem, the alternative solu-
tions, and the forces that must be considered to evaluate the decision.

8. Decision evaluation: By discussion among all stakeholders, the potential risks
and issues are selected, the decisions are revised based on decision approval.

9. Retrospective and reporting: Review team will scrutinize all the artifacts and
produce the final report.

C3 (Evaluation technique): Experience-based and expert reasoning.
C7 (Validation): It has been verified in five large industrial projects.
SA Description: SA design, informal requirements, and business drivers.
Output: Issues and risks.
Tools and technique: Templates, wiki, and UML tools.
Discussion: DCAR originated from SA evaluation experiences in the industry. It is a
lightweight method that allows users to analyze and record the rationale behind architec-
tural decisions systematically. In comparison, scenario-based methods test SAs against
scenarios to find flaws and issues in a specific QA. For the sake of being lightweight,
brainstorming and prioritizing steps are omitted. The reviewers should know SA and
rely on the standard UML tool to make the evaluation understandable for stakeholders.
Although it provides comprehensive templates for assessment, it considers several factors
that originated from managerial views. This consideration leads to the nine steps, which
are not compatible with lightweights.

4.3. Factors for Lightweight Evaluation Method

The five lightweight methods plus ATAM are compared in Table 5 based on the
following most common aspects: the evaluation methods, SA description, evaluation
time, method’s validation, and tool support. These aspects are categorized based on the
comparison framework reflected in Table 3, and the approaches are related to them.

Table 5. Lightweight methods comparison.

Aspect Category Approaches

The goal of the evaluation method
Assessment against requirements Lightweight ATAM

Architectural flaws detection PBAR, TARA, ARID

Sensors 2022, 22, 1252 17 of 28

Table 5. Cont.

Aspect Category Approaches

SA description

Architectural decisions DCAR

Full SA description (views) Lightweight-ATAM

SA patterns, tactics PBAR

There is no specific form of SA designs
or documents ARID, PBAR, TARA

Time of evaluation

Early DCAR

Middle ARID, PBAR, Lightweight-ATAM

Post-deployment TARA

Method’s validation based on case
study number

0 Lightweight-ATAM

1 TARA

3 to 6 PBAR, DCAR

6+ ATAM

Tool Support
Conformance testing TARA

Review-based DCAR

4.3.1. Covering Early and Late Methods

SA has been evaluated at various points in the software life cycle. It can happen at the
early and late stages of the development life cycle. Early methods evaluate SA candidates
before the implementation, while late methods assess the system’s implemented versions
compared to the planned/previous versions. Early methods are based on SA descriptions
and other sources of information. These methods lead to a better understanding of SA and
the identification of problems with the architecture. At the same time, late processes utilize
data obtained from the actual software implementation. Hence, the existing architecture
can be reconstructed to compare with early evaluated SA. Early methods mostly contain
scenario-based, mathematical-model-based, and simulation-based, while late ones are
mostly metrics-based and tool-based. Early methods emphasize designing and modeling
while late ones try to catch code violations and module inconsistencies. Sometimes, early
methods can evaluate the implemented software [89,90]. While late and early evaluation is
not contradictory, they can mostly not be attended simultaneously due to the overload they
imbue on the approach. As it is indicated in the time of the evaluation part of Table 5, no
method can cover all the stages.

4.3.2. Need of Agility

Although SA evaluation is beneficial, it is not broadly applied in the industry nowa-
days. Even agile development approaches do not encourage using architecture evaluation
methods since they usually take a considerable amount of time and resources [91,92].
Except for PBAR and DCAR, the other methods are not proper for agile projects.

4.3.3. Ad Hoc Analysis

Ad hoc analysis ties architecture analysis to architecture design and implementation
activities employing experience, expertise, and argumentation [93]. Informal experience-
based architecture analysis is prevalent, as this method works regardless of architecture
documentation. This analysis is carried out manually by several SA studies [94,95].

Sensors 2022, 22, 1252 18 of 28

5. Targeted Quality Attributes: Performance and Security in Software
Architecture Evaluation

Based on “software architecture definition differences” in this research, performance
and security are selected as the targeted QAs. These QAs will be discussed in the following
subsections. The QAs belong to the methods represented in Table 2.

5.1. Performance

Mostly, the performance is estimated based on the approximate model of the runtime
view. These methods need appropriate descriptions of the dynamic behaviors of SA to
show the characteristics of the components, frequency, and nature of inter-component
communication. Mathematical formalism such as Petri net and simulation boost this
estimation [96]. Figure 2 [48] shows that most SA performance analysis methods convert
SA specifications to desirable models. Subsequently, timing data is added to the models to
estimate performance attributes and provide the following feedback:

i. Predicting the system’s performance in the early stages of the software life cycle.
ii. Testing performance goals.
iii. Comparing the performance of architectural designs.
iv. Finding bottleneck, possible timing problems.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 27

5.1. Performance

Mostly, the performance is estimated based on the approximate model of the runtime

view. These methods need appropriate descriptions of the dynamic behaviors of SA to show

the characteristics of the components, frequency, and nature of inter‐component communi‐

cation. Mathematical formalism such as Petri net and simulation boost this estimation [96].

Figure 2 [48] shows that most SA performance analysis methods convert SA specifications

to desirable models. Subsequently, timing data is added to the models to estimate perfor‐

mance attributes and provide the following feedback:

i. Predicting the system’s performance in the early stages of the software life cycle.

ii. Testing performance goals.

iii. Comparing the performance of architectural designs.

iv. Finding bottleneck, possible timing problems.

Figure 2. Software architecture‐based performance analysis.

Some of the essential methods are discussed in the following: CF is a mathematical

model‐based method that integrates performance analysis into the software development cy‐

cle. It presents software execution behaviors through a graph, including arcs and nodes, with

timing information. This model works based on the Queuing Networks Model (QNM) per‐

formance model. The simulation evaluates the model to estimate performance attributes. The

approach has been enriched by using Kruchten’s 4 + 1 views and using use case scenarios

depicted by a message sequence chart as the dynamic behavior of SA. Later on, the approaches

combine UML diagram information to create a performance model of SA more formally.

However, the methods do not consider the concurrent/non‐deterministic behaviors of the

components during QNM modeling. In order to address these problems, the labeled transition

system (LTS) graph and ADL were added to the approaches [97,98]. The emerging problem

was the computational complexity of the possible state space explosion of the architecture de‐

scription’s finite‐state model. This problem persuades experienced‐based analysis methods

such as ABAS to not use an analysis tool to evaluate performance [99].

PASA boosts SPE by adding performance anti‐patterns and architectural styles. It

tries to adapt the concept of ATAM and SAAM into SPE. PASA formally states the sce‐

narios with a descriptive architecture language such as the UML sequence diagram [100].

Nevertheless, none of these approaches has yet been applied to a complete environment

for performance analysis, specification, and providing feedback to the designer. The unsolved

problem is automating completely derived performance models from the software specifica‐

tion and assimilating the supporting tools in a comprehensive environment [101]. Moreover,

although the quality of models has not yet been attended to deeply, high‐quality models are

an essential factor in which verification and performance analysis strongly rely on them [102].

5.2. Security

Security is a complex technical topic that can only be treated superficially at architec‐

tural levels. Although scenario‐based methods are typically used for SA security analysis,

security differs from other quality attributes. The security requirements are not enough

for constructing a “security scenario” by themselves [103]. At the same time, it is necessary

to understand the precise security requirements of an application and devise mechanisms

to support SA security. In the implementation layer of SA, there are many techniques such

Software Architecture Specifications

Transformation

Performance Model

Analysis

Timing Information Quantitative Results And Feedback

Figure 2. Software architecture-based performance analysis.

Some of the essential methods are discussed in the following: CF is a mathematical
model-based method that integrates performance analysis into the software development
cycle. It presents software execution behaviors through a graph, including arcs and nodes,
with timing information. This model works based on the Queuing Networks Model
(QNM) performance model. The simulation evaluates the model to estimate performance
attributes. The approach has been enriched by using Kruchten’s 4 + 1 views and using use
case scenarios depicted by a message sequence chart as the dynamic behavior of SA. Later
on, the approaches combine UML diagram information to create a performance model of SA
more formally. However, the methods do not consider the concurrent/non-deterministic
behaviors of the components during QNM modeling. In order to address these problems,
the labeled transition system (LTS) graph and ADL were added to the approaches [97,98].
The emerging problem was the computational complexity of the possible state space
explosion of the architecture description’s finite-state model. This problem persuades
experienced-based analysis methods such as ABAS to not use an analysis tool to evaluate
performance [99].

PASA boosts SPE by adding performance anti-patterns and architectural styles. It tries
to adapt the concept of ATAM and SAAM into SPE. PASA formally states the scenarios
with a descriptive architecture language such as the UML sequence diagram [100].

Nevertheless, none of these approaches has yet been applied to a complete envi-
ronment for performance analysis, specification, and providing feedback to the designer.
The unsolved problem is automating completely derived performance models from the
software specification and assimilating the supporting tools in a comprehensive environ-
ment [101]. Moreover, although the quality of models has not yet been attended to deeply,
high-quality models are an essential factor in which verification and performance analysis
strongly rely on them [102].

Sensors 2022, 22, 1252 19 of 28

5.2. Security

Security is a complex technical topic that can only be treated superficially at architec-
tural levels. Although scenario-based methods are typically used for SA security analysis,
security differs from other quality attributes. The security requirements are not enough for
constructing a “security scenario” by themselves [103]. At the same time, it is necessary to
understand the precise security requirements of an application and devise mechanisms to
support SA security. In the implementation layer of SA, there are many techniques such
as Windows operational security, Java Authentication and Authorization Service (JAAS), and
without any significant problems [104]. These techniques mitigate the principal threats: au-
thorization violation, system penetration, integrity compromise, confidentiality disclosure,
repudiation, and denial of service.

The most important problem is that distributed SA has multiple layers of abstraction.
Once each service abstracts the lower layer’s business functionality, it is needed to abstract
the underlying application’s user identity context. Combining with the individual backends,
heterogeneous security concepts beget a long way from the first request for a business
procedure to the systems. Therefore, it also comprises monitoring, logging, and tracing
all data flows related to security [105]. Security architectural flaws can be omissions,
commissions, and realization flaws [106].

• Omission flaws are born in the aftermath of decisions that have never been made (e.g.,
ignoring a security requirement or potential threats). Experience and prototype-based
or even scenario-based methods can help the architect to detect this type of flaw. Still,
they are mainly concerned with the requirement elicitation step, which is outside the
scope of this research.

• Commission flaws refer to the design decisions that were made and could lead to
undesirable consequences. An example of such flaws is “using a weak cryptography
for passwords” to achieve better performance while maintaining data confidentiality.
DCAR is devised to support such a problem.

• Realization flaws are the correct design decisions (i.e., they satisfy the software’s
security requirements), but their implementation suffers from coding mistakes. It can
lead to many consequences, such as crashes or bypass mechanisms. TARA and SA
evaluation methods can mitigate these problems.

In the industry, commission and omission flaws happen due to inexperienced decisions.
The realization flaws are mostly ignored due to the cost of the detective methods. As a
result, this current research highlights the realization flaws.

An SA model has properties such as performance or security. Regularly, these proper-
ties are emergent, and it is more feasible to reason about emergent properties in simpler
models than complex ones. So, it is needed to simplify your model to leverage the problem
and prove your knowledge about the emergent properties [107].

6. Identified Features and Factors

The study was devised to identify the features and lightweight factors to boost an
evaluation framework. Concerning this fact, the study sought the practitioner’s needs and
the tendencies that researchers have paid attention to. Figure 3 shows the relationships
and basis for identifying the features and factors. Then Table 6 lists the specified features
and lightweight characteristics acquired from the study. Figure 3 shows how this research
applies text analysis and data mining to the comprehensive online definitions of SA and the
pool of papers published in the last three decades. In the next step, a comparison framework
was defined, and six approaches were inspected deeply to find features and factors.

Sensors 2022, 22, 1252 20 of 28

Table 6. The identified features and lightweight’s factors.

Features Lightweights Factors

The excess of the SA Evaluation work: Lightweight
Covering Early and late methods

Need of agility

Ad hoc analysis

Scope of the SA Evaluation: Distributed and heterogamous system

Style of evaluated SA: SOA, Component-based pipe and filter

SA presentation: Petri nets

Targeted quality attributes: Performance and security

Tools and technique: Should be investigated

First of all, two categories of SA definition were elicited from the online repository.
In the next step, the keywords in practitioners’ reports differed from the keywords of
researchers. The top keywords are “time, cost, distributed, and complexity”, which means
the practitioners needed a lightweight solution. “Distributed” refers to the scope of the
evaluation. Secondly, based on the 811 published studies from 1999 to 2016 in SA’s topics,
“security and performance analysis, heterogeneity and distributed, and agility” were the
most popular research topics. Similar to a practitioner’s concerns, heterogeneity and
distribution refer to the scope. Security and performance were selected as the targeted
quality attributes (TQA) for evaluation. Agility was the same as one of the identified factors
for lightweights.

Component-Based architecture, SOA, and pipe and filter styles were selected as the
identified scope’s proper SA styles. As mentioned in Sections 3, 4 and 5.1, Petri net’s
formalism and visual presentation, hierarchical colored Petri net, is chosen to present SA
due to its supremacy over other SA presentation methods.

For the sake of research concerns, 76 articles with SA evaluation topics were selected
out of 811 articles. Next, 27 SA evaluation methods were chosen for the review. These meth-
ods were reviewed based on the following two aspects: the technique and popularity in
the industry. The comparison framework was defined to compare the evaluation methods.
Then five lightweight methods were selected and compared with ATAM. Consequently,
three lightweight factors were identified. Moreover, (TQA1) performance and (TQA2)
security were reviewed throughout 27 evaluation methods. As mentioned many times in
this study, the SA evaluation approaches are devised to help software architects make a
proper decision. Obviously, the architects are interfering in many steps to heighten the
evaluation process, so the SA evaluation tends to be more manual rather than automated.
Architects’ skills may impact the design and decision-making parts that are outside the
scope of this research.

Based on identified features, factors, and comparison framework, the overall profile of
a lightweight evaluation framework is described below as follows:

This study replied to research question two by distinguishing the differences between
practitioners’ and researchers’ perspectives on SA via the comparative text analysis of
SA definitions and the systematic literature review of existing methods. Then, for the
sake of the first research question, this exploratory research identified the features and
characteristics that enable lightweight SA evaluations in the industry. An evaluation
framework can boost its usage by detecting flaws and issues in SA’s performance and
security. An informal description of requirements, UML diagrams, and source code is the
input of the framework. The framework works within the specific scope of distributed
software with the mentioned SA styles. The procedure for stakeholders is the minimal
process, which was elicited from reviewing the lightweight solutions. The procedure is
a face-to-face meeting between the architect and internal/external reviewers who know
SA. The tools and techniques should be investigated to ease the integration of features
and factors.

Sensors 2022, 22, 1252 21 of 28
Sensors 2022, 22, x FOR PEER REVIEW 21 of 27

Figure 3. Identifying features and lightweight factors.
Figure 3. Identifying features and lightweight factors.

Sensors 2022, 22, 1252 22 of 28

7. Achievement and Results

The existing literature was reviewed to remind us of the past research on using SA
evaluation methods to identify the proposed framework’s main features in the first stage.
In the second stage, the factors affecting lightweights are identified. These factors improve
the SA evaluation framework used in the industry.

In the first stage, the SA evaluation framework’s features were identified based on
the text analysis of researchers’ and practitioners’ SA definitions and all published studies
for the last three decades on SA’s topics. This analysis concluded that a lightweight SA
evaluation solution was needed to uncover distributed and heterogeneous software’s
security and performance problems. Consequently, the security and performance analysis
of SA were reviewed, and the proper SA presentation and styles for the distributed and
heterogeneous software were identified.

In the second stage, lightweights were identified from the weaknesses of the current
state of the art in the lightweight SA analysis methods. Indeed, the study tried to bridge
the gap of less usage of systematic SA evaluations in the industry. First, it should be clear
why the industry refrains from SA evaluation methods proposed by academics. As a result,
this study followed two strands of academic and practitioner concerns. The practitioners
need the SA evaluation framework with specific industrial features to solve their current
problems, while academics focus primarily on scientific issues and possible issues in the fu-
ture. This mindset led us to analyze the online web repository of SA definitions. As a result
of that, the main extracted features that are in demand for both sides were a lightweight
framework that can evaluate heterogeneous software systems from a performance and
security perspective.

Moreover, the study conducted a systematic literature review on SA evaluation meth-
ods. As a result, the SA evaluation comparison framework was proposed as a basis for
the SA evolution comparison. Then, it narrowed down the literature to the lightweight SA
evaluation methods. A total of six SA evaluation methods were studied deeply to identify
the factors influencing the SA evaluation method.

8. Conclusions

Although SA evaluation methods are beneficial, they are not broadly applied in the
industry [108,109]. The selected SA evaluation methods are reviewed comprehensively.
This research focuses on SA architecture, design, and its evaluation. It introduces the
comparison framework to compare existing methods. The comparison between ATAM, as
the heavyweight method’s pinnacle, and the five fashionable lightweight methods recog-
nizes three main factors for lightweights. A total of five different steps have been taken to
address this problem. Firstly, the differences between academic and practitioner definitions
of SA prove that the industry needs a lightweight SA evaluation method. Secondly, it is
noticed that SA research mainly focuses on “performance and security analysis”. Finally,
these are the main features and factor that have been identified. As a result, the literature
review explored SA evaluation methods to categorize them to understand the factors that
hinder the lightweight SA evaluation method’s success. The research suggests further
investigation to find the proper tools and techniques to ease the integration of features and
factors and boost solution usage in the industry.

Author Contributions: Conceptualization: M.S., R.C.M. and Z.S.; Methodology: M.S. and Z.S.;
Visualization: Z.S. and F.Q., Writing—original draft preparation: M.S. and R.C.M., Writing—review
and editing: F.Q. and R.C.M.; Funding acquisition: Z.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper is supported by Ministry of Higher Education of Malaysia, Grant number:
KKP/2020/UKM-UKM/4/3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Sensors 2022, 22, 1252 23 of 28

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
Symbol Meaning
AABI Andolfl et al.
ABAS Attribute based Architectural Style
ABI Aquilani et al.
ACP Algebra of Communicating Processes
ADL Architecture Description Language
AELB Atomic Energy Licensing Board
ARCADE Architecture Recovery, Change, and Decay Evaluator
ARID Active Reviews for Intermediate Designs
ATAM Architecture-based Tradeoff Analysis Method
BIM Balsamo et al.
CCS Calculus of Communicating Systems
CM Cortellessa and Mirandola
CMMI Capability Maturity Model Integration
CPN Colored Petri nets
CSP Communicating Sequential Processes
DCAR Decision-Centric Architecture Reviews
EBAE Empirically Based Architecture Evaluation
FERA Framework of evaluation of Reference Architectures
GQM Goal Question Metrics Paradigm
GUI Graphical User Interface
HCPN Hierarchical Colored Petri nets
HM Heuristic Miner
LQN Layered Queuing Networks
LTL Linear Temporal Logic
LTS Labeled Transition System
MVC Model View Controller
OWL Web Ontology Language
PAIS Process Aware Information System
PASA Performance Assessment of Software Architecture
PBAR Pattern-Based Architecture Reviews
PM Process Mining
QNM Layered Queuing Networks
RARE Reference Architecture Representation Environment
REST API Representational State Transfer Application Programming Interface
SA Software Architecture
SAAM Scenario-based Software Architecture Analysis Method
SACMM Metrics of Software Architecture Changes based on Structural Metrics
SADL Simulation Architecture Description Language
SAM Formal systematic software architecture specification and analysis methodology
SAR Software Review Architecture
SOA Service Oriented Architecture
SPE Software Performance Analysis
TARA Tiny Architectural Review Approach
UML Unified Modeling Language
WS Williams and Smith
SPL Software Product Line
OO Object Oriented
CBS component based Software

Sensors 2022, 22, 1252 24 of 28

References
1. Feldgen, M.; Clua, O. Promoting design skills in distributed systems. In Proceedings of the 2012 Frontiers in Education Conference

Proceedings, Seattle, WA, USA, 3–6 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–6.
2. Heidmann, E.F.; von Kurnatowski, L.; Meinecke, A.; Schreiber, A. Visualization of Evolution of Component-Based Software

Architectures in Virtual Reality. In Proceedings of the 2020 Working Conference on Software Visualization (VISSOFT), Adelaide,
Australia, 28 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 12–21.

3. Mekni, M.; Buddhavarapu, G.; Chinthapatla, S.; Gangula, M. Software Architectural Design in Agile Environments. J.
Comput. Commun. 2017, 6, 171–189. [CrossRef]

4. Kil, B.-H.; Park, J.-S.; Ryu, M.-H.; Park, C.-Y.; Kim, Y.-S.; Kim, J.-D. Cloud-Based Software Architecture for Fully Automated
Point-of-Care Molecular Diagnostic Device. Sensors 2021, 21, 6980. [CrossRef]

5. Lagsaiar, L.; Shahrour, I.; Aljer, A.; Soulhi, A. Modular Software Architecture for Local Smart Building Servers. Sensors 2021, 21, 5810.
[CrossRef] [PubMed]

6. Ungurean, I.; Gaitan, N.C. A software architecture for the Industrial Internet of Things—A conceptual model. Sensors 2020, 20, 5603.
[CrossRef] [PubMed]

7. Piao, Y.C.K.; Ezzati-Jivan, N.; Dagenais, M.R. Distributed Architecture for an Integrated Development Environment, Large Trace
Analysis, and Visualization. Sensors 2021, 21, 5560. [CrossRef]

8. Dickerson, C.E.; Wilkinson, M.; Hunsicker, E.; Ji, S.; Li, M.; Bernard, Y.; Bleakley, G.; Denno, P. Architecture definition in complex
system design using model theory. IEEE Syst. J. 2020, 15, 1847–1860. [CrossRef]

9. Yang, C.; Liang, P.; Avgeriou, P.; Eliasson, U.; Heldal, R.; Pelliccione, P. Architectural assumptions and their management in
industry—An exploratory study. In Proceedings of the European Conference on Software Architecture, Canterbury, UK, 11–15
September 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 191–207.

10. Harrison, N.; Avgeriou, P. Pattern-based architecture reviews. IEEE Softw. 2010, 28, 66–71. [CrossRef]
11. Yang, T.; Jiang, Z.; Shang, Y.; Norouzi, M. Systematic review on next-generation web-based software architecture clustering

models. Comput. Commun. 2020, 167, 63–74. [CrossRef]
12. Allian, A.P.; Sena, B.; Nakagawa, E.Y. Evaluating variability at the software architecture level: An overview. In Proceedings of the

34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 2354–2361.
13. Sedaghatbaf, A.; Azgomi, M.A. SQME: A framework for modeling and evaluation of software architecture quality attributes.

Softw. Syst. Model. 2019, 18, 2609–2632. [CrossRef]
14. Venters, C.C.; Capilla, R.; Betz, S.; Penzenstadler, B.; Crick, T.; Crouch, S.; Nakagawa, E.Y.; Becker, C.; Carrillo, C. Software

sustainability: Research and practice from a software architecture viewpoint. J. Syst. Softw. 2018, 138, 174–188. [CrossRef]
15. van Heesch, U.; Eloranta, V.-P.; Avgeriou, P.; Koskimies, K.; Harrison, N. Decision-centric architecture reviews. IEEE Softw. 2013,

31, 69–76. [CrossRef]
16. Zalewski, A. Modelling and evaluation of software architectures. In Prace Naukowe Politechniki Warszawskiej. Elektronika; Warsaw

University of Technology Publishing Office: Warsaw, Poland, 2013.
17. Amirat, A.; Anthony, H.-K.; Oussalah, M.C. Object-oriented, component-based, agent oriented and service-oriented paradigms in

software architectures. Softw. Archit. 2014, 1. [CrossRef]
18. Richards, M. Software Architecture Patterns; O’Reilly Media: Newton, MA, USA, 2015. Available online: https://www.oreilly.com/

library/view/software-architecture-patterns/9781491971437/ (accessed on 1 December 2021).
19. Shatnawi, A. Supporting Reuse by Reverse Engineering Software Architecture and Component from Object-Oriented Product

Variants and APIs. Ph.D. Thesis, University of Montpellier, Montpellier, France, 2015.
20. Brown, S. Is Software Architecture important. In Software Architecture for Developers; Leanpub: Victoria, BC, Canada, 2015.
21. Link, D.; Behnamghader, P.; Moazeni, R.; Boehm, B. Recover and RELAX: Concern-oriented software architecture recovery for

systems development and maintenance. In Proceedings of the 2019 IEEE/ACM International Conference on Software and System
Processes (ICSSP), Montreal, QC, Canada, 25–26 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 64–73.

22. Medvidovic, N.; Taylor, R.N. Software architecture: Foundations, theory, and practice. In Proceedings of the 2010 ACM/IEEE
32nd International Conference on Software Engineering, Cape Town, South Africa, 1–8 May 2010; IEEE: Piscataway, NJ, USA,
2010; Volume 2, pp. 471–472.

23. Kazman, R.; Bass, L.; Klein, M.; Lattanze, T.; Northrop, L. A basis for analyzing software architecture analysis methods. Softw.
Qual. J. 2005, 13, 329–355. [CrossRef]

24. Tibermacine, C.; Sadou, S.; That, M.T.T.; Dony, C. Software architecture constraint reuse-by-composition. Future Gener.
Comput. Syst. 2016, 61, 37–53. [CrossRef]

25. Muccini, H. Exploring the Temporal Aspects of Software Architecture. In Proceedings of the ICSOFT-EA 2016, Lisbon, Portugal,
24–26 July 2016; p. 9.

26. Aboutaleb, H.; Monsuez, B. Measuring complexity of system/software architecture using Higraph-based model. In Proceedings
of the International Multiconference of Engineers and Computer Scientists, Hong Kong, China, 15–17 March 2017; Newswood
Limited: Hong Kong, China, 2017; Volume 1, pp. 92–96.

27. Garcés, L.; Oquendo, F.; Nakagawa, E.Y. Towards a taxonomy of software mediators for systems-of-systems. In Proceedings
of the VII Brazilian Symposium on Software Components, Architectures, and Reuse, Sao Carlos, Brazil, 17–21 September 2018;
pp. 53–62.

http://doi.org/10.4236/jcc.2018.61018
http://doi.org/10.3390/s21216980
http://doi.org/10.3390/s21175810
http://www.ncbi.nlm.nih.gov/pubmed/34502701
http://doi.org/10.3390/s20195603
http://www.ncbi.nlm.nih.gov/pubmed/33007860
http://doi.org/10.3390/s21165560
http://doi.org/10.1109/JSYST.2020.2975073
http://doi.org/10.1109/MS.2010.156
http://doi.org/10.1016/j.comcom.2020.12.022
http://doi.org/10.1007/s10270-018-0684-3
http://doi.org/10.1016/j.jss.2017.12.026
http://doi.org/10.1109/MS.2013.22
http://doi.org/10.1002/9781118930960.ch1
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/
http://doi.org/10.1007/s11219-005-4250-1
http://doi.org/10.1016/j.future.2016.02.006

Sensors 2022, 22, 1252 25 of 28

28. Magableh, A.; Shukur, Z. Comprehensive Aspectual UML approach to support AspectJ. Sci. World J. 2014, 2014, 327808. [CrossRef]
29. Kanade, A. Event-Based Concurrency: Applications, Abstractions, and Analyses. In Advances in Computers; Elsevier: Amsterdam,

The Netherlands, 2019; Volume 112, pp. 379–412.
30. Al Rawashdeh, H.; Idris, S.; Zin, A.M. Using Model Checking Approach for Grading the Semantics of UML Models. In

Proceedings of the International Conference Image Processing, Computers and Industrial Engineering (ICICIE’2014), Kuala
Lumpur, Malaysia, 15–16 January 2014.

31. Rodriguez-Priego, E.; García-Izquierdo, F.J.; Rubio, Á.L. Modeling issues: A survival guide for a non-expert modeler. In
Proceedings of the International Conference on Model Driven Engineering Languages and Systems, Oslo, Norway, 3–8 October
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 361–375.

32. Medvidovic, N.; Taylor, R.N. A classification and comparison framework for software architecture description languages. IEEE
Trans. Softw. Eng. 2000, 26, 70–93. [CrossRef]

33. Jensen, K.; Kristensen, L.M. Introduction to Modelling and Validation. In Coloured Petri Nets; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 1–12.

34. Emadi, S.; Shams, F. Mapping Annotated Use Case and Sequence Diagrams to a Petri Net Notation for Performance Evaluation.
In Proceedings of the Second International Conference on Computer and Electrical Engineering (ICCEE’09), Dubai, United Arab
Emirates, 28–30 December 2009; pp. 67–81.

35. Sahlabadi, M.; Muniyandi, R.C.; Shukor, Z.; Sahlabadi, A. Heterogeneous Hierarchical Coloured Petri Net Software/Hardware
Architectural View of Embedded System based on System Behaviours. Procedia Technol. 2013, 11, 925–932. [CrossRef]

36. Sievi-Korte, O.; Richardson, I.; Beecham, S. Software architecture design in global software development: An empirical study. J.
Syst. Softw. 2019, 158, 110400. [CrossRef]

37. Jaiswal, M. Software Architecture and Software Design. Int. Res. J. Eng. Technol. (IRJET) 2019, 6, 2452–2454. [CrossRef]
38. Hofmeister, C.; Kruchten, P.; Nord, R.L.; Obbink, H.; Ran, A.; America, P. Generalizing a model of software architecture design

from five industrial approaches. In Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA’05),
Pittsburgh, PA, USA, 6–10 November 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 77–88.

39. Wu, X.-W.; Li, C.; Wang, X.; Yang, H.-J. A creative approach to reducing ambiguity in scenario-based software architecture
analysis. Int. J. Autom. Comput. 2019, 16, 248–260. [CrossRef]

40. Iacob, M.-E. Architecture analysis. In Enterprise Architecture at Work; Springer: Berlin/Heidelberg, Germany, 2017; pp. 215–252.
41. Al-Tarawneh, F.; Baharom, F.; Yahaya, J.H. Toward quality model for evaluating COTS software. Int. J. Adv. Comput. Technol. 2013,

5, 112.
42. Khatchatoorian, A.G.; Jamzad, M. Architecture to improve the accuracy of automatic image annotation systems. IET Comput. Vis.

2020, 14, 214–223. [CrossRef]
43. Júnior, A.A.; Misra, S.; Soares, M.S. A systematic mapping study on software architectures description based on ISO/IEC/IEEE

42010: 2011. In Proceedings of the International Conference on Computational Science and Its Applications, Saint Petersburg,
Russia, 1–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 17–30.

44. Weinreich, R.; Miesbauer, C.; Buchgeher, G.; Kriechbaum, T. Extracting and facilitating architecture in service-oriented software
systems. In Proceedings of the 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on
Software Architecture, Helsinki, Finland, 20–24 August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 81–90.

45. Cabac, L.; Haustermann, M.; Mosteller, D. Software development with Petri nets and agents: Approach, frameworks and tool set.
Sci. Comput. Program. 2018, 157, 56–70. [CrossRef]

46. Cabac, L.; Mosteller, D.; Wester-Ebbinghaus, M. Modeling organizational structures and agent knowledge for Mulan applications.
In Transactions on Petri Nets and Other Models of Concurrency IX; Springer: Berlin/Heidelberg, Germany, 2014; pp. 62–82.

47. Siefke, L.; Sommer, V.; Wudka, B.; Thomas, C. Robotic Systems of Systems Based on a Decentralized Service-Oriented Architecture.
Robotics 2020, 9, 78. [CrossRef]

48. Hasselbring, W. Software architecture: Past, present, future. In The Essence of Software Engineering; Springer: Cham, Switzerland,
2018; pp. 169–184.

49. Breivold, H.P.; Crnkovic, I. A systematic review on architecting for software evolvability. In Proceedings of the 2010 21st Australian
Software Engineering Conference, Auckland, New Zealand, 6–9 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 13–22.

50. Barcelos, R.F.; Travassos, G.H. Evaluation Approaches for Software Architectural Documents: A Systematic Review. In Proceed-
ings of the CIbSE 2006, La Plata, Argentina, 24–28 April 2006; pp. 433–446.

51. Patidar, A.; Suman, U. A survey on software architecture evaluation methods. In Proceedings of the 2015 2nd International
Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 967–972.

52. Shanmugapriya, P.; Suresh, R. Software architecture evaluation methods—A survey. Int. J. Comput. Appl. 2012, 49, 19–26.
[CrossRef]

53. Roy, B.; Graham, T.N. Methods for evaluating software architecture: A survey. Sch. Comput. TR 2008, 545, 82.
54. Mattsson, M.; Grahn, H.; Mårtensson, F. Software architecture evaluation methods for performance, maintainability, testability,

and portability. In Proceedings of the Second International Conference on the Quality of Software Architectures, Västerås,
Sweden, 27–29 June 2006; Citeseer: Princeton, NJ, USA, 2006.

http://doi.org/10.1155/2014/327808
http://doi.org/10.1109/32.825767
http://doi.org/10.1016/j.protcy.2013.12.277
http://doi.org/10.1016/j.jss.2019.110400
http://doi.org/10.2139/ssrn.3772387
http://doi.org/10.1007/s11633-017-1102-y
http://doi.org/10.1049/iet-cvi.2019.0500
http://doi.org/10.1016/j.scico.2017.12.003
http://doi.org/10.3390/robotics9040078
http://doi.org/10.5120/7711-1107

Sensors 2022, 22, 1252 26 of 28

55. Christensen, H.B.; Hansen, K.M. An empirical investigation of architectural prototyping. J. Syst. Softw. 2010, 83, 133–142.
[CrossRef]

56. Babar, M.A.; Gorton, I. Comparison of scenario-based software architecture evaluation methods. In Proceedings of the 11th
Asia-Pacific Software Engineering Conference, Busan, Korea, 30 November–3 December 2004; IEEE: Piscataway, NJ, USA, 2004;
pp. 600–607.

57. Maranzano, J.F.; Rozsypal, S.A.; Zimmerman, G.H.; Warnken, G.W.; Wirth, P.E.; Weiss, D.M. Architecture reviews: Practice and
experience. IEEE Softw. 2005, 22, 34–43. [CrossRef]

58. Babar, M.A. Making software architecture and agile approaches work together: Foundations and approaches. In Agile Software
Architecture; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–22.

59. Sharma, T.; Suryanarayana, G.; Samarthyam, G. Refactoring for Software Design Smells: Managing Technical Debt; Morgan Kaufmann
Publishers: Burlington, MA, USA, 2015.

60. Lindvall, M.; Tvedt, R.T.; Costa, P. An empirically-based process for software architecture evaluation. Empir. Softw. Eng. 2003,
8, 83–108. [CrossRef]

61. Santos, J.F.M.; Guessi, M.; Galster, M.; Feitosa, D.; Nakagawa, E.Y. A Checklist for Evaluation of Reference Architectures of
Embedded Systems (S). SEKE 2013, 13, 1–4.

62. De Oliveira, L.B.R. Architectural design of service-oriented robotic systems. Ph.D. Thesis, Universite de Bretagne-Sud, Lorient,
France, 2015.

63. Nakamura, T.; Basili, V.R. Metrics of software architecture changes based on structural distance. In Proceedings of the 11th IEEE
International Software Metrics Symposium (METRICS’05), Como, Italy, 19–22 September 2005; IEEE: Piscataway, NJ, USA, 2005; p. 24.

64. Knodel, J.; Naab, M. How to Evaluate Software Architectures: Tutorial on Practical Insights on Architecture Evaluation Projects
with Industrial Customers. In Proceedings of the 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), Gothenburg, Sweden, 5–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 183–184.

65. Babar, M.A.; Gorton, I. Software architecture review: The state of practice. Computer 2009, 42, 26–32. [CrossRef]
66. Tekinerdoğan, B.; Akşit, M. Classifying and evaluating architecture design methods. In Software Architectures and Component

Technology; Springer: Berlin/Heidelberg, Germany, 2002; pp. 3–27.
67. Klein, M.H.; Kazman, R.; Bass, L.; Carriere, J.; Barbacci, M.; Lipson, H. Attribute-based architecture styles. In Proceedings of

the Working Conference on Software Architecture, San Antonio, TX, USA, 22–24 February 1999; Springer: Berlin/Heidelberg,
Germany, 1999; pp. 225–243.

68. Arvanitou, E.M.; Ampatzoglou, A.; Chatzigeorgiou, A.; Galster, M.; Avgeriou, P. A mapping study on design-time quality
attributes and metrics. J. Syst. Softw. 2017, 127, 52–77. [CrossRef]

69. Fünfrocken, M.; Otte, A.; Vogt, J.; Wolniak, N.; Wieker, H. Assessment of ITS architectures. IET Intell. Transp. Syst. 2018, 12,
1096–1102.

70. Babar, M.A.; Shen, H.; Biffl, S.; Winkler, D. An Empirical Study of the Effectiveness of Software Architecture Evaluation Meetings.
IEEE Access 2019, 7, 79069–79084. [CrossRef]

71. Savold, R.; Dagher, N.; Frazier, P.; McCallam, D. Architecting cyber defense: A survey of the leading cyber reference architectures
and frameworks. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing
(CSCloud), New York, NY, USA, 26–28 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 127–138.

72. de Jong, P.; van der Werf, J.M.E.; van Steenbergen, M.; Bex, F.; Brinkhuis, M. Evaluating design rationale in architecture. In
Proceedings of the 2019 IEEE International Conference on Software Architecture Companion (ICSA-C), Hamburg, Germany,
25–26 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 145–152.

73. Shahbazian, A.; Lee, Y.K.; Le, D.; Brun, Y.; Medvidovic, N. Recovering architectural design decisions. In Proceedings of the 2018
IEEE International Conference on Software Architecture (ICSA), Seattle, WA, USA, 30 April–4 May 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 95–9509.

74. Krusche, S.; Bruegge, B. CSEPM-a continuous software engineering process metamodel. In Proceedings of the 2017 IEEE/ACM
3rd International Workshop on Rapid Continuous Software Engineering (RCoSE), Buenos Aires, Argentina, 22–23 May 2017;
IEEE: Piscataway, NJ, USA, 2017; pp. 2–8.

75. Arcelli, D. Exploiting queuing networks to model and assess the performance of self-adaptive software systems: A survey.
Procedia Comput. Sci. 2020, 170, 498–505. [CrossRef]

76. Palensky, P.; van der Meer, A.A.; Lopez, C.D.; Joseph, A.; Pan, K. Cosimulation of intelligent power systems: Fundamentals,
software architecture, numerics, and coupling. IEEE Ind. Electron. Mag. 2017, 11, 34–50. [CrossRef]

77. Szmuc, W.; Szmuc, T. Towards Embedded Systems Formal Verification Translation from SysML into Petri Nets. In Proceedings of
the 2018 25th International Conference” Mixed Design of Integrated Circuits and System”(MIXDES), Gdynia, Poland, 21–23 June
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 420–423.

78. Coulin, T.; Detante, M.; Mouchère, W.; Petrillo, F. Software Architecture Metrics: A literature review. arXiv 2019, arXiv:1901.09050.
79. Soares, M.A.C.; Parreiras, F.S. A literature review on question answering techniques, paradigms and systems. J. King Saud

Univ.-Comput. Inf. Sci. 2020, 32, 635–646.
80. Düllmann, T.F.; Heinrich, R.; van Hoorn, A.; Pitakrat, T.; Walter, J.; Willnecker, F. CASPA: A platform for comparability of

architecture-based software performance engineering approaches. In Proceedings of the 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5–7 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 294–297.

http://doi.org/10.1016/j.jss.2009.07.049
http://doi.org/10.1109/MS.2005.28
http://doi.org/10.1023/A:1021772917036
http://doi.org/10.1109/MC.2009.233
http://doi.org/10.1016/j.jss.2017.01.026
http://doi.org/10.1109/ACCESS.2019.2922265
http://doi.org/10.1016/j.procs.2020.03.108
http://doi.org/10.1109/MIE.2016.2639825

Sensors 2022, 22, 1252 27 of 28

81. Walter, J.; Stier, C.; Koziolek, H.; Kounev, S. An expandable extraction framework for architectural performance models. In
Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion, L’Aquila, Italy, 22–26
April 2017; pp. 165–170.

82. Singh, H. Secure SoftwareArchitecture and Design: Security Evaluation for Hybrid Approach. INROADS Int. J. Jaipur Natl. Univ.
2019, 8, 82–88.

83. Sujay, V.; Reddy, M.B. Advanced Architecture-Centric Software Maintenance. i-Manager’s J. Softw. Eng. 2017, 12, 1.
84. Hassan, A.; Oussalah, M.C. Evolution Styles: Multi-View/Multi-Level Model for Software Architecture Evolution. JSW 2018,

13, 146–154. [CrossRef]
85. Dobrica, L.; Niemela, E. A survey on software architecture analysis methods. IEEE Trans. Softw. Eng. 2002, 28, 638–653. [CrossRef]
86. Plauth, M.; Feinbube, L.; Polze, A. A performance evaluation of lightweight approaches to virtualization. Cloud Comput. 2017,

2017, 14.
87. Li, Z.; Zheng, J. Toward industry friendly software architecture evaluation. In Proceedings of the European Conference on

Software Architecture, Montpellier, France, 1–5 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 328–331.
88. Abrahão, S.; Insfran, E. Evaluating software architecture evaluation methods: An internal replication. In Proceedings of the

21st International Conference on Evaluation and Assessment in Software Engineering, Karlskrona, Sweden, 15–16 June 2017;
pp. 144–153.

89. Zalewski, A.; Kijas, S. Beyond ATAM: Early architecture evaluation method for large-scale distributed systems. J. Syst. Softw.
2013, 86, 683–697. [CrossRef]

90. Alsaqaf, W.; Daneva, M.; Wieringa, R. Quality requirements in large-scale distributed agile projects—A systematic literature
review. In Proceedings of the International Working Conference on Requirements Engineering: Foundation for Software Quality,
Essen, Germany, 27 February–2 March 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 219–234.

91. Bass, L.; Nord, R.L. Understanding the context of architecture evaluation methods. In Proceedings of the 2012 Joint Working
IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture, Helsinki, Finland, 20–24
August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 277–281.

92. Kasauli, R.; Knauss, E.; Horkoff, J.; Liebel, G.; Neto, F.G.d. Requirements engineering challenges and practices in large-scale agile
system development. J. Syst. Softw. 2021, 172, 110851. [CrossRef]

93. Zhang, D.; Yu, F.R.; Yang, R. A machine learning approach for software-defined vehicular ad hoc networks with trust management.
In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13
December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

94. Cruz-Benito, J.; Garcia-Penalvo, F.J.; Theron, R. Analyzing the software architectures supporting HCI/HMI processes through a
systematic review of the literature. Telemat. Inform. 2019, 38, 118–132. [CrossRef]

95. Poularakis, K.; Qin, Q.; Nahum, E.M.; Rio, M.; Tassiulas, L. Flexible SDN control in tactical ad hoc networks. Ad Hoc Netw. 2019,
85, 71–80. [CrossRef]

96. Li, X.-Y.; Liu, Y.; Lin, Y.-H.; Xiao, L.-H.; Zio, E.; Kang, R. A generalized petri net-based modeling framework for service reliability
evaluation and management of cloud data centers. Reliab. Eng. Syst. Saf. 2021, 207, 107381. [CrossRef]

97. Varshosaz, M.; Beohar, H.; Mousavi, M.R. Basic behavioral models for software product lines: Revisited. Sci. Comput. Program.
2018, 168, 171–185. [CrossRef]

98. Ozkaya, M. Do the informal & formal software modeling notations satisfy practitioners for software architecture modeling? Inf.
Softw. Technol. 2018, 95, 15–33.

99. Bhat, M.; Shumaiev, K.; Hohenstein, U.; Biesdorf, A.; Matthes, F. The evolution of architectural decision making as a key focus area
of software architecture research: A semi-systematic literature study. In Proceedings of the 2020 IEEE International Conference on
Software Architecture (ICSA), Salvador, Brazil, 16–20 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 69–80.

100. Seifermann, S.; Heinrich, R.; Reussner, R. Data-driven software architecture for analyzing confidentiality. In Proceedings of the
2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 25–29 March 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–10.

101. Landauer, C.; Bellman, K.L. An architecture for self-awareness experiments. In Proceedings of the 2017 IEEE International Confer-
ence on Autonomic Computing (ICAC), Columbus, OH, USA, 17–21 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 255–262.

102. Ferraiuolo, A.; Xu, R.; Zhang, D.; Myers, A.C.; Suh, G.E. Verification of a practical hardware security architecture through
static information flow analysis. In Proceedings of the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, Xi’an, China, 1–8 April 2017; pp. 555–568.

103. van Engelenburg, S.; Janssen, M.; Klievink, B. Design of a software architecture supporting business-to-government information
sharing to improve public safety and security. J. Intell. Inf. Syst. 2019, 52, 595–618. [CrossRef]

104. Bánáti, A.; Kail, E.; Karóczkai, K.; Kozlovszky, M. Authentication and authorization orchestrator for microservice-based software
architectures. In Proceedings of the 2018 41st International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 21–25 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1180–1184.

105. Tuma, K.; Scandariato, R.; Balliu, M. Flaws in flows: Unveiling design flaws via information flow analysis. In Proceedings of the
2019 IEEE International Conference on Software Architecture (ICSA), Hamburg, Germany, 25–29 March 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 191–200.

http://doi.org/10.17706/jsw.13.3.146-154
http://doi.org/10.1109/TSE.2002.1019479
http://doi.org/10.1016/j.jss.2012.10.923
http://doi.org/10.1016/j.jss.2020.110851
http://doi.org/10.1016/j.tele.2018.09.006
http://doi.org/10.1016/j.adhoc.2018.10.012
http://doi.org/10.1016/j.ress.2020.107381
http://doi.org/10.1016/j.scico.2018.09.001
http://doi.org/10.1007/s10844-017-0478-z

Sensors 2022, 22, 1252 28 of 28

106. Santos, J.C.; Tarrit, K.; Mirakhorli, M. A catalog of security architecture weaknesses. In Proceedings of the 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5–7 April 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 220–223.

107. Ouma, W.Z.; Pogacar, K.; Grotewold, E. Topological and statistical analyses of gene regulatory networks reveal unifying yet
quantitatively different emergent properties. PLoS Comput. Biol. 2018, 14, e1006098. [CrossRef] [PubMed]

108. Dissanayake, N.; Jayatilaka, A.; Zahedi, M.; Babar, M.A. Software security patch management—A systematic literature review of
challenges, approaches, tools and practices. Inf. Softw. Technol. 2021, 144, 106771. [CrossRef]

109. De Vita, F.; Bruneo, D.; Das, S.K. On the use of a full stack hardware/software infrastructure for sensor data fusion and fault
prediction in industry 4.0. Pattern Recognit. Lett. 2020, 138, 30–37. [CrossRef]

http://doi.org/10.1371/journal.pcbi.1006098
http://www.ncbi.nlm.nih.gov/pubmed/29708965
http://doi.org/10.1016/j.infsof.2021.106771
http://doi.org/10.1016/j.patrec.2020.06.028

	Introduction
	Software Architecture Definition Differences
	Software Architecture Design
	Software Architecture Evaluation
	Categorizing of Software Architecture Evaluation
	Identifying Factors for Lightweight Evaluation Method
	Architecture Tradeoff Analysis Method
	Lightweight ATAM
	ARID
	PBAR
	TARA
	DCAR

	Factors for Lightweight Evaluation Method
	Covering Early and Late Methods
	Need of Agility
	Ad Hoc Analysis

	Targeted Quality Attributes: Performance and Security in Software Architecture Evaluation
	Performance
	Security

	Identified Features and Factors
	Achievement and Results
	Conclusions
	References

