
����������
�������

Citation: Soubervielle-Montalvo, C.;

Perez-Cham, O.E.; Puente, C.;

Gonzalez-Galvan, E.J.; Olague, G.;

Aguirre-Salado, C.A.; Cuevas-Tello,

J.C.; Ontanon-Garcia, L.J. Design of a

Low-Power Embedded System Based

on a SoC-FPGA and the Honeybee

Search Algorithm for Real-Time

Video Tracking. Sensors 2022, 22, 1280.

https://doi.org/10.3390/s22031280

Academic Editors: Qiang Zhang and

Yifeng Zeng

Received: 31 December 2021

Accepted: 2 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Design of a Low-Power Embedded System Based on a
SoC-FPGA and the Honeybee Search Algorithm for Real-Time
Video Tracking
Carlos Soubervielle-Montalvo 1,* , Oscar E. Perez-Cham 1 , Cesar Puente 1 , Emilio J. Gonzalez-Galvan 1 ,
Gustavo Olague 2 , Carlos A. Aguirre-Salado 1 , Juan C. Cuevas-Tello 1 and Luis J. Ontanon-Garcia 3

1 Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8,
Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico;
oscar.cham@uaslp.mx (O.E.P.-C.); cesar.puente@uaslp.mx (C.P.); egonzale@uaslp.mx (E.J.G.-G.);
carlos.aguirre@uaslp.mx (C.A.A.-S.); cuevas@uaslp.mx (J.C.C.-T.)

2 Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera
Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico; olague@cicese.mx

3 Coordinación Académica Región Altiplano Oeste, Universidad Autónoma de San Luis Potosí (UASLP),
Carretera Salinas-Santo Domingo No. 200, Salinas de Hidalgo 78600, San Luis Potosí, Mexico;
luis.ontanon@uaslp.mx

* Correspondence: carlos.soubervielle@uaslp.mx

Abstract: Video tracking involves detecting previously designated objects of interest within a se-
quence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among
other fields of interest. Video tracking is still regarded as an open problem due to a number of
obstacles that still need to be overcome, including the need for high precision and real-time results,
as well as portability and low-power demands. This work presents the design, implementation
and assessment of a low-power embedded system based on an SoC-FPGA platform and the hon-
eybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines
evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the
combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing
real-time multiprocessing without a reduction in precision, and with the advantage of lower power
consumption, which enabled portability. A starker difference was observed when measuring the
power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-
GPU system required more than 200 Watts. A general recommendation obtained from this research is
to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when
an embedded solution is required.

Keywords: heterogeneous computing; meta-heuristic; video tracking; system-on-chip; field-programmable
gate array; evolutionary computing; swarm intelligence; embedded system design; graphics process-
ing unit; computer vision

1. Introduction

One of the goals of computer vision algorithms is the statistical analysis of the raw
units of data contained in digital images or videos to allow the automated interpretation
of visual information [1]. As in many other tasks, computer vision requires a massive
number of operations on a massive amount of data. Video tracking is one of the computer
vision problems that has become more relevant as a result of its application in various
industries and technologies, such as robotics, unmanned vehicles, and automation, among
others [2]. The video tracking problem essentially requires one to quantify the similarity
of two ordered sets of data, with each component of these sets known as a pixel. Early
video tracking approaches relied heavily on linear algebra and statistical examination to
recognize patterns. Many different algorithms, colloquially known as video trackers, have

Sensors 2022, 22, 1280. https://doi.org/10.3390/s22031280 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0179-3933
https://orcid.org/0000-0002-0110-5475
https://orcid.org/0000-0002-2435-3340
https://orcid.org/0000-0002-5682-0070
https://orcid.org/0000-0001-5773-9517
https://orcid.org/0000-0003-3422-7193
https://orcid.org/0000-0002-7566-0412
https://orcid.org/0000-0002-6042-6893
https://doi.org/10.3390/s22031280
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031280?type=check_update&version=3

Sensors 2022, 22, 1280 2 of 26

been proposed in an attempt to solve the video tracking problem. Efforts to develop and
improve video trackers are still ongoing; however, the problem remains open as perfect
accuracy has not yet been achieved [3]. Additionally, each image in a digital video contains
a massive amount of pixel data, resulting in high computational costs whenever they are
inspected [4].

The purpose of video tracking, sometimes called object tracking, is to locate an object
within a given image frame. It should be noted that the location of the object requires the
detection of the same object in a previous frame [5]. Therefore, using a similarity measure,
such as mean shift, normalized cross-correlation (NCC), regional mutual information (RMI),
or zero mean normalized cross-correlation (ZNCC), is an elemental component to perform
video tracking. Many of these techniques are still at the heart of newer proposals that
use similar image matching criteria but which incorporate machine learning techniques,
such as the support-vector machine of the Struck video tracker [6] or the decision tree
of the tracker proposed by Asgarizadeh et al. [7] to choose between NCC and RMI as
a similarity measure. The majority of today’s most accurate video trackers, such as the
SiamMask video tracker [8], are powered by convolutional neural networks [3]. However,
these proposals have drawbacks that stem from the training phase, which introduces
issues such as sampling bias, vulnerability to adversarial attacks, and a high demand
for memory and computational resources to store and process considerable amounts of
training data [9,10]. Another approach follows a symbolic learning approach, using an
artificial dorsal stream as the backbone while incorporating genetic programming to build
a robust machine learning paradigm [11]. The first results show the trustworthiness of
results in such a computational visual process [12–14].

Although the video tracking community focuses on accuracy issues, other factors such
as video tracker speed must also be considered [15]. For example, some studies in the
literature have used tools such as heterogeneous computing architectures and population-
based meta-heuristics to improve efficiency rather than efficacy [16,17]. A heterogeneous
computing system is any computing system that coordinates two or more different types
of processing elements. The processing elements that can be used are typically central
processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSP),
or field-programmable gate arrays (FPGAs), but they can be applied to any other micro-
processor design [18]. These systems are developed to meet the increasing demand for
higher computational performance as well as lower energy consumption, total size or
area of the hardware elements, and monetary prices [19,20]. The same motivations have
driven manufacturers to innovate with the system-on-chip (SoC) paradigm. An SoC is any
complex integrated circuit that encapsulates all of the elements of a fully functional system
on the same chip [21]. A standard SoC includes a CPU, memory, hardware acceleration
units, and peripheral interfaces.

Using different processing elements benefits different aspects of a problem. A CPU
is better suited for control-intensive operations such as searching, parsing, and sorting,
whereas a GPU is better suited for image processing or other data-intensive tasks [22].
The FPGA is a versatile tool, capable of performing both parallel and sequential tasks
while consuming less power, allowing the system design to be customized according to
the requirements of the problem to solve. On the other hand, it introduces new challenges,
such as the requirement for hardware/software co-design methodologies [23]. Currently,
CPU-GPU and CPU-FPGA platforms, particularly SoC-FPGA, are the most researched
heterogeneous systems [20]. CPU-GPU-FPGA platforms are gaining attention as they enable
developers to map computations to specialized processing units that can perform their
tasks more efficiently. However, there are still issues with the CPU-GPU-FPGA platform,
such as the increased task scheduling complexity, which is currently being investigated [24].

This work studies the benefits of the honeybee search algorithm (HSA) [25,26] in
combination with the use of an SoC-FPGA platform to design and implement a low-power
embedded system for real-time video tracking. HSA is a meta-heuristic that replaces
the mechanical and meticulous inspection of all possible answers with a mindful search

Sensors 2022, 22, 1280 3 of 26

procedure that reduces resource waste. It is based on evolutionary algorithms that use
biological evolution as a source of inspiration to perform intelligent directed searches
over a given feasible space. These methods simulate how the fittest individuals survive
and reproduce for several generations until a stopping condition is met [27]. HSA also
belongs to the field of swarm intelligence meta-heuristics, which are inspired by the
collective behavior of biological agents throughout their lifespan [28]. Swarm intelligence
meta-heuristics are inspired by social animals such as ants, bees, fireflies, birds, and fish,
including particle swarm optimization (PSO) [29] and artificial bee colony [30] and ant
colony optimization [31]. Many of these meta-heuristics have been proven to help with
real-world applications and benchmarking functions. However, no standardized decision
criteria exist to select one over the others for any given problem.

1.1. Related Work

After the literature review, we found that there have been several research projects
that explore the integration of population-based meta-heuristics and heterogeneous com-
puting platforms applied to real-world problems. A common issue with swarm intelligence
meta-heuristics implementations on CPU-GPU heterogeneous systems is that when global
synchronization is required for certain activities, it cannot be achieved because GPU hard-
ware is not designed to do so [32]. Depending on the model, GPU core synchronization is
only possible between groups that belong to the same logic block. The synchronization issue
significantly reduces the computational resources that can be used effectively to parallelize
a swarm intelligence meta-heuristic using this type of heterogeneous system [33,34]. Com-
monly, the CPU and GPU are separate hardware products in a CPU-GPU heterogeneous
system, whereas an SoC-FPGA is a single chip that contains the processing system (PS)
and the programmable logic (PL). Because these processing elements are so close together,
they can communicate more quickly while using less energy, with the advantage of using
the custom advanced extensible interface (AXI) bus [35]. In other words, the internal
communication of an SoC-FPGA device should outperform CPU-GPU communication via
USB or PCI Express. Furthermore, the PS is typically built with ARM technology, which
is a reliable and energy-efficient standard RISC architecture, widely used in embedded
solutions centered on signal and image processing, such as video tracking [36].

Table 1 shows some works in the state of the art that belong to this research niche.
A subtle insight is that most authors focus on the particle swarm optimization (PSO) meta-
heuristic or variants of this approach. Other works use an FPGA device to study feasibility
of their proposals, but this research attempts to contrast SoC-FPGA and CPU-GPU hetero-
geneous systems to find which is the best option in this particular setting. Additionally, the
comparison with other state-of-the-art video trackers in terms of their speed and power con-
sumption is also performed in order to highlight the advantages of our proposal. Another
distinction with respect to our research is that evaluation is commonly performed using toy
data, whereas this work uses the Amsterdam Library of Ordinary Videos (ALOV) bench-
mark, which provides 314 video sequences with annotated initialization and ground truth
data [37]. These video sequences are arranged in 14 categories that pose different challenges
for video trackers. The number and diversity of video sequences makes this benchmark
a good alternative for testing the performance of video tracker proposals. The work of
Morsi et al. [16] is particularly interesting because the application is video tracking, but
the work uses only FPGA. Another interesting work is that of Nogueira and Barboza [17]
because it studies SoC-FPGA and CPU-GPU heterogeneous computing platforms; however,
the application is not specific as it focuses on continuous optimization problems.

In short, there are several opportunity areas. The literature has not sufficiently reported
the advantages and disadvantages of CPU-GPU and SoC-FPGA platforms when used to im-
plement meta-heuristics in computer vision problems. The main contribution of this work is
the novel design of a low-power HSA-based embedded system developed on an SoC-FPGA
platform for real-time video tracking, with the aim of determining whether a specific video
tracker can be accelerated without a loss of accuracy. Moreover, the performance in terms

Sensors 2022, 22, 1280 4 of 26

of accuracy is evaluated using the ALOV benchmark in order to confirm that there are no
negative effects compared to the employed base similarity measure (ZNCC). This work
contributes with (1) the proposed workflow for the design of an embedded system based
on an automaton that describes the behavior of a honeybee searching for food [38] and
an SoC-FPGA platform; (2) the design, implementation, and evaluation of a low-power
embedded system that performs real-time video tracking using the combination of the
HSA meta-heuristic and an SoC-FPGA platform, which was designed from scratch using
the co-design methodology [39]; (3) the comparison of our proposal with a CPU-GPU
HSA-based video tracking system [34] in terms of speed, energy consumption, accuracy,
as well as portability; and finally, (4) the contrast with other state-of-the-art video trackers
in terms of speed and energy consumption to highlight the advantages of our proposal in
these terms.

Table 1. Brief summary of the related work which focuses on other publications that deal with
heterogeneous computing systems and meta-heuristics.

Source Year Meta-Heuristic Heterogeneous Platform Application

Palermo et al. [40] 2008 Discrete PSO SoC-FPGA Multi-objective Design, space exploration

Tsai et al. [41] 2010 DNA algorithm SoC-FPGA Fire extinguishing

Morsi et al. [16] 2013 PSO FPGA Structural similarity index for video tracking

Rodriguez and Moreno [42] 2015 GA (genetic algorithm) FPGA Motion estimation with particle filter

Elkhani et al. [43] 2018 Multi-objective binary PSO CPU-GPU Feature selection and classification

Perez-Cham et al. [34] 2020 HSA CPU-GPU ZNCC for video tracking

Nogueira and Barboza [17] 2020 GRASP (greedy randomized
adaptive search procedure) SoC-FPGA, CPU-GPU Continuous optimization problems

1.2. Organization

The main sections of this paper are organized as follows. Section 2 goes into detail
about the materials and methods used to enable other researchers to recreate and build on
the results that are reported. Then, Section 3 delves into the specific experiments that were
performed and the results that were obtained. The interpretation of those results, along
with general observations, are discussed in Section 4. Finally, a summary of the highlights
and future work is presented in Section 5.

2. Materials and Methods

This section details the hardware and software tools used to design and implement the
proposed real-time video tracking embedded system. The vast majority of these materials
are associated with the ZC706 SoC-FPGA evaluation board, which is used in this work.
This evaluation board contains a Zynq-7000 SoC-FPGA [44], which has been successfully
used for image processing [45], signal processing [46], Internet of Things [47], and other
applications. The Zynq-7000 processing system (PS) is made up of a dual-core ARM Cortex-
A9 processor, with a Kintex-7 FPGA [48] serving as the SoC programmable logic (PL).
The main advantage of using an SoC-FPGA over an FPGA is the ease of use of a CPU
to perform specific tasks, such as dealing with external memory devices and reading
and preprocessing image files. The section will also provide details on the evaluation of
the fitness function employed by the HSA meta-heuristic which is the ZNCC similarity
measure; this fitness or objective function guides the exploration of the solution space
to find a suboptimal approximation to the peak function value which maximizes the
similarity between the juxtaposed image patches. The last section is dedicated to detailing
the proposed workflow based on hardware/software co-design methodologies and focuses
on how to take advantage of the HSA meta-heuristic and the SoC-FPGA platform.

2.1. Programmable Fabric

Given their notable emulation capabilities and availability, FPGA devices are cur-
rently the most popular type of programmable logic devices (PLDs). Using hardware
description languages (HDLs) such as VHDL, these devices can be reconfigured to behave

Sensors 2022, 22, 1280 5 of 26

like a described hardware design [49]. The main top-level components of an FPGA are
independently configurable and are included as follows: configurable logic blocks (CLBs),
input/output blocks (IOBs), and switching matrices. CLB components implement internal
logic behavior, IOB components receive and transmit external data, and all of these com-
ponents are interconnected as specified by switching matrices. The CLB is composed of
several smaller components that are used to implement custom logic. This section describes
the primary components used by the ZC706 evaluation board’s PL as the foundation for
larger custom logic designs. The proposed custom system design makes use of a diverse
set of Zynq-7000 PL components, the vast majority of which are categorized either as
LUT (LookUp Table) or DSP48.

The LUT is the core component of the CLB, and each LUT is actually an array of
one-bit multiplexers [50] with several one-bit inputs capable of implementing any arbitrary
Boolean function with that number of inputs. In addition, each LUT contains a flip-flop that
can be used to introduce sequential behavior if needed. The Boolean function of a given
LUT is expressed as a truth table, which is stored in SRAM (static RAM) registers as needed.
An FPGA has a large number of LUT components that allow for the implementation
of complex combinational logic circuits using switching matrices. The DSP48 block is
a physical ALU embedded in the fabric of Xilinx FPGA devices that is made up of three
different blocks. This element consists of an add/subtract unit linked to a multiplier, which
is linked to a final add/subtract/accumulate engine. The multiplier block can accept
a single input value of up to 25 bits and a second input value of up to 18 bits. Given
that multipliers consume a significant amount of programmable logic fabric resources
(LUT components), using a DSP can result in area and power savings, while allowing the
designer to use the programmable fabric for other tasks. The ZC706 board’s Zynq-7000 SoC
has a LUT count of 218,600 and 900 DPS48 blocks that can be used as the designer sees fit.

2.2. Soft Intellectual Property Cores

An intellectual property (IP) core is a reusable unit of logic, cell, or integrated circuit
layout design that is the intellectual property of one party (such as Xilinx). Soft IP cores are
frequently available as HDL files. Designers can easily implement those same cores on any
FPGA to accelerate system design. This section goes over some of the IP cores used in the
design of the proposed system described in Section 3.1. Xilinx Vivado 2017.3 was the IDE
used in the system’s development process, and it provided access to the used soft IP cores.
Some vital Soft IP cores are those related to AXI communication between PS and PL.

Soft IP cores that perform relatively complex arithmetic operations, such as division or
square root, are also important components. The system presented in this paper employs
the CORDIC Soft IP core to compute square roots as needed to compute a given ZNCC
value (Section 3.1). The CORDIC algorithm, also known as Volder’s algorithm [51], is
a method that can be implemented using low-level software or hardware that uses simple
shift-add operations to perform a series of two-by-two matrix multiplications to compute
trigonometric functions, hyperbolic functions, or square roots. However, some significant
limitations of this resource include the inability to use the DPS48 blocks available in the SoC
and the maximum input size of 48 bits. Xilinx’s Divider soft IP core supports three different
division algorithms: LUTMult, Radix-2, and High Radix [52]. The Radix-2 algorithm was
chosen from among the three available algorithms because it returns the actual integer
quotient of the division. LUTMult is a fast solution that takes advantage of the DSP48
blocks, but it consumes memory resources that should be used to store image data.

2.3. The Honeybee Search Algorithm Meta-Heuristic

The honeybee search algorithm (HSA) is similar to other honeybee-inspired meta-
heuristics that mimic honeybees’ search for food. The metaphor of flying individuals
searching for food is useful for the general image processing problem because the search
space is large in both cases and hints of the optimal solution are widely dispersed [38].
In that sense, HSA is heavily influenced by the dynamic flies heuristic of Boumaza and

Sensors 2022, 22, 1280 6 of 26

Louchet [53], but with a greater emphasis on coordinated work. HSA differs from other
approaches in that it is a hybrid proposal that combines techniques from swarm intelligence
and evolutionary algorithms for real-valued multidimensional optimization problems [25].

Swarm intelligence and evolutionary algorithms developed independently, but they
share similar terminology and can be generalized as population-based meta-heuristics [54].
These meta-heuristics are inspired by life and biological processes in their approaches
to solving general optimization problems. In the terminology of population-based meta-
heuristics, a specific solution is referred to as an individual. These methods are typically
iterative, with an initial population of individuals that changes over time, guided by the
fitness function. A generation is the term used to describe each iteration of this process.
Several individuals compete metaphorically against one another, and it is determined
which ones are better than others based on their fitness. The best individuals are rewarded,
whereas the worst individuals are punished. This process continues for several generations
until the population reaches a point where it is close to the optimal value. The (µ + λ)
evolution strategy (ES) [55] is the fundamental evolutionary algorithm in HSA. This evo-
lutionary algorithm has two populations: a parent population of µ individuals and an
offspring population of λ individuals. The (µ + λ)-ES is an elitist ES, which means that
individuals from the parent population can be chosen to be part of the population of the
next generation.

Exploration, recruitment, and foraging (Figure 1) are the three main stages of the
original HSA proposal [26]. The exploration phase of the optimization procedure begins
with an initial inspection of the search space using the described modified version of the
(µ + λ)-ES. The recruitment stage emulates how honeybees coordinate their efforts to
find food sources. Real honeybees communicate with one another through their dance
language, which allows them to spread very reliable and complex information [56]. These
data are later used by their peers to make group decisions. Foraging is the final phase,
which involves a series of (µ + λ)-ES subphases but with smaller search spaces and a larger
number of individuals. These new limits are based on the previous phase’s resource
planning and distribution. It was initially proposed that HSA should be run on a single CPU.
However, Perez-Cham et al. [34] recently demonstrated that the same meta-heuristic could
be executed on a CPU-GPU platform, with some benefits and drawbacks reported. This
work applies the findings of that work to propose a workflow for designing another HSA
implementation that uses an SoC-PFGA platform in an attempt to overcome the limitations
observed with the restrictive CPU-GPU platform. Another recent publication [38] proposes
an alternative representation of HSA using automata and formal languages theory. That
representation is the basis for the proposed workflow (Section 2.5), facilitating the proper
design process of the real-time video tracking embedded system (Section 3.1).

2.3.1. The Evolution Strategy of HSA

The differences between the HSA (µ + λ)-ES and the canonical (µ + λ)-ES are mainly
related to the generation of the λ offspring population. HSA replaces the ordinary mutation
operator of (µ + λ)-ES, which is applied by adding normally distributed random values to
the individual. Instead, HSA uses the polynomial mutation operator [55]. Another variation
is that the common (µ + λ)-ES does not use any crossover operator, whereas HSA uses the
simulated binary crossover (SBX) operator [57]. Futhermore, to avoid local optimam HSA
randomly generates some of the members of the λ population. These three subdivisions of
the λ population are called α or mutant sons, β or crossover sons, and γ or random sons. To
respect the common ES terminology α, β, and γ are also the scalar variables that determine
the size of the populations in such a manner that λ = α + β + γ. Depending on the specific
problem, HSA may use the sharing operator of Goldberg and Richardson [58] that causes
the effect of dispersion on the population instead of clustering. This is useful whenever
a diverse population is required. It is important to mention that the populations of the
exploration phase are labeled µe, λe, αe, βe, and γe. The foraging populations have their
own names, µ f , λ f , α f , β f , and γ f , to be discernible.

Sensors 2022, 22, 1280 7 of 26

Initialize(μe)

Evaluate(μe)

Generate(λe)

Evaluate(λe)

Sharing(μe, λe)

μ best(μe, λe)

Stop
condition

true

false

All sites
visited

Initialize(μfi) Stop
condition

Evaluate(μfi)

false

true

Generate(λfi)

Evaluate(λfi)

true

Sharing(μfi, λfi)

μ best(μfi, λfi)

false

Recruitment

Exploration

Foraging

Figure 1. HSA has three main phases: exploration, recruitment, and foraging. The exploration and for-
aging phases are based on the canonical (µ + λ)-ES but implement different evolutionary operators.

2.3.2. Polynomial Mutation

This kind of mutation operator applies variation using polynomial distribution per-
turbation [59]. The mutation operation modifies a parent solution xa to generate a child
solution xb. Individuals are k-dimensional vectors, and the i-th dimension has a lower
boundary Li and an upper boundary Ui. Equations (1) and (2) are used to get the i-th compo-
nent of individual xb, where Pδ is obtained using a uniformly distributed random variable
ρ that ranges from 0 to 1, and a user-defined non-negative value ηm that characterizes the
probability distribution function.

xbi = xai + (Ui − Li) · Pδ (1)

Pδ =

{
(2ρ)1/(ηm+1) − 1 if ρ < 0.5
1− [2(1− ρ)]1/(ηm+1) otherwise

(2)

2.3.3. Simulated Binary Crossover

The SBX operator [57] emulates the working principle of the single-point crossover
operator on binary strings used by genetic algorithms. This operator receives two parent so-
lutions xa and xb and uses them to create two children solutions xc and xd. Equations (3)–(5)

Sensors 2022, 22, 1280 8 of 26

are used to generate the i-th component of k-dimensional vectors xc and xd, where Pβ de-
pends on a uniformly distributed random variable ρ that ranges from 0 to 1, and on a
user-defined non-negative value ηc that characterizes the probability distribution function.

xci = 0.5[(1 + Pβ)xai + (1− Pβ)xbi] (3)

xdi = 0.5[(1− Pβ)xai + (1 + Pβ)xbi] (4)

Pβ =

(2ρ)1/(ηc+1) if ρ < 0.5(

1
2(1− ρ)

)1/(ηc+1)
otherwise

(5)

2.3.4. Recruitment Distribution

Equation (6) is used during the recruitment phase to distribute the individuals of the
µ f population into smaller groups µ f i of size ri each. There is one group of ri individuals
for every individual xi of the µe population. The size ri depends on the fitness value f (xi)
of the individual xi and the total sum of the fitness values of all the µe individuals. The
individual xi that has the greatest f (xi) will also have the greatest value of ri. Metaphori-
cally, the fittest exploration individual gets to recruit the largest number of peers from the
foraging population to help in the exploitation of the resource that was found during the
exploration phase.

ri =

⌊
f (xi)

∑
µe
j=1 f (xj)

× µ f

⌋
(6)

2.3.5. Zero-Mean Normalized Cross-Correlation as Fitness Function

Zero-mean normalized cross-correlation (ZNCC) is a method used to determine how
similar two ordered groupings of data are. This similarity grade is expressed as a scalar real
number ranging from −1 to 1 [60]. If the ZNCC function returns 0, it signifies that there is
no correlation or resemblance between the two sets of data. There is a degree of correlation
or resemblance between the compared groups of data if the absolute ZNCC value is larger
than zero. Negative ZNCC values, on the other hand, show that the relationship between
the two sets of data is inversely proportional.

ZNCC is a widely used method in computer vision problems, and there have been
recent efforts to simplify or speed up its calculation [61]. If a region within an image file is
translated as a two-dimensional array of values, ZNCC can be utilized for video tracking
or other computer vision applications. These values of the two-dimensional arrays are
commonly grayscale pixels stored as integers ranging from 0 to 255 (8-bits). In this work,
ZNCC is used as the HSA fitness function because ZNCC remains a reliable, deterministic,
non-trained legacy tracker proposal that has been successfully interpreted as an objective
function as it has a well-defined domain that can be translated into a search space [38].

Equations (7) through (12) detail the calculation of ZNCC, where (p, q) is a spatial
coordinate within a given image frame I; t is an image template; Iw × Ih is the size of I; t̄ is
the mean of t; (u, v) is a spatial coordinate inside t with top left corner (0, 0) and bottom
right corner (tw − 1, th − 1); Ī(p, q) is the mean of a region of I that has the same size as t;
ZCC is the zero mean cross correlation of an image patch; and SSE is the sum of squared
errors of an image patch. ZNCC values of different coordinates are compared to find the
spatial coordinate (p, q), where a given image template t is most certainly located within an
image frame I. The original search approach is exhaustive, meaning the full search space is

Sensors 2022, 22, 1280 9 of 26

thoroughly inspected. However, the well-defined equations can be repurposed as a fitness
function for two-dimensional individuals.

t̄ =
1

tw × th
·

tw−1

∑
u=0

th−1

∑
v=0

t(u, v) (7)

Ī(p, q) =
1

tw × th
·

tw−1

∑
u=0

th−1

∑
v=0

I(u + p, v + q) (8)

ZCC(p, q) =
tw−1

∑
u=0

th−1

∑
v=0

[I(u + p, v + q)− Ī(p, q)][t(u, v)− t̄] (9)

SSEI(p, q) =
tw−1

∑
u=0

th−1

∑
v=0

[I(u + p, v + q)− Ī(p, q)]2 (10)

SSEt =
tw−1

∑
u=0

th−1

∑
v=0

[t(u, v)− t̄]2 (11)

ZNCC(p, q) =
ZCC(p, q)√

SSEI(p, q) · SSEt
(12)

2.4. Evaluation with the Amsterdam Library of Ordinary Videos

The Amsterdam Library of Ordinary Videos (ALOV) was presented by Smeulders et al. [37]
in order to allow the evaluation and comparison of video trackers. Three hundred and four-
teen video sequences with annotated initialization and ground-truth data are considered
part of this benchmark, many of which are also present on other benchmarks. These video
sequences are classified into 14 different categories, each with its own set of problems for
video trackers. Because of the large number and variety of video sequences, this benchmark
is a suitable choice to test the robustness of video trackers. Another appealing feature
of the ALOV benchmark is its concentration on common video sequences generated by
ordinary camera equipment in real-world situations. Frequently, the video sequences of
other benchmarks contain alternative pixel data, including thermal, infrared, or depth
information, which present greater levels of challenge [3].

A video tracker’s output is typically a rectangular area that encompasses the suspected
position of the object of interest; this area is referred to as the video tracker’s truth. However,
the video tracker’s truth does not have to be the actual location of the object of interest;
that area is referred to as the ground truth. The amount of accuracy of the video tracker
response can be geometrically translated as IoU = intersection area÷ union area if the
intersection and union areas of truth and ground truth can be measured. This notion of
Intersection over Union (IoU) is utilized by many video tracking benchmarks, including
the ALOV benchmark. A higher IoU value indicates greater accuracy, with a possible range
from 0 to 1.

The ALOV benchmark recommends the detection of true positives and false positives
in the evaluation process. This detection is based on a simple criterion, when IoU ≥ 0.5,
the truth of a video tracker is considered a true positive. Given that this criterion evaluates
only one frame of a given video sequence, another metric, the F-score, is used to measure
the outcome of the entire video. The F-score F is calculated using Equation (13), where
Fa is the number of true positives, Fb is the count of false positives, and Fc is the total
of false negatives. Another ALOV benchmark recommendation is to use survival curve
plots [62] to allow a simple visual inspection of the general trends observed in the F-score
measurements of many video trackers with multiple video sequences. This same accuracy
evaluation method is used in this paper.

F =
Fa

Fa +
1
2 (Fb + Fc)

(13)

Sensors 2022, 22, 1280 10 of 26

2.5. Proposed Workflow

When a designer proposes cooperating hardware and software components in a sin-
gle design effort, a hardware/software co-design methodology can be used [23]. This
methodology arises from the radically different tasks of designing and optimizing hard-
ware and software. Hardware developers are taught to think in terms of parallel space
decomposition, whereas software developers are taught to think in terms of sequential
time decomposition. However, the terms hardware and software can mean different things
in different contexts. As a result, some authors redefine the co-design methodology as
application partitioning and design using fixed and flexible components [39]. The used
co-design methodology combines traditional top-down and bottom-up methodologies
because both are used at some point during the design process. A top-down approach
starts with a high-level view of the application and then investigates how to improve
its performance by utilizing specific resources [63]. On the other hand, in a bottom-up
approach, the developer begins with the resources and investigates how to integrate them
into a working system as efficiently as possible [64].

As previously stated in this paper, SoC-FPGA platforms are composed of two high-
level components that are physically located on the same chip: the PL, which allows the
emulation of a described electronic design; and the PS, which contains a dual-core ARM
Cortex-A9 processor. Depending on the expected gain when parallelizing, we decided to
perform certain HSA tasks in the PS and others in the PL in this case. The automaton (de-
picted in Figure 2a) and computational complexity analysis of Perez-Cham et al. [38] were
critical tools that allowed the identification of the HSA meta-heuristic states or phases that
benefit the most from hardware acceleration. Our conclusion was that the fitness function
evaluation (ZNCC) is the part that incurs the most costs and has the greatest potential to be
intuitively parallelized. As a result, this work proposes that the PS should perform HSA
tasks related to intelligent coordinated decision making, whereas the PL should focus on
ZNCC evaluation, corresponding to the exploration and foraging states (Figure 2b).

External
memory

SoC-FPGA

PL

PS
HSA

(decision making)

ZNCC computation
(hardware accelerated)

AXI

s0: Inactivity
s1: Exploration

s2: Successful Exploration
s3: Recruitment

s4: Foraging
s5: Successful Foraging

control-intensive

data-intensive

positive feedback (1)
negative feedback (0)

s0 s1

s2

s3s4

s5

a) The automaton of the HSA meta-heuristic b) System level abstraction, division of tasks between PS and PL

Figure 2. Proposed workflow to design the real-time video tracking system. (a) The automaton of
Perez-Cham et al. [38] that formally describes the HSA meta-heuristic in an abstract non-architecture-
specific manner. (b) System-level abstraction based on the HSA automaton that shows the division of
tasks between PS and PL. The PS is in charge of control-intensive operations that are conducted by
the HSA meta-heuristic (states s0, s2, s3 and s5), whereas the PL focuses on the acceleration of ZNCC
via concurrency and parallel processing (states s1 and s4).

Following the establishment of a division of labor between PS and PL, the next priority
is to design a hardware module capable of computing ZNCC based on input data, which
consists of two small image patches. Given the ZNCC computation’s sequential nature,
this module should include a custom control unit and a custom datapath that performs the
necessary arithmetic and logic operations while utilizing hardware concurrency whenever
possible. Parallelization should also be possible through a coordinated array of ZNCC
computation modules, each of which is dedicated to performing the same operations but on

Sensors 2022, 22, 1280 11 of 26

different input data (SIMD; single instruction, multiple data). The iterative design process
for this ZNCC module employs both top-down and bottom-up approaches, adapting both
the algebraic interpretation to the system’s basic low-level components and vice versa.
An abstract representation of the array of ZNCC modules is illustrated in Figure 3.

Finally, communication between PS and PL should be treated as a distinct issue. To
solve this problem, a thorough understanding of Xilinx’s AXI Bus solution is required.
On SoC-FPGA platforms, communication between CPU and FPGA can be implemented
in a variety of ways, but direct memory access (DMA) is best suited for data-intensive
applications. When using DMA, the data transfer is handled by specialized hardware,
whereas normal memory access is handled by the CPU [20]. This has two benefits: it
speeds up the data transfer and frees up the CPU for other tasks. AXI CDMA is the most
suitable solution and is thus used to communicate between the PS and PL components in
the proposed system design. A detailed description of the implementation and operation
of AXI CDMA is presented in Section 2.6.

PLZNCC module

ZNCC module

ZNCC module

ZNCC CU
ZNCC

Datapath

ZNCC
Datapath

ZNCC
Datapath

Figure 3. An illustration of how several ZNCC modules perform parallel processing, taking advan-
tage of the capabilities of the PL. Each ZNCC module requires a datapath to perform operations
simultaneously on different sets of input data, coordinated by a common control unit that oversees
the execution of tasks following the SIMD parallel model.

The workflow described in this section served to guide the design process of the pro-
posed embedded system, which is detailed in depth in the following section. As the niche is
still being researched, the authors hope that other researchers will find this workflow proposal
useful in proposing similar systems based on meta-heuristics and SoC-FPGA platforms.

2.6. Processing System and AXI Communication

The dual-core processor of the Zynq-7000 SoC can be programmed directly using
assembly or low-level languages but this project uses a lightweight Linux operating system
installation to allow the PS to serve as a development environment, along with compilation
tools and useful software libraries such as OpenCV to easily manipulate image files. Fur-
thermore, the operating system builds a logic layer that allows the use of board interfaces
such as UART, USB, Ethernet, etc. A program running on Linux can interact with the physi-
cal memory that is directly used by the computer hardware, which is different to the virtual
memory that is commonly used by programs. The interaction of a program with physical
device memory is achieved through a file that is an image of the main memory, which can
be located following the path /dev/mem, using the common root folder structure. In this
case, the /dev/mem file is used to read and write data that are also manipulated by the
PL, creating a bridge between PS and PL. AXI defines a protocol where several master and
slave components interact using parallel, high-performance, synchronous, high-frequency

Sensors 2022, 22, 1280 12 of 26

transfer operations. Xilinx has adopted AXI4, AXI4-Lite, and AXI4-Stream [35] as the main
communication interfaces that are used by their products. The PS can act as an AXI master
or an AXI slave depending on the specific AXI peripherals that are implemented using the
logic fabric.

As a reminder, the PS will focus on the activities of HSA that determine the intelligent
behavior of the system, whereas the PL will focus on the acceleration of the fitness func-
tion (ZNCC). Communication between PS and PL is carried out through AXI interfaces of
two different types: AXI GPIO and AXI CDMA. The simplest Xilinx AXI peripheral is the
AXI GPIO (general purpose input/output) that directly reads or writes a register of 32 bits
that are directly connected to physical hardware such as an output LED array, an input
switch array, or other circuits implemented on the PL. AXI GPIO is used to send a 32-bit
configuration word that is used to control the system design that is implemented using the
PL. This configuration word is the length of the array of values that is sent as input. If the
length value is zero, a global reset signal is fired.

ALOV image files are stored in JPEG format; however, they are read and converted
to a one-dimensional array of grayscale unsigned integer values of 8 bits using software.
These values are then transferred from the PS to the PL and stored using standard BRAM
resources. The word size of the used BRAM is 32 bits, meaning that four grayscale values
(of 1 byte each) can be written or read at once. The maximum capacity of BRAM resources
is 8192 bytes (213) or 8 KiB and the data transfer is made using AXI CDMA blocks that read
the image values from the PS and write them to the corresponding BRAM resource in the
PL. The AXI CDMA (central DMA) peripheral can act as the PS AXI master, reading data
from PS memory and writing it to other AXI slave peripherals’ memories. The request to
perform a data transfer contains the following data: clear/work/standby configuration
word (32 bits), starting source address in the memory device (32 bits), starting destiny
address in the BRAM implemented on the PL (32 bits), and the count of bytes to be
transferred (32 bits). When the AXI CDMA block receives those simple orders, the PS acts
as the master device. However, once the AXI CDMA block starts working, it acts as the
master device with the permission to read PS device memory directly. Since AXI CDMA is
only dedicated to transferring data, this hardware is noticeably faster than the PS itself.

3. Results

This section considers the final proposed embedded system design as a result, since it
was generated through an iterative design process using the general guidelines that were
established in the proposed workflow. The experimental results that validate the proposed
system are also presented in this section. Some opportunity areas for improvement have
been identified and are discussed below in the Discussion and Conclusions sections.

3.1. Proposed Embedded System Design

This section explains how the proposed embedded system is designed using the
workflow detailed above, and also how it works in a modular way. The following sections
detail the hardware design implemented using the PL component. As a reminder, the PL
focuses on the evaluation of ZNCC, given that it was previously identified as the bottle-
neck, because it is the most computationally expensive task. A custom digital system
design generally requires two top-level elements: the control unit and the datapath [65]. In
order to facilitate the description of the proposed system, the description starts with the
datapath, which is composed of elemental blocks that were created by combining the fixed
components described in the previous sections. The average, SSE, and RSSE blocks are the
primary blocks used to perform arithmetic and logic operations. These modules perform
the necessary operations, but the sequential flow is controlled by finite state machines [66]
implemented as control units. Multiple instances of these components can be implemented,
allowing several ZNCC values to be computed at the same time. The main control unit,
ZNCC CU (Figure 4) and the accumulation control Unit, CU (Figure 5) are defined below
to explain the interrelations and data dependencies between the datapath elemental blocks.

Sensors 2022, 22, 1280 13 of 26

s0 s1 s2 s3 s4 s5 s6 s7

A0

A1

A2

s0: clear accumulators
s1: get averages

s2: save averages
s3: clear error accumulators

s4: get SSE and ZCC
s5: get ZNCC
s6: save ZNCC

s7: standby

A0: average ready
A1: SSE ready

A2: ZNCC ready

Figure 4. A visualization of the Moore machine of the ZNCC CU. This CU supervises the custom
ZNCC module’s proper functioning. It has control over another CU that manages accumulation and
datapath elemental blocks.

s0 s1 s2 s3

A0A1
s0: check stop condition
s1: get squares

s2: accumulate
s3: increment index

A0: stop condition false
A1: stop condition true

Figure 5. A Moore machine illustration describing the behavior of the accumulation CU. Summations
constitute the vast majority of the sequential operations required to compute ZNCC, which is why
the flow of those operations should be managed by means of a separate control unit.

3.2. Datapath

This section explains the main building blocks of each ZNCC module’s datapath. The
first block, the average block (Figure 6a), was designed using the bottom-up approach to
calculate the average of a set of 8-bit positive integers. To adapt to the BRAM component that
is used to store the array of input data, four input bytes are received at once. The resulting
unsigned 8-bit integers are added using three simple binary adders. Then, using a hardwired
shift left of 8 bits, the sum is multiplied by 28. This sum is the input to the main sequential
accumulator, which follows the instructions of the accumulation CU (Figure 5) and ZNCC CU
(Figure 4). The accumulator’s 32-bit output is the dividend input of a sequential divider that
employs the Radix-2 algorithm. The length of the array of numbers is the divisor input of the
same divider block. The accumulation stop condition and the ZNCC CU provide the signal to
begin working on the division. When the division is finished, an output signal is generated,
which is the average done signal. The average is a 16-bit unsigned integer, stored in a register.
This block’s components are all implemented with the LUT programmable fabric.

The SSE block (Figure 6b) was also designed using the bottom-up approach. It takes
four input bytes and applies the same treatment as the average block to produce four 16-bit
unsigned integers. To obtain the individual error values, the previously obtained corre-
sponding average is substracted from each of the integer values. It is worth noting that
some of these blocks output error values (differences from the average), which can be used
by other blocks to calculate ZCC. The block that computes both SSE and ZCC has eight
17-bit multipliers, four of which are used to calculate squared errors and the remaining
four are used to cross multiply the errors. The accumulation CU (Figure 5) and the ZNCC
CU (Figure 4) control the 48-bit accumulators in both variations. The DSP48 components
are used to implement the multipliers, whereas the rest of the blocks are LUT-based.

Sensors 2022, 22, 1280 14 of 26

+

+

+ acc

byte 0

byte 1

byte 2

byte 3

÷num elem avg

Average block

× 2^8
𝑡 =

1

𝑡𝑤 × 𝑡ℎ
⋅ 𝑡 𝑢, 𝑣

𝑡ℎ−1

𝑣=0

𝑡𝑤−1

𝑢=0

𝐼 𝑝, 𝑞 =
1

𝑡𝑤 × 𝑡ℎ
⋅ 𝐼 𝑢 + 𝑝, 𝑣 + 𝑞

𝑡ℎ−1

𝑣=0

𝑡𝑤−1

𝑢=0

+

+

+ acc

byte 0 × 2^8

byte 1 × 2^8

×

×

byte 2 × 2^8 ×

byte 3 × 2^8 ×

+

+

+ acc

err 0

err 1

err 2

err 3

×

×

×

×

−

−

−

−

avg

SSE

ZCC

SSE block

ZCC × 2^16

SSE I

SSE t

zero

÷

÷
× CORDIC ZNCC

RSSE block

sign

0

1

SSE𝐼 𝑝, 𝑞 = 𝐼 𝑢 + 𝑝, 𝑣 + 𝑞 − 𝐼 𝑝, 𝑞 2

𝑡ℎ−1

𝑣=0

𝑡𝑤−1

𝑢=0

SSE𝑡 = 𝑡 𝑢, 𝑣 − 𝑡 2

𝑡ℎ−1

𝑣=0

𝑡𝑤−1

𝑢=0

ZCC 𝑝, 𝑞 = 𝐼 𝑢 + 𝑝, 𝑣 + 𝑞 − 𝐼 𝑝, 𝑞 𝑡 𝑢, 𝑣 − 𝑡

𝑡ℎ−1

𝑣=0

𝑡𝑤−1

𝑢=0

ZNCC 𝑝, 𝑞 =
ZCC 𝑝, 𝑞

SSE𝐼 𝑝, 𝑞
⋅

ZCC 𝑝, 𝑞

SSE𝑡

a)

b)

c)

Figure 6. This figure shows how the elemental blocks of the datapath are built from available soft
IP cores and basic low-level and logic arithmetic blocks, each of which is implemented using the
programmable fabric of the FPGA. (a) The average block; (b) the SSE block; (c) the RSSE block.

The RSSE block (Figure 6c) design process required a top-down approach. When
working with integers, some complications arise, such as the loss of significant figures
when the result of an operation has a decimal part. Floating-point operations, on the
other hand, consume a lot of resources and are avoided in this design. This is why this
system modifies ZNCC to always work with integers. The CORDIC block is used to
compute the square root of a truncated integer given a 48-bit input integer. This work
proposes using some simple algebraic manipulations to compute ZNCC more quickly
without losing detail in the results; this is an example of how the function adapts to the
available resources. Equation (14) demonstrates how to obtain the squared ZNCC value
by performing two parallel divisions and one multiplication. ZCC values can be either
positive or negative, which ultimately indicates if the detected correlation is inverse or not.
This work proposes ignoring negative ZCC values, which are considered undesirable in the
fitness function because they do not indicate a strong correlation of the compared image
patches. This adjustment in the ZNCC calculation avoids confusion in this application
and saves resources. A simple multiplexer is used to implement this, which outputs zero
whenever a negative ZCC value is detected (Figure 6c).

ZNCC2(p, q) =
ZCC(p, q) · ZCC(p, q)

SSEI(p, q) · SSEt
=

ZCC(p, q)
SSEI(p, q)

· ZCC(p, q)
SSEt

(14)

Sensors 2022, 22, 1280 15 of 26

To avoid the loss of resolution when the result is truncated, the ZCC input value of
this block is multiplied by 216 before calculating both divisions, as indicated in Figure 6c.
The quotients of the dividing blocks are the inputs to a 24-bit multiplier, which is used to
calculate the square of the ZNCC value, as indicated in Equation (14). A single CORDIC
block starts working on the square root of the squared ZNCC value when the dividers
emit a positive done signal. As a result, the output of the RSSE block is a positive integer
ranging from 0 to 216, or 0 to 10,000 in hexadecimal numbers, where a value of 216 means
total similarity between both input images (t and I). At least one of these blocks is required
for the system to function, but several can be used simultaneously to obtain a large number
of ZNCC values.

3.2.1. Control Units

The main control unit is called ZNCC CU (Figure 4); it is in charge of the overall
operation of the custom ZNCC module. It has authority over another CU that controls the
accumulation and the datapath elemental blocks. The Moore machine used to describe the
CU has eight states S = {s0, s1, s2, s3, s4, s5, s6, s7}. The tasks that are performed in each of
these states are: clear the average accumulators to start from zero (s0); work to get averages
using the accumulation CU (s1); save the averages to use them later (s2); clear the SSE and
ZCC accumulators to start from zero (s3); work to obtain the sums of squared error (SSE)
and zero-mean cross-correlation (ZCC) values using the accumulation CU (s4); work to
compute the ZNCC value (s5); save the ZNCC value (s6); stand by and wait for a hard
reset (s7). The input alphabet A has three input characters: a signal that indicates that the
average is ready (A0), a signal that indicates that the SSE is ready (A1), and a signal that
indicates that the ZNCC value is ready (A2).

Because several of the sequential operations required to calculate a ZNCC value are
summations, the accumulation CU (Figure 5) was created to control their sequential flow.
The same control unit is used to guide two different summation phases that are taken
into account in the overall flow provided by the ZNCC CU. This control unit is used to
perform sequential integer accumulation in two cases: to obtain sums that will be used to
calculate averages, and to obtain SSE and ZCC values. All averages can be evaluated in
parallel, but SSE and ZCC require averages to be computed first. As a result, the design
takes into account two accumulation phases. The Moore machine that describes this CU
has four states S = {s0, s1, s2, s3}, where s0 is the state in which the stop condition is
checked. Furthermore, during state s0, the CU waits for the BRAM to deliver the data that
are currently being requested. The data received from the BRAM are then multiplied to
obtain the square in state s1, if necessary. When the CU is in the s2 state, the next step
is to accumulate the value or the squared value. Finally, in state s3, a signal is provided
to indicate that the process’s index should be incremented. There are only two input
characters in the input alphabet A: the signal that indicates that the process is not complete
(A0) and the signal that indicates the opposite (A1). These input characters are used to
indicate when the stop condition has been met, which is that the index is greater than the
length of the array. In general terms, the behavior of this CU is very similar to a for-loop in
common programming.

3.2.2. System Overview

The average, SSE and RSSE blocks, which were discussed in previous sections, are the
main blocks utilized to conduct arithmetic and logic operations. These modules carry out
the necessary tasks, but the sequential flow is managed by finite state machines, which
are implemented as control units. The PL can be used to implement several instances of
these components, allowing multiple ZNCC values to be computed at the same time. The
designed system can be characterized as an SIMD device because it performs the same
actions on multiple sources of input data.

To compute four ZNCC values in parallel, the final iteration of the system (Figure 7)
implements five average blocks, five SSE blocks, and four RSSE blocks. With the specific

Sensors 2022, 22, 1280 16 of 26

SoC-FPGA that is employed (Zynq-7000 XC7Z045), a higher degree of parallelization is
theoretically conceivable as the full implemented solution makes use of 40% of the available
LUT programmable fabric and 7% of the DSP blocks. However, this version of the proposed
system fits the resources of all the SoC-FPGA devices that contain an FPGA that belongs
to the Xilinx Kintex-7 product family [48], making this design reproducible with a wider
variety of devices.

PL

AXI BRAM
results 0

RSSE
block I0

PS

AXI slaves of CDMA

AXI
GPIO

Number of
elements

AXI
CDMA

HSA

AXI
BRAM

template t

Device Memory

AXI slaves of PS

ZNCC
CU

Accumulation
CU

Average
block t

AXI BRAM
ROI of

Image I0

SSE
block t

SSE
block I0

AXI BRAM
results 0

RSSE
block I0

SSE
block I0

AXI BRAM
ROI of

Image I0

4
4

4

4

4

4

4

4

4 4

4

Control Units

Datapath

Average
block I0Average

block I0

Figure 7. An illustration of the final interconnection of the ZNCC processing unit’s top-level blocks.
Average blocks, SSE blocks, RSSE blocks, the accumulation CU, and the ZNCC CU are the key blocks
that were implemented utilizing the PL. The communication between PS and PL is implemented using
AXI, where CDMA is used to transfer image data and GPIO is used to transfer simple control data.

3.3. Experiments

A full description of the system that was used in the reported experiments is provided
in Section 3.1; the top-level overview is illustrated in Figure 7. As a reminder, this system is
built upon the ZC706 Evaluation Board that contains a Zynq-7000 SoC-FPGA, specifically
a XC7Z045 device. Most experiments are based on the data and methods of the ALOV
benchmark or certain selected video sequences; the description of how ALOV is used for
evaluation can be found in Section 2.4.

3.3.1. Calibration Test with a Static Image

By definition, real numbers ranging from−1 to 1 make up the range of values returned
by the ZNCC function (Section 2.3.5). However, the custom hardware design proposed in

Sensors 2022, 22, 1280 17 of 26

this work modifies this range to make better use of the hardware resources. The following
changes have been made: negative numbers are now ignored, the range has been adapted
from 0 to 216, and the values are now discrete integer numbers; in other words, the result
values are binarized. This section describes a simple test intended to confirm that the
modifications have no negative effects on the accuracy of the ZNCC tracker.

The custom ZNCC unit was used in this test to perform the exhaustive search of
a simple template within the same image frame where it was originally located. Figure 8a
depicts the static image that was used. Given that the only point with 100 percent similarity
is the same location as the initial object, the test is deemed successful. A closer look at the
ZNCC values (Figure 8b) reveals that they are qualitatively correct because other similar
instances of the object are also marked as bright spots.

a) b)

Figure 8. Visualization of the results of the calibration test. (a) A grayscale image with an instance of
an ace of clover (object of interest) contained within a red bounding box. (b) A graphical represen-
tation of ZNCC values, with brighter spots representing the spatial location of the highest ZNCC
values where similar objects are spotted.

3.3.2. Testing the SoC-FPGA ZNCC-Based System with One Video Using
Exhaustive Search

Considering that the previous test demonstrated that the proposed ZNCC unit can
find an object with 100% similarity, this test aims to confirm that the video tracking re-
sults are as accurate as those obtained with the plain CPU-GPU heterogeneous system of
Perez-Cham et al. [34], which is also exhaustive. Due to the high time-costs associated with
an exhaustive search, this test employed only one video. The chosen video is the twenty-
third video from the ALOV benchmark’s Light category, which follows a hamster ball as
it rolls on the scene’s floor (Figure 9). The obtained F-score was 0.975, which is identical
to the result obtained using the CPU-GPU heterogeneous system. This demonstrates that
the proposed ZNCC unit can identify a visually similar object even if the similarity is not
perfect in the ZNCC scale.

Nevertheless, it was observed that when using a GPU, the execution times of the ex-
haustive search were reduced. The CPU-GPU heterogeneous system took 0.0503 s per frame
on average to process this video, whereas the SoC-FPGA with the proposed configuration
had a time-cost of 5.0004 s per frame. The superiority of the CPU-GPU heterogeneous system
is expected in this setting, given that the GPU is the ideal architecture for a naive exhaustive
search and that the GPU’s full capacity is used in that case. The following examinations
concentrate on the effects of the HSA meta-heuristic.

Sensors 2022, 22, 1280 18 of 26

Figure 9. This figure displays some of the video frames that show how the tracker follows the object
of interest (hamster ball). This test was made using the proposed embedded system to determine the
feasibility of using it to accelerate an exhaustive search.

3.3.3. CPU-GPU versus SoC-FPGA Using HSA

The SoC-FPGA heterogeneous system was used to process 309 ALOV benchmark
videos (Section 2.4). As explained in Section 3.1, the PL computes ZNCC to be used as a fit-
ness function, and the PS is in charge of the HSA meta-heuristic. The accuracy comparison
using the F-score (Figure 10a,b) shows that there is only a minor difference between using
the SoC-FPGA heterogeneous system and the CPU-GPU heterogeneous system. However,
the difference is only 6.6 percent of the total standard deviation, which is insignificant.
A Student’s t-test of two samples was used to compare the mean accuracy of CPU-GPU
against SoC-FPGA. The resulting p-value of 41.19% (considerably greater than 5%) confirms
the null hypothesis (means are the same). This indicates that the results of the implemented
video tracking embedded system do not show any significant differences in accuracy.

The work of Perez-Cham et al. [34] provides a computational complexity analysis that
provides evidence that the size of the object of interest in pixels has a significant effect on
time-costs whenever HSA is used; this fact influences the following statements about the
observed time-costs. In terms of time-costs, the SoC-FPGA outperformed the CPU-GPU
(Figure 10c,d). The average time per frame (measured in seconds per frame) obtained
with the SoC-FPGA was 0.1697, which is less than the average of 0.3729 obtained with
the CPU-GPU heterogeneous system. Furthermore, the standard deviation of the time
per frame measurements obtained using the SoC-FPGA was 0.1199, whereas the standard
deviation of the CPU-GPU heterogeneous system was 0.3461, indicating that the SoC-FPGA
was approximately 2.8 times more stable.

Using the SoC-FPGA increases the speed of this video tracker proposal and enables
real-time processing with specific frame sizes (Figure 10e). Thirty-two videos (10.19%)
from the ALOV dataset were processed in real-time; the videos were those where the
size of the template was less than 3800 pixels. As a reminder, 30 frames per second was
previously defined as the cutting edge of real-time video tracking, at least for this work.
Furthermore, the SoC-FPGA consumed less power (Figure 10f). According to the hardware
specifications, the CPU-GPU heterogeneous system consumed approximately 40 times
more power than the SoC-FPGA heterogeneous system. This suggests that the use of
an SoC-FPGA heterogeneous system combined with HSA is an efficient way to accelerate
a video tracker.

Sensors 2022, 22, 1280 19 of 26

e) Real-time SoC-FPGA versus CPU-GPU f) Power Consumption SoC-FPGA versus CPU-GPU

c) Time cost survival curves SoC-FPGA versus CPU-GPU

a) F-score survival curves SoC-FPGA versus CPU-GPU b) F-score box and whiskers plots SoC-FPGA versus CPU-GPU

d) Time cost box and whiskers plots SoC-FPGA versus CPU-GPU

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

F-
sc

or
e

Amount of videos

SoC-FPGA CPU-GPU

F-
sc

or
e

0

0.1

0.2
0.3

0.4
0.5

0.6

0.7
0.8

0.9
1

SoC-FPGA

CPU-GPU

0.01

0.1

1

10

0 50 100 150 200 250 300

S
ec

on
ds

pe
r f

ra
m

e
(l

og
 s

ca
le

)

Amount of videos

SoC-FPGA CPU-GPU

S
ec

on
ds

 p
er

 f
ra

m
e

0

0.1

0.2
0.3

0.4
0.5

0.6

0.7
0.8

0.9
1

SoC-FPGA

CPU-GPU

0
10
20
30
40
50
60

0 50 100 150 200

F
ra

m
es

 p
er

 s
ec

on
d

Amount of videos

SoC-FPGA CPU-GPU REAL-TIME

1 10 100 1000

SoC-FPGA

PL

PS

CPU-GPU

GPU

CPU

Watts (log scale)

5 200

Figure 10. The compared video tracking systems use the same similarity measure (ZNCC) and the
same meta-heuristic (HSA). The main difference between these proposals is the platform used to build
the systems (SoC-FPGA or CPU-GPU). (a) SoC-FPGA versus CPU-GPU in terms of accuracy using
survival curves. (b) SoC-FPGA versus CPU-GPU in terms of accuracy using box-and-whisker plots.
(c) SoC-FPGA versus CPU-GPU in terms of time-costs using survival curves. (d) SoC-FPGA versus
CPU-GPU in terms of time-costs using box-and-whisker plots. (e) SoC-FPGA versus CPU-GPU in
terms of real-time video tracking. (f) SoC-FPGA versus CPU-GPU in terms of power consumption.

3.3.4. Comparison Against State-of-the-Art Trackers in Terms of Time-Costs

The experimental results of Perez-Cham et al. [34] provide evidence that the measured
accuracy of the CPU-GPU system is no match for recent state-of-the-art video tracker
proposals such as Struck and SiamMask. This is related to the underlying similarity
measure that is used (ZNCC). However, it was important for the development of this work
to maintain a certain degree of complexity as the integration of SoC-FPGA and HSA was
not a trivial matter. Additionally, the simplicity of using ZNCC as a similarity measure
allowed a useful and thorough cross-platform study, which was already expounded in
the previous section. This has been the primary goal of the ongoing research project that
envisions a unified methodology to integrate meta-heuristics and SoC-FPGA platforms,
which remains an unexplored field.

With that in mind, it would be redundant to report that the low-power embedded
system design for real-time video tracking presented in this work is not a suitable com-
petitor in terms of accuracy, as it was demonstrated that the CPU-GPU system and the
SoC-FPGA system deliver the same levels of accuracy. However, it should be noted that
the new proposal is in fact close to becoming a strong contender in terms of time-costs, as
shown in Figure 11. It should be noted that the time-costs of the original proposal based on
CPU-GPU are substantially higher than those of the newer SoC-FPGA-based proposal and
this trend should continue. Another important factor is power consumption and portability.
Although Struck and SiamMask deliver outstanding accuracy, it is only possible to meet

Sensors 2022, 22, 1280 20 of 26

their energy and processing demands by using recent high-end mainstream CPU-GPU
devices and computers.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 s
ec

on
ds

 p
er

 f
ra

m
e

SoC-FPGA+HSA CPU-GPU+HSA Struck SiamMask
~5 W ~235 W ~74 W ~235 W

Figure 11. Comparison of the SoC-FPGA system against state-of-the-art trackers in terms of time-
costs. The results of the CPU-GPU system are shown for contrast. Labels provide information about
the estimated power consumption of the hardware that is typically used in each proposal. Note that
the SoC-FPGA system is the only proposal that meets low-energy requirements.

4. Discussion

The scope of this project was to demonstrate that it is possible to develop an embedded
solution for real-time video tracking with low power consumption and that it obtains
reliable results, combining the benefits of the SoC-FPGA platforms and bioinspired meta-
heuristics, which have been described in detail in previous sections of this work. The
proposed system design uses 40% of the LUT (87,440) and 7% of the DSP48 (63) resources
that are available on the ZC706 evaluation board, which allows scalability and portability,
using similar platforms. In future works, we will consider redesigning the system to fit the
full extension of resources of the ZC706, focusing on different aspects such as higher speed
or even higher precision. Table 2 shows the properties of Zynq-7000 SoC-FPGA devices
that include a Kintex-7 FPGA [48], to illustrate the posibility of portability and scalability
employing different SoC-FPGA evaluation boards.

Table 2. Properties of Zynq-7000 SoC-FPGA devices that include a Kintex-7 FPGA

Device Name Part Number LUT Count DSP Slices Conforms to
System Design

Z-7030 XC7Z030 78,600 400 Yes **
Z-7035 XC7Z035 171,900 900 Yes
Z-7045 * XC7Z045 218,600 900 Yes
Z-7100 XC7Z100 277,400 2020 Yes

* This is the specific SoC-FPGA that was used in the experiments. ** The current design uses an LUT count of
87,440 and 63 DSP slices; an adaptation using more DSP slices instead of LUT components is feasible due to the
excess of unused DSP slices.

A common trend in embedded system design that employs FPGA technology is to
select relatively simple computer vision algorithms, given the difficulty of translating them
to hardware. A ZNCC tracker was selected to be used in this work because it has a low
complexity, which allows a more feasible and functional design and implementation in the
SoC-FPGA platform. As explained in Section 3.3.4, ZNCC was fundamental to this study
due to its low complexity, which permitted cross-platform testing. Additionally, ZNCC
reliably detects similarity and remains a feasible building block for mature video tracking
solutions. Moreover, the ALOV benchmark [37] which was used initially considered ZNCC
one of the contenders, given that it is a legacy tracker, and this allowed us to compare
it against the original CPU approach. The accuracy levels that have been attained using
recent video trackers such as Struck [6] and SiamMask [8] are superior to that of ZNCC.

Sensors 2022, 22, 1280 21 of 26

However, the proposed system obtains an average real-time result similar to those obtained
for these state-of-the-art trackers, but with the advantages of lower power consumption
and portability.

The precise definition of real-time image processing varies from 10 to 240 frames per
second [15,67]. However, this work considers 30 frames per second as the minimum speed
of a real-time tracking system as this measure is based on human visual perception. The
speed of 30 fps can be achieved using the combination of HSA and SoC-FPGA, as shown in
Figures 10b and 11. However, it is only possible when the object of interest is contained on
a rectangle with a size of 3800 pixels or lower. The only relationship we observed between
videos that were processed in real-time and their category is that these videos were those
in which the object was relatively small compared to the size of the frame, particularly in
surveillance cameras. In embedded system design, it is very important to focus efforts on
a well-defined specific application. According to the evaluation carried out with the ALOV
benchmark, we concluded that the ideal use of the proposed system is in low-resolution
videos used for surveillance, where it is intended to follow people or vehicles which have
a small size with respect to the size of the frame, which is observed when the camera it is
found at high points or far away.

The CPU-GPU architecture has some limitations, including the high time-costs of
communication, the limited coordination of GPU components, and the fixed nature of the
CPU-GPU architecture. The implemented solution based on CPU-GPU and HSA used
only a fraction of the available GPU cores, and most of them remained idle. The CPU-GPU
heterogeneous system was created to accelerate massive rendering operations. According to
the experiments presented in this work, CPU-GPU is better suited to performing exhaustive
searches. The SoC-FPGA allows a greater control of the datapath and control units to
perform image multiprocessing. The modules of the atomic operations may be used as
required by the specific problem. In the case of the fitness function (ZNCC), the problem
was reassessed to fit the available resources in a bottom-up fashion. One of the few
disadvantages of using SoC-FPGA is that a complex iterative co-design methodology is
required, which demands a deep understanding of different computer architectures (dual
core ARM, FPGA, IP cores, DPS, etc.) to find an optimal design that is effective, energy-
efficient, and which requires less computational resources and processing time. However,
introducing HSA simplifies the hardware design process. Given that HSA does not explore
the full search space, it is not strictly necessary to transfer the full frame from PS to PL. In
that sense, HSA reduces the demand on memory resources.

5. Conclusions

In summary, this work presented the novel design, implementation, and evaluation
of a low-power embedded system based on an SoC-FPGA platform and the HSA meta-
heuristic for real-time video tracking. The main conclusions of this work are listed below.

1. An original workflow was proposed for the design of a low-power embedded system
for real-time video tracking, based on an automaton that describes the behavior
of a honeybee searching for food [38] and an SoC-FPGA platform. The workflow
described in Section 2.5 served to guide the design process of the proposed embedded
system. As the niche is still being researched, we hope that other researchers will
find this workflow proposal useful in order to suggest similar systems based on
meta-heuristics and SoC-FPGA platforms. It is useful to identify which parts of the
meta-heuristic are control-intensive and which ones are data-intensive to identify the
labors of PS and PL.

2. A novel design, implementation, and evaluation of a low-power embedded sys-
tem that performs real-time video tracking by combining HSA meta-heuristics and
an SoC-FPGA platform was presented. Several benefits were observed using HSA
in combination with SoC-FPGA for video tracking. The SoC-FPGA allows a greater
control of the modules of the atomic operations. In the case of the fitness function
(ZNCC), the problem was reassessed to fit the available resources in a bottom-up fash-

Sensors 2022, 22, 1280 22 of 26

ion. The time-costs are lower using an SoC-FPGA, which makes real-time processing
possible. Furthermore, SoC-FPGA makes it possible to process a greater frame size in
real time. Additionally, SoC-FPGA allows noticeably lower power consumption than
CPU-GPU platforms and a greater portability. The experiments demonstrated that
HSA can successfully be used to accelerate ZNCC for video tracking using SoC-FPGA
without negative effects on accuracy.

3. The comparison of our SoC-FPGA HSA-based proposal with a CPU-GPU HSA-based
video tracking system [34] in terms of speed, energy consumption, accuracy, as well
as portability, allowed the identification of the limitations of the CPU-GPU platform
in this context. These limitations were the high time-costs of communication, the
limited coordination of GPU components, and the fixed nature of the CPU-GPU archi-
tecture. We recommend using CPU-GPU over SoC-FPGA only if the problem requires
an exhaustive search and the solution does not require portability and consider using
a meta-heuristic over a GPU whenever possible. The greatest reduction in time-costs
was observed when HSA was used in combination with SoC-FPGA.The results of
the evaluation provide evidence that the combination of SoC-FPGA platforms and
meta-heuristics is promising as it enables the creation of portable, energy efficient,
fast, and effective systems.

4. The results of the comparison with other state-of-the-art video trackers (Struck and
SiamMask) showed that our proposal has the advantages of lower power consump-
tion and portability, while maintaining similar processing speeds. On the other hand,
Struck and SiamMask deliver outstanding accuracy, but they require high-end main-
stream CPU-GPU devices and computers with high energy consumption. In this
sense, the proposals of this work demonstrate that studying how to properly exploit
the efficiency of the SoC-FPGA platforms in combination with meta-heuristics will
bring substantial benefits to video tracking, other computer vision applications, and
computational optimization in general.

Taking those findings into account, we propose the following future work to describe
the direction of our research, considering the corresponding novel design, implementation,
and evaluation tasks.

1. To improve the system that was designed to use the full capacity of the SoC-FPGA.
The current proposal uses 40% of the LUT components, and 7% of the available DSP
blocks. Additionally, we aim to exploit the possibility of reconfiguration, which allows
the designer to propose many different designs that solve the same problem but with
varying degrees of sequential and parallel behavior.

2. To verify whether HSA may be implemented using the PL of the SoC-FPGA. The
current proposal uses the PL to compute the fitness function, but the general decision-
making process is executed using the PS. Further experiments should be performed
to find the advantages and disadvantages of using the PL to run HSA.

3. To use other fitness functions to replace or complement ZNCC. The canonical ZNCC
tracker is currently not a viable contender against state-of-the-art trackers in terms of
accuracy. However, it served as a starting point to study the advantages of using HSA
and different heterogeneous systems for video tracking given its relative simplicity in
comparison to newer proposals such as Struck [6] and SiamMask [8].

4. To use the combination of HSA and SoC-FPGA platforms in other CV applications.
The results of using HSA for video tracking showed positive results. This motivates
us to study the effect of HSA on other CV applications or on specific variations of the
tested problems, for example, in face tracking and detection, or tracking based on
infrared image data.

Sensors 2022, 22, 1280 23 of 26

Author Contributions: Conceptualization, C.S.-M. and O.E.P.-C.; methodology, C.S.-M., O.E.P.-C.
and C.P.; software, O.E.P.-C., C.S.-M. and C.P.; validation, E.J.G.-G., G.O. and C.P.; formal analysis,
C.P., O.E.P.-C. and E.J.G.-G.; investigation, O.E.P.-C., C.A.A.-S. and J.C.C.-T.; resources, E.J.G.-G., G.O.
and L.J.O.-G.; data curation, O.E.P.-C., J.C.C.-T. and C.A.A.-S.; writing—original draft preparation,
C.S.-M. and O.E.P.-C.; writing—review and editing, E.J.G.-G., G.O. and C.A.A.-S.; visualization,
G.O., J.C.C.-T. and L.J.O.-G.; supervision, C.S.-M.; project administration, C.S.-M. and C.P.; funding
acquisition, C.S.-M., L.J.O.-G. and C.A.A.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by SEP-PRODEP, through project 511-6/18-8316, CA
Code UASLP-CA-268. In addition, the second author, O.E.P.-C. thanks CONACYT for its support
through grant No. 25096.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ALOV dataset used in this work is available on http://alov300pp.
joomlafree.it/.

Acknowledgments: The first author, C.S.-M. wishes to thank Liboria Montalvo-Castillo for her
support in his process of becoming a researcher.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALOV Amsterdam Library of Ordinary Videos
ARM Advanced RISC Machine
AXI Advanced eXtensible Interface
CDMA Central DMA
CLB Configurable Logic Block
CU Control Unit
CPU Central Processing Unit
DMA Direct Memory Access
DSP Digital Signal Processor
ES Evolution Strategy
FPGA Field-Programmable Gate Array
GA Genetic Algorithms
GPU Graphics Processing Unit
GRASP Greedy Randomized Adaptive Search Procedure
HDL Hardware Description Languages
HSA Honeybee Search Algorithm
IOB Input/Output Blocks
LUT LookUp Table
NCC Normalized Cross-Correlation
PL Programmable Logic
PLD Programmable Logic Devices
PS Processing System
PSO Particle Swarm Optimization
RISC Reduced Instruction Set Computer
RMI Regional Mutual Information
RSSE Root SSE
SIMD Single Instruction, Multiple Data
SoC System-on-Chip
SSE Sum of Squared Errors
SRAM Static RAM
ZNCC Zero-Mean Normalized Cross-Correlation

http://alov300pp.joomlafree.it/
http://alov300pp.joomlafree.it/

Sensors 2022, 22, 1280 24 of 26

References
1. Szeliski, R. Computer Vision: Algorithms and Applications; Springer: London, UK, 2010.
2. Maggio, E.; Cavallaro, A. Video Tracking: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2011.
3. Kristan, M.; Leonardis, A.; Matas, J.; Felsberg, M.; Pflugfelder, R.; Kämäräinen, J.K.; Danelljan, M.; Zajc, L.Č.; Lukežič, A.;

Drbohlav, O.; et al. The eighth visual object tracking VOT2020 challenge results. In European Conference on Computer Vision;
Springer: Cham, Switzerland, 2020; pp. 547–601.

4. Forsyth, D.A.; Ponce, J. Computer Vision: A Modern Approach; Prentice Hall: New York, NY, USA, 2012.
5. Olague, G.; Hernández, D.E.; Llamas, P.; Clemente, E.; Briseño, J.L. Brain programming as a new strategy to create visual

routines for object tracking. Multimed. Tools Appl. 2019, 78, 5881–5918. [CrossRef]
6. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output tracking with

kernels. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109. [CrossRef] [PubMed]
7. Asgarizadeh, M.; Pourghassem, H.; Shahgholian, G. Robust object tracking using regional mutual information and nor-

malized cross correlation. In Proceedings of the 2012 Fourth International Conference on Computational Intelligence and
Communication Networks, Mathura, India, 3–5 November 2012; pp. 411–415.

8. Liang, Z.; Liang, C.; Zhang, Y.; Mu, H.; Li, G. Tracking of Moving Target Based on SiamMask for Video SAR System. In
Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing,
China, 11–13 December 2019; pp. 1–4.

9. Hu, J.L.; Tang, X.W.; Qiu, J.N. Analysis of the influences of sampling bias and class imbalance on performances of probabilistic
liquefaction models. Int. J. Geomech. 2017, 17, 04016134. [CrossRef]

10. Xiao, Y.; Pun, C.M.; Liu, B. Adversarial example generation with adaptive gradient search for single and ensemble deep
neural network. Inf. Sci. 2020, 528, 147–167. [CrossRef]

11. Olague, G.; Hernandez, D.E.; Clemente, E.; Chan-Ley, M. Evolving head tracking routines with brain programming. IEEE
Access 2018, 6, 26254–26270. [CrossRef]

12. Olague, G.; Ibarra-Vázquez, G.; Chan-Ley, M.; Puente, C.; Soubervielle-Montalvo, C.; Martinez, A. A deep genetic program-
ming based methodology for art media classification robust to adversarial perturbations. In International Symposium on Visual
Computing; Springer: Berlin/Heidelberg, Germany, 2020; pp. 68–79.

13. Ibarra-Vazquez, G.; Olague, G.; Puente, C.; Chan-Ley, M.; Soubervielle-Montalvo, C. Automated design of accurate and robust
image classifiers with brain programming. In Proceedings of the 2021 Genetic and Evolutionary Computation Conference
Companion, Lille, France, 10–14 July 2021; pp. 1385–1393.

14. Ibarra-Vazquez, G.; Olague, G.; Chan-Ley, M.; Puente, C.; Soubervielle-Montalvo, C. Brain Programming is Immune to Ad-
versarial Attacks: Towards Accurate and Robust Image Classification using Symbolic Learning. arXiv 2021, arXiv:2103.01359.

15. Galoogahi, H.K.; Fagg, A.; Huang, C.; Ramanan, D.; Lucey, S. Need for speed: A benchmark for higher frame rate object
tracking. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October
2017; pp. 1125–1134.

16. Morsi, N.N.; Abdelhalim, M.B.; Shehata, K.A. Efficient hardware implementation of PSO-based object tracking system. In
Proceedings of the 2013 International Conference on Electronics, Computer and Computation (ICECCO), Ankara, Turkey, 7–8
November 2013; pp. 155–158.

17. Nogueira, B.; Barboza, E. A FPGA-based accelerated architecture for the Continuous GRASP. Computing 2020, 103, 1–20.
[CrossRef]

18. Prongnuch, S.; Wiangtong, T. Heterogeneous computing platform for data processing. In Proceedings of the 2016 International
Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Phuket, Thailand, 24–27 October 2016;
pp. 1–4.

19. Liu, Y.; Zhu, H. A survey of the research on power management techniques for high-performance systems. Softw. Pract. Exp.
2010, 40, 943–964. [CrossRef]

20. Bean, A. Improving Memory Access Performance for Irregular Algorithms in Heterogeneous CPU/FPGA Systems. Ph.D.
Thesis, Imperial College of Science, Technology and Medicine, London, UK, 2016.

21. Martin, G.; Chang, H. System-on-Chip design. In Proceedings of the 2001 4th International Conference on ASIC, Shanghai,
China, 23–25 October 2001; pp. 12–17.

22. Kaeli, D.R.; Mistry, P.; Schaa, D.; Zhang, D.P. Heterogeneous Computing with OpenCL 2.0; Morgan Kaufmann: Waltham, MA,
USA, 2015.

23. Wolf, W. A decade of hardware/software codesign. Computer 2003, 36, 38–43. [CrossRef]
24. Al-Zoubi, A.; Tatas, K.; Kyriacou, C. Towards Dynamic Multi-task Schedulling of OpenCL Programs on Emerging CPU-GPU-

FPGA Heterogeneous Platforms: A Fuzzy Logic Approach. In Proceedings of the 2018 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), Nicosia, Cyprus, 10–13 December 2018; pp. 247–250.

25. Olague, G.; Puente, C. The honeybee search algorithm for three-dimensional reconstruction. In Proceedings of the Workshops
on Applications of Evolutionary Computation, Budapest, Hungary, 10–12 April 2006; pp. 427–437.

26. Olague, G. Evolutionary Computer Vision: The First Footprints; Springer: Berlin/Heidelberg, Germany, 2016.
27. Tomassini, M. Evolutionary algorithms. In Towards Evolvable Hardware; Springer: Berlin/Heidelberg, Germany, 1996; pp. 19–47.
28. Blum, C.; Merkle, D. Swarm Intelligence: Introduction and Applications; Springer: Berlin/Heidelberg, Germany, 2008.

http://doi.org/10.1007/s11042-018-6634-9
http://dx.doi.org/10.1109/TPAMI.2015.2509974
http://www.ncbi.nlm.nih.gov/pubmed/26700968
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000808
http://dx.doi.org/10.1016/j.ins.2020.04.022
http://dx.doi.org/10.1109/ACCESS.2018.2831633
http://dx.doi.org/10.1007/s00607-020-00850-5
http://dx.doi.org/10.1002/spe.952
http://dx.doi.org/10.1109/MC.2003.1193227

Sensors 2022, 22, 1280 25 of 26

29. Clerc, M. Particle Swarm Optimization; Wiley: Hoboken, NJ, USA, 2010; Volume 93.
30. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
31. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
32. Orr, M.S.; Che, S.; Yilmazer, A.; Beckmann, B.M.; Hill, M.D.; Wood, D.A. Synchronization using remote-scope promotion.

ACM SIGARCH Comput. Archit. News 2015, 43, 73–86. [CrossRef]
33. Tan, Y.; Ding, K. A survey on GPU-based implementation of swarm intelligence algorithms. IEEE Trans. Cybern. 2015, 46, 2028–2041.

[CrossRef] [PubMed]
34. Perez-Cham, O.E.; Puente, C.; Soubervielle-Montalvo, C.; Olague, G.; Aguirre-Salado, C.A.; Nuñez-Varela, A.S. Parallelization

of the honeybee search algorithm for object tracking. Appl. Sci. 2020, 10, 2122. [CrossRef]
35. ARM. AMBA AXI and ACE Protocol Specification; ARM: Cambridge, UK, 2011.
36. Churiwala, S.; Hyderabad, I. Designing with Xilinx® FPGAs; Springer: Cham, Switzerland, 2017.
37. Smeulders, A.W.; Chu, D.M.; Cucchiara, R.; Calderara, S.; Dehghan, A.; Shah, M. Visual tracking: An experimental survey.

IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 1442–1468.
38. Perez-Cham, O.E.; Puente, C.; Soubervielle-Montalvo, C.; Olague, G.; Castillo-Barrera, F.E.; Nunez-Varela, J.; Limon-Romero,

J. Automata design for honeybee search algorithm and its applications to 3D scene reconstruction and video tracking. Swarm
Evol. Comput. 2021, 61, 100817. [CrossRef]

39. Schaumont, P.R. A Practical Introduction to Hardware/Software Codesign; Springer: Boston, MA, USA, 2012.
40. Palermo, G.; Silvano, C.; Zaccaria, V. Discrete particle swarm optimization for multi-objective design space exploration. In

Proceedings of the 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools, Parma,
Italy, 3–5 September 2008; pp. 641–644.

41. Tsai, C.C.; Huang, H.C.; Lin, S.C. FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional
mobile service robot performing fire extinguishment. IEEE Trans. Ind. Electron. 2010, 58, 1016–1026. [CrossRef]

42. Rodriguez, A.; Moreno, F. Evolutionary computing and particle filtering: A hardware-based motion estimation system. IEEE
Trans. Comput. 2015, 64, 3140–3152. [CrossRef]

43. Elkhani, N.; Muniyandi, R.C.; Zhang, G. Multi-objective binary PSO with kernel P system on GPU. Int. J. Comput. Commun.
Control. 2018, 13, 323–336. [CrossRef]

44. Xilinx. Zynq-7000 SoC Data Sheet: Overview. 2018. v1.11.1. Available online: https://www.xilinx.com/support/documentation/
data_sheets/ds190-Zynq-7000-Overview.pdf (accessed on 30 December 2021).

45. Kechiche, L. Hardware acceleration for deep learning of image classification. In Proceedings of the 2021 International
Conference of Women in Data Science at Taif University (WiDSTaif), Taif, Saudi Arabia, 30–31 March 2021; pp. 1–5.

46. Rabiai, M.; Senouci, M.R.; Senouci, A.; Busawon, K.; Laurent, D. A hardware solution to overcome the bandwidth limitation of
drone jamming platforms. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks
and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–4.

47. Qureshi, M.A.; Munir, A. PUF-IPA: A PUF-based identity preserving protocol for internet of things authentication. In
Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,
USA, 10–13 January 2020; pp. 1–7.

48. Xilinx. 7 Series FPGAs Data Sheet: Overview. 2020. v2.6.1. Available online: https://www.xilinx.com/support/documentation/
data_sheets/ds180_7Series_Overview.pdf (accessed on 30 December 2021).

49. Smith, D.J. HDL Chip Design: A Practical Guide for Designing, Synthesizing and Simulating ASICs and FPGAs Using VHDL or
Verilog; Doone Publications: Madison, AL, USA, 1998.

50. Jahanirad, H.; Karam, H. BIST-based Testing and Diagnosis of LUTs in SRAM-based FPGAs. Emerg. Sci. J. 2017, 1, 216–225.
[CrossRef]

51. Volder, J. The CORDIC computing technique. In Proceedings of the 1959 Western Joint Computer Conference, San Francisco,
CA, USA, 3–5 March 1959; pp. 257–261.

52. Xilinx. Divider Generator. 2021. v5.1. Available online: https://www.xilinx.com/support/documentation/ip_documentation/
div_gen/v5_1/pg151-div-gen.pdf (accessed on 30 December 2021).

53. Boumaza, A.M.; Louchet, J. Dynamic flies: Using real-time parisian evolution in robotics. In Workshops on Applications of
Evolutionary Computation; Springer: Cham, Switzerland, 2001; pp. 288–297.

54. Bitam, S.; Batouche, M.; Talbi, E.G. A survey on bee colony algorithms. In Proceedings of the 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010;
pp. 1–8.

55. Deb, K. Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-Objective Evolutionary
Optimisation for Product Design and Manufacturing; Springer: London, UK, 2011; pp. 3–34.

56. Crist, E. Can an insect speak? The case of the honeybee dance language. Soc. Stud. Sci. 2004, 34, 7–43. [CrossRef]
57. Deb, K.; Beyer, H.G. Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 2001, 9, 197–221.

[CrossRef] [PubMed]
58. Goldberg, D.E.; Richardson, J. Genetic algorithms with sharing for multimodal function optimization. In Proceedings of the

International Conference on Genetic Algorithms, Hillsdale, NJ, USA, October 1987; pp. 41–49.

http://dx.doi.org/10.1007/s10898-007-9149-x
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1145/2786763.2694350
http://dx.doi.org/10.1109/TCYB.2015.2460261
http://www.ncbi.nlm.nih.gov/pubmed/26571543
http://dx.doi.org/10.3390/app10062122
http://dx.doi.org/10.1016/j.swevo.2020.100817
http://dx.doi.org/10.1109/TIE.2010.2048291
http://dx.doi.org/10.1109/TC.2015.2401015
http://dx.doi.org/10.15837/ijccc.2018.3.3282
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://dx.doi.org/10.28991/ijse-01125
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
https://www.xilinx.com/support/documentation/ip_documentation/div_gen/v5_1/pg151-div-gen.pdf
http://dx.doi.org/10.1177/0306312704040611
http://dx.doi.org/10.1162/106365601750190406
http://www.ncbi.nlm.nih.gov/pubmed/11382356

Sensors 2022, 22, 1280 26 of 26

59. Khare, V.; Yao, X.; Deb, K. Performance scaling of multi-objective evolutionary algorithms. In International Conference on
Evolutionary Multi-Criterion Optimization; Springer: Berlin/Heidelberg, Germany, 2003; pp. 376–390.

60. Bätz, M.; Richter, T.; Garbas, J.U.; Papst, A.; Seiler, J.; Kaup, A. High dynamic range video reconstruction from a stereo camera
setup. Signal Process. Image Commun. 2014, 29, 191–202. [CrossRef]

61. Lin, C.; Li, Y.; Xu, G.; Cao, Y. Optimizing ZNCC calculation in binocular stereo matching. Signal Process. Image Commun. 2017,
52, 64–73. [CrossRef]

62. Collett, D. Modelling Survival Data in Medical Research; Chapman & Hall: London, UK, 1994.
63. Riesgo, T.; Torroja, Y.; De la Torre, E. Design methodologies based on hardware description languages. IEEE Trans. Ind.

Electron. 1999, 46, 3–12. [CrossRef]
64. McFarland, M.C.; Kowalski, T.J. Incorporating bottom-up design into hardware synthesis. IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst. 1990, 9, 938–950. [CrossRef]
65. Mano, M.M. Computer Systems Architecture; Prentice-Hall: Englewood Cliffs, NJ, USA, 1982.
66. Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to automata theory, languages, and computation. ACM SIGACT News

2001, 32, 60–65. [CrossRef]
67. Zhang, D.; Zheng, Z. Joint Representation Learning with Deep Quadruplet Network for Real-Time Visual Tracking. In

Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8.

http://dx.doi.org/10.1016/j.image.2013.08.016
http://dx.doi.org/10.1016/j.image.2017.01.001
http://dx.doi.org/10.1109/41.744370
http://dx.doi.org/10.1109/43.59070
http://dx.doi.org/10.1145/568438.568455

	Introduction
	Related Work
	Organization

	Materials and Methods
	Programmable Fabric
	Soft Intellectual Property Cores
	The Honeybee Search Algorithm Meta-Heuristic
	The Evolution Strategy of HSA
	Polynomial Mutation
	Simulated Binary Crossover
	Recruitment Distribution
	Zero-Mean Normalized Cross-Correlation as Fitness Function

	Evaluation with the Amsterdam Library of Ordinary Videos
	Proposed Workflow
	Processing System and AXI Communication

	Results
	Proposed Embedded System Design
	Datapath
	Control Units
	System Overview

	Experiments
	Calibration Test with a Static Image
	Testing the SoC-FPGA ZNCC-Based System with One Video Using Exhaustive Search
	CPU-GPU versus SoC-FPGA Using HSA
	Comparison Against State-of-the-Art Trackers in Terms of Time-Costs

	Discussion
	Conclusions
	References

