
����������
�������

Citation: Vizzo, I.; Guadagnino, T.;

Behley, J.; Stachniss, C. VDBFusion:

Flexible and Efficient TSDF

Integration of Range Sensor Data.

Sensors 2022, 22, 1296. https://

doi.org/10.3390/s22031296

Academic Editors: Michał R.

Nowicki, Giorgio Grisetti and

Marco Camurri

Received: 23 December 2021

Accepted: 3 February 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

VDBFusion: Flexible and Efficient TSDF Integration of Range
Sensor Data
Ignacio Vizzo * , Tiziano Guadagnino , Jens Behley and Cyrill Stachniss

Institute of Geodesy and Geoinformation, University of Bonn, 53113 Bonn, Germany;
guadagnino@diag.uniroma1.it (T.G.); jens.behley@igg.uni-bonn.de (J.B.); cyrill.stachniss@igg.uni-bonn.de (C.S.)
* Correspondence: ignacio.vizzo@igg.uni-bonn.de

Abstract: Mapping is a crucial task in robotics and a fundamental building block of most mobile
systems deployed in the real world. Robots use different environment representations depending
on their task and sensor setup. This paper showcases a practical approach to volumetric surface
reconstruction based on truncated signed distance functions, also called TSDFs. We revisit the basics
of this mapping technique and offer an approach for building effective and efficient real-world
mapping systems. In contrast to most state-of-the-art SLAM and mapping approaches, we are
making no assumptions on the size of the environment nor the employed range sensor. Unlike most
other approaches, we introduce an effective system that works in multiple domains using different
sensors. To achieve this, we build upon the Academy-Award-winning OpenVDB library used in
filmmaking to realize an effective 3D map representation. Based on this, our proposed system is
flexible and highly effective and, in the end, capable of integrating point clouds from a 64-beam
LiDAR sensor at 20 frames per second using a single-core CPU. Along with this publication comes an
easy-to-use C++ and Python library to quickly and efficiently solve volumetric mapping problems
with TSDFs.

Keywords: 3D mapping; 3D surface reconstruction; volumetric integration; TSDF

1. Introduction

Robots that are expected to navigate efficiently through real-world environments need
maps to orient themselves and to plan paths [1–5]. These maps need to be built from sensor
data, and thus robotic systems typically rely on some form of mapping. Nowadays, robots
are equipped with various sensors, depending on the size of the environment, application,
payload constraints, and budget available. Typically, 3D sensors are a part of such a sensor
suite; popular examples are RGB-D cameras or LiDARs. Creating detailed 3D maps from
such data sources can be challenging due to the size of a detailed world representation,
especially when building high-resolution maps of large areas.

Numerous data structures to realize effective map representations have been pro-
posed [3,6–14]. Most of these systems make assumptions about the specific sensor setup
and do not provide systems that tackle the problem from a generic point of view. For
example, commonly made assumptions about the used sensor often render those systems
unsuitable for other sensors. Furthermore, several TSDF fusion systems rely on accelerators,
such as graphics processors (GPUs), that may not be available on mobile robots. In this
paper, we revisit the problem of creating a 3D map of the environment, trying to make as
few as possible explicit and implicit assumptions about the sensor type or the size of the
environment to be mapped. We argue that working directly with point clouds, instead of
raw sensor data such as RGB-D images or LiDAR range images, makes it possible to realize
a mapping system that can handle different types of range sensors.

To this end, we base our system on top of the OpenVDB library [15]. OpenVDB
is an open-source C++ library implementing a hierarchical data structure paired with a

Sensors 2022, 22, 1296. https://doi.org/10.3390/s22031296 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22031296
https://doi.org/10.3390/s22031296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5140-6359
https://orcid.org/0000-0002-7853-5510
https://orcid.org/0000-0001-6483-0319
https://orcid.org/0000-0003-1173-6972
https://doi.org/10.3390/s22031296
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22031296?type=check_update&version=2

Sensors 2022, 22, 1296 2 of 24

rich set of tools for the efficient storage and manipulation of sparse volumetric data. The
library was originally developed by Museth and colleagues at DreamWorks Animation
for rendering films. It offers unbounded volumetric space access, compact storage, and
fast I/O operations. Building a robotic mapping system on top of OpenVDB enables us to
provide a simple but effective and fast 3D volumetric fusion pipeline without reinventing
the wheel.

The main contribution of this paper is an effective mapping system that comes as
an open-source TSDF library and does not require making assumptions about the size
of the environment to be mapped. The implementation of our system can be found at:
https://github.com/PRBonn/vdbfusion (accessed on 20 December 2021). Our system
has been tested on range sensor datasets using different 3D LiDARs and RGB-D cameras
but can easily be adapted to other range-sensing modalities. The core algorithm of our
system is based on the seminal work by Curless and Levoy [16] and can be realized with
our library using a few lines of C++ code. In addition to being simple, our implementation
provides excellent results when employed in 3D mapping applications (see Figure 1) while
running two to three times faster than state-of-the-art implementations using only a CPU,
consuming less memory, and producing compressed map files. Moreover, our system is
easy to use, which we showcase by conducting a user study.

Apollo Newer College TUM RGB-D ICL

KITTI Vision Benchmark nuScenes Cow and Lady Stanford Bunny

Figure 1. Results of our mapping approach on publicly available datasets showing the versatility of
our proposed fusion pipeline. The models colored in light blue corresponds to 3D LiDAR datasets,
while the red ones to RGB-D datasets.

Along with this paper, we release a well-designed and carefully crafted C++ im-
plementation with a rich and powerful Python API for rapid prototyping of mapping
pipelines. The terminal command pip install vdbfusion is the only command needed
to get started. We designed the Python API of VDBFusion to take numpy arrays as input
and produce numpy arrays as output, making the library easy to plug into any existing
robotics system without dealing with custom data structures. It also supports user-defined
data loaders to parse already existing datasets as well as potential future data streams. We
also provide a variety of usage examples in both programming languages, C++ and Python.
We believe that the practical impact of our VDBFusion future robot mapping systems will
be significant.

2. Related Work

Mapping is a fundamental part of SLAM pipelines [17,18]. In this work, we focus
on the mapping part using 3D sensors providing three-dimensional measurements of the
environment. We briefly discuss 3D representations and focus mainly on their use in
mapping systems relying on 3D LiDAR sensors or RGB-D cameras.

Over the last three decades, 3D scene reconstruction and understanding have been an
active area of research. The first seminal work that relates to ours is a volumetric method

https://github.com/PRBonn/vdbfusion

Sensors 2022, 22, 1296 3 of 24

for building models from range images by Curless and Levoy [16]. Since then, the use of
the truncated signed distance function (TSDF) has gained much popularity in computer
graphics, computer vision, and robotics communities. Exploiting the nowadays commonly
used low-cost depth sensors, Newcombe et al. [11] popularized with KinectFusion the use
of such integration methods [19–31]. Although numerous systems have been proposed
to extend KinectFusion, few of them tackle the problem of mapping environments larger
than an office-size room. In this context, Whelan et al. [30,32] introduced one of the first
methods that dealt with larger environments by employing a rolling grid that streams out
a triangle mesh when exiting the volume being mapped. In this line, sparse data structures
have also been explored to build such systems, for example, octrees [1,29,33,34] or voxel
hashing approaches [22,24,25,35].

Although such systems show remarkable results, two challenges remained open. First,
the above-mentioned systems are hand-crafted for a particular sensor such as Microsoft’s
Kinect, often making the implementation unusable for other kinds of sensor modalities.
For that, simply consider that it is not trivial to project a 360◦ LiDAR scan using a pin-hole
camera model. Second, most of these methods work with GPUs, making the mapping
method effective but costly in terms of computation and energy requirements. While this
is often non-problematic on desktop computers, it often is a limitation for mobile robots
with power constraints. Although it might be appropriate for creating maps on a dedicated
mobile platform, a mobile robot needs to run mapping pipelines in parallel to localization,
obstacle detection, path planning, and other tasks. Thus, the GPU requirement is still a
limitation in robotics today.

To cope with this fact, OpenChisel [36] provides an effective solution for the volumetric
reconstruction problem on CPU, but it is limited to depth sensors. OpenChisel was later
extended by Oleynikova et al. [24] into Voxblox. To the best of our knowledge, Voxblox is the
current state-of-the-art system for building volumetric maps on CPU and is effectively used
in numerous systems building upon it [22,27,37]. Additionally, Voxblox is the approach
most similar to our work since it is the first of its kind processing point clouds instead of
raw depth measurements. Nevertheless, the system can be quite hard to use and virtually
impossible to employ outside the ROS ecosystem. This work looks towards a generic
volumetric TSDF system that can be deployed in different robotics architectures without
necessarily relying on the ROS framework.

With the recent developments in LiDAR technology, numerous mapping systems
have been proposed in the SLAM community [38–44]. Although LiDARs are precise and
less noisy than RGB-D sensors, it remains challenging to build efficient 3D maps with
such sensors. Wang et al. [34] proposed a system extending SuperEight [1,29] employing
LiDARs. Despite promising results, SuperEight is not publicly available. Additionally,
many assumptions need to be made to use that system. Examples include knowing the
map size in advance and truncating the LiDAR measurements’ range to a certain range
(60 m) to cope with memory and runtime requirements. In addition to these assumptions,
SuperEight runs at three frames per second (fps) and is thus slower than the LiDAR sensor
frame rate. In contrast, our system can efficiently fuse scans at 30 fps under the same
constraints and using the same dataset [45], being, therefore, 10 times more efficient. Lastly,
there is currently no information on how this extension [1,34] performs on datasets other
than the one used in the original publication [45]. For generating high-fidelity maps, Vizzo
et al. [40] employ Poisson surface reconstruction [46]. Despite the more accurate results
obtained compared to TSDF-based methods [22,24], this method is not truly incremental
as it requires to buffer around 30 scans before updating its map representations and is
therefore not applicable to real-time systems. We showcase the versatility of our system in
a variety of publicly available datasets.

Compared with RGB-D systems, extending these mapping systems to the LiDAR
domain might seem straightforward. In practice, however, current implementations encode
the sensor model inside the algorithm. Therefore, these systems cannot be reused directly
for other sensors without a major refactoring process. Moreover, most mainstream open-

Sensors 2022, 22, 1296 4 of 24

source libraries for computer vision and 3D data processing such as OpenCV or Open3D
provide implementations for volumetric integration. However, none of them work out-of-
the-box with LiDAR data. At the same time, a simple and naïve implementation using a
dense voxel grid as for RGB-D [11] is simply not possible due to the memory demands. As
an example, a small city sequence from the KITTI Odometry dataset [47] that took 2 min to
record consumes 30 GB of memory when employing such dense grids. There are mapping
systems that build on top of more memory-efficient data structures such as Octomap [6].
Octomap improves the memory consumption notably, but the runtime of its mapping
pipeline prohibits the deployment of such method for 3D LiDARs in the real world as it is
only capable of integrating such data at 1 fps. In sum, building a 3D mapping system that
is memory efficient and fast at the same time remains a challenge. In this work, we aim to
fill this gap with the aid of the VDB data structure [15], which was designed for modeling
and rendering photorealistic scenes in movie animation.

Inspired by the results of these systems, we aim to develop a robust open-source 3D
volumetric integration library that can work with any 3D sensor modality. Additionally, it
is developed to be easy to use and extensible to various applications. To implement our
system, we build upon the VDB data structure implemented in the OpenVDB [15] library.
In line with our work, Macenski et al. [48] developed a spatio-temporal voxel system for 3D
mapping making use of OpenVDB [15]. This system encodes sensor observations into an
occupancy grid map that additionally implements voxel decay and decay acceleration [48].
More recently, Besselmann et al. [49] have also shown promising using the VDB data
structure to implement an octree-inspired representation similar to Octomap [6]. While both
of these works are closely related to the implementation of our system, the main difference
is that we represent the environment as a smooth TSDF surface and the other works
represent it as an occupancy grid. Our system can fuse data from LiDARs, RGB-D cameras,
or any other 3D sensor, which produces point clouds. As shown in the experiments, our
system runs at 20 fps on average for a 64-beam LiDAR and at 10 fps for RGB-D sensors
without using GPUs. Our system runs entirely on a single core of a CPU, making our
system applicable to being deployed in mobile robots, where power consumption and CPU
resources are limited. At the same time, it is highly memory-efficient.

3. The VDB Data Structure

When dealing with 3D data such as point clouds in robotics, it is common to employ
tree structures, such as octrees [1,2,29,34,50,51]. One of the key reasons behind using
such structures is to have virtually unbounded sparse representations of the scene that
can be efficiently employed on robotics systems where memory and CPU resources are
constrained. Such data structures do not require knowing the size of the environment,
where robots might be deployed, in advance.

In line with this, other domains have similar needs. For example, when computing
fluid simulations, the volume of the simulation space is not known a priori, as the fluids can
virtually expand infinitely. To provide an efficient solution for such applications, the VDB
data structure was proposed in the computer graphics community targeting unbounded
volumetric data manipulation in the context of creating animated movies.

The VDB representation is a sparse collection of blocks of voxels (typically 8 × 8 × 8 =
512 voxels) that can be accessed through a hierarchical tree structure with two internal
levels, i.e., a fixed height of the involved trees. This height-balanced construction of the VDB
results in a shallow and wide representation compared to the less shallow octrees that only
have a small branching factor of two on each spatial dimension (see Figure 2). The fixed
height of the involved trees allows the implementation of random access algorithms that
operate in constant time. Additionally, the representation mimics modern CPU memory
architectures with a fixed number of cache levels (L1, L2, etc.) of decreasing size and
increasing random-access performance. We invite the curious reader to read more about
VDBs and the difference to octrees in the original publication by Museth et al. [15].

Sensors 2022, 22, 1296 5 of 24

VDB tree structure Octree

Figure 2. The VDB data structure [15] compared to octrees [52]. A conventional octree subdivides
the space increasingly by a factor of 2 on each spatial dimension, starting at a single root node until
it reaches leaf nodes (shown as squares) that contain a predefined number of points or size of the
octant. In contrast, VDB has a fixed depth with leave nodes that are comprised of 8× 8× 8 voxels and
multiple root nodes (shown as green circles). Due to the fixed depth, access in a VDB data structure is
highly efficient compared to traversal in an octree.

The OpenVDB library [15,53] is an open-source implementation of VDB and has
been used in numerous movie production applications over the last decade. OpenVDB is
supported by the Academic Software Foundation, which ensures the project’s longevity.
Moreover, the fact that the library is still maintained and accepts community contributions
allowed us to make slight modifications to OpenVDB to make this publication possible (See:
https://github.com/AcademySoftwareFoundation/openvdb/pull/1048 (accessed on 20
December 2021), https://github.com/AcademySoftwareFoundation/openvdb/pull/1055
(accessed on 20 December 2021), and https://github.com/AcademySoftwareFoundation/
openvdb/pull/1105 (accessed on 20 December 2021)). Another advantage of using Open-
VDB is the large set of tools developed for the library that can be used out-of-the-box.
Examples are the OpenVDB visualizer (employed to generate the grid plots shown in this
paper), out-of-core storage of grid values, compression of grids, etc.

To the best of our knowledge, OpenVDB is the only well-supported, open source
library dedicated to volumetric data applications. Although OpenVDB [15] has been open
source for almost a decade, the robotics community paid little attention to it [48,49] in
relation to the benefits that the library provides. Potentially, this is rooted in the lack of
common vocabulary between communities. As an example, the term TSDF does not appear
in the original publication [15], nor does the word “truncated”. To cope with the difference
in terminology, we introduce a table of translations, see Table 1, between the common
keywords found in VDB applications and robotics. We recommend the reader to inspect
the original publication [15] with the table in hand or when inspecting our implementation.
In sum, we invite the robotics community to take advantage of the suite of tools associated
with VDB that highly match the needs of 3D robotic applications.

To build mapping applications using volumetric data structures, one could potentially
adapt existing voxel-hashing systems [1,29,35]. Nevertheless, most existing methods focus
on the implementation details of the voxel-hashing approach and require a substantial
amount of time start developing a custom application. Additionally, the publications associ-
ated with such systems often focus on how the data structures have been implemented, not
how to use them. When using our library that builds on top of OpenVDB, the application
developer can safely ignore the underlying data structure implementation and use the
structure as if it would be a dense voxel grid. The details are handled transparently below
the surface.

https://github.com/AcademySoftwareFoundation/openvdb/pull/1048
https://github.com/AcademySoftwareFoundation/openvdb/pull/1055
https://github.com/AcademySoftwareFoundation/openvdb/pull/1105
https://github.com/AcademySoftwareFoundation/openvdb/pull/1105

Sensors 2022, 22, 1296 6 of 24

Table 1. Terminology used in OpenVDB [15] and corresponding terms commonly used in robotics.

OpenVDB Robotics

Level set Signed Distance Field; the zero level crossing represents the iso-surface.
Narrow-band Truncation region close to the surface.
Half-width Half width of the narrow-band or truncation distance (typically 3 voxels).
Background-value Implicit value associated to empty voxels (typically the truncation distance).
Transformation Representing the voxel size, or resolution, but extended to Affine transformation in general.
Differential Digital Analyzer Similar to Bresenham’s line algorithm applied to a 3D ray intersecting voxels.

4. The VDBFusion Library for Robotics Applications

In this section, we describe our system for volumetric mapping using truncated signed
distance functions [11,16] that exploit VDB via OpenVDB [15]. We describe our design
decisions and provide details on the actual implementation and its usage. We kept our
system as a mapping library and decoupled it from a SLAM system to be flexible and easy
to use in various applications.

4.1. System Overview

The goal of our fusion library is to realize TSDF-based mapping [16], allowing us to
incrementally fuse data coming from an arbitrary 3D sensor that provides point clouds into
a map representation. We should not be required to know the size of the map a priori, and
the representation should be memory-efficient, fast to access, and easy to use.

We design our system to process 3D point clouds to achieve this goal. Instead of
working with the raw sensor output or a specific sensor model such as the pinhole model
for depth cameras, we base our system on 3D point clouds. For every point, we use the
location of that point, either in the global or a local coordinate frame, plus the pose of the
sensor (position and rotation) when taking the measurement. This pose is available for
every 3D point (or point clouds in case no motion distortion occurs). This approach allows
us to build a comparably general 3D mapping system.

The input to our system is a set of N points P = {p1, . . . , pN}, where pi ∈ R3. We
expect to know the pose of the sensor when measuring a point. We refer to this pose using
the homogeneous transformation Ti ∈ R4×4. We denote by Ri ∈ R3×3 and ti ∈ R3 the
rotational part and the translational part of the transformation Ti, respectively. To simplify
the description in this paper, we assume here that all points pi ∈ P are expressed in the
global coordinate frame. In our library, however, the user can either provide the points in
global coordinates or individual sensor viewpoints together with 3D points in the local
sensor frame.

An overview of the high-level design of our system is shown in Figure 3. The data
loader module is in charge of carrying out any projection, pre-processing, or noise fil-
tering as desired. Its implementation is not of relevance to our system. We require
the data loader module to output the point clouds in the form of numpy.ndarray or
std::vector<Eigen::Vector3d> for the Python and C++ APIs, respectively; analogously,
the sensor origin ti ∈ R3 must also be a numpy.ndarray or a Eigen::Vector3d. This as-
sumption is the key ingredient towards a more generic system. Given such point clouds
and sensor locations, we can now integrate the data into the TSDF, exploiting the VDB data
structure via the VDBFusion approach. After integrating the scans, we can then extract a
triangle mesh, individual TSDF values, or the underlying VDB data structure.

To the best of our knowledge, only Voxblox [24] offers a similar fusion pipeline. In
contrast to Voxblox, we move all pre-processing to the sensor/dataset-dependent data
loader, which performs all pre-processing steps such as minimum range filtering, maximum
range filtering, motion undistortion, bilateral filtering, etc. We keep the sensor-data-specific
operations in the data loader and outside VDBFusion. This allows us to realize a more
elegant fusion pipeline and minimize the number of data-dependent parameters that

Sensors 2022, 22, 1296 7 of 24

depend on the employed sensor. As a comparison, our system has only three parameters,
while Voxblox requires to set 14 parameters for the mapping algorithm.

,

,

,

Mesh

VDB

VDBFusion

Figure 3. High-level overview of VDBFusion. Our system only takes as input point clouds Pi with
their corresponding poses Ti. Based on this information, VDBFusion integrates the sensor data into a
sparse TSDF representation, which can be used to compute a triangular mesh representation but can
also be used to access the underlying VDB representation.

4.2. Integration Pipeline Implementation

We follow the approach of Curless and Levoy [16] to integrate point clouds with
known sensor location into the current internal map representation represented by a VDB
volume. To integrate a new measurement, P , we first need to compute the voxels to be
updated in the global grid. To compute the voxel locations x ∈ Z3 in the VDB grid, we
raycast a set of raysR = {r1, . . . , rN}. Each ray ri is defined by:

ri(k) = oi + k
di
||di||

(1)

with the origins oi and directions di = pi − oi. The origin of all the rays is at the sensor
origin in the global coordinate frame, i.e., oi = ti. In line with traditional methods [11,16],
we truncate the rays by considering only k ∈ [||di|| − τTD, ||di||+ τTD] for fast integration,
where τTD is the truncation distance. This process is depicted in Figure 4 and expressed in
lines 19–21 of the fusion algorithm shown in Figure 5.

We determine the voxel locations x by the ray–voxel intersections determined via
Differential Digital Analyzer (DDA) available in the OpenVDB library. Using the DDA
allows us to significantly shrink the length of our integration code and keep it clean using a
less error-prone implementation than our own, handcrafted voxel traversal. The use of the
DDA is shown in lines 24, 26, and 39 of the code snippet in Figure 5. In Figure 4, the voxel
locations x that must be updated are highlighted in orange.

Once the voxels to be updated have been determined, we compute the projective
signed distance, dt−1(x) (line 28 in Figure 5), from the point to the center of each voxel.
These signed distance values are then weighted with a weighting function wt−1(x), we
implement this function in the form of a lambda expression passed at runtime (line 31 in
Figure 5). The weighted measurements are then integrated into two distinct VDB grids,
Dt(x) : R3 → R, which is a sparse volumetric scalar field representing the signed distances
values for each voxel location x, and the weight values W t(x) : R3 → R, also in the form of
a sparse volumetric scalar field. The integration of these measurements is performed by
following the equations introduced by Curless and Levoy [16] representing the TSDF (lines
25–39 in Figure 5):

Sensors 2022, 22, 1296 8 of 24

Dt(x) =
W t−1(x) · Dt−1(x) + wt−1(x) · dt−1(x)

W t−1(x) + wt(x)
(2)

W t(x) = W t−1(x) + wt(x) (3)

Figure 4. Integration of a measurement (red point) into the global grid representation by ray casting
to determine which voxels are passed by the given ray. Only voxels (highlighted in orange) inside
the truncation distance (shown in red) are updated.

Figure 5. A complete fusion pipeline coded in C++ with a few lines of code.

Sensors 2022, 22, 1296 9 of 24

The zero set of the scalar field D−1
t (0) represents the reconstructed surface. It can be

computed from the TSDF representation Dt(x) employing techniques based on the popular
marching cubes algorithm [54] or by raycasting the TSDF representation Dt(x) [11].

Reading and writing values in sparse data structures are usually the most expensive
and hard-to-implement steps for these types of mapping pipelines. By levering the VDB
data structure, we efficiently carry out read/write operations in our global map grid. As
noted before, we can rely on the implementation of OpenVDB to handle the read/write
operations.

We highlight that even when possible, we decided to avoid filthy low-level opti-
mizations of the implementation to make our code more readable for the community.
Nevertheless, our not specially optimized but clean implementation is on-par or even faster
and more memory efficient than state-of-the-art mapping approaches.

4.3. Space Carving

Some mapping applications need to be aware of the free space in the vicinity of the
sensor or must distinguish free from unobserved regions. To enable such applications,
we also provide space carving on demand. Our approach to space carving modifies the
voxels along the ray ri until the measured distance plus the truncation distance is reached,
as shown in Figure 6. We truncate it only after the surface by considering voxels in the
truncation region, i.e., k ∈ [0, ||di||+ τTD]. This will mark all visited voxels as active in the
VDB grid with a value that is the same as the truncated value (background value).

Although this might be relevant for mapping applications, it will highly impact the sys-
tem’s runtime performance. Some valuable conclusions and implementation details about
the use of space carving and dynamic object removal are also explored in the experiments.

Note that we do not employ any probabilistic framework, such as occupancy probabili-
ties used in Octomap [6]. We made this design choice with simplicity in mind, envisioning a
clean implementation that allows other application developers to extend our system easily.

Figure 6. Difference between integration without space carving (left) and with space carving (right).
Without space carving only voxels inside the truncation region are updated, space carving updates
all voxels along the ray (colored in orange).

4.4. Weighting

The choice of the weighting functions wt(x) is not trivial and is extrinsically dependent
on the sensor noise and the range of the measurement. Different weighting functions have
been extensively studied in the work of Bylow et al. [19]. Existing implementations have
tried to cope with this by providing abstract functions modeling a fixed family of weighting
functions [36] or by picking among a variety of hand-picked functions with configuration
flags [24]. The use of virtual function typically impacts the runtime of the application, and
the weighting functions provided at compilation time [24] might not be required for a given
application.

We revise this design choice and employ functional programming, letting the library
user pick any arbitrary weighting function at runtime without having to recompile the

Sensors 2022, 22, 1296 10 of 24

whole library. The user only needs to provide a lambda expression indicating how to
compute the weighting function wt(x). This enables the faster operation of the integration
method and more flexibility when designing a new mapping pipeline for a given sensor
modality. For more details on how to use this functionality of our library, see Section 4.7.

4.5. Mapping Parameters

As motivated in Section 4.1, we only need a small set of three parameters for mapping
since all the sensor-specific preprocessing is performed in the data loader. Therefore, we
only have the following three parameters to parameterize the fusion pipeline:

• Voxel size as a floating-point number: The side length of the voxels determines the
resolution of the map. The bigger the voxel size, the smaller the map, which comes at
the cost of losing high-level details. Analogously, the smaller the voxel size, the higher
the level of detail that will be obtained for the final map at the cost of more memory
usage and slower runtime operation.

• Truncation distance (τTD) as a floating-point number represents the narrow band close
to the surface we aim at modeling with the TSDF, i.e., the number of voxels to update
in close to the surface. Large truncation distances allow for better smoothing of noise
effects of the sensor but make the reconstruction of thin surface challenging due to
thickening artifacts and lead to slower runtime operation because it visits more voxels.
On the other hand, small truncation distances will lead to a faster runtime operation
but are heavily impacted by the sensor’s noise.

• Space carving as a boolean value indicates if space carving should be performed or
not. Space carving can effectively remove dynamic objects from the map but comes at
the cost of high computational time. In contrast, not performing space carving will
lead to higher runtime speeds to the cost of having some dynamic objects artifacts on
the map.

While we provide a basic but competitive mapping implementation using TSDFs, our
code is relatively easy to extend and improve upon.

4.6. Meshing

To extract a triangular mesh from the grid map, we adapted the marching cubes [54]
implementation from the Open3D [55] library to work with the VDB data structure. We
also extended the implementation to allow filling holes, using the hole filling algorithm
described in the work by Curless et al. [16]. Moreover, we additionally introduce an
optional min_weight threshold to extract triangles from the grid only if this matches a given
density. For the standard meshing algorithm typically employed with TSDFs, the user can
set this threshold to 0. We empirically discovered that similar to PUMA [40], this simple
modification enables an out-of-the-box dynamic object removal from the map. The value of
the min_weight can also be selected at runtime by the library user.

4.7. The VDBFusion Library

We implement our system entirely in C++ and provide a powerful set of transpar-
ent Python bindings for efficient and easy usage. In the remainder of this section, we
introduce code snippets that serve as starting points for writing a new mapping pipeline
using our library. For a complete implementation, we invite the reader to check our MIT-
licensed open-source implementation available at https://github.com/PRBonn/vdbfusion
(accessed on 20 December 2021).

Most existing approaches require a high effort to get the mapping system up and
running. In contrast, we aim at providing an easy-to-use interface. Moreover, we also
facilitate the installation of the library; a simple pip install vdbfusion allows the user to
get started with the full library. The only Python dependency for the installation is numpy,
making our Python package widely portable to different systems and platforms.

We introduce below a draft snippet on using our system for both C++ and Python API.
We also provide a rich set of examples together with the source code of our library.

https://github.com/PRBonn/vdbfusion

Sensors 2022, 22, 1296 11 of 24

4.7.1. The C++ API

Our thin C++ API only consists of roughly 200 lines of code that enable a powerful
yet efficient 3D mapping system. To get started with the library, the user only needs a
dataset containing some form of 3D sensor or point cloud data. Although it is not enforced
by our library, we recommend creating a data loader module that mimics the one shown
in Figure 7. Once the data are ready to be used for our system, a simple C++ or Python
application can be written following the structure depicted in Figure 8.

C++ Python

Figure 7. C++ and Python code snippets that implements the suggested 3D data loader code.

C++ Python

Figure 8. C++ and Python code snippets that implements a fusion pipeline including meshing.

As described in Section 4.4, if the weighting strategy needs to be changed, one simply
needs to pass a function to the integrate method, specifying how to compute the operation.
As an example on how to achieve this, we demonstrate how to realize the exponential
weighting function introduced by the work of Bylow [19] in Figure 9. We realize the code
in the form of a lambda expression.

C++ Python

Figure 9. C++ and Python code snippets in how to change the weighting function wt(x) for TSDF
integration. In the example, we implement the exponential weighting function proposed by Bylow
et al. [19].

4.7.2. The Python API

Python has become the most popular programming language for prototyping nowa-
days. To leverage this popularity to expose our framework to a larger community, we

Sensors 2022, 22, 1296 12 of 24

provide a transparent and easy-to-use Python API, which reflects the same functionality as
the C++ API. As we show in our experiments choosing Python instead of C++, this choice
does not impact the performance. Thus, we are making the selection of Python or C++
a matter of preference without any drawbacks concerning the functionality or runtime
performance of the mapping pipeline. As shown in previous snippets, both APIs are highly
similar.

Similar to the C++ case, the user only needs a 3D dataset in the form of numpy arrays
when using Python. We also recommend (but do not require) defining a data loader similar
to the one shown in Figure 7.

5. Experiments

The experiments are designed to illustrate the abilities and flexibility of our approach.
They showcase that our mapping pipeline is easy-to-use, flexible, fast, and memory—as
well as disk-efficient. We furthermore provide comparisons to existing open-source systems.
We remark that we only compare our system against existing methods that can process
both LiDAR and RGB-D data. As a result of this choice, we skip the comparison to existing
RGB-D-only systems such as KinectFusion that only work for camera data. We also remind
the reader that our targets are indoor and outdoor environments, potentially large in
spatial extent.

We run all the experiments on a CPU without multithreading. The motivation behind
this choice is to analyze the system’s capabilities under consideration in addition to the
threading model implemented. We tested all methods on a GNU/Linux 64 bits system
with GCC 9.3.0, the processor was an Intel Xeon W-2145 with 8 cores @3.70 GHz, and the
system had 32 GB RAM. We explicitly paid attention to compiling all baselines enabling
optimizations.

To evaluate our system, we pick two datasets, one containing LiDAR data and one
with RGB-D data. For the LiDAR dataset, we use the KITTI Odometry benchmark [47], and
for the RGB-D, we choose the Cow and Lady dataset [24]. From the KITTI benchmark, we
sample sequence 07, a small urban-like sequence with few dynamics objects. The reason
behind this choice is that some baselines are not able to map bigger sequences efficiently
and thus make some experiments not executable.

For KITTI, we use a voxel size of 10 cm for all integration methods. The maximum
usable LiDAR range is 70 m, and the minimum range is 2 m. For the experiments using
RGB-D data, we process all points within the range of 0.1 m and 5 m and use a voxel size of
2 mm. The truncation distance is three times the voxel size in all cases.

As baselines, we use the popular Voxblox [24] and Octomap [6] approaches. To the best
of our knowledge, these are the only two systems that have an implementation available
and that can effectively map both LiDAR and RGB-D data without having to modify
the implementation. Unless explicitly stated, all methods are evaluated using their C++
implementations. We compile both baseline methods from the source with all optimizations
enabled. We do not make use of potentially provided ROS wrappers.

The main idea behind the experimental section is to put all three systems under test
and benchmark runtime performance, memory usage, disk usage, and mapping accuracy.
We systematically employ the same experiment independently of the sensor modality of
the dataset and show the ease of use for our system.

5.1. Runtime

The first experiment is designed to evaluate the runtime performance. It is a common
practice to evaluate this experiment iteratively, integrating synthetic scans and analyzing
the statistics of the results. For this evaluation, we use a sequence from the KITTI Odometry
Benchmark dataset. Sequence 07 is an urban driving sequence. We integrate all the scans
on all the internal map representations and then average the runtime of the whole sequence
to estimate the results.

Sensors 2022, 22, 1296 13 of 24

We use the Google benchmark suite to compute the results. We explicitly stop the
timers when data are being loaded or when some data conversion is being performed. This
provides a fair comparison and guarantees that all results reflect how much time it takes
for one of the systems to integrate new scans into the internal map representation. We also
distinguish between the mapping approaches, running with and without space carving.
Naturally, those who make use of space carving will be slower than their counterparts.

The baseline methods evaluated in this experiment are Voxblox and Octomap. Since
Octomap does not support an integration method without performing space carving, we
skip this baseline when considering no space carving.

It is also important to remark that depending on the mapping application, space
carving might be required or not. As we show in this experiment, including space carving
will heavily impact the runtime of the mapping system. We state that a simple integration
method with no space carving could also yield good results with the additional benefit
of having a faster runtime, although not without losing the empty vs. unseen space
information in the map. This technique might also impact the dynamics of the final result.

As can be seen in Table 2, our system can integrate LiDAR data at roughly two
times the standard sensor frame rate, making it a ready-to-use system in real applications.
Additionally, we are 2–3 times faster than the baselines. While Octomap can effectively
cope with dynamic objects in the scene, its runtime makes this system difficult to deploy
on real-world applications that require high sensor frame rate integration.

While Python is commonly thought of as a slow language, for our implementation,
we spent extra effort to make the interoperability between C++ and Python as transparent
and efficient as possible. The motivation behind this choice is that nowadays, Python is a
common choice for prototyping systems and gives a fast entry point to the library. To asses
the runtime performance of our Python API, we use the same datasets as before. As seen
in Table 3, our Python API is on par with the C++ implementation in terms of integration
speed. The other baselines do not provide official Python implementations, so we skip
Octomap and Voxblox for this experiment.

Table 2. Runtime results for the Kitti Odometry dataset Sequence 07 [47] and the Cow and Lady
Dataset [24]. All values are expressed in frames per seconds (higher is better). The best numbers are
highlighted in bold font.

Dataset
w/o Space Carving w/ Space Carving

Voxblox VDBFusion Octomap Voxblox VDBFusion

KITTI 07 10.11 fps 19.57 fps 0.42 fps 0.60 fps 1.37 fps
Cow and Lady 4.76 fps 14.14 fps 1.05 fps 0.42 fps 0.84 fps

Table 3. Python vs. C++ runtime results for VDBFusion, expressed in average frames per second. The
best numbers are highlighted in bold font.

Implementation KITTI 07 Cow and Lady

VDBFusion Python 18.93 fps 13.28 fps
VDBFusion C++ 19.57 fps 14.14 fps

5.2. Memory Efficiency

The second experiment analyzes memory usage during mapping. It illustrates that
our system does not have an excessive memory consumption, even for mapping large
scenes. Note that the VDB data structure also provides other out-of-the-box possibilities to
cope with even larger environments than the ones we study in this publication, including
out-of-core value storage, where the topology of the grid is stored in RAM, but the values
can be offloaded to a hard drive. We do not consider such memory optimizations in
this experiment since none of the baselines have similar capabilities. Voxblox does not
provide any means to compute the memory usage of the internal map representation, and

Sensors 2022, 22, 1296 14 of 24

therefore we skip this baseline for evaluation. To carry on this experiment, we proceed as in
Section 5.1 and process the entire sequence 07 of the KITTI Dataset and the Cow and lady
dataset. We also provide the in RAM consumption of more naïve mapping approaches,
namely, point clouds and dense voxel grids. We do not carry out any particular experiment
to obtain these values but rather compute the memory usage since it is deterministic. For
point clouds, each point consumes three times the size of a floating-point value, and for
dense voxel grids, we compute the bounding box of the resulting map and then fit a regular
dense voxel grid in it.

As shown in the Table 4, for the case of the LiDAR sensor modality, the usage of point
clouds or dense voxel grids as the map representation is virtually impossible. In contrast,
Octomap requires less memory to represent the map, but VDBFusion shows overall the
smaller memory footprint. When using RGB-D data, the difference between the memory
footprint of the dense voxel grids, Octomap, and VDBFusion is not as pronounced.

Table 4. Memory consumption of different investigated variants (lower is better). The best numbers
are highlighted in bold font.

Dataset Point cloud Dense Voxel Grid Octomap Voxblox VDBFusion

Kitti 07 2.95 GB 30.6 GB 1.12 GB n/a 847.0 MB
Cow 8.57 GB 363.5 MB 124.5 MB n/a 122.9 MB

5.3. Disk Usage

One aspect of a mapping pipeline is its capability to store the map efficiently, and in
this experiment, we evaluate the disk footprint of VDBFusion compared to other options.
We compare the size of a point cloud map, which is still a popular choice despite its file size
requirements. For this, we aggregate all the point clouds into a global coordinate frame and
export the result to a binary file format using the Open3D library. Storing the raw point
clouds is the upper bound in disk space consumption.

The VDB data structure also supports lossless compression out-of-the-box. This
allows for an efficient reduction in the size on disk, especially attractive for very large
scenes. Likewise, Octomap also supports an optimized serialization protocol, which we use
here for comparison. Contrarily, Voxblox does not provide any serialization mechanism;
therefore, we use for this experiment the triangular mesh provided by Voxblox as the map
representation on disk. We also report the mesh size that can be extracted from VDBFusion
to serve as a more fair comparison with Voxblox.

Table 5 shows the size on disk of the different aforementioned options when the
resulting maps are serialized and stored. Here, we see that storing the raw point clouds is
not a viable option. To store its representation, Octomap discards the per-node probabilities
and keeps only the maximum likelihood estimate of the map. In the resulting file, each node
occupies only 16 bits of memory. Although this is a highly compressed map, the details of
the reconstruction, as shown in Figure 10, are not on par with our results. Furthermore,
Octomap cannot integrate new measurements into an existing map once this has been
serialized to the disk. The VDB file size is less efficient to store compared to Octomap
because it requires a floating-point value for each voxel in D(x) and one floating-point
value for each voxel in the weight grid W (x). However, compared to Octomap, the VDB
representation on disk enables us to update the map even after it is stored on the disk.

Table 5. Disk usage of the serialized representation of different approaches (lower is better).

Dataset Point Cloud Octomap Voxblox VDBFusion VDBFusion
0/1 Output Mesh Export Mesh Export TSDF Volume

KITTI 07 3.0 GB 17.0 MB 672.0 MB 254.0 MB 170.0 MB
Cow 8.6 GB 1.6 MB 208.0 MB 15.0 MB 47.0 MB

Sensors 2022, 22, 1296 15 of 24

Figure 10. Qualitative comparison between Octomap and VDBFusion. While Octomap clearly models
the scene, it does not achieve a high level of detail. Our fusion pipeline shows a higher level of details
on the surface when compared with Octomap.

Compared to Voxblox the mesh representation of VDBFusion is much smaller as it
contains less artifacts, as shown in Figure 11. Due to the additional artifacts produced by
Voxblox, the serialized mesh size tends to be higher than the triangle mesh extracted from
VDBFusion. Analogously to the Octomap case, the mesh representation can not be updated
after the map has been stored on disk.

VDBFusionVoxblox
Figure 11. Qualitative comparison between Voxblox and VDBFusion, where we extracted for both
representations the triangle mesh from the represented TSDF. While Voxblox shows many artifacts in
the background, our fusion pipeline shows a much cleaner surface reconstruction recovering fine
details of the scanned scene.

5.4. Mapping Accuracy

In this experiment, we evaluate the mapping accuracy of Voxblox, Octomap, and our
mapping pipeline. To this end, we densely sample the maps generated by Voxblox and
VDBFusion into a point cloud. Octomap provides an out-of-the-box method for converting
the map representation to point clouds, so we use this one instead for the evaluation. This
sampled point cloud is then compared to the reference point cloud. For the case of the KITTI
dataset [47], we aggregate all the points in the sequence without downsampling, and we
further remove all dynamic objects by using manual annotations from the SemanticKITTI
dataset [56]. The Cow and Lady reference point cloud was obtained with a high-resolution
scanner, and it is provided along with the original dataset [24]. To sample the point clouds
from the mapping baselines. We use an uniform sampling strategy. In the case of the
KITTI, we sample 100,000,000 points, and we sample 1,000,000 points for the Cow and
Lady dataset. The motivation behind the choice of the number of points to be sampled
is to match the density of the reference point clouds used for the evaluation. To assess
the performance of the obtained map, we compute the point-to-point distance in meters
between the reference point cloud and the sampled models under evaluation. We report
the mean average distance between reference-model clouds and standard deviation. A

Sensors 2022, 22, 1296 16 of 24

lower metric corresponds to a model that closely models the reference point cloud, while a
large point–point distance indicates that the map deviates from the reference point cloud.

Table 6 shows the mapping accuracy results with and without space carving for the
different datasets. Generally, the results with space carving are more accurate as it removes
dynamics and can further clean up the free space of erroneous measurements or noise.

Table 6. Mapping accuracy comparisons. We report the mean and standard deviation of the point-
to-point distance (in meter) between estimated and ground truth map (lower is better). The best
numbers are highlighted in bold font.

Dataset
w/o Space Carving w/ Space Carving

Voxblox VDBFusion Octomap Voxblox VDBFusion

KITTI 07 failed 0.031 ± 0.102 m 0.033 ± 0.035 m 0.497 ± 1.991 m 0.023 ± 0.022 m
Cow 0.236 ± 0.298 m 0.049 ± 0.065 m 0.195 ± 0.262 m 0.319 ± 0.398 m 0.045 ± 0.062 m

On the KITTI dataset, we see that our mapping pipeline can produce more accurate
maps than Octomap and Voxblox, while the quantitative difference between Voxblox and
our pipeline is striking. Figure 12 qualitatively shows the point-wise difference between
the ground truth map and the mapping result of our pipeline. Note that mapping without
space carving includes dynamics caused by cars and pedestrians (shown by the green/red
traces). In contrast, the map with space carving effectively removes the parts corresponding
to dynamics. Overall, the point-wise error is very low, i.e., the reconstructed map is very
accurate, as indicated by the blue color of the distances.

On the Cow and Lady dataset, we can observe that the mapping results of our pipeline
are an order of magnitude more accurate than the results produced by Octomap and
Voxblox. Figure 11 shows the extracted meshes from Voxblox and our pipeline. We can
observe much more artifacts in the extracted mesh of Voxblox. These artifacts explain why
the map from Voxblox is a less accurate representation of the environment compared to our
reconstructed surface. Figure 13 shows qualitatively the attained point-wise reconstruction
accuracy, where we again note that the overall blue color shows the highly accurate
reconstruction results of our pipeline.

Overall, the provided quantitative evaluation of the mapping accuracy on indoor and
outdoor data shows that our pipeline can reconstruct the different datasets accurately.

(a) Without space carving (b) With space carving

Figure 12. Mapping accuracy results for the KITTI Dataset. (a), we show the results without space
carving. The reconstructed dynamic objects can be seen by the red color corresponding to a large
error (red circles). (b), we show the results with space carving removing the dynamics but also parts
of the static scene, as visible at the boundaries of the cars.

Sensors 2022, 22, 1296 17 of 24

(a) Without space carving (b) With space carving

Figure 13. Mapping accuracy results for the Cow and Lady dataset. (a), we show the results without
space carving with some visible errors on the wall in the back. (b) With space carving, these artifacts
are effectively removed, and the resulting map is more accurate.

Please note that, for the experiments, we used the C++ Voxblox library, although the
results do not correlate with the ones shown in the original publication [24]. We suspect
that is due to a numeric error in the internal non-standard transformation library. We have
contacted the authors to investigate a solution ahead of time, but we could not arrive at one.
We also remind the reader that although it would be possible to use the ROS interface, we
aim at investigating framework-independent systems; in addition, it requires converting
publicly available datasets into ROS (See: https://github.com/ethz-asl/voxblox/issues/
373 (accessed on 20 December 2021)).

5.5. User Study on the Ease-of-Use

While other approaches claim that they are easy to use or provide a generic and
extensive library, we investigate this property by conducting a user case study on the use
of our VDBFusion library to provide a quantitative evaluation.

For this, we sampled 10 people from a group of Master’s and Ph.D. students. They all
took a robotics lecture at university in the past, but most of the participants did not have
any prior experience writing volumetric integration pipelines.

We only provided the participants with the pip package (Python API) and a small
set of instructions on how to use it (See: https://www.ipb.uni-bonn.de/html/software/
vdbfusion/vdbfusion_user_case_study.pdf (accessed on 20 December 2021)). We did not
instruct them on which dataset to use, nor which sensor modality, and we also did not
enforce any third party library, since our library only requires numpy to work. We asked
the participants to record the times for different steps in the process of generating a map
model from the data of their choice. More specifically, we identified the following essential
steps needed to get our pipeline running: (1) installing the library, (2) coding the data
loader to read the data from disk and provide point clouds as numpy arrays, (3) setting up
the fusion pipeline to fuse the data, and, finally, (4) visualizing the generated maps using
the provided tools.

Figure 14 shows the times reported by the participants with the mean and standard
deviation. We notice in this experiment that the most time-consuming task is to write the
data loader for the pipeline, i.e., turning the data that the participants have on disk into a
point cloud as a numpy array as required by our pipeline. We also highlight that this step
is independent of our system; we also note that this step is nowadays a common task for
any computer vision and mobile robotics application, meaning that existing data loaders
should be available already or can be adapted to our system easily.

https://github.com/ethz-asl/voxblox/issues/373
https://github.com/ethz-asl/voxblox/issues/373
https://www.ipb.uni-bonn.de/html/software/vdbfusion/vdbfusion_user_case_study.pdf
https://www.ipb.uni-bonn.de/html/software/vdbfusion/vdbfusion_user_case_study.pdf

Sensors 2022, 22, 1296 18 of 24

1 min 28 min 8 min 3 min

Install VDBFusion

library

Program an own point

cloud data loader

Implement a fusion

pipeline
Visualize your results

Step 1

Part of VDBFusion

Step3

Part of VDBFusion

Step 4

Existing tools

Step 2

Data/sensor-specific

20

40

60

80

T
im

e
sp

en
t i

n
m

in
ut

es

Install
vdbfusion library

Program an own dataloader
that outputs point clouds

Implement a fusion pipeline
using vdbfusion

Visualize your
results

0

Figure 14. Results of our user study. Here, we show the essential steps and the time needed to
perform them as timed by the participants. As can be seen, the most time-consuming part is the
writing of a data loader. (Top) average time spent per task; (Bottom) plot distribution of collected
results that highlights the distribution of the data and the outliers. The diamonds indicate the outliers
of the distribution.

As our library is distributed via pip, the installation of the library is only limited by
the quality of the internet connection. The installation is achieved via running a single
terminal command. Setting up the pipeline is a simple for loop that obtains data from the
data loader and calls the integration method. Finally, the visualization of the results is also
achieved with a couple of lines of code.

As indicated by the user study, we can attest that the claim of ease-of-use of the
provided fusion pipeline is well supported. All participants were able to write a complete
mapping pipeline including their data loaders in less than 1 h, on average 40 min, without
any external assistance. We could even speed up the process by providing data loaders for
most of the commonly used mapping datasets.

5.6. Qualitative Results

In this section, we aim to showcase multiple usages of our system (see Figures 15–20).
For reasons of brevity, we do not include extensive explanations for the experiments. We
only mention the parameters used for the results and some qualitative numbers such as
memory consumption, dense grid equivalent, size on disk, etc. In this section, we do not
aim to compare against any other baseline but rather show that our system can be applied
to multiple domains and different sensors. All necessary codes for these experiments are
part of the open-source release. Most of the examples require around 30 lines of Python
code, similar to the snippets provided in Section 4.7.

5.6.1. KITTI Odometry Dataset

In Figure 15, we present qualitative results on sequence 00 of the KITTI Odometry
Dataset [47]. The dataset uses a 64-beam rotating Velodyne LiDAR sensor mounted on
the roof of a car. The dataset provides outdoors scenes of urban, country and highway
environments in Germany. The loop-closed poses used to build the map shown in Figure 15
are the output of the 3D-SLAM system SuMa [39].

Sensors 2022, 22, 1296 19 of 24

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 18.51
Mapping parameter

#scans 4541
points/scan 124,323
min. range 2.0 m
max. range 70.0 m

Dataset statistics

extent [m] 627 × 661 × 40
memory size 3,302.96 MB

dense size 122.01 GB
disk size 760 MB

Dataset size

Figure 15. Qualitative results on the KITTI Vision Benchmark [47] with given parameters, dataset
statistics, and size of the dataset in respect to spatial extent and memory.

5.6.2. Newer College Dataset

The newer college dataset was obtained by using a hand-held device through New
College, Oxford. For our experiments, we only use the LiDAR data from the 64-beam
Ouster sensor used in the system. The poses are the one provided as ground truth poses
with the dataset and are not loop-closed. In Figure 16, we present the results of our system
using the short experiment sequence.

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 32.18
Mapping parameter

#scans 15,301
points/scan 25,377
min. range 1.0 m
max. range 200.0 m

Dataset statistics

extent [m] 387 × 412 × 90
memory size 1470.9 MB

dense size 106.29 GB
disk size 591.83 MB

Dataset size

Figure 16. Qualitative results on the Newer College Dataset [45] with given parameters, dataset
statistics, and size of the dataset in respect to spatial extent and memory.

5.6.3. nuScenes Dataset

The nuScenes dataset is a public large-scale dataset that includes LiDAR data from a
32-beam Velodyne LiDAR sanner mounted on the roof of a car. The dataset was recorded

Sensors 2022, 22, 1296 20 of 24

in urban environments at the cities of Boston and Singapore. We exhibit the results of our
fusion pipeline on sequence scene-0061. We use the ground-truth poses provided by the
dataset.

voxel size 0.1 m
truncation 3 voxels

space carving False
frame rate 64.06
Mapping parameter

#scans 389
points/scan 20,311
min. range 2.0 m
max. range 100.0 m

Dataset statistics

extent [m] 198 × 311 × 41
memory size 277.54 MB

dense size 18.63 GB
disk size 51.43 MB

Dataset size

Figure 17. Qualitative results on the nuScenes dataset [57] with given parameters, dataset statistics,
and size of the dataset in respect to spatial extent and memory.

voxel size 0.01 m
truncation 3 voxels

space carving False
frame rate 18.33
Mapping parameter

#scans 20,801
points/scan 105,287
min. range 1 m
max. range 100 m

Dataset statistics

extent [m] 945 × 567 × 58
memory size 2886.92 MB

dense size 228.50 GB
disk size 574.54 MB

Dataset size

Figure 18. Qualitative results on the Apollo dataset [58] with given parameters, dataset statistics, and
size of the dataset in respect to spatial extent and memory.

5.6.4. Apollo Dataset

The Apollo-SouthBay Dataset [58] is a dataset that was collected by driving through
different areas in southern San Francisco Bay Area. The point clouds are obtained with a
Velodyne HDL-64E LiDAR mounted on the roof of a car, and the ground-truth poses used
for the experiment are obtained with the integrated navigation system for data collection.
We show the results of our system on the Columbia Park sequence of the dataset.

5.6.5. ICL-NUIM Dataset

The ICL-NUIM dataset is a synthetic RGB-D dataset. It consists of two different scenes
with ground truths. For obtaining the result shown in Figure 19, we make use of the Living
room scene without the simulated noise. This scene has the depth-maps used in our system,
after converting it to point clouds, together with ground truth camera poses.

Sensors 2022, 22, 1296 21 of 24

voxel size 0.01 m
truncation 3 voxels

space carving False
frame rate 7.83
Mapping parameter

#scans 1,240
points/scan 307,200
min. range unspecified
max. range unspecified

Dataset statistics

extent [m] 7 × 7 × 10
memory size 115.33 MB

dense size 1.14 GB
disk size 33.63 MB

Dataset size

Figure 19. Qualitative results on the ICL-NUIM dataset [59] with given parameters, dataset statistics,
and size of the dataset in respect to spatial extent and memory.

5.6.6. TUM Dataset

The TUM Dataset [60] is a large dataset containing RGB-D data and ground-truth data.
The dataset contains the color and depth images of a Microsoft Kinect sensor along the
ground-truth trajectory of the sensor. The data were recorded at a full frame rate of 30 Hz
and sensor resolution of 640 × 480. We test our system on the TUM dataset and display the
qualitative results of the freiburg1_xyz sequence in Figure 20.

voxel size 0.01 m
truncation 8 voxels

space carving False
frame rate 4.33
Mapping parameter

#scans 798
points/scan 229,875
min. range unspecified
max. range unspecified

Dataset statistics

extent [m] 7 × 6 × 5
memory size 57.94 MB

dense size 1.14 GB
disk size 20.55 MB

Dataset size

Figure 20. Qualitative results on the TUM RGB-D dataset [60] with given parameters, dataset
statistics, and size of the dataset in respect to spatial extent and memory.

6. Conclusions

In this paper, we propose an approach for volumetric mapping based on TSDF repre-
sentation that exploits a readily available efficient and sparse data structure called VDB. We
described our practical implementation that provides an easy-to-use mapping framework
that can be used for various sensors providing 3D measurements, such as RGB-D or LiDAR
sensors. To handle different kinds of data, we argue that working directly with point clouds
makes it possible to use a common mapping pipeline. To this end, we use sensor/dataset-
specific data loaders that prepare the data in a way that our mapping pipeline can consume

Sensors 2022, 22, 1296 22 of 24

it. Experiments on runtime and memory efficiency show that our implementation is more
efficient than other open source mapping frameworks supporting LiDAR and RGB-D data
and provides high-quality maps. The evaluation of the mapping accuracy reveals that our
approach is more accurate than another TSDF-based pipeline. Lastly, we conducted a user
study to verify our claim of easy usage. Our library is provided as open source under the
MIT license and available in C++ and Python. We hope that our open-source library opens
the door for further research by providing a sane starting point for TSDF-based mapping.
Our system can be used in practice to build high-resolution mapping systems for mobile
robots. The deployment of such systems in the real world is only possible due the high
speed of execution of the integration pipeline implemented in combination with the low
memory requirements.

Author Contributions: Conceptualization, I.V.; methodology, I.V. and J.B.; software, I.V. and T.G.;
validation, I.V., T.G. and J.B.; formal analysis, I.V.; investigation, I.V.; resources, C.S.; data curation, I.V.;
writing—original draft preparation, I.V., J.B. and C.S.; writing—review and editing, I.V., T.G., J.B. and
C.S.; visualization, I.V.; supervision, J.B. and C.S.; project administration, C.S.; funding acquisition,
C.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work has partially been funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy, EXC-2070—390732324—PhenoRob
and by the European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No 101017008 (Harmony).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data used in this publication is publicly available.

Acknowledgments: We would also like to thank Federico Magistri, Benedikt Mersch, and Louis
Wiesmann, who supported the work by fruitful discussions and suggestions regarding the usability
of the library. We also thank the participants of the user study. We would also like to thank Nived
Chebrolu, Nils Funk, and Stefan Leutenegger, who helped with the experimental evaluation of
our work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Funk, N.; Tarrio, J.; Papatheodorou, S.; Popović, M.; Alcantarilla, P.F.; Leutenegger, S. Multi-resolution 3D mapping with explicit free

space representation for fast and accurate mobile robot motion planning. IEEE Robot. Autom. Lett. 2021, 6, 3553–3560. [CrossRef]
2. Popović, M.; Thomas, F.; Papatheodorou, S.; Funk, N.; Vidal-Calleja, T.; Leutenegger, S. Volumetric Occupancy Mapping With

Probabilistic Depth Completion for Robotic Navigation. IEEE Robot. Autom. Lett. 2021, 6, 5072–5079. [CrossRef]
3. Gregorio, D.; Stefano, L. SkiMap: An Efficient Mapping Framework for Robot Navigation. In Proceedings of the 2017 IEEE

International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017.
4. Stachniss, C.; Grisetti, G.; Burgard, W. Information Gain-based Exploration Using Rao-Blackwellized Particle Filters. In

Proceedings of the Robotics: Science and Systems I, Cambridge, MA, USA, 8–11 June 2005; pp. 65–72.
5. Pfaff, P.; Triebel, R.; Stachniss, C.; Lamon, P.; Burgard, W.; Siegwart, R. Towards Mapping of Cities. In Proceedings of the 2007

IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007.
6. Hornung, A.; Wurm, K.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An Efficient Probabilistic 3D Mapping Framework

Based on Octrees. Auton. Robots 2013, 34, 189–206. [CrossRef]
7. Triebel, R.; Pfaff, P.; Burgard, W. Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing. In Proceedings of

the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006.
8. Steinbrucker, F.; Kerl, C.; Cremers, D. Large-Scale Multi-Resolution Surface Reconstruction from RGB-D Sequences. In Proceedings

of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 3264–3271.
9. Stachniss, C.; Burgard, W. Mapping and Exploration with Mobile Robots using Coverage Maps. In Proceedings of the 2003

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453), Las Vegas, NV, USA,
27–31 October 2003; pp. 476–481.

10. Stückler, J.; Behnke, S. Multi-Resolution Surfel Maps for Efficient Dense 3D Modeling and Tracking. J. Vis. Commun. Image
Represent. 2014, 25, 137–147. [CrossRef]

http://doi.org/10.1109/LRA.2021.3061989
http://dx.doi.org/10.1109/LRA.2021.3070308
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.1016/j.jvcir.2013.02.008

Sensors 2022, 22, 1296 23 of 24

11. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A.
KinectFusion: Real-Time Dense Surface Mapping and Tracking. In Proceedings of the 2011 10th IEEE International Symposium
on Mixed and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136.

12. Saarinen, J.; Stoyanov, T.; Andreasson, H.; Lilienthal, A. Fast 3D Mapping in Highly Dynamic Environments Using Normal
Distributions Transform Occupancy Maps. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 3–7 November 2013.

13. Dalmedico, N.; Simões Teixeira, M.A.; Barbosa Santos, H.; Nogueira, R.d.C.M.; Ramos de Arruda, L.V.; Neves, F.; Rodrigues Pipa, D.;
Endress Ramos, J.; Schneider de Oliveira, A. Sliding Window Mapping for Omnidirectional RGB-D Sensors. Sensors 2019, 19, 5121.
[CrossRef] [PubMed]

14. Peng, C.W.; Hsu, C.C.; Wang, W.Y. Cost Effective Mobile Mapping System for Color Point Cloud Reconstruction. Sensors 2020,
20, 6536. [CrossRef] [PubMed]

15. Museth, K.; Lait, J.; Johanson, J.; Budsberg, J.; Henderson, R.; Alden, M.; Cucka, P.; Hill, D.; Pearce, A. OpenVDB: An open-source
data structure and toolkit for high-resolution volumes. In Proceedings of the ACM SIGGRAPH 2013 Courses, Anaheim, CA,
USA, 21 –25 July 2013.

16. Curless, B.; Levoy, M. A Volumetric Method for Building Complex Models from Range Images. In Proceedings of the
International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), New Orleans, LA, USA, 4 – 9 August
1996; pp. 303–312.

17. Stachniss, C.; Leonard, J.; Thrun, S. Springer Handbook of Robotics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2016; Chapter 46.
18. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J. Past, Present, and Future of Simultaneous

Localization And Mapping: Towards the Robust-Perception Age. IEEE Trans. Robotics 2016, 32, 1309–1332. [CrossRef]
19. Bylow, E.; Sturm, J.; Kerl, C.; Kahl, F.; Cremers, D. Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance

Functions. In Proceedings of the Robotics: Science and Systems (RSS), New York, NY, USA, 27 June–1 July 2013; Volume 2.
20. Canelhas, D.; Stoyanov, T.; Lilienthal, A. SDF Tracker: A Parallel Algorithm for On-Line Pose Estimation and Scene Reconstruction

from Depth Images. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 3–7 November 2013; pp. 3671–3676.

21. Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S. Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion. In
Proceedings of the 2013 International Conference on 3D Vision—3DV 2013, Seattle, WA, USA, 29 June–1 July 2013; pp. 1–8.

22. Millane, A.; Taylor, Z.; Oleynikova, H.; Nieto, J.; Siegwart, R.; Cadena, C. C-Blox: A Scalable and Consistent TSDF-based Dense
Mapping Approach. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018.

23. McCormac, J.; Clark, R.; Bloesch, M.; Davison, A.; Leutenegger, S. Fusion++: Volumetric Object-Level SLAM. In Proceedings of
the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 32–41.

24. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwar, R.; Nieto, J. Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 1366–1373.

25. Palazzolo, E.; Behley, J.; Lottes, P.; Giguere, P.; Stachniss, C. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D
Cameras Exploiting Residuals. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Macau, China, 3–8 November 2019.

26. Park, J.; Zhou, Q.; Koltun, V. Colored Point Cloud Registration Revisited. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

27. Reijgwart, V.; Millane, A.; Oleynikova, H.; Siegwart, R.; Cadena, C.; Nieto, J. Voxgraph: Globally Consistent, Volumetric Mapping
Using Signed Distance Function Submaps. IEEE Robot. Autom. Lett. 2019, 5, 227–234. [CrossRef]

28. Salas-Moreno, R.F.; Glocker, B.; Kelly, P.H.J.; Davison, A.J. Dense Planar SLAM. In Proceedings of the 2014 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 10–12 September 2014; pp. 157–164.

29. Vespa, E.; Nikolov, N.; Grimm, M.; Nardi, L.; Kelly, P.; Leutenegger, S. Efficient Octree-Based Volumetric SLAM Supporting
Signed-Distance and Occupancy Mapping. IEEE Robot. Autom. Lett. 2018, 3, 1144–1151. [CrossRef]

30. Whelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J.J.; McDonald, J. Real-time large scale dense RGB-D SLAM with
volumetric fusion. Int. J. Robot. Res. 2014, 34, 598–626. [CrossRef]

31. Whelan, T.; Leutenegger, S.; Moreno, R.S.; Glocker, B.; Davison, A. ElasticFusion: Dense SLAM Without A Pose Graph. In
Proceedings of the Robotics: Science and Systems (RSS), Rome, Italy, 13–17 July 2015.

32. Whelan, T.; Kaess, M.; Fallon, M.; Johannsson, H.; Leonard, J.; McDonald, J. Kintinuous: Spatially Extended KinectFusion. In
Proceedings of the RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, Sydney, Australia, 9–13 July 2012.

33. Steinbrücker, F.; Sturm, J.; Cremers, D. Volumetric 3D Mapping in Real-Time on a CPU. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

34. Wang, Y.; Funk, N.; Ramezani, M.; Papatheodorou, S.; Popovic, M.; Camurri, M.; Leutenegger, S.; Fallon, M. Elastic and Efficient
LiDAR Reconstruction for Large-Scale Exploration Tasks. In Proceedings of the 2021 IEEE International Conference on Robotics
and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.

35. Nießner, M.; Zollhöfer, M.; Izadi, S.; Stamminger, M. Real-time 3D Reconstruction at Scale using Voxel Hashing. In Proceedings
of the SIGGRAPH Asia, Hong Kong, China, 19–22 November 2013; Volume 32.

http://dx.doi.org/10.3390/s19235121
http://www.ncbi.nlm.nih.gov/pubmed/31766772
http://dx.doi.org/10.3390/s20226536
http://www.ncbi.nlm.nih.gov/pubmed/33207617
http://dx.doi.org/10.1109/TRO.2016.2624754
http://dx.doi.org/10.1109/LRA.2019.2953859
http://dx.doi.org/10.1109/LRA.2018.2792537
http://dx.doi.org/10.1177/0278364914551008

Sensors 2022, 22, 1296 24 of 24

36. Klingensmith, M.; Dryanovski, I.; Srinivasa, S.; Xiao, J. Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device
using Spatially Hashed Signed Distance Fields. In Proceedings of the Robotics: Science and Systems (RSS), Rome, Italy, 13–17
July 2015, Volume 4, p. 1.

37. Grinvald, M.; Furrer, F.; Novkovic, T.; Chung, J.J.; Cadena, C.; Siegwart, R.; Nieto, J. Volumetric Instance-Aware Semantic
Mapping and 3D Object Discovery. IEEE Robot. Autom. Lett. 2019. 4, 3037–3044. [CrossRef]

38. Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems
(RSS), Berkeley, CA, USA, 12–16 July 2014.

39. Behley, J.; Stachniss, C. Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments. In Proceedings of the
Robotics: Science and Systems (RSS), Pittsburgh, PA, USA, 26–30 June 2018.

40. Vizzo, I.; Chen, X.; Chebrolu, N.; Behley, J.; Stachniss, C. Poisson Surface Reconstruction for LiDAR Odometry and Mapping. In
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021.

41. Schlegel, D.; Colosi, M.; Grisetti, G. ProSLAM: Graph SLAM from a Programmer’s Perspective. In Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018.

42. Grisetti, G.; Guadagnino, T.; Aloise, I.; Colosi, M.; Della Corte, B.; Schlegel, D. Least Squares Optimization: From Theory to
Practice. Robotics 2020, 9, 51. [CrossRef]

43. Colosi, M.; Aloise, I.; Guadagnino, T.; Schlegel, D.; Corte, B.; Arras, K.; Grisetti, G. Plug-And-Play SLAM A Unified SLAM
Architecture for Modularity and Ease of Use. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021.

44. Jeong, J.; Yoon, T.; Park, J. Towards a Meaningful 3D Map Using a 3D Lidar and a Camera. Sensors 2018, 18, 2571. [CrossRef]
[PubMed]

45. Ramezani, M.; Wang, Y.; Camurri, M.; Wisth, D.; Mattamala, M.; Fallon, M. The Newer College Dataset: Handheld LiDAR,
Inertial and Vision with Ground Truth. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021.

46. Kazhdan, M.; Hoppe, H. Screened poisson surface reconstruction. ACM Trans. Graph. 2013, 32, 1–13. [CrossRef]
47. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of

the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.
48. Macenski, S.; Tsai, D.; Feinberg, M. Spatio-temporal voxel layer: A view on robot perception for the dynamic world. Int. J. Adv.

Robot. Syst. 2020, 17. [CrossRef]
49. Besselmann, M.G.; Puck, L.; Steffen, L.; Roennau, A.; Dillmann, R. VDB-Mapping: A High Resolution and Real-Time Capable 3D

Mapping Framework for Versatile Mobile Robots. In Proceedings of the 2021 IEEE 17th International Conference on Automation
Science and Engineering (CASE), Lyon, France, 23–27 August 2021.

50. Zeng, M.; Zhao, F.; Zheng, J.; Liu, X. Octree-based fusion for realtime 3D reconstruction. Graph. Models 2013, 75, 126–136.
[CrossRef]

51. Chen, J.; Bautembach, D.; Izadi, S. Scalable Real-Time Volumetric Surface Reconstruction. ACM Trans. Graph. 2013, 32, 113.
[CrossRef]

52. Meagher, D. Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer;
Technical Report; Rensselaer Polytechnic Institute, Image Processing Laboratory: New York, NY, USA, 1980.

53. Museth, K. NanoVDB: A GPU-Friendly and Portable VDB Data Structure For Real-Time Rendering And Simulation. In
Proceedings of the ACM SIGGRAPH 2021 Talks, Virtual, 9–13 August 2021.

54. Lorensen, W.; Cline, H. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In Proceedings of the
International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), Anaheim, CA, USA, 27–31 July 1987;
pp. 163–169.

55. Zhou, Q.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847.
56. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A Dataset for Semantic Scene

Understanding of LiDAR Sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, Korea, 27 October–2 November 2019.

57. Caesar, H.; Bankiti, V.; Lang, A.; Vora, S.; Liong, V.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuScenes: A Multimodal
Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Seattle, WA, USA, 13–19 June 2020.

58. Lu, W.; Zhou, Y.; Wan, G.; Hou, S.; Song, S. L3-net: Towards learning based lidar localization for autonomous driving.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 6389–6398.

59. Handa, A.; Whelan, T.; McDonald, J.; Davison, A. A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM.
In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7
June 2014.

60. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In
Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal,
7–12 October 2012.

http://dx.doi.org/10.1109/LRA.2019.2923960
http://dx.doi.org/10.3390/robotics9030051
http://dx.doi.org/10.3390/s18082571
http://www.ncbi.nlm.nih.gov/pubmed/30082618
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1177/1729881420910530
http://dx.doi.org/10.1016/j.gmod.2012.09.002
http://dx.doi.org/10.1145/2461912.2461940

	Introduction
	Related Work
	The VDB Data Structure
	The VDBFusion Library for Robotics Applications
	System Overview
	Integration Pipeline Implementation
	Space Carving
	Weighting
	Mapping Parameters
	Meshing
	The VDBFusion Library
	The C++ API
	The Python API

	Experiments
	Runtime
	Memory Efficiency
	Disk Usage
	Mapping Accuracy
	User Study on the Ease-of-Use
	Qualitative Results
	KITTI Odometry Dataset
	Newer College Dataset
	nuScenes Dataset
	Apollo Dataset
	ICL-NUIM Dataset
	TUM Dataset

	Conclusions
	References

