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Abstract: When tracking very long-range targets, wide-band radars capable of measuring targets
with high precision at ranges have severe measurement nonlinearities. The existing nonlinear filtering
technology, such as the extended Kalman filter and untracked Kalman filter, will have significant
consistency problems and loss in tracking accuracy. A novel mid-state Kalman filter is proposed to
avoid loss and preserve the filtering consistency. The observed state and its first-order state derivative
are selected as the mid-state vector. The update process is transformed into the measurement space
to ensure the Gaussian measurement distribution and the linearization of the measurement equation.
In order to verify the filter performance in comparison, an iterative formulation of Cramér-Rao Low
Bound for the nonlinear system is further derived and given in this paper. Simulation results show
that the proposed method has excellent performance of high filtering accuracy and fast convergence
by comparing the filter state estimation accuracy and consistency.

Keywords: consistency; Kalman filter; nonlinear systems; radar target tracking

1. Introduction

Target tracking is a process that uses sensors to estimate the characteristics of a moving
object of interest. It is widely used in unmanned aerial vehicles (UAV), military strikes,
and other fields [1,2]. As the core problem of target tracking, state estimation theory
realizes the real-time online estimation of a target’s motion state by integrating the prior
information of the target and online measurement information provided by sensors. When
the system satisfies the linear Gaussian condition, a Kalman filter (KF) can recursively
obtain the consistent minimum variance and linear unbiased estimate of the state and is the
optimal solution [3]. However, the system model is nonlinear in multi-sensor fusion, radar
maneuvering target tracking, and satellite communication systems [4]. For the nonlinear
system model, a nonlinear filtering method is needed to improve the estimation accuracy.

The extended Kalman filter (EKF) is the most widely used nonlinear filter in practical
engineering because of its simple algorithm and small computation. The EKF uses a Taylor
series expansion to approximate the nonlinear system model. When the nonlinearity is
severe, the filtering accuracy will be reduced or even diverged due to a high-order trunca-
tion error [5]. Therefore, a second order and higher-order EKF are proposed successively,
but their computational burden increases significantly [6]. The iterated extended Kalman
filter (IEKF) is also obtained by dividing the one-step update of the EKF into multiple
steps in pseudo-time and gradually updating the states according to the nonlinear gradient
of measurement function [7]. The scholars applied numerical integration approximation
methods to nonlinear filtering. The Gauss Hermite filter (GHF), unscented Kalman fil-
ter (UKF), and cubature Kalman filter (CKF) were proposed successively. The GHF is a
polynomial integral approximation filtering algorithm for nonlinear system models [8]
which uses Gauss-Hermite polynomials to approximate the probability density in Gaussian
filtering. The UKF takes the UT criterion to select deterministic Sigma sampling points
in the original state distribution point set, inputs the sampling points into the nonlinear
system, and obtains the mean and covariance of the posterior probability density function
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through the transformation of the point set [9,10]. The UKF has less computation and
better approximation performance than the EKF. The CKF is based on the spherical-radial
criterion and uses a group of cubature points with equal weight to calculate the mean
and covariance of state variables [11]. Wang Shuo conducts a comparative analysis on
the UKF and CKF for low-dimensional and high-dimensional models under nonlinear
conditions. The simulation results show that the CKF has the optimal numerical stability
and filtering accuracy under high dimensional conditions [12,13]. A Particle Filter (PF)
is not limited by the linearization error or gaussian noise assumption and approximates
the probability density function corresponding to the nonlinear function. However, the
considerable amount of calculation is unbearable for a real-time target tracking system [14].

Due to the complexity and uncertainty of very long-range target tracking, the Gaussian
noise distribution in the measurement space will become a severe non-Gaussian distribution
when it is converted into the state space in the update process. This phenomenon is
often encountered in wide-band radar systems with high-range accuracy [15]. Due to the
nonlinear distribution of the measurement area, existing nonlinear filters have specific
problems in the accuracy of state estimation and the consistency of the filter and even
divergence of the filter may occur in the EKF [16]. Because of this, a mid-state Kalman
filter (MSKF) is proposed in this paper. A MSKF takes the observed state and its first-
order state derivative as the mid-state vector and converts the predicted state covariance
into the covariance of the mid-state vector according to the third-order spherical-radial
criterion. Then the KF update process is converted to the measurement space and realizes
the linearization of the measurement equation. Therefore, information loss in updating will
be reduced to a minimum and the MSKF will have a higher accuracy in state estimation.
The MSKF was applied to very long-range tracking problems and the simulation results
prove the superiority and applicability of the algorithm.

2. Traditional Nonlinear Filter

In practical engineering applications, discrete nonlinear systems are generally charac-
terized using additive noise and the system model is expressed as{

xk = f (xk−1) + wk−1
zk = h(xk) + vk

(1)

where process noise wk and observation noise vk are independent white zero-mean Gaus-
sian noise.

The EKF obtains linear approximation of nonlinear system by using Taylor series
expansion and then uses a KF to deal with the filtering problem of nonlinear system. The
EKF approximates the nonlinear functions f (xk−1) and h(xk) in the state space to the
first-order Taylor polynomials near x̂k and x̂k|k−1, respectively:

f (xk) ≈ f (x̂k−1) + Fk−1[xk−1 − x̂k−1] (2)

h(xk) ≈ h(x̂k|k−1) + Hk[xk − x̂k|k−1] (3)

where Fk−1 and Hk are the Jacobi matrices as follows:

Fk−1 =
∂ f (xk−1)

∂x

∣∣∣∣
x=x̂k−1

(4)

Hk =
∂h(xk)

∂x

∣∣∣∣
x=x̂k|k−1

(5)

The UKF is different from the EKF in that it directly calculates the mean and covariance
of the target distribution, avoiding the approximation of nonlinear functions. The UKF
uses the mean and covariance of initial distribution to generate a series of determined
sigma sampling points according to Formulas (6) and (7). These sigma sampling points are
propagated through nonlinear functions to get the estimated mean and covariance [17].
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χ0 = xk
χi = xk + ei

√
(nx + κ)Px

χi+n = xk − ei
√
(nx + κ)Px

, i = 1, 2, · · · , nx (6)

The corresponding weight is{
w0 = κ

nx+κ

wi = wi+n = 1
2(nx+κ)

(7)

where κ is a fine-tuned scalar parameter, nx is the dimension of the state vector xk, and ei
is the i-th Cartesian fundamental vector. The size of κ is related to the size of the sample
moments and controls the distance from the sigma point to the mean point.

Under the Gaussian assumption, the state estimation of the nonlinear KF can ultimately
be equated to the calculation of multidimensional vector integral, which can be summarized
in the form of a nonlinear function × Gaussian probability density function:

I(g) =
∫

Rn

g(x)N(x; x, Px)dx (8)

where g(·) is any nonlinear function. To solve the integral numerically, the CKF transforms
it into spherical-radial form and then carries out numerical integration according to the
spherical-radial criterion ∫ ∞

0
f (r)rn−1 exp(−r2)dr =

m

∑
i=1

wi f (ri) (9)

where r is the radial scalar obtained by spherical-radial transformation of the vector x in a
cartesian coordinate system. The CKF filtering process is similar to that of the UKF. They all
transform the sampled points with weight through the equations of the nonlinear system to
calculate the first and second order moments required by filtering, but they have essential
differences in obtaining sampling points. In a high-dimensional system, the weights of
the UKF sigma points are prone to be negative which will cause the problem of unstable
estimated values. The weights of the CKF sampling points are always positive, which
solves the problem of instability. However, the filtering accuracy will be affected due to the
increasing distance between the sampling point and the center point.

3. Mid-State Kalman Filter for Nonlinear Problems

The KF is proposed based on the least mean square error criterion. Under the as-
sumption that the observation noise obeys the Gaussian distribution, the KF is a constant
minimum variance and linear unbiased estimate that can recursively obtain the state. In
this paper, a Mid-state Kalman Filter is proposed based on the KF method. A MSKF
selects the observed state and its first-order state derivative as the mid-state vector and
transforms the filter update process into the measurement space. The proposed method
guarantees the Gaussian distribution of the measurement and correspondingly transforms
the measurement equation into a linear form.

Mid-State Kalman Filter

Consider a nonlinear discrete system for target tracking as shown below:{
xk = Fkxk−1 + wk−1
zk = Hk(xk) + vk

(10)

where, xk ∈ Rn and zk ∈ Rm are the system state vector and the measurement vector;
Fk(·) : Rn → Rn and Hk(·) : Rn → Rm respectively represent the system state function
and nonlinear measurement function; and the process noise wk and observation noise vk
are independent zero-mean Gaussian noise with covariance Qk and Rk.



Sensors 2022, 22, 1302 4 of 16

In the typical two-dimensional radar target tracking, the target is assumed to be in uni-
form linear motion. Its state vector at time k is xk = [xk, vxk , yk, vyk ]

T , including the position
[xk, yk]

T and velocity vector [vxk , vyk ]
T . In the observation vector zk = [rk, θk]

T , rk and θk are
the distance measurement and angle measurement, respectively. The system state function
and nonlinear measurement function in Equation (10) are respectively expressed as:

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, Hk(xk) =


√

x2
k + y2

k

arctan( y2
k

x2
k
)

 (11)

The MSKF selects xMk = [zk,
.
zk]

T
= [rk,

.
rk, θk,

.
θk]

T
as mid-state vector and linearizes

the measurement equation in the measurement space as:

zk = HzxMk + vk = [ Im 0m×m ]× [zk,
.
zk]

T
+ vk (12)

In this case, the nonlinear system in Equation (10) can be transformed into the follow-
ing linear system: {

xk = Fkxk−1 + wk−1
zk = HzxMk + vk

(13)

This avoids the linearization process of the measurement function Hk(xk). Because the
system satisfies the linear Gaussian condition of the KF, the mid-state can be updated by the
KF. As the optimal linear filter, KF has less information loss and higher filtering accuracy.

In the mid-state, [
.
rk,

.
θk]

T
is not only the first-order state derivative of [rk, θk]

T , but also
has practical physical significance.

.
rk and

.
θk, respectively, represent the radial velocity vr

and angular velocity ω of the target movement in polar coordinates. Therefore, the linear
velocity is vθ = ωr. As shown in Figure 1, the relative radar distance of the target is r, the
angle is θ, and the velocity at time k is v. In the cartesian coordinate system, the velocity
vector v can be decomposed into x axial velocity vx and y axial velocity vy. In the polar
coordinate system, the velocity vector v can be decomposed into radial velocity vr and
linear velocity vθ . It should be noted that the radial velocity vr only changes the magnitude
of the velocity v without changing its direction, while the linear velocity vθ only changes
the direction of the velocity v without changing its magnitude.

The mid-state is introduced into the Kalman filter to form the tracking filter algorithm
MSKF, which is suitable for dealing with nonlinear problems. The algorithm steps are
given as follows.

Initialization: Given the initial state estimate x̂0 and covariance matrix P0, set the
time k = 1.

Prediction: Assume that the input of filter in prediction step is the filtering result
x̂k and Pk at time k, and obtain the state prediction result x̂k+1|k and Pk+1|k through the
following formula:

x̂k+1|k = Fkxk (14)

Pk+1|k = FkPkFT
k + Qk (15)

State transformation: The predicted state vector x̂k+1|k is converted to the mid-state

xMk+1|k = [zk+1|k,
.
zk+1|k]

T , and the predicted covariance Pk+1|k in the state space is converted
to the covariance PMk+1|k in the measurement space according to the third-order spherical-
radial criterion.
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According to the geometric relation and velocity decomposition in Figure 1, the
transformation relationship from state vector x̂k+1|k = [xk+1|k, vxk+1|k , yk+1|k, vyk+1|k ]

T to mid-

state vector xMk+1|k = [rMk+1|k ,
.
rMk+1|k , θMk+1|k ,

.
θMk+1|k ]

T
is shown in the following formula:

rMk+1|k =
√

xk+1|k2 + yk+1|k2

.
rMk+1|k =

1
r (xk+1|kvxk+1|k + yk+1|kvyk+1|k )

θMk+1|k = arctan(
yk+1|k
xk+1|k

)
.
θMk+1|k =

1
r2 (xk+1|kvyk+1|k − yk+1|kvxk+1|k )

(16)

The predicted covariance Pk+1|k in the state space was converted to the covariance
PMk+1|k in the measurement space according to the third-order spherical-radial criterion:

(1) Obtain 2n sampling points through x̂k+1|k and Pk+1|k:
wi = wi+nx = 1

2nx

ζi = x̂k+1|k +
√

nxPk+1|kei

ζi+n = x̂k+1|k −
√

nxPk+1|kei

, i = 1, 2, · · · , nx (17)

where ei represents the unit vector with the i-th element being 1.

(2) The value of the sampling point after conversion is Ci = l(ζi), i = 1, 2, · · · , 2nx.

(3) Then the covariance PMk+1|k in the intermediate states in the measurement space is:

c =
2n

∑
i=1

wiCi (18)

PMk+1|k =
2n

∑
i=1

wi(Ci − c)(Ci − c)T (19)

The state transformation represents the target state transformation relationship under
different coordinates. This module can be quickly replaced according to the actual situation
without modifying the filter prediction and update module. This also improves the practical
engineering applicability of the MSKF.

Update: The state estimation results xMk+1 and PMk+1 in the measurement space are
obtained from the mid-states xMk+1|k and their covariance PMk+1|k .

SMk+1 = HzPMk+1|k HT
z + Rk+1 (20)
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KMk+1 = PMk+1|k HzS−1
Mk+1|k

(21)

xMk+1 = xMk+1|k + KMk+1(zk+1 −HzxMk+1|k ) (22)

PMk+1= (I2m −KMk+1 Hz
)
PMk+1|k (23)

where Hz = [ Im 0m×m ] is the observation matrix of the mid-state vector.
Extraction of state estimation: Obtain the state estimation x̂k+1 and Pk+1 at time k

from the filtering results xMk+1 and PMk+1 in measurement space.
This process is the reverse process of state transformation. Therefore, the conversion

relationship from the mid-state vector xMk+1 = [rMk+1 ,
.
rMk+1 , θMk+1 ,

.
θMk+1 ]

T
to the state

vector x̂k+1 = [xk+1, vxk+1 , yk+1, vyk+1 ]
T is

xk+1 = rMk+1 cos θMk+1

vxk+1 = vrMk+1
cos θMk+1 − vθMk+1

sin θMk+1 =
.
rMk+1 cos θMk+1 − rMk+1

.
θMk+1 sin θMk+1

yk+1 = rMk+1 sin θMk+1

vyk+1 = vrMk+1
sin θMk+1 + vθMk+1

cos θMk+1 =
.
rMk+1 sin θMk+1 + rMk+1

.
θMk+1 cos θMk+1

(24)

At the same time, Pk+1 is obtained from PMk+1 according to the third-order spherical-
radial criterion.

The algorithm flow of the estimator is shown in Figure 2.
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4. Nonlinear Filter Performance Evaluation

In order to better verify the performance of nonlinear filters, it is necessary to analyze
and evaluate the filtering accuracy, credibility, stability, and other aspects of the filter which
largely depend on reasonable evaluation metrics. In addition to the common evaluation
metrics of state accuracy, such as root mean square error, this paper also deduces and
gives the Cramér-Rao Low Bound iteration formula for nonlinear systems and analyzes the
consistency of a filter by using a normalized error square.
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4.1. Root Mean Square Error

Root Mean Square Error (RMSE) is widely used in performance comparison and
evaluation of nonlinear filtering algorithms. It is based on the estimation error set obtained
by the Monte Carlo simulation to evaluate the accuracy of the algorithm [18], defined
as follows:

RMSEx =

√√√√ 1
Nm

Nm

∑
l=1

(x̂l
k|k − xk)

2 (25)

where Nm is the Monte Carlo simulation times, x̂l
k|k represents the estimation result of the

target motion state at time k in the l-th Monte Carlo simulation, and xk is the actual state of
the target. Although this metric has a definite physical meaning, it is easily dominated by
considerable error values.

4.2. Cramér-Rao Low Bound for Nonlinear Systems

For nonlinear systems, the optimal Bayesian nonlinear filter is impossible [19], so there
are many approximate suboptimal algorithms. They have a theoretical optimal perfor-
mance lower bound called Cramér-Rao Low Bound (CRLB). It is not only a benchmark
for performance analysis, but also can be used to design the parameters of a suboptimal
algorithm. It has important theoretical and application value.

Literature [20,21] provides the CRLB iterative formula for discrete nonlinear systems,
but it only provides the definition containing the expected operation without the final
equations. Therefore, this paper deduces the CRLB for nonlinearity systems with Gaussian
white noise.

For the nonlinear system in Equation (1), the unbiased estimate of the state xk is x̂k
and its covariance matrix is Pk. The matrix should satisfy:

Pk = E[(x̂k − xk)(x̂k − xk)
T ] ≥ J−1

k (26)

where Jk = E[− ∂2 ln p(xk ,zk)

∂x2
k

] known as the information matrix, J−1
k is the CRLB at time k.

The iteration formula is

Jk+1 = D22
k −D21

k (Jk + D11
k )
−1

D12
k (27)

Among them,

D11
k = E[− ∂2 ln p(xk+1|xk)

∂xk∂xk
]

D12
k = E[− ∂2 ln p(xk+1|xk)

∂xk∂xk+1
]

D21
k = E[− ∂2 ln p(xk+1|xk)

∂xk+1∂xk
] = [D12

k ]
T

D22
k = E[− ∂2 ln p(xk+1|xk)

∂xk+1∂xk+1
] + E[− ∂2 ln p(zk+1|xk+1)

∂xk+1∂xk+1
]

(28)

If both the system noise vk and the measured noise wk are zero-mean Gaussian white
noise and their covariance matrices are Qk and Rk+1, respectively, then it can be obtained
from the Formula (28):

∂ ln p(xk+1|xk)

∂xk
=

∂ f T
k (xk)

∂xk
Q−1

k [xk+1 − fk(xk)] (29)

D11
k = E{

∂ f T
k (xk)

∂xk
Q−1

k [xk+1 − fk(xk)][xk+1 − fk(xk)]
T(Q−1

k )
T
[
∂ f T

k (xk)

∂xk
]

T

} = E[
~
F

T

k Q−1
k

~
Fk] (30)

D12
k = −E[

~
F

T

k ]Q
−1
k = [D21

k ]
T

(31)

D22
k = Q−1

k + E[
~
H

T

k+1R−1
k+1

~
Hk+1] (32)
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Defining
~
Fk = ∂ fk(xk)

∂xk
and

~
Hk+1 =

∂hk+1(xk+1)
∂xk+1

. The initial information matrix J0 is the
inverse of the initial state covariance matrix P0|0:

J0 = P−1
0|0 (33)

Through the above derivation process, the CRLB provides the lower bound of the
mean square error of unbiased estimation and gives the mean square error of an ideal
nonlinear filter. In this paper, the RMSE curves of all filters are compared with the CRLB
curves of the nonlinear model. The degree of approaching the CRLB curve reflects the
accuracy and performance of the corresponding algorithm.

4.3. Normalized Estimation Error Squared

Normalized Estimation Error Squared (NEES) gives a more accurate quantitative
evaluation of the consistency of the filtering algorithm. Literature [22] gives a relatively
standard definition: for the confidence level α(0 ≤ α ≤ 1), when the difference between the
real error information and the error information calculated by the filter is not statistically
significant, the filter can be considered to be consistent at the level α. The definition is
as follows:

εk = NEES = (xk − x̂k|k)
T P−1

k|k (xk − x̂k|k) (34)

When Pk|k is equal to the actual mean square error matrix, εk follows the distribution χ2

with degree of freedom nx, and nx is the state dimension. In this case, the consistency of state
estimation is transformed into a χ2 test problem. Most of the existing filter performance
evaluation is based on the Monte Carlo simulation and the Arithmetic-mean Normalized
Estimation Error Square (ANEES) using Nm simulation results defined as follows:

ζk = ANEES =
1

Nm

Nm

∑
i=1

εi
k/nx =

1
Nmnx

Nm

∑
i=1

εi
k (35)

5. Simulation
5.1. Problem Analysis

When the wide-band radar tracks a very long-range target, a typical problem caused
by the measurement nonlinearity is the “Contact Lens” problem. It is directly related to the
filter update process and is the leading cause of filter inconsistency and divergence.

The wide-band radar has high range accuracy and low angle accuracy when tracking
very long-range targets. The uncertainty region of measurement will present a severe
non-Gaussian distribution when the state in the Cartesian coordinate system is updated
with nonlinear measurements from different coordinate systems. The uncertainty region
presents a curved shape, similar to a banana shape in two dimensions and a contact
lens shape in three dimensions. Therefore, this distribution is called the “Contact Lens”
distribution and this kind of nonlinear problem is called the CL problem [23]. Figure 3
describes the reason for the uncertainty region of measurement from a geometric point of
view. In the case of constant range accuracy, the range of cross-angle error Rσθ increases
with the radar detection range. As it is far greater than the range error σr, the uncertainty
region of measurement gradually presents a curve. It should be noticed that in order to
describe the distribution characteristics, the curve segment of constant thickness is used
in Figure 3 to emphasize the overall curvature of the uncertainty region. However, the
curvature of the actual space varies from place to place. The curvature is related to the
probability of the measurement distribution at that point in the space. In Figure 4, the
intensity of the color is proportional to the probability of the measurement distribution in
the space.
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Bar-shalom uses a parametric expression to describe the uncertainty region
CL(x; r, σ2

r , σ2
θ ), but he did not give the specific expression of the distribution. The bias

significance metric is put forward to measure the degree of its distortion from a Gaussian
distribution [24]:

β =
rδ2

θ

2δr
(36)

where r is the distance from the target to the radar, δ2
θ is the radar angle variance, and δ2

r
is the radar range variance. Figure 5 shows the measurement distribution characteristics
corresponding to different values of β when the target is 500 km away from the radar.
When β is small, the measurement distribution shows a typical Gaussian distribution and
the traditional filter can track targets well. However, as the value increases, the nonlinear
degree of measurement gradually increases. At this time, the nonlinear filters EKF and UKF
will have consistency problems, resulting in the decrease of filtering accuracy and even the
problem of filter divergence. This problem can be explained by theoretical analysis.
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The EKF needs to linearize the measurement equation in Equation (10). Assume
(x, y) is the position coordinate of the target relative to the Cartesian coordinate system
with the radar as the origin. The vector (x0, y0) is an initial unbiased estimate of (x, y)
with the covariance matrix P0. The range and angle observation model of the radar is
r = (x2 + y2)

1/2
+ vr, θ = arctan(y/x) + vθ . Updating (x0, y0) with the measurement r

and θ through the EKF, obtains a new estimate (xe, ye) with a covariance matrix Pe. The
EKF valuation equation is then expressed as[

xe
ye

]
=

[
x0
y0

]
+ Pe HT

0 R−1
[

r− r0
θ − θ0

]
(37)

where
P−1

e = P−1
0 + HT

0 R−1H0 (38)

r0 = ( x2
0 + y2

0
)1/2 (39)

θ0 = arctan(y0/x0) (40)

H0 =

[
cos θ0 sin θ0

− sin θ0/r0 cos 00/r0

]
(41)

R =

[
σ2

r 0
0 σθ

2

]
(42)

Carrying out the matrix multiplication operation of Formula (37), we can get[
xe
ye

]
=

[
x0
y0

]
+ Pe

[
cos θ0
sin θ0

]
[(r− r0)/σ2

r ] + Pe

[
− sin θ0
cos θ0

]
[(θ − θ0)/r0σ2

θ ] (43)

For high-resolution wide-band radar, P−1
0 � R−1, so P−1

0 can be ignored, then

Pe ≈ H−1
0 R(HT

0 )
−1

(44)

Thus, [
xe
ye

]
≈
[

x0
y0

]
+

[
cos θ0
sin θ0

]
(r− r0) +

[
− sin θ0
cos θ0

]
r0(θ − θ0) (45)

From the above formula,
xe = r cos θ0 − r0(θ − θ0) sin θ0 (46)
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ye = r sin θ0 + r0(θ − θ0) cos θ0 (47)

Therefore, the following formula can be obtained:

re =
(

x2
e + y2

e

)1/2
(48)

θe = arctan(ye/xe) (49)

Assuming that (r − r0)/r can be ignored, then the estimation error caused by the
linearization of the measurement equation in EKF is

re − r ≈ r[1 + (θ − θ0)
2]

1/2
− r (50)

θe − θ ≈ −(θ − θ0)+arctan(θ − θ0) (51)

The above formula shows that when the target is far away from the radar, the estima-
tion error may exceed the distance measurement error σr, so the solution of the EKF will
tend to diverge.

The UKF is a numerical method to calculate the statistical characteristics of random
variables after nonlinear transformation. Its essence is to use multiple deterministic sam-
pling points to approximate the Gaussian probability density function. However, in the CL
problem, the probability distribution of measurement in the Cartesian coordinate system
obviously cannot be approximated simply by Gaussian distribution, so the filtering accu-
racy of the UKF is poor. Figure 6 shows the error ellipse of the EKF and UKF estimation
results which shows that the Gaussian distribution estimated by the two filters cannot
cover the measurement distribution well, so the performance of the two filters is degraded
or even divergent.
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MSKF uses [xk,
.
xk, yk,

.
yk]

T as the state vector as the prediction in Cartesian coordinates.
The mid-state [r,

.
r, θ,

.
θ] is selected to make sure the update process is carried out in the

measurement coordinates when updating. In the measurement space, the measurement
distribution conforms to the Gaussian distribution assumption of the Kalman filter which
ensures the consistency of the filter.

5.2. Simulations Results

The following two very long-range target tracking scenarios are designed for different
radar performances:



Sensors 2022, 22, 1302 12 of 16

(1) r = 2700 km, δr = 10 m, δθ = 0.3◦, β= 3.7;
(2) r = 2700 km, δr = 0.1 m, δθ = 0.3◦, β= 371

Figure 7 shows the measurement distribution of two simulation scenarios. Simulation
scenario 1 uses narrowband radar to track very long-range targets. This is set according to
the situation of missile target tracking by narrowband radar in engineering. The measure-
ment distribution is Gaussian distribution. Simulation scenario 2 uses wide-band radar to
track very long-range targets. In scenario 2, the typical CL problem occurs.
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The experiment uses 100 Monte Carlo simulations, the initial target position is
x0 = 1050 km, y0 = 2500 km, and the initial velocity is vx = 200 m/s,vy = 300 m/s.
The traditional nonlinear filters EKF, UKF, and CKF are used for performance comparison
simulation. The sampling time interval of the four filters is T = 0.1 s and the tracking time
is 80 s. RMSE, CRLB theory, and consistency metric ANEES are used to test the filtering
performance. The convergence speed of the filter is greatly related to the initial state, so
the two-point starting method is adopted. The initial state and covariance are obtained by
differentiating the two measurements at the first time and the second time.

Table 1 lists the range and velocity estimation RMSE of different filters in the tracking
scenario (1) when the measurement uncertainty region is Gaussian distribution. In order to
compare the computational complexity, the table also lists the Average State Estimation
Time Consumption (ASETC) of different filters. It can be seen from Table 1 that the range
measurement accuracy of the MSKF is similar to that of the UKF and CKF, which shows that
the MSKF is also suitable for nonlinear target tracking in general. The angle measurement
accuracy of the CKF and MSKF is higher than the EKF and UKF. The time cost of the
MSKF is slightly higher than that of the other filters, but it increases the accuracy of radar
angle measurement. In Table 2, the MSKF improves the angle measurement accuracy and
achieves accurate tracking of a very long-range target compared with other filters. In
summary, the MSKF can be used in various situations and, for special nonlinear scenarios,
it can also effectively improve radar tracking accuracy.

Table 1. Different filtering accuracy and time consumption in scenario (1).

Filter Range RMSE/m Angle RMSE/◦ ASETC/s

EKF 2.487 0.2224 0.0295

UKF 2.506 0.0986 0.0450

CKF 2.502 0.0266 0.0426

MSKF 2.598 0.0208 0.0691
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Table 2. Different filtering accuracy and time consumption in scenario (2).

Filter Range RMSE/m Angle RMSE/◦ ASETC/s

EKF 1.6700 17.7700 0.03155

UKF 0.0956 1.2730 0.04779

CKF 0.1139 0.1977 0.04578

MSKF 0.0926 0.0781 0.07162

Figures 8–11 shows the simulation results of tracking very long-range targets with
filters in scenario (2). At the time β = 371, the uncertainty region of measurement is CL
distribution. It can be seen from Figures 8 and 9 that for very long-range targets, the
measurement uncertainty region presents a severe non-Gaussian shape and the three filters
except EKF can accurately track the target. In order to achieve the linear approximation of
the system model, the EKF ignores the higher-order terms of Taylor’s expansion. Therefore,
the EKF causes a significant error in the estimated state posterior distribution due to the
truncation error. The UKF and CKF design a small number of deterministic sampling
points and approximate the posterior probability of the state by calculating the statistical
characteristics of these sampling points after passing through the nonlinear system so
the target state is estimated accurately. For the tracking scenario (2), the angle estimation
accuracy of the CKF is higher than that of the UKF. As shown in Table 2, the MSKF proposed
in this paper has better filtering performance and higher target tracking accuracy than the
CKF when the uncertainty region of measurement is CL distribution. Meanwhile, since the
MSKF performs linear updates in the measurement space and is more affected by measures,
the convergence speed of the MSKF is faster under the same two-point starting mode.
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Figure 11. Comparison of ANEES of CL distribution.

The state component estimation RMSE and theoretical performance lower bound
CRLB is given in Figure 10. Due to the non-Gaussian measurement distribution, the
initial RMSE of the four filters and CRLB are all large. As the iteration progresses, the
UKF, CKF, and MSKF proposed in this paper gradually converge to steady-state, while
the range accuracy of the EKF gradually diverges. The steady-state value indicates the
approximation performance of the algorithm to nonlinear filtering. The convergence rate
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of RMSE represents the speed at which the algorithm finds the center of the non-Gaussian
distribution. Figure 10a,b clearly show that the CKF and MSKF gradually converge to
CRLB, and the MSKF has a faster convergence rate, a smaller steady-state value, and is
closer to the theoretical boundary.

Figure 11 shows the ANEES distribution of the four filters. Since the consistency
metric ANEES measures the difference between the real error and the estimated covariance
matrix, the smaller the value, the better the consistency and the higher the robustness. It
can be seen that the ANEES of EKF increases gradually, which means that the covariance
matrix of the state vector increases gradually in the estimation process, eventually leading
to the divergence. The ANEES of UKF gradually converges to a constant value, but its
robustness is poor which leads to a significant estimation error. However, the ANEES of
the CKF and MSKF gradually converge to achieve high-precision and stable target tracking.
The MSKF has better state covariance estimation and higher robustness.

6. Conclusions

A typical nonlinear CL problem occurs when high-resolution wide-band radar tracks
very long-range targets. To solve this problem, a novel mid-state Kalman filter is proposed
in this paper. The MSKF uses the observed state and its first state derivative as the mid-
state vector to transform the update process of the filter into the measurement space and
rederives the update equation of the Kalman filter. The state transition module can be
replaced according to the actual situation without modifying the filter prediction and
update module. This improves the practical engineering applicability of the MSKF. When
the CL problem occurs, the MSKF has the characteristics of high state estimation accuracy
and fast filter convergence compared with other filters. This will significantly help the
wide-band radar system to form the target trajectory quickly and accurately.
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