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Abstract: In recent years, research into blockchain technology and the Internet of Things (IoT) has
grown rapidly due to an increase in media coverage. Many different blockchain applications and
platforms have been developed for different purposes, such as food safety monitoring, cryptocurrency
exchange, and secure medical data sharing. However, blockchain platforms cannot store all the
generated data. Therefore, they are supported with data warehouses, which in turn is called a
hybrid blockchain platform. While several systems have been developed based on this idea, a
current state-of-the-art systematic overview on the use of hybrid blockchain platforms is lacking.
Therefore, a systematic literature review (SLR) study has been carried out by us to investigate the
motivations for adopting them, the domains at which they were used, the adopted technologies that
made this integration effective, and, finally, the challenges and possible solutions. This study shows
that security, transparency, and efficiency are the top three motivations for adopting these platforms.
The energy, agriculture, health, construction, manufacturing, and supply chain domains are the top
domains. The most adopted technologies are cloud computing, fog computing, telecommunications,
and edge computing. While there are several benefits of using hybrid blockchains, there are also
several challenges reported in this study.

Keywords: Internet of Things; blockchain; cloud computing; integration; hybrid blockchains; system-
atic literature review

1. Introduction

For the last few years, the global demand for using Internet of Things (IoT) devices
is highly increasing due to the increasing global market demand for faster and more
efficient ways of manufacturing, required improvements of the military capabilities, and
transforming things into smart ones such as smart homes, smart factories, and smart cities.
Although IoT devices have numerous benefits, they also have several weaknesses, such as
generating a huge amount of data, requiring a lot of energy to work, and considerations
regarding the trust issues as they are centralized, controlled by an administrator who can
manipulate the underlying system or even stop it entirely. The IoT system enables the
devices to collect data about themselves and the environment around them, and later share
these collected data with a device, and finally send these data to a central server. Blockchain
technologies allow the IoT devices to exchange collected data with each other or send them
to a cloud server securely and reliably [1]. As a result, blockchain technology has been
introduced to minimize these potential weaknesses and risks.

Nakamoto [2], who is the pseudonym of the creator of Bitcoin, introduced the first
cryptocurrency that uses distributed ledger technology (DLT) (a.k.a., blockchain). Since
then, blockchain technology has penetrated the Internet of Things (IoT) market, allowing
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smart devices that can connect to the Internet to use a secure, immutable, and verifiable
network. Blockchain is a decentralized ledger that secures, verifies, and records all peer-to-
peer transactions quickly, safely, and transparently. The primary benefit of using blockchain
technology over traditional technologies is that it enables two parties to perform secure
transactions online without the need for a trusted authority. As a result of the lack of this
authority, transaction rates are cheaper than the other conventional approaches [3].

As the world is becoming more and more dependent on smart devices, the number
of connected IoT devices by the year 2025 is estimated to be 16.44 billion devices, and
25.44 billion by the year 2030 [4]. As such, we expect a dramatic change in the IoT market,
and the contribution of this new blockchain technology is expected to be disruptive. Many
vendors are currently developing new platforms, tools, and techniques. While blockchain
platforms are very useful in terms of security and transparency, all the generated data
cannot be stored in these platforms. In most cases, a separate data warehouse is needed to
store the huge amount of data that cannot be stored directly in the blockchain platform.
This can be a cloud data warehouse or a traditional central database management system;
however, cloud data warehouses are mostly preferred due to their elasticity and other
advanced features. Many blockchain applications and platforms have been developed
recently using the cloud as storage units.

Since blockchain platforms cannot store all the generated data, they are mostly sup-
ported with cloud data warehouses, which can be called a hybrid blockchain platform.
Another perspective for hybrid blockchain definitions is the use of both public and private
blockchains in the same project. Ref. [5] described the hybrid blockchain as a street with
many stores, where everyone can access and view the stores, similar to public blockchains,
however, one cannot access the back offices of the stores without permission, which is
similar to the private blockchain. From this point of view, a hybrid blockchain can be con-
sidered as a combination of a private and a public blockchain where the private blockchain
can be hosted on the public blockchain. A hybrid blockchain can be entirely customized,
where hybrid blockchain users can decide which transactions are made public or who can
take part within the blockchain.

While several systems have been developed based on the idea of hybrid blockchains, a
systematic overview of the current state of the art on the use of hybrid blockchain platforms
is lacking. Knowing how this integration has been performed would help facilitate future
research on hybrid blockchains. Although there are several relevant papers on this topic,
this has not been evaluated in detail yet. The objective of this study is to present the
main challenges and possible solutions and, also, different aspects related to this hybrid
blockchain research. As such, we performed a systematic literature review study to collect
and synthesize the required data on the state-of-the-art in this field.

In this paper, we particularly focus on the integration of blockchain and IoT, its
motivations, challenges, and the domains by performing a systematic literature review
(SLR) on research articles collected from different digital databases.

The following research questions are defined in this SLR study:

1. What are the key motivations for adopting hybrid blockchain?
2. What kind of domains has this concept been applied to?
3. What are the adopted technologies in IoT and blockchain integration?
4. What are the blockchain platforms used in the IoT and blockchain integration?
5. What are the key challenges and possible solutions for IoT and blockchain integration?

The contributions of this study are as follows:

• To the best of our knowledge, this is the first systematic review of the hybrid blockchains
in literature.

• We evaluated 38 research papers (see Appendix A) from different dimensions and
responded using different categories for each research question.

• Challenges and possible solutions are also discussed in this paper; this might pave the
way for further research.
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This first SLR study using 38 research articles on hybrid blockchains shows that
efficiency, data integrity, and security are the major motivations for adopting integration
of IoT and blockchains. Researchers mostly focused on health, energy, agriculture, and
manufacturing domains and applied fog computing, edge computing, telecommunications,
and cloud computing technologies. The most preferred blockchain platform is Ethereum,
and several challenges are discussed in this study. The following sections are organized
as follows: Section 2 provides the background and related work. Section 3 describes the
adopted research methodology. Section 4 presents the results of this SLR, and Section 5
presents the discussion. Finally, Section 6 discusses the conclusions and future work.

2. Background and Related Work

The blockchain-integrated IoT system (BC-IoT system) can be defined as an IoT system
that contains some blockchain elements to perform its transactions. Therefore, understand-
ing the architecture of the IoT systems and the structures and operations of blockchain
networks is necessary for the analysis of BC-IoT systems. In this section, we provide
an overview of the background information. We also present some related studies in
this section.

2.1. Background
2.1.1. Internet of Things

The Internet of Things (IoT) refers to a set of devices that are connected to the Internet
or other communication networks and exchange data among themselves. Any object can be
transformed into an IoT device by adding sensors and processing ability. For instance, very
large and crowded cities can also be covered with thousands of tiny IoT components to
track the traffic, and useful suggestions and proper measures can be provided to eliminate
several problems. It seems possible to turn anything into an IoT device thanks to the
availability of very cheap and tiny computer chips, and the widespread use of wireless
networks. Along with using IoT devices to make daily life easier, IoT can also be used in
different application domains shown as follows:

1. Manufacturing [6]: Due to the increasing population numbers in the last few decades,
the demand for goods is as never before. IoT devices are being adopted in today’s
manufacturing to automate production lines, which highly increase the production
speed and, thereby, reduce the overall costs. Less labor is needed to produce the same
amount of goods and, therefore, manufacturers need to pay less money for the labor.

2. Healthcare [7]: Medical IoT devices are being used as remote patient management
(RPM) tools by physicians to monitor the medical state of a patient, distantly. IoT
devices can be wearable or implantable devices, and they can help medical doctors to
monitor heartbeat, arrhythmia, blood pressure, oxygen level, sugar level, and they
can even be used for collapse detection.

3. Environment [8]: Smart sensors can help to fight against climate change and make
the world greener as IoT devices are also used to measure CO2 levels, oxygen levels,
and ozone concentration in the atmosphere. They can monitor volcanic activities,
extreme weather conditions, water levels, and safety-related events, and help to
predict the timing of occurrences of natural disasters such as earthquakes, tsunamis,
and wildfires.

4. Energy [9]: Energy waste is another problem that IoT is used to prevent. Sensors are
used to sense and transmit real-time data regarding the energy levels being produced
and consumed. They can be used to track the sunlight and direct the solar panels to
the appropriate positions to maximize performance.

5. Agriculture and our food supply [10]: In precision agriculture, IoT sensors are widely
used; for example, in smart greenhouses they are used to monitor and control temper-
ature and humidity to increase yield [11]. In addition, some apps can advise farmers
what time is the best to transplant their crops and harvest them.
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IoT systems mainly consist of the following subsystems: perception layer, commu-
nication layer, and industrial applications. The perception layer is the physical layer of
the IoT system, where sensors, RFID tags, barcode or QR code readers, and other data-
collecting devices are used to collect data. After these data are collected, the communication
layer connects the IoT device with a gateway device such as Wi-Fi access points (APs)
using a communication protocol (e.g., Bluetooth, NFC, and Ethernet). The communication
layer transfers the collected data to the industrial applications layer where data are being
analyzed and stored.

2.1.2. Blockchain

Blockchain (BC) is a decentralized ledger that securely, verifiably, and transparently
records all transactions made on the blockchain network. The ledger is shared among
distributed computers (a.k.a., nodes) on the network. All users can see the ledger from
its first transaction in the system until its most recent one as it is not controlled or owned
by a central entity, being decentralized. When a user sends a transaction, the data of the
transaction are encrypted using a cryptographic algorithm before being verified by the
miners to check if the transaction is valid. If most of the miners consent to the transaction,
a new block is added to the chain [12]. The primary benefit of blockchain over traditional
technology is that it allows two parties to conduct encrypted transactions over the Internet
without the intervention of a third-party entity.

Blockchain technology was proposed to support transactions between two parties in a
peer-to-peer manner without the need for a middleman using a cryptocurrency called Bitcoin.
This initial blockchain technology was then labeled as blockchain 1.0. Later, new blockchain
technology emerged that allows applications to be built on top of the blockchain platform,
and smart contracts were widely used. The use of such smart contracts helped to realize
decentralized applications (Dapps), decentralized autonomous organizations (DAOs), smart
land, smart tokens, and other cryptocurrencies that allowed the capability for automated
financial applications. These applications in the financial sector were developed using smart
contracts, which are now called blockchain 2.0. However, blockchains are not only restricted
to cryptocurrency, which is just one application of the wider definition of DLT.

Distributed ledgers can store arbitrary data that are not always linked to financial
services. All implementations of blockchain technology that include a broader range of
non-cryptocurrency-distributed ledger uses are called blockchain 3.0 [13]. Blockchain tech-
nology consists of the following four main components: a smart contract, consensus, ledger,
and cryptography [14]. The smart contract is a kind of program stored on the blockchain
that starts functioning when the terms of the contract are achieved. The consensus is an
agreement that all nodes of the blockchain follow to determine which information is added
to the next block of the ledger and provide validity and authenticity for the transactions on
the blockchain. There are two main categories of consensus listed as follows:

6. PoW (proof of work) [15]: This consensus mechanism is used by Bitcoin [16], Ethereum
1.0 [17]. All nodes are a part of a competition. In this competition, each node tries
to construct the appropriate block by solving a mathematical puzzle, which is called
mining. The transaction fees in this consensus are calculated based on the demand
and supply of transactions, where miners will choose to verify transactions with the
highest fees first when the number of waiting transactions exceeds the number that
one block of the blockchain can contain, which is why Eth 1.0’s transaction fees are so
high sometimes. However, the problem with PoW for a blockchain is that it is very
expensive as it requires a huge amount of computational power to mine; therefore, if
the awarded coins drop in price and becomes cheaper than the energy costs spent,
then miners will have no incentive to mine more blocks of that blockchain.

7. PoS (proof of stake) [15]: Unlike the PoW, PoS does not require high computational
power to validate block transactions. The more coins a miner has, the more mining
rewards and power over the network they have. This consensus mechanism is
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significantly cheaper than PoW, and its transaction fees are very low. Some examples
of blockchains using PoS are Eth 2.0 [18], Cardano [19], Solana [20], and Polkadot [21].

8. Other consensus mechanisms, such as delegated proof of stake [22], practical Byzan-
tine fault tolerance [23], proof of elapsed time [24], practical Byzantine fault toler-
ance [25], proof of weight [19], proof of burn [24], proof of capacity [26], and proof of
space [27], also exist; however, they are not as widely used as PoW and PoS.

The ledger is a database that contains all the transactions that occurred in the blockchain.
Since the network is decentralized and there is no central authority, the ledger is distributed
across the network. Every transaction added to the ledger can never be deleted, which
makes the ledger immutable. In addition, to make sure that all the information on the
blockchain network is accessed by only authorized users, cryptography is used. Since the
blockchain is a decentralized network and there are no centralized entities that control and
store the transactions of the network, a P2P network is used when a sender wants to make
a transaction. When a sending wallet wants to make a transaction, it uses a public and a
private key. The public key is used as an identifier of the sending wallet in the network and
the private key is used to sign the transactions of the wallet in the network to protect the
authenticity and integrity of the transaction on the network. After the transaction is signed
with the private key, the wallet broadcasts the request to all the nodes on the network
of the blockchain, where all the nodes verify all the transactions of the blockchain and
start to validate the transaction and check if the request is not tempered. Once the request
is successfully validated by more than 50% of the nodes on the network, a new block is
added to the last block on the blockchain, where each block contains various such validated
transactions with a timestamp, hash, and the hash of the current block.

Hybrid blockchain platforms are used to integrate IoT systems with the blockchain;
some projects that use this integration have different architecture types. Ref. [28] proposed
a hybrid–IoT system that uses multiple PoW blockchains as sub-blockchains for IoT, where
hundreds of IoT devices located at a near distance from each other are contained in a sub-
blockchain. A Byzantine fault-tolerant interconnector is used to ensure the transactions are
between the sub-blockchains. Ref. [29] proposed a hybrid blockchain as a crowdsourcing
platform and used a public chain and many private sub-chains. It uses delegated proof
of stake (DPOS) and practical Byzantine fault tolerance (PBFT) consensuses to verify
the transactions.

2.2. Related Work

During our search in electronic databases, there was no other SLR paper that focused
on hybrid blockchains. A paper that focused on making the Internet and IoT more secure by
using blockchain smart contracts is the study of Lone and Naaz [30]. Their paper examines
the applicability of blockchain smart contracts to achieve the security goals related to the
Internet and, particularly, IoT. While their paper defined four research questions, our SLR
paper focuses on five research questions. There is one similar question, which is related
to the blockchain platforms. Similar to our results, they also specified that the Ethereum
platform is the most exploited platform in the selected papers. They concluded that access
control, authentication, integrity assurance, data protection, secure key management, and
nonrepudiation are the most common smart contract-driven security services in the Internet
and IoT. Ref. [31] focused on how the blockchain and smart contracts work with IoT. They
reported that the blockchain that combines blockchain and IoT can be very powerful.
A smart contract allows the automation of the complex multistep process. They also
concluded that if IoT devices in an IoT ecosystem are combined to work together, they can
automate time-consuming workflows and achieve cryptographic verifiability by reducing
cost and time. Ref. [32] studied the blockchain architectures that governments use in public
services, where they focused on the software architectures and solutions of blockchain
technology applied in public services. Their research results conclude that the blockchain
solutions are diversified and the offered solutions are developed recently, which opens
the road for more research in the future. Ref. [33] studied the maturity and readiness of
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digital forensic (DF) investigations in the era of the industrial revolution (IR) 4.0, where
they focused on the challenges that face DF in the IR 4.0, the readiness, the existing maturity
model, and benchmarking the maturity element. They were able to outline five indicators
that need to be considered to support the DF organization’s maturity model related to IR
4.0. They were also able to list out 28 suggested governance and management objectives
that DF organizations can use to guide them concerning IR 4.0.

Tran et al.’s study [2], on the other hand, is the most relevant paper to this SLR.
This paper focused on the ways to integrate blockchain with IoT and how to achieve this
integration. The paper reported that security, integrity, reliability, and performance are the
most common objective reasons for adopting the integration; another interesting reason
for the integration is to add new functionalities to the IoT systems. Problem-wise reasons
for the adoption are to decentralize operations and improve the security of IoT systems.
Most of the reviewed BC-IoT systems are integrated with one blockchain network only,
and the most common blockchain network is Ethereum. The business process orchestrator,
authorization mechanism, and sensor data storage are the top three modules added to the
IoT systems by the blockchain networks. Most of the verified transactions recorded on the
blockchain are resource exchanges and interactions with devices and services data.

3. Research Methodology

To achieve the objective of answering the research questions, this SLR paper has been
prepared by following the guidelines provided by [34]. The following three stages are followed:
planning, conducting, and reporting the systematic literature review. In Figure 1, the process
of conducting this SLR is depicted. This process was followed, and results were gathered.
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3.1. Research Questions

This research’s goal is to analyze published studies and their findings on the integra-
tion of the blockchain and IoT. To make the paper more focused, Table 1 shows the six
research questions we developed.

Table 1. Research questions (RQs).

ID Research Question (RQ)

Q1 What are the key motivations for adopting hybrid blockchain?
Q2 What kind of domains has it been applied to?
Q3 What are the adopted technologies in IoT and blockchain integration?
Q4 What are the blockchain platforms used in the IoT and blockchain integration?
Q5 What are the key challenges and possible solutions of IoT and blockchain integration?

3.2. Primary Research Questions

To find the primary studies needed for this SLR paper, we used the following digital
databases: ScienceDirect (www.sciencedirect.com, accessed on 5 October 2021), ACM
Digital (dl.acm.org, accessed on 5 October 2021), IEEE Explore (ieeexplore.ieee.org, accessed
on 5 October 2021), and Wiley (www.wiley.com, accessed on 5 October 2021). This set was
selected because these are the databases that index the most important conferences and
journals in the computer science discipline. Later, a search criterion was set as follows:

www.sciencedirect.com
www.wiley.com
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(“Blockchain”) AND (“Internet of Things”) AND (“Architecture” OR “Integration” OR
“Cloud”).

The search resulted in a total number of 985 research articles. A total of 804 of them
were found in the IEEE Xplore database, 118 in ScienceDirect, 38 in ACM Digital, and 25
in the Wiley database. We eliminated any review articles, correspondence articles, and
discussion papers. This filter reduced the studies to 295 articles, where the results found in
IEEE Xplore were reduced to 175, papers in ScienceDirect to 75, papers in ACM Digital to
29, and papers in Wiley to 16. Later, exclusion criteria were applied to exclude irrelevant
publications. The relevant ones were added to a spreadsheet file. The exclusion criteria
(EC) are provided in Table 2.

Table 2. Exclusion criteria.

No. Criterion

EC1 Not related to blockchain and IoT integration
EC2 Non-English publication
EC3 A survey or a review publication
EC4 Duplicated publication
EC5 The publication is older than 2017

The selected publications were then checked using quality assessment questions to
ensure that only high-quality publications were being used. Each question was assessed
with a score of 1 (yes), 0 (no), or 0.5 (partial). Therefore, 0 is the minimum score and 8 is
the maximum score for a paper. A paper with a total score of 4 or lower was excluded.
Eight assessment questions were used from the study of [35] because this set of questions
is widely used in SLR papers. The assessment questions that we used are shown in Table 3.
Figure 2 shows the distribution of the selected papers’ quality scores.

Table 3. Quality assessment questions [35].

No. Assessment Questions

Q1 Are the aims of the study clearly stated?
Q2 Are the scope and context of the study clearly defined?
Q3 Is the proposed solution clearly explained and validated by an empirical study?
Q4 Are the variables used in the study likely to be valid and reliable?
Q5 Is the research process documented adequately?
Q6 Are all study questions answered?
Q7 Are the negative findings presented?
Q8 Are the main findings stated clearly in terms of creditability, validity, and reliability?
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After the quality assessment was performed, 38 publications were identified for the
SLR study. Therefore, observations and conclusions presented in this study are based on
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these 38 publications. Figure 2 shows that most of the papers achieved high scores to
provide higher quality.

3.3. Data Extraction

After selecting the papers, data relevant to the research questions were extracted,
stored, and categorized in a spreadsheet. The data extraction form, which contains the
essential data needed for this study, is shown in Table 4. Papers were read in full and
required data were collected. The collected data per question were then categorized into
different groups. In RQ1, the motivations were categorized into the following groups:
security, transparency and trust, efficiency, privacy, and quality of service. In RQ2, the do-
mains were categorized as follows: energy, agriculture, health, construction, manufacturing
and supply chain, automotive and transportations, education, military, and government.
In RQ3, the adopted technologies were categorized into the following categories: cloud
computing, fog computing, telecommunications, edge computing, and extended reality. In
RQ4, the BC platforms were categorized into the following categories: Ethereum, Bitcoin,
Litecoin, EOS, and Ripple. In RQ5, the challenges were categorized into the following
categories: security and privacy, storage and scalability, computational power, bandwidth
and connectivity, and cost. In addition to these essential elements, general data, such as the
title and publication year, were also collected. Table 4 shows the collected elements.

Table 4. The data extraction form.

No. Extraction Elements

1 ID
2 Title
3 Link
4 Year
5 Database
6 Publication channel
7 Type
8 Motivations
9 Domains
10 Adopted technologies
11 Blockchain platforms
12 Challenges and possible solutions

3.4. Data Synthesis and Reporting

After we managed to extract and categorize the data, the aggregated data were then
synthesized to be used to respond to research questions.

4. Results

In this section, the results of this systematic literature review are presented. The
number of selected papers for the last years is presented in Figure 3. A clear increasing
interest in the recent years can be seen from that figure. In Table 5, the number of papers
that are published in different databases is shown, where ScienceDirect is the primary, and
IEEE Explore is the secondary, source.
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Table 5. Paper distributions per journal.

Data Sources # of Papers

ScienceDirect 24
ACM Digital 4
IEEE Xplore 10

Wiley 0

The six research questions presented in Table 1 are addressed one by one in the
following subsections:

1. RQ-1: What are the key motivations for adopting hybrid blockchain?

The motivations identified from the primary studies are shown in Figure 4. The results
show that more than one-third of the primary papers had a motivation to increase security.
Some of them were needed to ensure the integrity of the data collected by the IoT devices
of the system [36–39] or to protect the confidentiality of the collected data [38,40,41], or to
ensure the availability of the IoT systems [42] because there are no centralized authorities
that can be attacked to stop the systems from functioning. In addition, another use case
of blockchain as a security measure was to protect data from plaintext and ciphertext
attacks on UAVs [43]. Another motivation was related to the transparency and trust
goals, as the platform is resistant to the modification of the blockchain blocks. As a
result, the data inside each block are unmodifiable and cannot be edited or deleted, which
provides trust in the system. It can also be beneficial to track and trace products and
increase the credibility of food safety information [44]. In addition, its distributed nature
helps to increase transparency as all the stored data on the blockchain are accessible to
everyone [38,43,45–49]. Efficiency is also an important motivation for the integration, as
smart contracts can be used to reduce the delay between IoT devices [50], or to reduce
costs [42,48,49,51], or to increase energy efficiency [24], or to decrease latency [48,52,53],
or to enhance throughput [52]. Another important motivation of the integration was
privacy [36,38,50,54]. A sender and a receiver are only known by their public keys, which
do not provide any personal data.
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2. RQ-2: What kind of domains has the hybrid blockchain been applied to?

Figure 5 shows the percentage of domains that adopted hybrid blockchains. As shown
in Figure 5, energy is the most mentioned domain in the primary papers, with 17.95% of the
papers. Agriculture and health are second and third, with 15.38%. These results indicate
that these three domains are the most adopting domains of the integration. Other domains
were construction and manufacturing and supply chain domains with 12.82%, automotive
and transportations (10.26%), and education, military, and government, with 5.13%.
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3. RQ-3: What are the adopted technologies in the IoT and blockchain integration?

Figure 6 shows the distribution of technologies used in these selected papers. Cloud
computing is the most adopted technology, with 44.4%. It includes cloud storage and
cloud servers. Fog computing is the second most adopted technology with 22.2%, followed
by telecommunications with 16.7%, edge computing with 11.1%, and extended reality
with 5.6%. Extended reality includes both virtual reality (VR) and augmented reality (AR)
technologies.
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4. RQ-4: What are the blockchain platforms used in the IoT and blockchain integration?

Figure 7 shows the blockchain platforms used in the selected papers. According to this
figure, Ethereum is the top-used blockchain platform with 77.8%, as Ethereum is considered
a mature blockchain technology for developing smart contracts [37,51]. EOS blockchain
is another platform that was also used, as its smart contract platform enables IoT to be
integrated with the blockchain [55]. Bitcoin, Litecoin, and Ripple were also used in these
papers. Ref. [36] stated that Bitcoin and Litecoin can be used as a medium to store the
IoT data. Ripple, on the other hand, was used as a private blockchain to establish private
communications between nodes [56]. Bitcoin, Litecoin, EOS, and Ripple have been used,
with 5.6% in the selected studies.
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5. RQ-5: What are the key challenges and possible solutions of IoT and blockchain
integration?

We categorized the challenges into five categories. Table 6 presents these categories
and possible solutions. These five categories are described as follows:

6. Portability: It is almost impossible to enable blockchain’s required features in most
modern industrial machines because the protocols that are being used in the blockchain
operations and transactions are very specific while being computationally intense,
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thread-blocking, and time-consuming. These issues can be solved by designing a
system that can decouple the operations of the blockchain from industrial machines’
functionalities and capabilities [37].

7. Resource: Replacing currently functional legacy systems with blockchain will cost
time and resources, but it can be resolved by creating a mechanism that enables the
communication of the blockchain and the legacy systems rather than replacing it with
a fully decentralized system [57].

8. Interoperability: Industrial IoT devices are heterogeneous. Old and new devices
use different operating systems, of which some are very difficult to modify to add
the blockchain features. To solve this issue, an abstraction layer in the software
architecture design of the OS can be added to allow the communication of the IoT
devices with the smart contracts of different blockchains [37].

9. Computational power: The use of the PoW consensus mechanism requires high
computational power to mine new blocks on the blockchain. This requirement costs a
lot of money and too much electrical power. Ref. [47] propose a solution as a gateway
node that can be used to gather the blocks of data from a set number of IoT devices
and then verify the blocks as a miner before it adds them to the blockchain network.

10. Scalability: Technical limitations of traditional blockchains cannot scale well for widespre
ad use in an IoT environment. Ref. [52] proposed the use of “off-chain” protocols, where
some of the transactions are moved temporarily to be computed elsewhere and then
return the results of the transactions to be added to the main chain.

Table 6. Challenges and possible solutions for BC and IoT integration.

Category Challenges (C1 to C6) Proposed Solutions (S1 to S6) Reference

Portability
It is almost impossible to modify the
industrial apparatus software to add
the blockchain protocols.

To design a system that can decouple the
operations of the blockchain from
industrial machines’ functionalities
and capabilities.

[37]

Resources Replacing legacy systems with
blockchain requires time and resources.

Creating a mechanism that enables the
communication of the blockchain and the
legacy systems rather than replacing it
with a fully decentralized system.

[57]

Interoperability
Some operating systems (OS) of old IoT
devices cannot be modified to add the
new blockchain features.

Adding an abstraction layer in the
software architecture design of the OS to
allow the communication of the IoT
device with the smart contracts of
different blockchains.

[37]

Computational power
High computational power is required
by IoT devices that use the PoW
consensus mechanism.

A gateway node can be used to gather
the blocks of data from a set number of
IoT devices and then verify the blocks as
a miner before it adds them to the
blockchain network.

[47]

Scalability

Technical limitations of traditional
blockchains cannot scale them for
widespread use in IoT environments.

An “off-chain” protocol can be used,
where some of the transactions are
moved temporarily to be computed
elsewhere and then return the results of
the transactions to be added to the
main chain.

[52]

The scalability limitations of blockchain
networks prevent the blockchain
applications from performing high
scale IoT data.

A BB-DIS system can be used to
overcome the high-scale IoT data issues
in cloud storage.

[58]

The scalability limitations of blockchain networks are a big obstacle for blockchain
applications to perform large-scale transactions. Ref. [58] proposed a blockchain and
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bilinear mapping-based data integrity scheme (BB-DIS) for high-scale IoT data in cloud
storage as a solution to this challenge.

5. Discussion and Threats to Validity

In Section 5.1, a general discussion addressing research questions is presented. In
Section 5.2, potential threats to validity are explained. In Section 5.3, the specialty of hybrid
blockchains in the IoT environment compared to general hybrid blockchains is discussed.
In Section 5.4, several research directions are suggested.

5.1. Discussion

In this paper, we reviewed the literature on the integration of blockchain platforms
and IoT to understand the state-of-the-art and current practices. For this purpose, five
research questions were identified and responded to. RQ1 aimed at understanding the
key motivations for adopting the hybrid blockchain with IoT. Security, transparency, trust,
and privacy were the top motivations. This shows that most of the research groups had
mostly security-related concerns and therefore, adopted this new strategy. RQ2 explored
the domains where the integration has been applied. Energy, agriculture, health, and
construction were the top domains. The energy sector showed the power of blockchains
earlier than the other sector and, therefore, we noticed that this type of hybrid blockchains
was mostly used in the energy domain. Some other domains were not mentioned in
the articles, which are the entertainment and business domains. These two domains are
witnessing a major development and adoption with the hybrid blockchain that could
change the way people interact at their work, play video games, or attend concerts. RQ3
focused on the technologies that were used in this integration. Cloud computing, fog
computing, and communications were the top results. Since the IoT devices and sensors
are a major part of the blockchain and IoT integration, they were not considered as a
technology, but rather as a part of the system. As shown in these results, cloud computing
plays a major role in this integration because the generated huge amount of data is mostly
stored in cloud computing platforms. RQ4 addressed which blockchain platforms were
used. During our analysis, Ethereum was used with 77.8%, followed by Bitcoin, Litecoin,
EOS, and Ripple. This indicates that the majority of the projects are relying on Ethereum.
Therefore, any attack or network failure on the Ethereum blockchain can cause operational
failures in these systems. RQ5 identified the key challenges and possible solutions faced by
prior researchers. The collected challenges were mainly the challenges of integrating the
blockchain and IoT systems. Challenges were reported based on the explicit statements
in the articles. There can be more challenges; however, if they were not mentioned in
these papers, we could not identify and include them here. The integration of blockchain
technology and IoT is still in its early stages and yet being widely adopted in various
domains and sectors.

5.2. Threats to Validity

We can see new domains and new technologies soon that will emerge as a result of
this integration. There are several threats to validity in this SLR. Concerning the timeframe,
the primary papers selection process was finalized in October 2020. This SLR selected
the papers that were published until that time. Papers that were published on the digital
databases after this month were not considered in this review. Because of the fast develop-
ment of the blockchain and IoT space, there may be new papers that have not been covered
in this SLR. Another threat to validity is selecting the articles. Different papers could be
found when different databases were used for the primary paper selection. However, we
did not want to use Google Scholar because it indexes non-peer-reviewed papers and
non-well-reputed journals as well. Moreover, during the data extraction process, some
data might have been missed, and to reduce this threat, the authors double-checked all
primary papers. In addition, the search for the primary papers was strictly focused on
papers in English; as such, there could be a chance of missing some papers that were
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written in other languages that could add value to the research questions in this paper.
Some papers used the term hybrid blockchain, however, their definition was different than
our scope. For example, one of these papers referred to the combination of public and
private blockchains [59]; however, since IoT was not included in this integration, it was
not used in the analysis. In addition, papers that focused on only blockchains were not
included in the SLR analysis [60].

5.3. Specialty of Hybrid Blockchains in IoT Environment compared to General Hybrid Blockchains

There are specific requirements needed for hybrid blockchains in IoT environments
compared to general hybrid blockchains. One of the most important issues is the resource
limitations of IoT devices [61]. The platform should not cause an extra bottleneck on the
devices. In addition, the scalability of hybrid blockchain platforms in the IoT context is
crucial, and therefore, microservices were applied in one of the studies to address this
requirement [61]. Confidentiality is another quality factor that needs to be addressed for
hybrid platforms in IoT environments because data produced from different devices such
as smart home appliances and wearables are sensitive and confidential [61]. For general
hybrid blockchains, scalability and confidentiality have less impact on the design of the
overall hybrid blockchain architecture. Throughput is another parameter that requires
extra design decisions during the system design because IoT applications need a huge
number of transactions to be executed at a time, however, some of the blockchain platforms
such as Bitcoin cannot satisfy the expectations (e.g., only seven transactions per second)
because of their internal design [61]. Latency can be mostly tolerated in hybrid blockchains
in the IoT context and it is known that latency is high in some blockchain platforms such as
Bitcoin (i.e., 10 min to complete a transaction). Maintaining hybrid blockchain in an IoT
environment is more costly because the required computational power, energy, and storage
are much more. These different quality aspects make hybrid blockchains in the IoT context
more special compared to the general hybrid blockchains.

5.4. Research Directions

As part of this SLR study, we identified the following research directions:

1. Artificial Intelligence (AI)-enabled Hybrid Blockchains: Machine learning algorithms,
and more specifically, deep learning algorithms have been applied in many different
application domains successfully recently. In the cloud data warehouse, these algo-
rithms can be effectively used, and interesting patterns can be discovered. However,
the learning types (i.e., supervised, unsupervised, semisupervised, reinforcement
learning) and corresponding algorithms (e.g., support vector machines, K-means
clustering, low-density separation, Deep Q Network) must be carefully selected. From
an engineering perspective, the integration of machine learning capabilities into the
hybrid blockchain requires additional research in this field. The isolated development
of these AI components limits their benefits and, therefore, the system engineering
perspective must be followed.

2. Energy-Efficient Hybrid Blockchains: Energy efficiency is one of the most important
concerns of blockchain platforms. Some decentralized consensus mechanisms such as
proof-of-stake (PoS) are more efficient than others, such as the proof-of-work (PoW)
model. However, they are still not considered to be energy-efficient, and more research
is needed to optimize the hybrid blockchains in IoT environments. New consensus
protocols in this context can reduce the required resources. For example, recently a
new blockchain network called Casper demonstrated that it is 47,000% and 136,000%
more energy-efficient than Ethereum and Bitcoin platforms, respectively [62]. Energy
efficiency is not necessarily related to only the consensus mechanism; there are other
aspects that need to be investigated in detail in future research.

3. Interoperable Hybrid Blockchains: Between two or more hybrid blockchains in the IoT
context, there should be an effective communication mechanism to obtain more bene-
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fits and achieve more transparency and easier processes. While there are some solu-
tions at the blockchain level, more research is needed for complex hybrid blockchains.

4. Ethical and Legal Aspects: Legal boundaries of restrictions and ethical aspects must
be investigated in hybrid blockchains, which are used by a consortium. Ethics and
moral issues of hybrid blockchains are also crucial, but now they are lacking.

5. Privacy-preserving Hybrid Blockchains: Privacy preservation for hybrid blockchains
in IoT environments is another important issue that needs further research because
sensitive and confidential data are stored on some platforms. Since most of these
systems are public and transactions are visible to other network members, confidential
information might be inferred by adversaries. Therefore, new privacy preservation
strategies are needed.

6. Standardization: In the IoT context, one of the most important challenges is standard-
ization. While there are different initiatives at the national and international levels,
there is still no standard set because the IoT standards landscape is too diverse. In
the long term, standardization should be also managed for hybrid blockchains in the
IoT environments.

6. Conclusions and Future Work

In this SLR paper, 38 papers were used as primary papers, and five research questions
were addressed. Security, data integrity, and efficiency are the top three motivations
for adopting integration. The energy, agriculture, health, construction, manufacturing,
and supply chain domains are the top domains that adopt the integration. The most
adopting technologies are cloud computing, telecommunications, fog computing, and edge
computing. Ethereum was by far the most used blockchain in the reviewed articles. The
reported challenges are related to portability, resources, interoperability, computational
power, and scalability. As future work, we are planning to design and implement a hybrid
blockchain platform that can minimize the reported challenges.
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