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Abstract: Supporting the elderly to maintain their independence, safety, and well-being through
Active Assisted Living (AAL) technologies, is gaining increasing momentum. Recently, Non-intrusive
Load Monitoring (NILM) approaches have become the focus of these technologies due to their non-
intrusiveness and reduced price. Whilst some research has been carried out in this respect; it still is
challenging to design systems considering the heterogeneity and complexity of daily routines. Fur-
thermore, scholars gave little attention to evaluating recent deep NILM models in AAL applications.
We suggest a new interactive framework for activity monitoring based on custom user-profiles and
deep NILM models to address these gaps. During evaluation, we consider four different deep NILM
models. The proposed contribution is further assessed on two households from the REFIT dataset
for a period of one year, including the influence of NILM on activity monitoring. To the best of our
knowledge, the current study is the first to quantify the error propagated by a NILM model on the
performance of an AAL solution. The results achieved are promising, particularly when considering
the UNET-NILM model, a multi-task convolutional neural network for load disaggregation, that
revealed a deterioration of only 10% in the f1-measure of the framework’s overall performance.

Keywords: active and assisted living; abnormal behaviour detection; smart metering technology;
non-intrusive load monitoring

1. Introduction

The growing rate of the elderly population has been a central topic in the last decade
and will remain relevant for the coming decades; the lifespan of people has become longer
than it has ever been. Such development will undoubtedly impact economic and societal
systems, including healthcare services. In Europe, for example, the ratio between people of
working age and those aged above 65 years was 4:1 in 2001 [1]. It is estimated that by 2050
there will be fewer than two persons of working age for each elderly person [1]. Not only
is the ratio estimated to change significantly, but also the number and severity of illnesses.
The EU accounted for more than 9.1 million cases of individuals older than 60 years
with dementia in 2018, which was only 5.9 million in 2000 [2]. Thus, if the age-explicit
predominance of dementia increases at the same speed, the growing ageing population will
translate into an increased number of dementia cases. It is thus expected that by the year
2050, there will be approximately one million new cases of dementia every year that need
health support [3]. Professional care-giving institutions and practitioners would quickly
be overwhelmed with the growing number of patients at different stages in their disease.
Aware of these challenges, health care professionals are becoming increasingly open to
using technology that supports them in performing their work [4].

A new set of technologies, titled Active and Assisted Living (AAL) technologies, have
emerged in response to these challenges. They refer to all products and services that are
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designed to support individuals in retaining or enhancing their independence and well-
being [5,6]. The main goal of this collection of diverse technologies is to offer an automatic
and accurate alternative to classical data gathering techniques (e.g., through recurrent
questionnaires) used for further decision making and thus assist healthcare professionals
in efficiently monitoring the elderly.

Existing AAL approaches rely on deploying several sensors inside the house to enable
ageing-in-place. Nevertheless, adopting this approach appears intrusive and, in some cases,
expensive for older adults. The intrusiveness is generally related to solutions that consider
sensors intervening in the daily activities or violating privacy constraints. The subjects
are thus less accepting toward these solutions [6,7]. On the other hand, solutions based
on background sensors may appear to be a viable alternative. However, the costs of their
purchase, installation, and maintenance remain a major obstacle. The Casa Vecchia [8]
project conducted in the rural areas of Austria highlighted this issue. The authors stressed
the economic aspect of AAL solutions based on smart technologies. According to the
authors, the price of basic solutions starts from 150€ and could rise to 90,000€ for the most
sophisticated solutions without considering installation and maintenance costs. The latter
also contributes to the high intrusiveness of such kinds of solutions.

A promising sub-field of AAL relies on the indirect monitoring of daily activities
through energy data generated by the explicit usage of electric devices [5]. These daily
activities are direct indicators of daily routines and well-being. Moreover, they could also
assist in recognising the beginning of cognitive impairments that start with difficulties
in performing complex instrumental tasks and continue to a total loss of the ability to
perform basic daily tasks [9]. Mainly, difficulties in performing daily activities translate
into deviations in the usage patterns of hand-operated appliances, reflected in the recorded
energy data. The described approaches benefit from the extensive deployment campaigns
of smart-meter worldwide. These campaigns provide an already available infrastructure
that can be–compared to sensors that would have to be installed additionally–easily used
whenever needed. These approaches also benefit from the non-intrusiveness of smart-
metering technology. The occupants will not perceive any changes since no additional
installation or maintenance tasks are necessary. Instead, occupants conduct their regular
routines with no differences. Nonetheless, these approaches can not be attainable without
Non-intrusive Load Monitoring (NILM), a set of techniques interacting with the smart
meter to identify the power consumption of different appliances.

A primary challenge in monitoring daily routines (and identifying significant devia-
tions) is to design systems considering the heterogeneity and complexity of daily routines.
Moreover, scholars gave little attention to evaluating state-of-the-art NILM models in
AAL applications. We suggest a new framework for activity monitoring based on custom
user-profiles and deep NILM models to address these gaps. Furthermore, we propose an
interactive framework by exchanging feedback with external agents such as health care
professionals or family members. The key objective of our work is to provide them with
a tool that can take over basic monitoring means which currently require manual efforts
(such as frequent phone calls or visits). This is particularly relevant for the case of rural
areas and older relatives living alone. When the technology works appropriately, phone
calls and personal visits can focus on social and relationship aspects rather than daily
activities monitoring. The contributions of the presented work fall in two main points:
(1) The proposition of a new activity monitoring framework based on the usage time of
hand-operated appliances inferred from energy data, and (2) the discussion of two case
studies of houses occupied by older adults from the REFIT dataset where we evaluate
the whole proposed pipeline including NILM approaches and their influence on activity
monitoring.

The remainder of the paper proceeds as follows: Section 2 gives a brief overview of
existing work on activity monitoring using NILM. Section 3 describes the details of the
proposed framework and its different modules. Section 4 presents the data used as well as
the methodology adopted to evaluate our contribution where the results are illustrated in
Section 5. Section 6 analyzes the obtained results and reveals the main findings of our work.
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Section 7 concludes by presenting the main limitations of the current work and suggestions
for future enhancements.

2. Related Work
2.1. The Importance of Daily Activities

The set of habits and routines carried out by individuals for self-caring is formally
referred to as Activities of Daily Living (ADLs) and Instrumental Activities of Daily Living
(IADLs). ADLs include basic self-care tasks summarised in six categories: eating, bathing,
dressing, toileting, mobility, and grooming [10]. On the other hand, IADLs refer to more
complex tasks. These tasks include shopping, preparing meals, using the telephone or other
communication devices, managing medications, doing laundry, housekeeping (cleaning,
tidying up, removing trash and clutter, and folding clothes), and essential home main-
tenance [11]. Difficulties in accomplishing these tasks as well as abnormal deviations in
the inhabitants’ behaviour are clear indicators of cognitive diseases in early stages [4].
Scientifically validated tools (e.g., SMAF [12] and the Lawton scale [13]) include, among
others, measures indicating that observing the usage of home appliances provides insights
about the regularity of a person’s activity. Moreover, recent works [9] demonstrated that
the housekeeping-related activities component allows predicting the potential of hav-
ing dementia for individuals with mild cognitive impairments (MCI) three years prior
medical diagnosis.

2.2. Appliances Involved in Instrumental Daily Activities

The current manuscript focuses on a subset of IADLs highly correlated with the use
of hand-operated electrical appliances [14] as illustrated in Table 1. In this respect, we
are not primarily interested in the possible development of psychological problems but
in identifying typical daily routines. It is possible to analyse IADLs using appliances’
usage directly derived from their energy consumption. Consequently, monitoring a more
extensive set of activities would require identifying a larger group of appliances. However,
it is worth mentioning that not all electrical appliances are good candidates for identifying
daily routines and activities. The appliances considered should be manually operated,
frequently used on a daily basis [7]. The Kettle, for example, was identified as a good
candidate in several works [7] as it is used daily and several times during a single day.
Nevertheless, some passive appliances could also provide evidence about the normality of
behaviour. For example, the fridge has a periodic behaviour that does not require human
intervention and is, therefore, less informative in the scope of daily activities recognition.
However, it is a good indicator of anomalies in the behaviour, as previously demonstrated
in [15]. Moreover, when combined with the usage of a TV, it provides a good indicator
for sleep disorder [6]. In summary, the activity monitoring of the elderly using energy
data is concerned with two main problems, the identification of appliance usage and the
modelling of daily routines.

Table 1. An example of instrumental daily activities and related appliances.

Activity Indicating Appliances

Cooking Oven, kettle, coffee maker, microwave, toaster
Ironing Iron
Entertaining Television, audio system
Laundry Washing machine, washer dryer
Cleaning Dishwasher, vacuum cleaner
Sleeping All hand operated are off during night

2.3. Non-Intrusive Load Monitoring (NILM)

Two viable strategies are recognised to quantify the power usage of appliances present
inside a household. The first strategy, referred to as Intrusive Load Monitoring (ILM),
requires the connection of each appliance to a metering point. It follows from this definition



Sensors 2022, 22, 1322 4 of 20

that this alternative is expensive and complex to maintain. Furthermore, subjects could
consider it to be intrusive to their daily activities. The second strategy, referred to as
Non-Intrusive Load Monitoring (NILM) or load disaggregation, follows the approach of
decomposing the total power consumption of the household into the different contributions
of each appliance [16] using only a single metering point, the smart electrical meter. It
provides a cost-efficient solution that can be used massively and discreetly inside the
household. Therefore, it is considered to be the optimal means to identify the usage
of appliances inside a home. The concept of NILM was first introduced by George W.
Hart [17] 30 years ago. However, it only gained significant interest from the research
community in recent years due to the update of the electrical grid around the globe.
The goal of NILM approaches is mainly to model the patterns of electrical signatures
related to different appliances using advanced statistical models. In this matter, scholars
distinguish between four types of appliances [17]: (1) On/off appliances such as lights,
which represent appliances that have only two operational states and are either on or off,
(2) multi-state appliances that operate according to a finite state machine such as a washing
machine, (3) continuous consumption appliances which gather new devices that have
an infinite number of states such as computers and laptops, and finally (4) background
appliances that are turned on the whole time, such as routers. The first three categories
of appliances are the most relevant ones in the scope of daily activities. Identifying their
power consumption can be achieved using event-based or event-less approaches. The
first set of approaches is interested in identifying ON/OFF events, while the second is
more interested in directly estimating power consumption. Both methods are viable
for IADL applications. Factorial Hidden Markov Models (FHMM) are among the first
models that were extensively investigated in the literature to model different appliances’
signatures [18–20] where the observed variable represents a function of the aggregate power,
and the hidden variables represent the states of appliances. However, these probabilistic
models are not able to model all types of appliances, and they become computationally
inefficient with the increasing number of states. Recently, deep models became a main
research stream in the NILM scholarship [21] due to their ability to automatically learn
which features to extract from a dataset and to generalise to new and unseen data [22–31].
Even more interestingly, recent literature demonstrated the superiority of these models
upon existing probabilistic models on different datasets [32]. Among recently proposed
approaches, multi-task deep NILM models [33] performing both power and state estimation
of appliances demonstrated interesting enhancements. Deep NILM models seem to be a
promising field for improving disaggregation performance. Nonetheless, the comparability
problem in the deep NILM scholarship remains a persistent gap [34] due to the different
evaluation setups used to validate these models.

2.4. Learning the Usage Patterns of Appliances

Zhang et al. [14] obtained interesting results for 14 types of ADLs through an approach
that learns a personal model that is aware of the context of ADLs from appliance power
consumption. The authors of [16] proposed comparing both active and reactive power
and time of day with a pre-build database of signatures to identify concrete appliances.
However, this approach requires human intervention, which does not satisfy an essential
condition in the NILM requirements proposed by Zeifman [35]. Another weakness of the
approach is the limited availability of a vast database containing signatures of appliances
from different manufacturers. In a later work, Alcala et al. [7] proposed a double stochastic
process (a Cox process) to encode the periodicity of usage patterns and stressed the im-
portance of the kettle in such applications. In [6], the authors suggest a two-phase model:
A learning phase–where a basic model learns the inhabitant’s routines and daily activi-
ties during which the system is unable to detect abnormality–and an operational phase
where the system employs the learned model for reporting and analysing the detected
activities. Despite the interesting suggestion, this approach does not consider variations in
the behaviour that could occur after the training phase. More recently, in [4], the authors
suggested using the indices of usage patterns to detect deviations in the behaviour relying
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on the Dempster–Shafer Theory. Projects such as city4age [36,37] that was initiated in
Europe highlighted the importance of using load disaggregation in smart homes for moni-
toring the elderly population but also discussed the reliability issue on such a system. For
example, turning on the TV does not forcibly mean that the subject is watching TV. It could
be the case that the subject turned on the TV and left the room. Such cases would lead to a
high number of misinterpretations and, therefore, wrong diagnoses. Motion sensors could
be combined with NILM to overcome this issue. Table 2 provides a summary of ADLs
monitoring techniques based on NILM. An even more detailed review of AAL approaches
based on NILM can be found in [5,38].

Although previously presented contributions showed promising results, a main miss-
ing point is the availability of annotated data to evaluate these approaches. Generally,
the authors propose to evaluate in labs, simulating real homes (see Table 2). The only
work using real energy data, from the HES [39] dataset, was presented in [4], which is also
not publicly available. To the best of the authors’ knowledge, none of the previous work
was designed to provide adaptive monitoring with interactive and interpretable feedback
to external agents. Moreover, scholars in the field gave little attention to evaluating the
influence of NILM on the proposed approaches. Most of the existing contributions thus
suppose a perfect disaggregation of the total power consumption that is so far not reached
in the NILM scholarship.

Table 2. Recent activity monitoring approaches based on energy data.

Approach Use of a NILM Technique Type of Data Data Available Model Used for Activity Monitoring

[37] 7 Lab experiments 7 NA *

[36] 7 Lab experiments 7 NA *

[6] 7 Lab experiments 7 Bayesian Machine Classifier

[14] 7 Lab experiments 7 Statistical model

[7] 7 Lab experiments 7 HMM combined with log Gaussian Cox process

[16] 7 Lab experiments 7 The use of a pre-defined On/Off database

[4] 7 The HES energy dataset 3 Dempester Shafer Theory (DST)

NILM: Non-Intrusive Load Monitoring; HES: Household Electricity Survey; HMM: Hidden Markov Model; * NA: Description
not available.

2.5. Active and Assisted Living and Non-Intrusive Load Monitoring

Active and Assisted Living (formerly Ambient Assisted Living) (AAL) aims to help
the ageing population maintain autonomy and well-being. Achieving this goal is generally
linked to tracking and monitoring daily routines and activities that is approached using
two different techniques: (1) Direct techniques based on Wireless Sensor Networks (WSNs)
ranging from lightweight systems to more sophisticated systems incorporating cameras
and motion sensors [7], and (2) indirect techniques based on the observation of daily
routines of the occupants. While the first set of approaches provides accurate and precise
information, they are less accepted by subjects due to their intrusiveness leading–besides
other acceptance issues–to privacy concerns. Another issue with this set of techniques is the
complexity of their maintenance and the investment cost they require [6,7]. Furthermore,
the high accuracy they provide is not required in all cases but rather only in severe ones
where persons have chronicle diseases or are in a critical health situation [4]. The second set
of approaches are comparatively less intrusive and rely on the analysis of daily activities of
the inhabitant and the identification of abnormal patterns in daily routines that health care
professionals consider as good indicators of well-being [6].

The availability of smart meters at a large scale and considerable low cost makes
NILM an appealing solution for diverse tasks, such as energy-saving [40], but also for ADL
recognition and abnormal behaviour detection potentially offered at a small additional cost
from energy retailers [7]. This alternative provides an unobtrusive and economic moni-
toring possibility. It could support the health care system in the case of the elderly living



Sensors 2022, 22, 1322 6 of 20

alone, as this style of life (either voluntarily or involuntarily) is increasingly growing [1].
Despite the achievements of NILM in the recent past, the field remains challenging [4,21].
Therefore, monitoring ADLs based on the usage of appliances present in the household
will certainly not provide as accurate information as solutions based on WSNs [4]. Using
NILM in AAL applications would reduce the use of WSNs only for those extreme cases
while still providing a certain level of safety and autonomy for people in standard cases.
Thus, the premise of using NILM in AAL is instead to take advantage of the massive
deployment of smart meters in the present era, their lower cost, and the non-intrusiveness
of this approach [4] for monitoring the well-being of people in a good general condition as
well as in the early stages of cognitive diseases.

3. Proposed Framework

Modelling and tracking human behaviour is a complex process that includes several
aspects. In the scope of our contribution, we consider three main aspects. First, individuals
have different routines and lifestyles, which highlights the importance of defining a custom
daily profile, for each user, based on a pre-recorded historical energy consumption. This
profile is the base for scoring a new day and deciding its normality. Demonstrative examples
are different sleeping, eating, and waking up times. Second, human routines are subject to
change. The profile must thus be adaptable to this dynamic character of human behaviour.
In this regard, we differentiate between variations and deviations in the behaviour [16].
Variations are just new habits and routines adopted by the subjects. These new variations
need to be included in the profile of the user. On the other hand, deviations are categorical
changes in the routines translating into a potential abnormal pattern. An illustrative
scenario for this case is cooking breakfast. A change in the breakfast time for several
consequent days is considered a variation. However, the sudden cancellation of breakfast
time would be a deviation that should be reported to an external agent for further decision-
making. In this case, the role of the external agent is to confirm the abnormality of this
cancellation through further investigations. Third, we use the feedback provided to update
the profile in the case of misidentified anomalies. It would allow overcoming the non-
availability of annotated energy datasets specifying anomalous events. The possibility of
continuous integration of feedback from an external agent (e.g., health care professional or
family member) would also help to improve future predictions and gather data labels in
real-time.

The overall architecture of the proposed framework is illustrated in Figure 1. It is
composed of three modules having independent tasks: a load disaggregation module,
an activity monitoring module, as well as a feedback management module. In real im-
plementations, the load disaggregation and activity monitoring modules can run locally
within the household in the case of privacy-concerned users. In this regard, cost efficient
implementations can be achieved through extending existing open source solutions. They
can come as extra-modules to the OpenHAB (https://www.openhab.org/, accessed on 30
December 2021) platform, for example, as it already contains a load disaggregation module
developed in a previous work of the authors [15]. Moreover, due to the sensitivity of the
data, the communication with the external agent in real scenarios should be protected and
secured using advanced smart grid security schemes (such as [41]), providing both low
communication and computation costs.

The load disaggregation module is responsible for identifying features relative to
the activation of different appliances. As an input, it uses the aggregate power of the
whole household obtained with a single metering point, the smart electrical meter. The
consumption of individual appliances is inferred afterward using load disaggregation
techniques on an hourly basis. For active appliances, a summary of the current activation
is extracted containing both contextual information (e.g., temporal information, weather
information, other sensors information) and operational information (e.g., max power
consumption). The operational information is related to the operational characteristics
of the appliances. The goal from using these pieces of information is to confirm that the
device used for monitoring an activity is not defective. For demonstration purposes, we

https://www.openhab.org/
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only use the temporal data as contextual information in the remainder of the manuscript
represented by: the start time of use, duration of use, the day of the week, and day of
the month.

Figure 1. A general overview of the proposed framework.

The activity monitoring module relies on the features created by the load disaggrega-
tion module to generate recurrent reports and anomalies that are transferred to an external
agent to intervene whenever required. In regard to the first considered aspect (i.e., the
heterogeneous routines of individuals), we suggest a two-phase functional mode for this
module. The first phase is an observation phase in which the framework only enables
module one and uses its outputs to build a custom consumption profile of the occupant.
After this period, the framework becomes fully operational and can detect anomalies
automatically.

The observation phase is based on passive monitoring where only daily reports are
generated, and activity patterns are saved. For each day during this period, the daily
routines are recorded for a set of pre-defined activities considering two levels. The first
level is the activity level that is modeled using activity curves [42] taking into consideration
two main aspects: the time of performing an activity and its duration. We argue that the
combination of these two pieces of temporal information constitutes an interesting tool for
monitoring the activities on a daily basis as they summarise the human interaction with the
appliances represented by the ON event and the OFF event. Both features characterising
an activity are inferred based on appliances involved in the activity where the mapping
between the activities and appliances is pre-defined. The second level is the appliance
level that can be represented, for example, using self-similarity measures [43]. The activity
curves represent activity distributions along a given day where the probability distribution
is defined as the normalised time an individual spends on an activity during a given
period [42]. The duration of an activity during this specific period is the aggregation of the
time spent on each related appliance. As previously mentioned, the custom user profile is
constructed during this phase where the distribution of each activity is saved in a database
of observations ∑. A summary representing the profile of the occupant can be extracted by
aggregating the observations using the mean. It is worth mentioning that a more elaborated
summary of the daily distributions would consider hierarchical aggregation based on
different temporal levels. For example, an interesting approach would be to aggregate
according to day time first (morning, afternoon, evening, night) or day of the week resulting
in hierarchical activity curves.

During the second phase (i.e., the monitoring phase), the curve of each activity is
calculated for the current day. At the end of the day, these curves are compared to the
database of distributions recorded during the observation phase. The comparison measure
used is the Jensen–Shannon Divergence (JSD) calculated as per Equation (1), which serves
to measure the similarity between two or more distributions:

JSDπ1,...,πn(P1, ..., Pn) = ∑ πiD(Pi||M); (1)
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M = ∑ πiPi , ∑ πi = 1; (2)

D(P||M) = ∑ P(x)log(
P(x)
M(x)

). (3)

The πi are weights attributed to different observed days. In our case, they are used
to give more importance to distances related to days where the external agent provided
feedback. In particular, if N1 is the number of days where the external agent provided
feedback and N2 is the number of days with no feedback, the πi is calculated as follows:

πi =

{
1

N1 + βN2
if i contains feedback

β
N1 + βN2

otherwise
, with β ≥ 2. (4)

The comparison procedure relies on the Inter-quantile Rule (IQR) to decide about
the normality of the current day. The distance between each observed day and the rest of
the data is calculated to estimate the distribution of the distance in the case of the normal
days. The IQR is calculated as the difference between the third Q3 and first quantile Q1.
Under the assumption of normal distribution, the interval [Q1− 1.5IQR, Q3 + 1.5IQR]
contains 99.7% of the data. Thus, if the values of the distance of the current day fall inside
this interval, it is considered a normal day with no deviations. On the other hand, if it falls
outside of this interval, the current day is considered anomalous, and the activations of
appliances related to the activity are further analysed.

Appliance anomaly detection is performed only in days that were classified as anoma-
lous (see Figure 2) to provide a meaning-full interpretation of the causes behind the anomaly
and provide detailed report about the events of the considered day. For this purpose, we
suggest the use of a similarity-based approach [43] that relies on the calculation of self
similarity matrices encoding the similarity (distance) of each observed activation to other
historical activations. A threshold measure is used to decide if an activation is a variation
(i.e., a small change in the routines) or a deviation (i.e., an anomaly) from the normal
consumption pattern. The threshold, in this case, is also calculated using the inter-quantile
range rule. More precisely, the threshold is directly deduced from the self-similarity matri-
ces using the inter-quantile range rule.

Aggregate energy
data

Data pre-processing

The observed
data

Observation phase Monitoring phase

Anomaly detection

Feedback integration

Evaluation of the
activities

of the current day
Abnormal ?

Appliance
anomaly
detection

Yes

No

Daily
reports

Feedback
About

Anomalies
The computation of
the forgetting factor

Update of the observed
data records

Figure 2. The monitoring and anomaly detection module.

Anomalous days result in notifying an external agent for further decision-making.
The communication with the external agent is performed in an asynchronous mode. The
notifications are sent to the external agent who has the choice to provide feedback or not
to the framework. The framework continues thus to be functional even for days where
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the feedback was not received. In this case, it considers that the reports provided are
correct and updates its historical data accordingly. This update allows the framework to
consider recent patterns when evaluating a new day in order to take into consideration
seasonal change in the routines. In the opposite case (i.e., if the feedback is received), if the
agent finds the anomaly irrelevant, they can forward their decision to the framework. For
interpretable feedback, we propose four classes of notifications: (1) Abnormal usage time
which is related to an abnormal activation of an appliance during the day, (2) usage during
the night, and (3) absence of activity during a day. Providing interpretable information
about the anomalies would help to guide the external agent in establishing diagnosis.

The feedback provided by the external agent is integrated in the framework through
an update of the database of historical consumption. The new activations are added to the
existing database of historical events using a forgetting (vanishing) factor that favours the
replacement of old and unlabelled entries. The replacement procedure is straightforward.
It takes into consideration two main metrics: (1) how old the information is, (2) the distance
to the rest of the historical data, and (3) external agent feedback. If all the days included
in the observation database have feedback, the framework will choose the oldest most
divergent day to be replaced. The replacement of a day i operates on two levels. First,
the self-similarity matrices are updated by replacing the line i and row i with distance
measures related to the current day. Second, the activity curve of the day i is tagged as
having feedback and being replaced by the current day distribution.

4. Case Study

Aiming to evaluate the proposed framework in real scenarios, we present two case
studies of the kettle’s usage relative to two different houses from a publicly available
dataset. The two presented cases exhibited different usage patterns and were chosen to
evaluate the proposed framework considering different routines. The kettle is used as a
representative appliance for the cooking activity. The choice of this appliance is motivated
by related literature arguing that its frequent daily usage is a good indicator of habits’
deviations [44–46]. In describing both use cases, we first detail the evaluation methodology
while highlighting the differences in the data processing for each house. Second, we
present a detailed description of the data obtained from both houses before and after
pre-processing.

4.1. Methodology

To evaluate our contribution, we suggest an evaluation procedure as described per
Figure 3. It considers the different modules of the proposed framework while measuring
the influence of earlier modules of the framework on the overall output. As the figure
illustrates, the evaluation is organised in two phases.

First, we evaluate several disaggregation algorithms to identify the best-performing
model in the case of the kettle. For this purpose, we consider six different disaggregation
approaches: Combinatorial Optimisation (CO), Factorial Hidden Markov Models (FHMM),
and four different deep models. The four deep models consist of two well-known NILM
baselines, the Seq2Seq and Seq2Point models, and two recent models, the temporal-pooling
model [47] as well as the UNET-NILM model [33]. The choice of the last two models is
fueled by recent literature [21] suggesting their superiority. To train the deep models, we
chose a training period of three months from house 4 and a testing period of one month
from each house as illustrated in Table 3 at a sampling rate of 8 s where timesplit cross-
validation with three folds was adopted. In particular, we evaluate the models in both
seen and unseen scenarios to assess their performance in real setups. The seen scenario is a
scenario where the energy data used for training and testing are from the same household
but collected in different periods. In our case, it refers to the case where the models are
trained and tested on data from household 4. On the other hand, the unseen scenario, refers
to a testing scenario where the training and testing data are form different households.
In our case, it refers to the case where the models are trained on household 4 and tested
on data from household 11. The unseen scenario, in this case, is the most realistic as it is



Sensors 2022, 22, 1322 10 of 20

highly probable that the models will operate on houses that were never included in the
training dataset.

Training deep learning
models for the

considered appliance

Evaluation of the trained
models and the selection

of the best performing
model

NILM evaluation
results

Phase 01: Evaluation of NILM Phase 02: Evaluation of Activity Monitoring

Pre-trained
model

Extension of the data with anomalous
daily consumption

Energy dataset with synthetic
anomalous days

Disaggregation of the kettle
consumption for the monitring

period

Detection of the activations
from NILM’s predictions

Load Disaggregation Module

Data splitting into observation
and testing

A
ct

iv
it

y
M

on
it

or
in

g
M

od
ul

e

Monitoring and anomaly
detection

Recording of the
consumption profile

Observation data
Monitor-
ing data

NILM
evaluation

results

Monitoring results

Figure 3. The evaluation methodology.

During training, the data is split into 85% for training and 15% for validation. During
testing, we provide special attention to classification performance metrics as ON events
and usage time are more relevant in the case of activity monitoring. To construct the
confusion matrix and derive the operational states from the power consumption, a threshold
of 500 watts was used. All models were implemented using the PyTorch framework
in a compatible format with NILMtk API [32]. We consider four different metrics to
evaluate the generated predictions: The Mean Absolute Error (MAE), the f1-measure, the
recall, and the precision, as demonstrated by the formulas below where TP represent the
correctly identified ON states, FN represent undetected ON states, and FP represent the
overestimated ON states:

MAE = ∑
0≤i≤T

|yi − ŷi|
T

; (5)

f 1−measure = 2 ∗ Precision ∗ Recall
Precision + Recall

; (6)
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Precision =
TP

TP + FP
; (7)

Recall =
TP

TP + FN
. (8)

Table 3. The details of the data used during phase 01.

House Training Period Testing Period

Start End Start End

4 1 April 2014 30 July 2017 1 May 2015 30 May 2015
11 - - 1 October 2014 28 October 2014

The first phase of the evaluation generates a set of pre-trained models that can be
directly used to identify the kettle’s power consumption. As our purpose is to simulate
a real scenario, the second phase of evaluation, which consists of evaluating the activity
monitoring module, relies on the predictions generated by the best performing model
during the first phase. Furthermore, due to the non-availability of annotated data, the
authors suggest pre-processing the data extracted from both houses to generate an extended
version of the data for both buildings, including labels relative to abnormal usage of the
kettle. Three classes of the anomalous days are considered: (1) Divergent usage that
corresponds to activations occurring at a non-usual time for the householder, (2) usage
during the night, and (3) absence of usage during a day. When not available in the data,
synthetic daily consumption of a class is inserted with a rate of 10% of the considered
period’s length. Divergent usage patterns are generated by selecting a random day from
the real dataset and altering the usage hour. On the other hand, the usage during the night
is generated by inserting a random number (<3) of activations at random hours (0–4 a.m.)
during the night.

The aggregate power of the house is adjusted accordingly to the new generated
consumption of the kettle resulting in an energy dataset annotated with abnormal usage.
This new data is used as input to evaluate the activity monitoring module. From the
first evaluation phase, the pre-trained model is used to identify the consumption of the
kettle during the monitoring period. Before evaluating the activity monitoring, the authors
argue that it is necessary to re-evaluate the disaggregation error to assess if the abnormal
activations cause a deterioration in the disaggregation error. The evaluation of the activity
monitoring module is then performed using both the actual consumption of the kettle and
the predicted consumption obtained with a NILM model. The goal from using both data
sources is: (1) To evaluate the performance of the monitoring module, and (2) to assess the
influence of the disaggregation error on the monitoring module.

4.2. Data Description

All reported results during the experimental setup conducted in the current study
were obtained using the REFIT [39] dataset. This dataset contains power consumption from
20 households for two years in the UK, with a sampling rate of 8s. We chose two households
from this dataset. We justify the choice of these two households by the fact that they record
real energy consumption for senior adults living alone (https://reshare.ukdataservice.ac.
uk/852367/11/Documentation.zip, accessed on 30 December 2021), illustrated in Table 4,
which represent a perfect fit for our framework. The first house gathers energy consumption
from a retired couple over approximately two years. The second house records the energy
data of a retired female for an approximate period of one year.

https://reshare.ukdataservice.ac.uk/852367/11/Documentation.zip
https://reshare.ukdataservice.ac.uk/852367/11/Documentation.zip
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Table 4. The meta-data of house 4 and 11 from the REFIT dataset.

House Pseudonyms Age Band Occupation Start of the Measurement The end of the Measurement Period’s Length (Days)

4 Henry 55–64 Retired 13 October 2013 7 January 2015 635
Louise 55–64 Retired

11 Sarah 65–74 Retired 6 June 2014 30 June 2015 393

Figure 4 highlights the daily consumption of the kettle over 24 h for the whole consid-
ered period (see Table 5). It contains two different histograms representing the data before
and after inserting the abnormal usage patterns. These anomalous daily patterns were
inserted as described in Section 4.1. The occupants from house 4 possess typical behaviour
where the kettle is used from 5 a.m. to 10 p.m. These occupants use the kettle extensively
in the morning and the evening and exhibit moderate usage during the middle of the day.
During the nights of the studied period, the kettle has never been used(see blue curve in
Figure 4). As shown, the rate of anomalous days was inserted in a controlled manner and
only slightly altered the original consumption curve (shown in blue). This house represents
a good example of a scenario where the observation phase captures only typical behaviour.

Table 5. The periods of time used during phase 02.

House Initial Observation Period Monitoring Period

Start End Start End

4 1 September 2014 21 October 2014 22 October 2014 30 September 2015
11 1 November 2014 21 December 2014 22 December 2014 16 August 2015

Figure 4. The daily consumption profile of house 4.

To provide a more concrete understanding of the daily routines in house 4, Figure 5
presents a detailed illustration of all the appliances used during three consecutive days
(from 11 October 2013 to 13 October 2013). The figure shows strong evidence for the repre-
sentativeness of the information summarised in the consumption profile. As observable
in Figure 5, the cooking activity for house 4 is mainly performed twice a day during the
morning time (from 7 a.m. to 11 a.m.), with some variations in the time represented by
the first peak in the curves from Figure 4. Similar observations can be deduced for the
afternoon and the evening times.

On the other hand, Figure 6 illustrates the daily consumption profile of house 11. For
this house, the kettle usage is relatively moderate during the day, with more relevant usage
in late hours (from 6 p.m. to 10 p.m.). The analysis of daily consumption from house 11
revealed that the occupant already has an unusual consumption pattern where extensive
usage of the kettle is remarkable during the night and seems to be part of the subject’s
daily routine as provided in the original dataset. In the case of this house, we annotate
the existing data relative to usage during the night and data gaps included in the dataset
and only introduce synthetic daily usage that is divergent from the usual pattern of the
occupant. The data from this house would provide a good example of the sensitivity of the
proposed framework to the observation phase as it would also integrate unhealthy usage.



Sensors 2022, 22, 1322 13 of 20

It is expected that the resulting data for this household would not allow the detection of
the kettle’s usage during the night as it is part of the typical routine of the householder.
This second use case will highlight the extent to which the decision about the abnormality
remains relative to the occupant’s routines and the data recorded during the observation
phase. Therefore, it will serve as a good demonstrative example of the importance of
relativity in differentiating between abnormal and normal behaviour.

Figure 5. The daily activities of house 4 from 11 October 2013 to 13 October 2013.

Figure 6. The daily consumption profile of house 11.

5. Results
5.1. NILM Evaluation

Table 6 illustrates the disaggregation results for the kettle considering the four metrics.
The table summarises the results for both houses representing the seen and unseen scenario
as the models were trained considering only data from house 4. The best obtained results
for each metric are highlighted in bold.

As seen from Table 6, the four considered deep models outperform the classical models
(CO and FHMM), considering all metrics except for the recall. These observations translate
to the fact that these classical models perform well at identifying the real ON events (small
number of FN) however tend to confuse the use of other appliances with the kettle (big
number of FP) in both scenarios. On the other hand, the considered deep models provided
decent performance where we recorded a minimum f1-measure of 77%. The Seq2Seq and
Seq2Point baselines provided the best results considering classification performance metrics
where they yielded an f1-measure greater than 85%. Nonetheless, a closer inspection of
the precision and the recall reveals that the rate of overestimated ON states (FP) is lower
in the case of Seq2Point, while the rate of undetected ON states (FN) is lower in the case
of Seq2Point. While providing a lower MAE, the Temp-Pooling model demonstrated also
a lower f1-measure than both previous baselines. This observation, while preliminary,
suggests that this model is more conservative in predicting that the kettle is ON. Finally, the
UNET model yielded very competitive results considering the MAE with an f1-measure
that approximated the two considered baselines. It reduced the MAE with a factor of 2
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compared to the Seq2point while providing only a 5% deterioration in the f1-measure
compared to the best obtained value. We argue that this model provides a good trade-off
between the undetected ON states (FN) and the overestimated ON states (FP), as well as
the power consumption values.

Table 6. The results of the disaggregation performance.

House 4 (Seen Scenario) House 11 (Unseen Scenario)

MAE F1 Precision Recall MAE F1 Precision Recall

CO 232.9 0.26 0.15 0.97 279.5 0.23 0.13 0.91
HMM 67.5 0.18 0.10 0.97 170.7 0.18 0.09 0.93

Seq2Point 9.6 0.85 0.89 0.81 17.5 0.71 0.79 0.65
Seq2Seq 14.0 0.89 0.86 0.91 25.5 0.74 0.85 0.66
Temp-Pool 7.3 0.77 0.85 0.69 20.3 0.54 0.93 0.37
UNET 4.4 0.83 0.82 0.85 12.5 0.75 0.91 0.64

Figure 7. A morning activation of kettle for 1 January 2015 from house 4.

Tigure 7 illustrates one activation of the kettle during the morning of 1 January 2015
from house 4. It illustrates the predictions generated by the four deep models and the real
consumption (GT). The figure shows that indeed the four models succeed in detecting
the kettle’s usage. It can be noticed that there is a slight delay of a few seconds between
the predictions and the actual data. Nonetheless, we argue that this delay is negligible
and will have a very small to no effect on activity monitoring performed on an hourly
basis. The figure shows that the UNET outperforms the other models where it generated
an activation that is very similar (shown in red) to the actual activation (shown in purple).
Considering this observation and the results obtained in Table 6, we argue that the UNET
model is particularly relevant in real scenarios where a single network would be used
for both activity monitoring and energy estimation. The activity monitoring can thus be
offered as an extra service that relies on the disaggregation output.

In the case of the unseen scenario (house 11), a deterioration in the performance can
be noticed for all models, mainly caused by an increased number of undetected ON events
as recorded per the recall. A possible justification can be related to the different operational
characteristics of the kettle in house 11. Remarkably, the Temp-Pooling model demonstrated
a significant draw in the performance with an MAE multiplied by a factor of 2.7 and a
difference of 23% in the f1-measure. It could be the case that this model over-fitted the data
from house 4 and cannot generalise to data from unseen houses. The three remaining deep
models yielded acceptable results with a minimum f1-measure of 71%. The UNET model
also demonstrated the best trade-off considering both the MAE and f1-measure.

In summary, NILM approaches provided acceptable results. Deep models demon-
strated outstanding improvements in comparison with classical approaches. In particular,
the UNET model yielded good performance even on the unseen scenario where it yielded
the lowest deterioration in the f1-measure. Thus, we argue that this model is the most
suitable for activity monitoring. Therefore, only the UNET model will be considered during
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the rest of the experimental setup, where the pre-trained model will directly be used to
generate the predictions for the activity monitoring module.

Table 7. The results of the re-evaluation of the UNET model.

House 4 House 11

MAE F1 Precision Recall MAE F1 Precision Recall

Real data 4.4 0.83 0.82 0.85 12.5 0.75 0.91 0.64

Augmented data 5.4 0.77 0.82 0.73 23.9 0.63 0.64 0.61

Table 7 illustrates the re-evaluation results of the pre-trained UNET model for the
considered period (see Table 5) in the case of both houses that will serve as input to
the monitoring process. As the newly generated data contains new randomly generated
patterns, it is expected to notice a deterioration in the performance. The goal of the authors
is to assess the new error and evaluate the ability of the UNET model to generalise to the
new consumption patterns. As the table demonstrates, the UNET still provides decent
performance in both seen and unseen cases. A decrease of 8% in the f1-measure is recorded
in the case of house 4 due to a lower recall value (85% with real data vs. 73% with the
newly generated data), translating into a higher rate of undetected ON events for the kettle
(FN) in this case. The same observation can be made for the f1-measure in the case of
house 11. Nonetheless, the decrease in house 11 is caused by an overestimation of ON
events (FP). These findings, while preliminary, suggest that UNET is capable of decently
identifying the new activations with anomalous usage time. Nonetheless, a more advanced
training protocol considering the potential of anomaly occurrence would allow to mitigate
the recorded deterioration in the performance as previously suggested in related work [48].
The authors admit that this aspect remains challenging to design but must be addressed in
future work to unlock the full potential of applying NILM in activity monitoring.

5.2. Activity Monitoring and Anomaly Detection

The current section presents the results of the monitoring module considering the
data from houses 4 and 11 as described in Section 4.1. Table 5 illustrates the periods for
both observation (building the consumer profile) and monitoring. For house 4, a period of
51 days is used as the observation phase to capture the behavior of the retired couple. The
consumption of the subjects from the same house is monitored for a period of more than
300 days. Similar periods are fixed for house 11 with respect to data availability.

The results obtained from the activity monitoring module relative to the identification
of anomalous days, considering both the actual consumption and the consumption gen-
erated by the UNET model, are illustrated in Table 8. The table summarises the results of
the detected anomalous days without distinguishing between the causes of the anomaly
(the pre-defined anomalous classes). As the introduced anomalous daily consumption only
considered the usage time, only the activity level anomaly (activity curves) was enabled
during the current evaluation. More precisely, the appliance level anomaly (using similarity
matrices) is more relevant when considering complex scenarios with multiple features
(day of the week, day of the month, the season, operational characteristics, etc.) for each
appliance translating into different interpretations. Specific control rules on the usage time
of the identified anomalous days remain a better alternative for providing interpretations
when considering only the usage time, resulting in less computational resources.

In the case of house 4, both input sources, the UNET predictions, and the real con-
sumption yielded acceptable results with a minimum f1-measure of 67%. Both data sources
provided precision values higher than the recall values. The previous observations imply
that in both cases, the number of ordinary days identified as anomalous (FP) is greater
than the number of undetected anomalous days (FN). A viable justification for this finding
can be that the dataset already contained anomalous patterns that were not considered
during pre-processing. When comparing the results generated by both inputs, we record a
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difference of 10% in the f1-measure. A closer look at the precision and recall values reveals
that both data sources have approximate precision values but a difference of 15% in the
recall values. The previous observation is directly linked to the results obtained in Table 7
where we noticed an increase in the rate of undetected ON states after the introduction
of abnormal usage, which would directly lead to a higher rate of undetected abnormal
days that are related to those activations. To further evaluate the influence of the first
module on activity monitoring, Figure 8 details the distance calculated for each day from
the monitored period where the curve in red represents the distance when considering the
actual power consumption and the curve in black represents the distance when considering
the data generated with the UNET model. The days that were identified as anomalous
are highlighted with bold dots. As shown, both generated curves exhibit the same overall
shape with minor differences where the module either failed at classifying the day as
anomalous or misidentified it as anomalous.

Table 8. The results of the evaluation of the activity monitoring module.

Input Source House 4 House 11

F1 Precision Recall F1 Precision Recall

UNET predictions 0.67 0.63 0.71 0.03 0.8 0.01
True consumption 0.77 0.69 0.86 0.007 1.0 0.003

Figure 8. The Jensen–Shannon Divergence (JSD) in the case of house 4.

As expected, the activity monitoring module could not detect the days labeled as
anomalous (mainly days with usage during the night) during the pre-processing, where it
yielded a very low f1-measure with both input types. These results are due to the extensive
usage of the kettle that was labelled during pre-processing as anomalous but considered
normal by the proposed framework as it was part of the observed data. The case of this
house can be viewed from two different perspectives. The first is the case where the night
usage is considered anomalous. In this case, if the observed data is not validated, the
proposed framework will fail to identify what is hypothesised to be abnormal (i.e., usage
of hand-operated appliances during the night). This finding highlights a central failing
point for our contribution where it shows its sensitivity to the data recorded during the
observation phase that needs to be established in a very controlled manner and under the
validation of professionals. The second perspective would be the case where the kettle
(or other hand-operated appliances) usage during the night is just part of the subject’s
routines and is far from being an indicator of a sleep disorder. This would mean that what
is anomalous for one individual could be part of a routine for another individual. This
finding stresses the importance of the observation phase to define custom anomalies. In
this case, the definition of abnormal behavior remains relative.

6. Discussion

The manuscript at hand proposed a new activity monitoring framework using NILM
and suggested an evaluation protocol that considers different modules of the framework.
Accordingly, the evaluation results, on two case studies from a publicly available dataset,
were presented to simulate a realistic scenario.
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The evaluation of the first module relative to the load disaggregation using both clas-
sical and deep approaches revealed that NILM models provide good results in identifying
the kettle’s activations and power consumption. Notably, deep models provided the best
performance for this module. Compared to classical models, deep baselines demonstrated
their competitiveness, confirming findings from recent literature [32]. Even with the unseen
scenario, these models yielded acceptable performance. This finding provides encouraging
evidence to transfer learning from available houses not relative to adults living alone. More-
over, advanced models, such as the UNET, demonstrated very competitive performance in
estimating power consumption. The authors argue that the UNET model is particularly
interesting since it performs both power and state predictions (multi-task model) with
uncertainty estimation. Unfortunately, in its current version, the proposed framework does
not benefit from the uncertainty generated by the model. Nonetheless, the authors plan to
include it in future versions.

The evaluation of the second component relative to the activity monitoring also yielded
acceptable performance. The activity curves demonstrated good representativeness of the
overall activity patterns. Nevertheless, we argue that they are more suitable for activities
that rely on frequently used appliances during a single day. We stress that it could be
the case that they are less effective in activities inferred based on less frequently used
appliances, such as the washing machine. A more elaborated version of the proposed
framework would rely on hierarchical activity curves, including other temporal dimensions
such as the day of the week. Adapting established methods for activity monitoring or
combining them demonstrated good results but remains subject to future improvements.
The activity monitoring of older adults remains a sensitive health care service that requires
more robust and elaborated models to help mitigate the number of errors. Moreover, using
two case studies demonstrated that the definition of anomalous behaviour remains difficult
and dependent on the context.

On the other hand, the evaluation of the activity monitoring module considering both
real data and NILM predictions allowed to assess the propagated error that was estimated
to be around 10% for the f1-measure. This difference shows encouraging results for using
deep NILM models in activity monitoring and demonstrates that more elaborated models
(both NILM and monitoring models) would help to mitigate this error. The presented
case studies also highlighted the sensitivity of this module to the data recorded during the
observation phase.

The proposed framework showed potential for benefiting from the new electrical
grid in active and assisted living. To the best of the authors’ knowledge, this is the first
application of deep NILM models in activity monitoring with an explicit assessment of
their effect on the activity monitoring algorithms. Nevertheless, a source of limitation in
the proposed solution is its high dependency on the data recorded during the observation
phase that must represent the average occupant’s routine. Moreover, the scope of this study
was limited in terms of the set of monitored activities. The authors intend to consider a
more extensive set of activities with more appliances in future work. Furthermore, we
argue that gaining a deeper understanding of the challenges imposed by the problem can
only be enabled with more established datasets. More particularly, a significant obstacle
in evaluating the applicability of NILM in activity monitoring is the non-availability of
annotated data. The authors overcame this problem by introducing abnormal synthetic
usage and annotating available suspicious usage time. The generated data allowed the
evaluation of the proposed framework on data from two different houses. However, this
aspect remains the main limitation for the evaluation protocol adopted in the experimental
setup and a major obstacle towards the generalizability of these results. We urge the need to
establish more elaborated datasets to develop more complex scenarios and more extensive
evaluations of activity monitoring approaches based on NILM.

7. Conclusions

Adopting Non-intrusive Load Monitoring for daily activity monitoring is a promising
approach. The current manuscript proposed a new framework for activity monitoring
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based on this paradigm. The evaluation of the whole modules of the framework revealed
that deep NILM models are a good fit for the problem with an influence of –10% in the
f1-measure of the activity monitoring algorithm. Nonetheless, the generalisability of these
results is subject to certain limitations. For instance, the data used during the evaluation
remains limited regarding the number of houses and appliances. Further research may
focus on providing larger energy datasets of older adults, allowing deeper evaluations.
Despite its limitations, the current study is the first to suggest using deep NILM models
for activity monitoring and to measure the error propagated from the NILM algorithm
on activity monitoring. In this regard, the presented work can be considered as a proof
of concept that the basic algorithms are appropriate. The plan for future activities is to
transfer the method from artificial environments into real-world settings, similar to the
ones described in [8], which is the past work of one of the authors. In this paper, the authors
illustrate the possibilities and limitations of a conventional AAL approach, i.e., one based
on the installation of additional components to observe the activity. Due to the spread of
smart meters, evaluating the solutions presented in this paper in real-world settings on a
larger scale should be feasible and is planned for our future work.
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