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Abstract: The global pandemic of the coronavirus disease (COVID-19) is dramatically changing the
lives of humans and results in limitation of activities, especially physical activities, which lead to
various health issues such as cardiovascular, diabetes, and gout. Physical activities are often viewed
as a double-edged sword. On the one hand, it offers enormous health benefits; on the other hand,
it can cause irreparable damage to health. Falls during physical activities are a significant cause
of fatal and non-fatal injuries. Therefore, continuous monitoring of physical activities is crucial
during the quarantine period to detect falls. Even though wearable sensors can detect and recognize
human physical activities, in a pandemic crisis, it is not a realistic approach. Smart sensing with the
support of smartphones and other wireless devices in a non-contact manner is a promising solution
for continuously monitoring physical activities and assisting patients suffering from serious health
issues. In this research, a non-contact smart sensing through the walls (TTW) platform is developed
to monitor human physical activities during the quarantine period using software-defined radio
(SDR) technology. The developed platform is intelligent, flexible, portable, and has multi-functional
capabilities. The received orthogonal frequency division multiplexing (OFDM) signals with fine-
grained 64-subcarriers wireless channel state information (WCSI) are exploited for classifying different
activities by applying machine learning algorithms. The fall activity is classified separately from
standing, walking, running, and bending with an accuracy of 99.7% by using a fine tree algorithm.
This preliminary smart sensing opens new research directions to detect COVID-19 symptoms and
monitor non-communicable and communicable diseases.

Keywords: COVID-19: smart sensing; OFDM; SDR; WCSI

1. Introduction

Countries around the globe have been experiencing a pandemic situation since De-
cember 2019. The outbreak of COVID-19 set up a concerning international public health
crisis. As the outbreak continues to develop, the whole world is searching for possibilities
to preclude the outbreak of the virus in new places, or to stop human-to-human interaction
at places where the virus that originates COVID-19 was previously mingling. The public
health departments in each county have taken the necessary steps to achieve these goals,
such as implementing quarantine, which entails restricting human movement, maintaining
a social distance from the rest of the public, or isolating healthy individuals who may not
show any symptoms, with the goal of detecting virus-infected people early. Many states
have legally permitted enforcement of quarantine from time to time when a new variant of
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COVID-19 starts spreading [1]. With the increasing number of health problems worldwide
because of a lack of physical activity during the quarantine period, it is necessary to do
indoor physical activities to prevent non-communicable diseases. They cannot spread
from one person to another, but can last a long time. Cardiovascular diseases, cancer,
diabetes, and other chronic respiratory diseases are categorized as non-communicable
diseases. Sometimes, sudden falls due to physical activities may damage the human body,
especially when a person is alone.

With the recent rapid technological advances, numerous monitoring systems such as
camera-based, wearable, and ambient sensors-based technology are helpful for detecting
falls to reduce fall-related injuries [2]. In this context, monitoring with portable sensors to
detect immediate falls during physical activities not only helps in detecting falls but can
also help with interventions before and after the fall [3]. The systems used to detect sports
falls are based on the sports automatic recognition (SAR) system. They are designed to
provide accurate measures and analysis in sports that have the potential to increase the
efficiency and accuracy of exercises and increase health and safety. In common SAR systems,
recognition can be attained through the machine and deep learning approaches by capturing
data with inertial sensing and computer vision technologies [4]. Physical activities data
measured by computer vision can be used for motion recognition and tracking. SAR
systems include human detection and tracking, synchronization, and detection of targeted
movements, depending on the type of sport and the camera settings [5]. SAR systems based
on computer vision technology can provide coaches and athletes with prompt post-match
analysis and real-time response before the next game. However, this system suffers from
constrained environments, because the cameras are expensive devices and may not capture
all subjects in the installed environment due to blind spots, affecting accurate measurement
and performance analysis.

Another solution for detecting sports activities is inertial sensing technology, where
the sensors are portable and consist of gyroscopes, accelerometers, and magnetometers.
Wearable devices with onboard inertial sensors are commonly used in many applications
such as rehabilitation, authentication and gait analysis, healthcare, human activities, dis-
eases, navigation, etc. [6–11]. Recently, many researchers have developed and analyzed
technologically advanced wearable inertial sensing-based sports activities monitoring sys-
tems for physical activities such as: running, jumping, cycling, golf, tennis, badminton,
table tennis, football, baseball, basketball, and volleyball [12–18]. Although wearable sens-
ing technologies are promising solutions for monitoring physical activities and detecting
falls, they are not recommended in the pandemic situation because they may become a
carrier for spreading the virus, and are uncomfortable for children and elders. Under
these circumstances, non-contact sensing technology is a promising solution to control
the spread of the virus, such as Wi-Fi, radar, and SDR-based human activities sensing
technologies. These technologies are becoming popular in the modern era because they
monitor human activities in a non-contact manner [19]. However, each technology has a
trade-off between advantages and limitations, so when we talk about Wi-Fi-based sensing,
it is low cost and easily accessible, but has portability and flexibility issues. On the other
hand, radar-based sensing is generally used in military contexts, but a trade-off is the cost
of equipment. SDR-based sensing provides an improved solution in terms of cost and
performance. SDR-based sensing of human activities is cost-effective, portable, and flexible
because software modification is possible without changing the hardware [20–22]. The
main advantage of using SDR technology is that it can be exploited as Wi-Fi and radar
technology as well. This initial research exploits the SDR technology-based non-contact
smart sensing TTW by using artificial intelligence. The proposed system is a novel solution
for monitoring falls during the quarantine period.

Following are the contributions of this research to monitoring physical activities during
the quarantine period to prevent lifelong non-communicable diseases.
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The paper is structured as follows. In Section 2, related existing work on non-contact
smart sensing for monitoring human activities by using Wi-Fi, radar, and SDR-based
sensing technologies is provided for deeper insight. Section 3 provides an overview of
the non-contact sensing platform used for development by exploiting the SDR technology.
Section 4 is dedicated to the methodology used for extracting the WCSI data and building
the classification model for physical activities. In Section 5, the accomplished results and
their performance are presented. Lastly, Section 6 summarizes the performance of non-
contact smart sensing using SDR technology, and future recommendations are suggested
for improving the system.

2. Related Work

There are a lot of existing Wi-Fi technology-based platforms developed for human
activities monitoring and detecting vital signs. The wireless sensor network (WSN) uses
Wi-Fi technology to detect movements of the human body without a portable device in
the operating area. Passive dynamic velocity moving people detection system (PADS)
uses device-less detection to extract amplitude and phase information from the WCSI and
exploit spatial diversity using MIMO systems; such a system uses commercial Wi-Fi devices
to capture human body motions [23]. Human activity can be identified by the reflected
Wi-Fi signals from the human body to create a unique pattern. A system that exploits
CSI for detecting and monitoring human activities uses commercial Wi-Fi devices [24].
TTW human presence sensing systems use the Wi-Fi signals for moving and stationary
people with a single Wi-Fi access point (AP). In this research, researchers have carried
out the experiments in an empty room, in which a person moves or is stationary, and
the channel frequency response (CFR) is analyzed for human activity [25]. Device-free-
based solutions use Wi-Fi devices, which are generally available in homes and offices, to
extract fine-grained CSI for analysis of human activities [26]. An untrained human vitality
detection platform has been proposed that relies on basic Wi-Fi infrastructure to detect
human movement in real-time. This system does not require any human effort to train
offline or to calibrate manually. The platform can continuously monitor human activities
for various purposes [27].

A wireless occupant activity recognition system (Wi-OAR) was developed for building
management systems (BMS) to create user-friendly real-time environments for residents.
The CSI extraction method based on Wi-Fi signals provides contactless user-centered
services in offices to work intelligently. The fast and robust target component separation
(FRTCS) algorithm is designed to evaluate both accuracy and time efficiency. This prototype
was developed for different office environments with two commercial Wi-Fi devices [28]. A
human activity recognition system used Wi-Fi signals to collect data from ten people doing
sixteen different indoor activities. This system reduces costs and improves performance
in various areas [29]. Wi-Motion used CSI data for extracting the phase and magnitude
response to build the classification model for six diverse human activities [30]. A non-
wearable and privacy-protective human activity detection platform used Wi-Fi signals for
imminent smart buildings by extracting the images of wireless channel response [31]. The
Wi-Fi-based system used deep learning algorithms with enhanced CSI features for human
activity recognition [32].

Nowadays, Wi-Fi access points are very readily available everywhere, and the human
presence between the access points provides a unique CSI. Machine learning is used
to extract CSI data to classify human movements [33]. Wi-Fi technology is becoming
increasingly popular in mobile sensing devices for monitoring daily human activities [34].
A non-contact sensing-based Wi-Run system uses commercial Wi-Fi devices to estimate
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human steps [35]. The wireless detection uses 5G C-band technology to record falls and
body movements of people with high precision [36]. Passive Wi-Fi sensing monitors health
conditions including breathing rate and falls [37]. A passive Wi-Fi system detects two-
dimensional phase information for monitoring human falls [38]. Breathing and heart rate
patterns are important indicators of a person’s physical health. A commercial Wi-Fi-based
system was designed to analyze the changes in breathing and heart rate patterns. This
system is inexpensive and convenient for continuous monitoring of health conditions [39].
Wi-Fall is a real-time system used to monitor the sudden falls of persons living alone,
especially in old age. This system detects the fall of the human in a non-contact manner
using a commodity 802.11n network interface card (NIC). This system achieves high
accuracy for the fall detection of a single person [40]. RT-Fall, a non-contact sensing system,
used commodity Wi-Fi devices for fall detection. This system is inexpensive for monitoring
daily activities without attaching any device to the human body [41]. The Res-Beat, a non-
contact sensing system, used commodity Wi-Fi devices for monitoring real-time respiration
rate. The system analyzed bimodal WCSI data for breathing abnormality information by
detecting peaks to evaluate respiration rates [42]. Wi-Fi technology-based sensing has the
advantage of being easily accessible and low cost, but having limitations of portability and
flexibility due to the limited number of OFDM subcarriers and fixed standards.

Radar technology is also used to monitor human activities and detect vital signs in the
existing literature. A system based on ambient radar has been proposed to detect human
activity in an indoor environment. The 7.8 GHz operating frequency detected human
activity by sending 16 pulses per second. This system can differentiate between human
movements to recognize different activities [43]. The Bumble-Bee radar-based system
can efficiently capture micro-Doppler signatures for human movements for recognition
in indoor environments [44]. A wireless sensing approach used a passive-Doppler radar
to detect human body movement’s variations, recognizing abnormal respiration rate and
various human physical activities to observe health condition. The wireless signals are used
to detect human activity [45]. The radar technology detects large-scale body motions to
improve the home life of older adults. This system classifies falls using radar spectrogram
image data [46]. Radar technology is a promising solution, but has the potential risk of
explosion due to released heat and is not used widely due to expensive hardware setup.
Furthermore, the technology needs a line-of-sight (LOS) environment, i.e., no obstruction is
recommended between radar and human, which limits the system’s physical deployment.

Recently, SDR-based sensing technology has been used to detect human activities and
vital signs using wireless signals. A device-free system using smart sensing recognizes
different human activities by extracting WCSI in an indoor environment. Human body
motions were detected in a real-time setting using SDR equipment [47]. Blueprints of
WCSI present distinctive variations caused by body motions, characterizing small and
large-scale motions. SDR-based sensing technology exploits radio wave signals to ex-
tract human body motion patterns [48]. The SDR sensing-based platform used a deep
learning algorithm-based convolutional neural networks (CNN) model to detect ankle
movements [49]. The SDR sensing-based, non-contact identification platform classifies
weightlifting activities performed by humans [50]. SDR technology is portable, flexible,
scalable, and has multifunction capabilities [19,22]. The existing literature can be helpful
in developing a COVID-19 platform to monitor human body motion, resulting in the
diagnosis of various health issues, and monitoring of human activities in a non-contact
manner. A summary of classification performance of monitoring health and vital signs by
using non-contact sensing technology Wi-Fi, Radar, and SDR is given in Table 1. Although
Wi-Fi, Radar, and SDR technologies are viable solutions for monitoring physical activities
during the quarantine period, there are still limitations. In this research, we exploit SDR
technology to overcome the limitations of Wi-Fi and Radar technology. The cost of SDR
technology is low because it can be redefined through modification of software without
changing or adding a new hardware setup. It is flexible because it can adopt any wireless
standard by redefining software. It is portable because of the self-generating abilities of
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radio signals, and has multiple functional capabilities that can be exploited such as Wi-Fi,
Radar, GSM, FM radio, etc.

Table 1. Summary of non-contact human activity sensing literature.

Sr# Technology Activities Monitoring Classification Performance

1 Wi-Fi [23] Moving human SVM 99%
2 Wi-Fi [24] Walking, running, sitting and falling CSI-speed model 96%
3 Wi-Fi [25] Human presence static and dynamic Naïve Bayes 99%
4 Wi-Fi [26] Walk, sit, stand, run Deep auto-encoder 95%
5 Wi-Fi [27] Human motion HMM 94.2%
6 Wi-Fi [28] Whole and partial-body movements Machine learning 94.82%
7 Wi-Fi [29] Upper, Lower and whole body CNN 90%
8 Wi-Fi [30] Bend, walk, sit down and squat SVM 98.4%
9 Wi-Fi [31] Walking, jogging and sitting Deep auto-encoder 91.1%
10 Wi-Fi [32] Standing and sitting Soft-max regression 97.5%
11 Wi-Fi [33] Walk, stand, empty and sit down RNN 90%
12 Wi-Fi [34] Moving area, path walking Path matching 90.83%
13 Wi-Fi [35] Quantifying running SSF 93.18%
14 Wi-Fi [36] Post-surgical fall SVM 90%
15 Wi-Fi [37] Breathing rate and falls Machine learning 98%
16 Wi-Fi [38] Danger Pose SVM 96.23%
17 Wi-Fi [39] Breathing and heart rate Patterns DTW 94%
18 Wi-Fi [40] Fall SVM and RF 94%
19 Wi-Fi [41] Fall SVM 100%
20 Wi-Fi [42] Respiration rate EWMA 93.04%
21 Radar [43] Sitting, standing, walking and jogging K-mean 85%
22 Radar [44] Walking, running, and crawling KNN 93%
23 Radar [45] Breathing SVM 85%
24 Radar [46] Standing, sitting, standing and fall CNN 95.30%
25 SDR [47] Standing, walking, crawling and lying KNN 85%
26 SDR [48] Standing up or sitting down RF 96.70%
27 SDR [49] Fractured ankle movement CNN 98.98%
28 SDR [50] Weight lifting FKNN 99.6%

3. Platform

The platform contains computers, SDR devices, and omni-directional antennas. The
computers used for experiments are Lenovo, Intel(R) Core (TM) i5-7500 3.40 GHz processor,
12 GB RAM and Windows 10 64-bit operating system. The SDR devices used for experi-
ments are universal software radio peripheral (USRP) B210, and the software is MATLAB
Simulink version R2019a. The main functional blocks for the platform’s development are
transmitter PC, transmitter USRP device, wireless channel, receiver USRP device, and
receiver PC, as shown in Figure 1.

3.1. Transmitter PC

In transmitter PC operation, software-defined functionality is utilized to transmit
a flexible OFDM frame. Initially, a signal of random bits is generated continuously at
uninterrupted sample times and gets one channel per column. Data columns are buffered
into frames by stipulating samples per frame. This input data signal used quaternary
phase-shift keying (QPSK) digital modulation. Further, vector data was split into smaller
subcarriers, and data of identical types concatenated to create contiguous output data. The
inverse fast Fourier transform (IFFT) of all subcarriers is computed to transform frequency
domain data into the time domain data with orthogonality between the subcarriers. A
cyclic prefix (CP) is added to each data frame for avoiding inter-symbol interference (ISI).
The adoptive gain is added to improve the strength of the transmitted signal. The software-
defined hardware configuration block of USRP is used for flexible parameters modification,
which is also the operation of the transmitter PC. The software-defined parameters are
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given in Table 2. These adjustable parameters can be redefined at any stage to improve the
platform’s performance.
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Table 2. Software-defined parameters setting of the non-contact smart sensing system.

Parameters Values/Settings

Bits generation 128
Bits per symbol 2

Modulation type QPSK
FFT size 64

Channel mapping Tx 1
Channel mapping Rx 2

Centre frequency Tx & Rx 2.45 GHz
Clock source & PPS source Internal

Master clock rate Tx 200 MHz
Master clock rate Rx 200 MHz
Interpolation factor 250
Decimation factor 250
Enable burst mode False

Transport data type Tx int16
Transport data type Rx int16

Output data type Tx Same as transport data type
Output data type Rx Same as transport data type

Serial number Tx 30AD2FE
Serial number Rx 30AD311

Gain Tx 80
Gain Rx 50

Samples per frames 80
Sampling rate 1000 samples/s
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3.2. Transmitter USRP Device

The transmitter USRP device functions are digital up-conversion (DUC), digital to
analog conversion (DAC), low-pass filtering (LPF), mixer, and transmit amplification (TA).
These functions of the hardware device are fixed and cannot be altered.

3.3. Wireless Channel

The wireless channel is a room environment to collect the human movements of
standing, walking, running, bending, and falling activities, as shown in Figure 2. The WCSI
signal is collected through multipath due to the reflection of the human body in-between
the two omni-directional antennas.

Sensors 2022, 21, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 2. Experimental setup for collecting WCSI data using SDR technology. 

3.4. Receiver USRP Device 
The receiver USRP device functions are low noise amplification (LNA), mixer, LPF, 

analog to digital converter (ADC), and digital down converter (DDC). 

3.5. Receiver PC 
In the receiver PC, the USRP hardware flexible receiver configuration block is used 

to modify and control hardware. The frame synchronization process is used to detect 
when the frame begins and helps remove the CP correctly. The FFT is applied to transform 
the time domain data into the frequency domain data. The frame status conversion sets 
the sampling mode of the output data frame. The amplitude response of the data is ex-
tracted to analyze the WCSI data in the frequency domain. WCSI data is in the raw form, 
which is further preprocessed by cleaning, smoothing, and grouping. Additionally, fea-
tures are extracted to transform the WCSI data for meaningful analysis. Finally, three ma-
chine learning algorithms are applied to classify falls separately from standing, walking, 
running, and bending. 

4. Methodology 
The various steps involved in developing a physical activity monitoring and fall de-

tection system by exploiting SDR technology and machine learning algorithms are dis-
cussed as follows: 

4.1. Subject and Activities 
In developing a physical activities monitoring system, we considered five healthy 

subjects performing multiple activities. The information about the subjects conducting the 

Figure 2. Experimental setup for collecting WCSI data using SDR technology.

3.4. Receiver USRP Device

The receiver USRP device functions are low noise amplification (LNA), mixer, LPF,
analog to digital converter (ADC), and digital down converter (DDC).

3.5. Receiver PC

In the receiver PC, the USRP hardware flexible receiver configuration block is used to
modify and control hardware. The frame synchronization process is used to detect when
the frame begins and helps remove the CP correctly. The FFT is applied to transform the
time domain data into the frequency domain data. The frame status conversion sets the
sampling mode of the output data frame. The amplitude response of the data is extracted
to analyze the WCSI data in the frequency domain. WCSI data is in the raw form, which
is further preprocessed by cleaning, smoothing, and grouping. Additionally, features are
extracted to transform the WCSI data for meaningful analysis. Finally, three machine
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learning algorithms are applied to classify falls separately from standing, walking, running,
and bending.

4. Methodology

The various steps involved in developing a physical activity monitoring and fall
detection system by exploiting SDR technology and machine learning algorithms are
discussed as follows:

4.1. Subject and Activities

In developing a physical activities monitoring system, we considered five healthy
subjects performing multiple activities. The information about the subjects conducting the
activities is given in Table 3. We considered standing, walking, running, bending, and fall
activities for monitoring. Each subject performs each activity ten times.

Table 3. Subject participation in experiments.

Sr. No Subject Age (Years) Height (cm) Weight (kg) Body Structure

1 Male 25 168 55 Ectomorph
2 Male 27 180 95 Endomorph
3 Male 26 168 60 Mesomorph
4 Male 26 174 76 Mesomorph
5 Male 25 176 60 Ectomorph

4.2. Activities Data Collection

The activity data is collected in a small room, and the virtual experimental setup is
shown in Figure 2. The distance between the antennas is 5 m and the subject performs an
activity at the center position by moving his body. In standing, the position of the subject
remains standing still; in walking, subject moves his legs slowly; in running, subject moves
his legs quickly; in bending, subject bends his body; and in fall, the subject falls on the
floor from a standing position. The reflection from the human body while doing different
activities is collected as WCSI data.

4.3. Activities Data Extraction

The OFDM is used to extract fine-grained WCSI data at the receiver. The amplitude-
based frequency response for each activity will be collected for 10 s. The information
includes subcarriers, OFDM frames, and the time taken to perform the activity. Time
and frames can be articulated as the number of frames received in a unit of time. The
data sampling time is set based on the device sample rate by varying interpolation and
decimation values at the transmitter and receiver, respectively. Each experiment frequency
response H(jw) of WCSI data is expressed in Equation (1):

H(jω)Experiment =


H(jω)11 H(jω)12 . . . H(jω)1s
H(jω)21 H(jω)22 . . . H(jω)2s

...
... . . .

...
H(jω)k1 H(jω)k2 . . . H(jω)ks

 (1)

where k denotes the maximum number of OFDM subcarriers and s represents the total
number of OFDM frames samples in a single experiment. The WCSI frequency response of
a single OFDM frame can be expressed as in Equation (2):

H(jω)Frame = [H(jω1), H(jω2), . . . H(jωk)] (2)
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The WCSI frequency response of each subcarrier contains complex value data, so we
expressed the amplitude information in Equation (3):

|H(jωk)| =
√

H(jωk)real
2 + H(jωk)img

2 (3)

|H(jωk)| is the amplitude of the kth subcarrier; amplitude information of WCSI helps
identify the different activities performed by the subjects.

4.4. Data Preprocessing

The extracted data from WCSI is in a raw form, and it requires data preprocessing to
get accurate, significant, and efficient analysis. In the first step, data is cleaned by removing
and replacing missing or bad WCSI data. In the second step, the smoothing process is
performed for removing noise by using low-pass filtering. In the final step, the grouping
method is used to find correlations between the WCSI data values.

4.5. Features Extraction

The feature extraction method is helpful for the transformation of WCSI data, which
translates collected WCSI data into significant trends in data. In addition, it is used for
reducing the computation complexity and time by reducing the dimensions [51,52]. There-
fore, feature extraction plays a crucial role in WCSI classification approaches. Presently, the
statistical characteristics approach has been used for feature extraction. Statistical features
used for developing the classification model are given in Table 4. Where the mean value
gives information about the stable component of the signal, the standard deviation gives in-
formation about the degree of dispersion between the signal sampling points, the variance
gives information about the fluctuations from the mean, the root mean square (RMS) value
is a measure of the amplitude of a WCSI data, the peak-to-peak value is used for WCSI data
amplitude range, the kurtosis is used to measure of the tailedness in the WCSI data, the
skewness is used to represent symmetry of the WCSI data, the peak factor is used to detect
whether there is an impact in the WCSI data, Interquartile range is used to obtain statistical
dispersion and is equal to the difference between 75th and 25th percentiles, waveform
factor is used to obtain the ratio of the RMS value to the average value of WCSI data, FFT
functionality is used to extract frequency component with maximum and minimum values,
spectral probability, signal energy, and spectrum entropy are used for the extraction of
frequency domain analysis.

4.6. Classification

This research uses three popular machine learning algorithms to differentiate falls from
other physical activities, and evaluates their performance. The accuracy of the machine
learning algorithm depends on the type of dataset. The machine learning algorithms are
used to develop models that predict physical activities based on WCSI data in the existence
of uncertainty. These adaptive algorithms classify fall activity separately from standing,
walking, running, and bending patterns by exploiting trends in the WCSI data. When
the learning machine is trained to more experimental WCSI data, the processing machine
improves its identification performance. All the experiment data are converted into a
heterogeneous matrix. WCSI response data is a column vector where each row is labeled
with the corresponding activity. The cross-validation (CV) model assessment technique is
used to evaluate the performance of machine learning algorithms in making predictions
on new WCSI datasets that have not been trained. We partition the known WCSI dataset,
using a subset to train the machine learning algorithm and the left-over data for testing.
A random 10-fold CV is used for original WCSI samples. These samples are randomly
partitioned into 10 equal- sized WCSI data subsamples. Ninety percent of the WCSI data is
used for training, while 10% is used for testing to develop a machine learning model. The
accuracy of a model is used as a diagnostic measure to reflect the validated model results.
The information about the conducted experiments is given in Table 5.
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Table 4. Statistical features expressions for classification.

Sr. No. Features Expression

1 Minimum Ymin = min(xi)
2 Maximum Ymax = max(xi)

3 Mean Ym = 1
N

N
∑

i=1
xi

4 Standard deviation YSD = 2

√
1

N−1

N
∑

i=1
(xi −Ym)

2

5 Variance YV =
n
∑

i=1
(xi −Ym)

2

6 Root mean square YRMS = 2

√
1
N

N
∑

i=1
xi

2

7 Peak to peak value YPPV = Ymax −Ymin(i = 1, 2, . . . , N)

8 Kurtosis YK =
1
N ∑N

i=1

(∣∣∣ xi
∣∣∣−YPPV

)4

YRMS
4

9 Skewness YS =
1
N ∑N

i=1

(∣∣∣ xi
∣∣∣−YPPV

)3

YRMS
3

10 Peak factor YP =
max(xi)

YRMS
(i = 1, 2, . . . , N)

11 Interquartile range YIQ = Q3 −Q1
12 Waveform factor YWF = N∗YRMS

∑N
i=1

∣∣∣ xi
∣∣∣ (i = 1, 2, . . . , N)

13 FFT YFFT =
N
∑

n=−N
x(n)e−j 2π

N nd

14 Frequency Min Yf min = Min(YFFT)
15 Frequency Max Yf max = Max(YFFT)

16 Spectral Probability YSP =
FFT(d)2

∑N
i=−N FFT(i)2

17 Signal Energy YSE =
N
∑

n=−N
|p(d)|2

18 Spectrum Entropy YH =
N
∑

i=−N
p(d) ln(p(d))

Table 5. Conducted experiments information.

Conducted Experiments Info Quantity

Subjects participated 5
Activities performed 5

Experiment repetetion 10
Each experiment time 10 s

Total experiments 250
USRP devices 2

Computers 2
Antennas 2

Subcarriers 64
Classification algorithms 3

Total observations 16,000
Data size 2 MB
Predictors 18

Response classes 5
Validation method 10-fold CV

5. Results and Discussion

The results are taken from the human physical activities experiments. The 64-subcarriers
amplitude response of WCSI data is analyzed to detect physical activities. In Figure 3, the
standing activity amplitude response of all the subcarriers in different colors is presented
along the y-axis. The results show that WCSI amplitude response remains stable due to no
human body movement in the standing activity over 8000 OFDM frames. In Figure 4, the
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walking activity amplitude response of all the subcarriers is presented in different colors
along the y-axis. The results show that WCSI amplitude response varies slowly up and
down due to slow human leg movement during the walking activity over 8000 OFDM
frames. In Figure 5, the running activity amplitude response of all the subcarriers is
presented in different colors along the y-axis. The results show that WCSI amplitude
response varies rapidly up and down due to human leg movement during the running
activity over 8000 OFDM frames. In Figure 6, the bending activity amplitude response of
all the subcarriers is presented in different colors along the y-axis. The results show that
WCSI amplitude response varies from top to bottom due to human upper body movement
during the bending activity over 8000 OFDM frames. In Figure 7, the fall activity amplitude
response of all the subcarriers is presented in different colors along the y-axis. The results
show that WCSI amplitude response varies when the human body falls on the floor and
then is stable during the fall activity over 8000 OFDM frames.
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The confusion matrix presents the performance of the algorithm for each class. The
confusion matrix determines the areas where the algorithm has performed well or poorly.
The rows show the actual class, and the columns show the predicted class. The diagonal
values give optimal results where the actual class and predicted class match. The observa-
tions from the actual class and predicted for physical activities are shown in Table 6. The
results were achieved by applying machine learning algorithms on WCSI data collected
from the SDR technology-based platform for monitoring falls. The performance of the
different algorithms is shown in Table 7, which includes algorithm accuracy in percentage,
observations per second (obs/s) for speed prediction, and time taken for training in seconds.
The fine tree algorithm is best for WCSI data to classify physical activities, with an accuracy
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of 99.7%. Although fine KNN is less accurate, its prediction speed is higher than other
algorithms, with more observations in unit time and less time in training the model on
WCSI data.
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Table 6. Confusion matrix of machine learning algorithms on physical activities data.

Algorithms Actual/Predicted Standing Walking Running Bending Fall

Fine KNN

Standing 3200 0 0 0 0
Walking 0 3200 0 0 0
Running 0 5 3195 0 0
Bending 0 0 10 3190 0

Fall 0 0 0 0 3200

Linear SVM

Standing 3000 28 11 79 82
Walking 0 3150 10 0 40
Running 0 0 3104 20 76
Bending 43 10 68 2994 85

Fall 52 79 65 30 2974

Fine Tree

Standing 3200 0 0 0 0
Walking 0 3185 15 0 0
Running 0 2 3197 0 1
Bending 0 3 8 3189 0

Fall 0 0 18 0 3182

Table 7. Performance analysis of algorithms on physical activities data.

Algorithms Accuracy (%) Prediction Speed (obs/s) Training Time (s)

Fine KNN 99.9% ~1400 415.48
Linear SVM 95.1% ~41,000 116.86

Fine Tree 99.7% ~72,000 9.074
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6. Conclusions

In this research, smart sensing using SDR technology is exploited to detect falls
during the quarantine period from other physical activities to reduce the chances of non-
communicable as well as communicable diseases. USRP hardware is used to collect real-
time data TTW of human physical activities that take place between the two antennas. The
fine-grained WCSI data is extracted using OFDM technology to develop machine learning
models. The machine learning model efficiently classifies fall activity separately from other
physical activities. The performance of machine learning algorithms shows promising
results, with the fine tree producing a high accuracy result of 99.7%, prediction speed
of nearly 72,000 obs/s, and training in almost 9 s. This proof of concept can be further
investigated to detect COVID-19 symptoms like shortness of breath, coughing, and cardiac
arrest issues by exploring the smart sensing SDR technology platform.

Currently, the whole world is fighting against the novel coronavirus (COVID-19)
and limiting their physical activities over time. In the future, smart sensing using SDR
technology can cover a larger area by increasing the system gain, sampling rate, and
Multiple Input Multiple Output (MIMO) antennas. Multiple subjects’ physical and sports
activities can be recognized by extracting the signal reflection of each subject by examining
the path of the reflected signals at multiple links. We can further reconstruct the signal
profile of each subject as if only a single subject has performed an activity in the environment
to facilitate multi-subjects’ activity recognition. The phase response is another solution to
recognize multi-user activities in the same environments by measuring phase delays. The
wireless channel is robust in nature, and it is hard to predict responses under changing
surrounding environments. The time and frequency domain feature extraction of WCSI
data can be exploited for better recognition accuracy by deploying state-of-the-art deep
and machine learning algorithms.
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Abbreviations

ADC Analog to Digital Converter
AI Artificial Intelligence
AP Access Point
BMS Building Management Systems
CFR Channel Frequency Response
CNN Convolutional Neural Networks
CP Cyclic Prefix
DAC Digital to Analog Converter
DC Direct Current
DTW Dynamic Time Warping
DUC Digital Up-Conversion
EWMA Exponentially Weighted Moving Average
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FDTW Fast Dynamic Time Warping
FFT Fast Fourier Transform
FRTCS Fast and Robust Target Component Separation
HMM Hidden Markov Model
IFFT Inverse Fast Fourier Transform
ISI Intersymbol Interference
KNN K-Nearest Neighbors
LPF Low Pass Filter
LSTM Long Short-Term Memory
MIMO Multiple Input Multiple Output
NIC Network Interface Card
OFDM Orthogonal Frequency Division Multiplexing
PADS Passive Dynamic Velocity Moving People Detection System
QPSK Quadrature Phase Shift Keying
RFA Random Forest Algorithm
RNN Recurrent Neural Network
SAR Sports Automatic Recognition
SDR Software Defined Radio
SSF Stable Signal Fusion
SVM Support Vector Machine
TTW Through the Walls
WCSI Wireless Channel State Information
Wi-OAR Wireless Occupant Activity Recognition System
WSN Wireless Sensor Network
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