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Abstract: A well-known challenge in the development of safety-critical systems in vehicles today is
that reliability and safety assessment should be rigorously addressed and monitored. As a matter
of fact, most safety problems caused by system failures can lead to serious hazards and loss of
life. Notwithstanding the existence of several traditional analytical techniques used for evaluation
based on specification documents, a complex design, with its multivariate dynamic behavior of
automotive systems, requires an effective method for an experimental analysis of the system’s
response under abnormal conditions. Simulation-based fault injection (FI) is a recently developed
approach to simulate the system behavior in the presence of faults at an early stage of system
development. However, in order to analyze the behavior of the system accurately, comprehensively
and realistically, the real-time conditions, as well as the dynamic system model of the vehicle, should
be considered. In this study, a real-time FI framework is proposed based on a hardware-in-the-loop
(HiL) simulation platform and a real-time electronic control unit (ECU) prototype. The framework
is modelled in the MATLAB/Simulink environment and implemented in the HiL simulation to
enable the analysis process in real time during the V-cycle development process. With the objective
of covering most of the potential faults, nine different types of sensor and actuator control signal
faults are injected programmatically into the HiL system as single and multiple faults without
changing the original system model. Besides, the model of the whole system, containing vehicle
dynamics with the environment system model, is considered with complete and comprehensive
behavioral characteristics. A complex gasoline engine system is used as a case study to demonstrate
the capabilities and advantages of the proposed framework. Through the proposed framework,
transient and permanent faults are injected in real time during the operation of the system. Finally,
experimental results show the effects of single and simultaneous faults on the system performance
under a faulty mode compared to the golden running mode.

Keywords: automotive software systems; fault injection (FI); hardware-in-the-loop (HiL); real-time;
multivariate dynamic behavior; model-based development

1. Introduction

Modern automotive software systems have become heterogeneous, complex and
safety-critical systems. They may consist of numerous heterogeneous components and
subsystems connected to the physical components of the system. Moreover, the total
number of installed embedded ECUs is growing exponentially and may include up to
120 ECUs and more than 5 system buses in modern vehicles [1]. Conversely, increasingly
sophisticated functions within these systems lead to an increase in the likelihood of errors
occurring. The higher the complexity of an automotive software system, the greater the
probability of a fault occurrence. A malfunction in a safety-critical system, such as a
steering system, can lead to catastrophic situations that affect not only human safety, but
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also infrastructure and the environment. Assessing the safety and reliability of sophisticated
automotive systems in the early stages of the software development process is therefore
a challenge in any industry. Failure mode and effects analysis (FMEA) [2] and fault tree
analysis (FTA) [3] are traditionally used as analytical techniques for evaluation based on
specifications and requirement documents. However, the aforementioned techniques have
some limitations [4]. Such issues include the inability to represent the dynamic behavior of
the system, the need for professionals with a deep understanding of the control strategy
and its implementation to analyze the impact of failures on the system and, finally, the lack
of sufficient tools to deal with complex systems. Therefore, test-based proofs are needed
to overcome the limitations of traditional techniques, since the effects of a fault are not
always clearly known in advance, especially in the development process of a complex
system. Fault injection (FI) [5] is strongly recommended in the ISO 26262 standard for
the automotive industry as a test method for evaluating the effects of a fault within the
system, components, hardware parts or software units. During this process, the fault, error
or failure is injected and the reaction at the observation points is observed [6]. From the
perspective of model-based development, FI is defined as an experimentally based test
method applied to the executable system model to track, analyze and evaluate the response
of the system under abnormal conditions. The method has also proven useful in the area of
the robustness verification of safety mechanisms, i.e., evaluating the diagnostic coverage
of a safety mechanism [7]. During the development process of automotive embedded
software, FI can also be used to identify the threats to functional safety according to ISO
26262 at different levels and on both sides of the classical V-model [8].

For several years, great efforts have been made to investigate model-level FI meth-
ods [9]. However, most of the previous studies do not consider the time constraints and
ignore the real-time FI. Moreover, while implementing failure modes, the studies do not
take into account the fact that changing the system model has an impact on the real-time
characteristics of the control task, since the execution of the added blocks requires additional
time [10].

Recently, the HiL platform has attracted the attention of researchers to perform the
simulation in real time instead of real hardware [11]. Due to the significant features of the
HiL simulation tool, research on the development of a real-time simulation platform has
become very popular. The use of the tools is not limited to the verification and validation
of control software, but also extends to the design and development of new applications in
the automotive, aerospace and railway industries. The structure and applications of HiL
simulation in dynamics and control engineering have been reviewed in [12], focusing on
the design, development and implementation aspects in various domains.

In this paper, a real-time FI framework for automotive software testing is proposed.
Particularly, the HiL simulation platform is used to develop and implement the proposed
framework, considering the functionality of the real ECU and the whole system model
with its environment. It aims to analyze the dynamic behavior of complex automotive
software systems during the V-cycle development process, i.e., the system integration
phase. We demonstrate the benefits and applicability of the proposed framework using a
gasoline engine system as a case study, where most of the potential fault types occurring
in a sensor signal have been injected in real time and the effects on system behavior have
been illustrated.

The main contribution of the study is summarized below:

• The proposed framework is able to analyze the impact of the faults on the complex
system in real time;

• Besides, it enables the validation of a real/soft ECU performance under nominal and
faulty working conditions with complex test scenarios;

• Following that, the majority of common faults in automotive software signals are
taken into account, such as gain, offset/bias, noise, hard-over, spike, stuck-at, packet
loss, delay and drift faults;
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• Moreover, not only single faults, but also multiple faults are simulated and injected by
the proposed framework to analyze the impact of simultaneous faults on the system;

• Finally, fault modes are modeled programmatically and injected in real time via
the HiL platform without the need to modify the original system model or add
additional blocks.

The rest of the paper is organized as follows: Section 2 provides a background overview
and discusses studies related to FI testing. In Section 3, the architecture of the real-time fault
framework with the HiL simulation is presented. As a case study, Section 4 describes the
system architecture, including the details of the hardware and software setup. Following
this, Section 5 describes the implementation and experimental results, involving an analysis
and discussion of the results obtained from the recorded experimental data sets. Finally,
Section 6 presents the conclusions and future work.

2. Background and Related Works

In this section, a brief overview of the background of the topics covered is presented.
In addition, the proposed methods and tools for FI during the development process are
discussed based on the current state-of-the-art.

2.1. Fault Injection Approach

Fault injection is a system reliability assessment technique in which faults are inten-
tionally introduced into a system through controlled experiments and the behavior of
the system in the presence of faults is observed [13]. This approach enables an effective
evaluation of various dependability attributes, i.e., safety, reliability, availability and secu-
rity against random faults [14,15]. Most of the faults considered in this approach include
nonlinear and unpredictable faults, called random hardware (HW) faults, which are mainly
caused by environmental factors and occur as degradation of component functionality. An
example of a random HW fault is a delay or loss of data in a communication malfunction.
In contrast, systematic faults are deterministic and are caused by design-related factors,
such as deviations in device specifications.

FI methods are commonly used to evaluate fault-tolerant systems, i.e., to assess the
robustness of fault tolerance in the presence of faults [16,17]. Compared to the other
analytical methods, this method differs in that the faults are injected into the system
and then the dynamic behavior of the system is observed and analyzed experimentally.
Typically, a FI environment consists of five main components, namely, controller, fault
injector, system/concept under test, load generator and monitor [5]. The fault load library
and work load library should also be defined in advance as inputs to the injector and load
generator, respectively. To this end, the inputs and faults to be injected into the target system
are defined either based on expert knowledge or using probability distributions. The key
attributes of FI comprise a set of faults (F) with which the injection is to be carried out,
activations (A) practiced at the time of the experiment, a set of readouts (R) representing
the output domain and derived evaluation measures (M) resulting from applying fault test
cases, which, together, form the FARM environment model [16].

In the literature, several FI strategies have been proposed. In accordance with the
method on which FI is based, they can be classified into five categories, namely, hardware-
based, software-based, simulation-based, emulation-based and hybrid FI. Extensive infor-
mation about the advantages and disadvantages of each technique can be found in [13].
A variety of techniques for performing each method have been proposed as a result. For
example, code change injection, data FI and interface FI are the main techniques for im-
plementing software-based FI [18]. Some tools presented in the literature based on these
techniques are XCEPTION [19], FIAT [20], FTAPE [21], Orchestra [22] and FERRARI [23].
On the other hand, simulator commands, saboteurs and mutant-based techniques are used
to perform simulation-based FI [24]. VERIFY [25], MEFISTO [26] and SST [27] are some
tools proposed depending on simulation-based FI.
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2.2. Model-Based System Testing Phases

Model-based development is a powerful approach used in many areas of the auto-
motive industry for the development of software systems, especially for the design and
implementation of complex embedded systems. As it enables verification and validation
at very early stages of the development process, it plays an important role in reducing
the development time and saves significant development cost and effort [28]. Moreover,
in recent years, there has been a growing interest in the automatic generation of vehicle
software code from the model. Nevertheless, various test phases should be performed
during the system’s life cycle for ensuring the quality of the generated code and detecting
unexpected defects. The V-model, which contains the various test phases and design pro-
cesses in the model-based development approach, is shown in Figure 1. Two sides make up
the model: the design phase on the left side and verification and validation (V&V) on the
right side. The left side allows two different test phases to be performed without physical
hardware components, namely, modeling-in-the-loop (MiL) [29] and software-in-the-loop
(SiL) [30]. The right-hand side, on the other hand, contains three test phases, namely,
processor-in-the-loop (PiL) [31], hardware-in-the-loop (HiL) [11] and vehicle-in-the-loop
(ViL) [32].

Figure 1. V-cycle of model-based software development process with the test phases.

By enabling a system to be developed, modified and tested quickly, MiL offers an
important advantage in terms of early testability in the test environment. In this process,
the functional behavior of the system is verified by simulating the controller, as well as
the plant, in a simulation environment. MATLAB/Simulink [33] from mathwork and
TargetLink [34] from dSPACE are considered to be among the most useful tools in the
field of modeling and simulation. Thanks to the aforementioned tools, the system to be
developed can be modeled and simulated at a very early stage of the development process.
In addition, for the verification and validation of the system functionality, the system model
can be efficiently executed.

The next phase on the left side of the V-model is SiL, where the correctness of the code
generated from the system model is verified in a virtual environment without hardware.
The generated code of the controller model, i.e., the S-function block, is connected to the
system model and tested with different stimuli. In this process, not only is the performance
of the controller analyzed and debugged, but also the production code is tested in a
cost-efficient way.

PiL on the other side of the V-model represents the first phase for verifying the behavior
of the control system in the real prototype, in which, the generated production code is
implemented in the embedded target processor, e.g., ECU. During this phase, the plant
model interacts directly with the real target machine, except that real-time constraints are
not taken into account.

Once the production code is verified on the target machine, the next test phase is to
validate the performance of the control system in real time. Toward this end, the plant model
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code is generated and fed into the hardware simulator. By this means, the plant model
directly communicates with the real physical control system in real time and performs
HiL. In this study, the developed FI framework is implemented in real-time using the HiL
simulator connected with a real-time system (MicroAutoBox II) via CAN bus. Therefore,
details of the HiL test phase with its components and configuration are presented.

2.3. Fault Injection in System Development Life Cycle

FI is a powerful technique used in the different phases of the system development
process to verify and validate safety and reliability aspects. This technique is based on the
idea of injecting faults into the system under test (SUT), allowing its response to abnormal
conditions to be analyzed and evaluated. FI is strongly recommended by the functional
safety standard ISO 26262 [35]. As demonstrated by Pintard et al. [8], the FI method can be
used on both sides of the ISO 26262 V-cycle.

2.3.1. MiL-Based Fault Injection

Based on a system model that simulates the behavior of a controlled system with a
control system, model-based techniques have attracted much attention from academic and
industrial researchers to analyze, verify and validate system behavior in the early stage of
system development [36]. One of the first examples of using models to simulate hardware
fault behavior, based on the FI approach, is presented in [37,38], where the executable model
of the system was executed using existing commercial tools, e.g., Simulink or SCADE. To
combine the advantages of hardware-based FI and software-based FI, Moradi et al. [10]
proposed model-implemented hybrid tools using Simulink as the modeling environment.
However, the proposed framework is limited to injecting a single fault per model. In
addition to this, to ensure the real-time behavior of the system, slack parameters are
required as further manual steps to determine the slack time and the number of additional
blocks to be added to the system model. Our framework allows for the injection of
both single and multiple faults, enabling mixing and simultaneous faults to be activated.
Moreover, the faults are injected programmatically without modification of the original
system model.

In the automotive domain, some authors have developed FI techniques to be used
to verify safety objectives or safety mechanisms in accordance with ISO 26262 in early
design phases [39,40]. In 2019, Saraoglu et al. presented a FI-based testing simulation
framework called MOBATsim implemented on Simulink behavioral models [41]. This
framework allows for the injection of hardware faults into the model to evaluate the safety
of autonomous driving systems at different levels, i.e., component, vehicle and traffic levels.
However, the proposed simulation framework is designed at the simulation level without
considering the real-time characteristics of the control task. Our FI framework, however, is
implemented in the real-time simulation platform, enabling precise analysis in real time.
Similarly, Juez et al. [42] investigated the applicability of a simulation-based FI framework
called Sabotage using the vehicle simulator dyanacar. The focus of the proposed work was
to determine the most appropriate safety concept and early safety assessment of the lateral
control system of a vehicle according to ISO 26262 at the simulation level. Although the
authors considered the whole vehicle system for safety analysis, model blocks are added to
the system model to represent failure modes, which is not effective in a complex system
and results in violating the real-time system behavior. Our proposed framework is based
on programmatically manipulating the sensors signals while ensuring real-time properties.

In addition to the above mentioned works, several publications have appeared in
recent years documenting model-based FI tools in the area of a safety and reliability
assessment of automotive software systems, such as Kayotee [43], ErrorSim [44], AVFI [45],
FIEEV [46], SIMULTATE [47] and EQUITAS [28]. Although there are many studies focusing
on the development of FI methods and tools at the simulation level for various domains,
there are many problems in the existing research in representing the proper effects of faults
considering real-time constraints. However, in our study, we used a real-time simulator
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with a real-time control system to develop our proposed framework, offering high fault
coverage along with high fidelity simulations for complex system behavior analysis.

2.3.2. HiL-Based Fault Injection

Despite the fact that the HiL simulation has been traditionally used for the design and
development of new ECUs in the automotive industry [11], academic scholars have made
great efforts to investigate the development of automotive control software based on the
HiL platform. For example, Palladino et al. proposed a portable electronic environmental
system called a micro-HiL system [48]. It aims to evaluate the engine control software
strategies and diagnose its functions on a CAN bus utilizing the 1.6-liter Fiat gasoline engine
as a case study. In [49], a new concept for the development of advanced driver assistance
systems is proposed based on vehicle HiL simulation. In the railway field, Conti et al. [50]
investigated the analysis of a railway braking system under degraded adhesion conditions
based on a HiL approach, highlighting the advantages of the proposed approach in terms
of both the testing cost and reproducibility, especially for analyzing the system behavior
under good and degraded adhesion conditions during the braking of a railway vehicle.

Along with the advances in the HiL real-time simulation for embedded control devel-
opment and automated testing, an analysis of complex software systems’ behavior under
abnormal conditions has attracted much attention in the last decade. Several methods
addressing this issue have been described in the literature. For example, Poon et al. [51]
have conducted a study to demonstrate the capability of a HiL platform with FI in testing
electrical vehicle drive systems. Three different operating and fault conditions are used in
the proposed study to validate the fidelity of the real-time simulation, where the real drive
system of an electric vehicle and the real-time simulation have been compared. However,
FI in this study is limited to specific fault modes in the drive systems and is employed
to validate the fidelity of the proposed HiL platform, but our study focuses on the devel-
opment and design of an effective real-time FI framework with high fault coverage for
complex software systems analysis. Yang et al. [52] proposed a multiprocessor HiL FI
strategy that aims to simulate various faults in the traction control system (TCS). In the
proposed platform, three fault scenarios are used for real-time FI in the HiL simulation,
i.e., an open-switch fault of the power transistor, a stuck fault of the three-phase current
sensor and a broken rotor bar fault of the traction motor. Although the proposed FI method
is developed using a physical traction control unit (TCU) and a real-time simulator, the
FI unit is designed in FPGA based on the logical operators to satisfy the time constraint,
which leads to an increase in the manual effort in terms of the injection point in a complex
system. However, to inject the faults, our framework is based on manipulating the signals
accessed on the CAN bus in accordance with the user’s specifications in terms of the
location, time and type. Concerning the same area, to evaluate the risks in railway traction
drive and to analyze its behavior, an improvement of FMEA using a HiL-based FI approach
was proposed in [53]. In the proposed research, the focus was on improving the FMEA
methodology to provide a quantitative analysis using FI with the purpose of creating failure
scenarios. However, to implement the failure modes, the system model was extended,
which, in turn, affects the real-time system behavior; however, in our framework, this issue
has been addressed by treating both the plant model and the control system model as a
black box without modification. In the context of automotive sensor networks, Elgharbawy
et al. proposed a real-time functional robustness verification framework for multi-sensor
data fusion algorithms applied to radar and camera sensors in advanced driver assistance
systems (ADAS) [54]. HiL co-simulation with run-time-implemented FI has been used
to simulate sensor faults involving latency, detection errors and false one-to-many object
labeling. However, though the conducted study is limited to the investigation of certain
critical driving situations by focusing only on imaging sensors and range sensors to verify
the robustness of the fusion algorithms, in our framework, all sensors signals accessed
via the CAN bus can be manipulated, which increases the fault locations coverage for
analysis objectives.
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Online condition monitoring and fault diagnosis in a real-time environment based on
the HiL simulation are other areas where the FI approach can be used. For example, recent
research in [55] proposes that a short-circuit FI model can be used to realize online switching
between healthy and faulty states of induction motors, with the aim of determining the
trend of the change in fault characteristics, as well as the fault level. Although the fault
source modeling in the proposed work reduces the modeling effort, it is limited to one
fault mode, i.e., the stator interturn short-circuit fault, which is activated by changing the
induction motor parameters and switching between the operating states. However, in our
proposed framework, not only the healthy state but also nine different fault types that can
be injected as a faulty state in the online simulation can be realized. Garramiola et al. [56]
have used the FI approach to develop a hybrid sensor fault diagnosis methodology in
railway traction drives using the HiL platform. This is accomplished by injecting gain and
offset sensor faults into the DC link voltage and catenary current sensor using a FI signal so
that the dynamic response and robustness under fluctuations, as well as the sensitivity of
the fault reconstructions, can be analyzed. In the mentioned study, FI has been investigated
from the point of view of developing and verifying a fault diagnosis system; therefore, the
application is different. However, our study focuses on the development of real-time FI as
a testing method during the system development phases.

Safety verification during design at the component and system levels is of growing
interest in the automotive industry, as it is critical for confirming safety properties and
identifying safety faults. To address this issue, many researchers have proposed FI frame-
works and tools as a measure to verify vehicle functional safety. For example, a retargetable
vehicle-level FI framework capable of automatically injecting various faults into the pro-
cessor, memory or IO at the runtime was proposed in [57]. The proposed framework has
been validated and demonstrated using an experimental HIL test for autonomous driving,
i.e., EcoTwin truck platooning. Compared to our proposed framework, this framework
was developed using a software-based FI approach, whereas our framework relies on
signal modification as the basis for FI. In addition, the target components of the SUT in
this study are processor registers, memory, IO and OS kernel, but, in our framework, the
sensors and control signals of actuators are the target components for FI. Park et al. [58]
have also proposed a FI method for software (SW) unit/integration testing during the ECU
software development process of automotive open system architecture (AUTOSAR)-based
automotive software. Potential software faults in AUTOSAR-based automotive software,
such as data, program flow, access, asymmetric and timing faults, were defined in the
proposed study, and injected using the proposed tool. The applicability and performance
of the proposed method have been demonstrated utilizing a set of actual automotive soft-
ware, and the results were compared with other FI tools. Although the proposed research
analyzes and compares various aspects of FI testing in the SW unit/integration testing
phase, significant differences from our proposed framework exist. They developed the
method for SW unit/integration testing phase focusing on software faults, whereas our
proposed framework is developed to be used in the system integration testing phase during
the development process. In addition, our proposed framework enables the injection of
hardware faults that occur in the sensor and actuator control signals. Moreover, in our
study, the entire vehicle system model has been considered to enable effective and precise
testing at the system level. An overview of the related works is given in Table 1. It includes
the FI approach used, the application domain, the ability to inject multiple faults, the
number of fault types injected, real-time constraints consideration and the assessment in
terms of manual effort, fault coverage and fidelity simulations.
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Table 1. Overview of the related works.

Related Works Approach Application Domain Single/ Multiple Fault Models Real-Time Constraints Assessment

Moradi et al. [10] Model-implemented hybrid
FI

FI for cyber–physical systems
(CPS) Single Six HW fault types Yes

High manual effort
High fault coverage
Low fidelity simulations

Saraoglu et al. [41] Simulation-based FI FI for autonomous driving
systems

Single and
Multiple faults Two fault types No

Low manual effort
Low fault coverage
High fidelity simulations

Juez et al. [42] Simulation-based FI FI for automotive systems Single Two fault types No
High manual effort
Low fault coverage
High fidelity simulations

Poon et al. [51] Simulation-based FI and
hardware-based FI

HiL design and testing for electric
vehicle drive systems Single Three fault types Yes

Low manual effort
Low fault coverage
High fidelity simulations

Yang et al. [52] Signal-conditioning-based
FI

FI for traction control system of
high speed trains Single Three fault types Yes

High manual effort
Low fault coverage
High fidelity simulations

Garramiola et al. [53] Model-implemented FI Enhanced FMEA for railway
traction drive Single Three fault types Yes

High manual effort
Low fault coverage
High fidelity simulations

Elgharbawy et al. [54] Run-time-implemented FI FI for testing the robustness of the
fusion algorithms of (ADAS) Single Three fault types Yes

Low manual effort
Low fault coverage
High fidelity simulations

Zhang et al. [55] Model-implemented FI FI for fault diagnosis of induction
motor Single One fault type Yes

Low manual effort
Low fault coverage
High fidelity simulations

Garramiola et al. [56] Model-implemented FI Hybrid sensor fault diagnosis in
railway traction drives Single Two fault types Yes

High manual effort
Low fault coverage
High fidelity simulations

Fu et al. [57] Software-based FI FI for safety validation of
autonomous vehicles Single Seven fault types Yes

Low manual effort
High fault coverage
High fidelity simulations

Park et al. [58] Software-based FI FI for AUTOSAR-based
automotive software development Multiple faults Five fault types Yes

Low manual effort
High fault coverage
Low fidelity simulations

Proposed FI framework Model-implemented FI &
Signal-based FI

FI for automotive systems
development

Single and multiple
faults Nine fault types Yes

Low manual effort
High fault coverage
High fidelity simulations
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According to the above observations in the previous works, the majority of the pro-
posed research is limited to the adaptation of the FI approach for specific objectives, focusing
on certain operation and fault conditions. Additionally, the development of experimentally
based test methods for the dynamic behavior analysis of automotive software systems
during a system integration testing phase of the V-Model has not been well explored.
Specifically, a real-time FI method capable of covering a wide range of potential sensor
faults in the vehicle system and considering the whole system model. Therefore, this
study attempts to fill this gap in the literature by proposing a HiL-based FI framework
toward analyzing the effects of faults on the automotive system in real time during the
deployment process.

3. Methods
3.1. HiL-Based Real-Time Fault Injection Framework

The proposed real-time FI framework consists of four main components, namely, HiL
user environment, HiL system real-time configuration, HiL system and the FI framework,
as shown in Figure 2.

Figure 2. HiL-based real-time fault injection framework.

3.1.1. HiL User Environment

In HiL user environment, the tester can analyze recorded data and control HiL system
in real time using HiL tools. Besides, the target system can be tested based on test cases
with the list of sensors, actuator control signals and driving scenarios. HiL software tools
can control HiL system from a computer machine. These tools are capable of configuring
HiL system in a real-time environment. Generally, a computer and HiL system is connected
with an Ethernet cable to each other for controlling and transmitting data.
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3.1.2. HiL System Real-Time Configuration

The HiL system real-time configuration is responsible for various controls in run
time, including: selection of maneuver and driving scenarios, model tuning, real-time
data observation and analysis, data logging and controls of the FI. For logging data, the
tester can also record healthy and faulty data using HiL tools in the user environment.
The tester can also select the signals to be recorded in the recording configuration. The
driving maneuver can be selected in the user environment. Generally, there are two options
for selecting the maneuver mode: online driving and autonomous driving based on the
driving cycle. In online driving, the tester can manually control some input values, such
as clutch, brake, acceleration and gear, in the computer system, whereas, in autonomous
driving, these values are already defined in the driving cycle.

3.1.3. Fault Injection Framework

The main objective of the FI GUI is to support the tester in the HiL user environment
during run-time FI. From the GUI, a tester can perform various actions. Some of them
are: selecting the fault type from the fault library and the fault values associated with the
selected fault type.

In order to implement the FI method, three main configuration fault dimensions must
be defined, i.e., fault type, fault location and injection time, which, together, form a fault
space. According to the literature, there are several types of potential faults in the time
series data, such as gain, offset/bias, noise, hard-over, spike, stuck-at, packet loss, delay
and drift faults [59–61]. By analyzing the signal features that characterize automotive fault
behavior, the authors of [62] categorized the common faults in the vehicle’s PCM signals,
such as abnormal magnitudes, rolling, noise and dependency faults. In addition, they
also named some direct and indirect causes of the defined faults. Dirty or deteriorated
sensors, faulty vehicle components, vibrations caused by dangerous internal motors, and
sudden acceleration are good examples of direct sources that can cause these types of faults.
Conversely, bumpy roads and uncertainties in driving behavior can cause anomalies in
signal behavior without necessarily provoking faults.

Equation (1) and Table 2 are used to summarize the mathematical representation of
the aforementioned types:

f (t) = dvh(t) + ov (1)

where f (t) is faulty or manipulated signal value, dv represents the gain value and h(t) is
the healthy or standard signal value. ov represents the offset/bias value.

Table 2. Value of dv and ov for all fault types.

Fault Type (dv) Value (ov) Value

Healthy Signal 1 0
Stuck-at Fault 0 0 or 1, and it varies on time

Offset/Bias Fault 1 fixed constant value
Gain Fault Greater than 1 0
Noise Fault 1 random value

Hard-Over Fault 0 higher than maximum threshold
Spike Fault 1 value varies on time
Drift Fault 1 value increases on time

Packet Loss Fault 0 0
Delay Time Fault 0 last cycle value of h(t) based on time given

Based on the healthy signal (golden run) presented in Figure 3, all types of fault
defined in Table 1 are illustrated in Figure 4.
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Figure 3. Fault-free/healthy signal.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Fault types. (a) Stuck-at fault, (b) Offset fault, (c) Gain fault, (d) Noise fault, (e) Hard-over
fault with maximum threshold, (f) Spike fault, (g) Drift fault, (h) Packet loss fault, (i) Delay fault.

The FI time at which the fault is to be injected can be defined on the basis of the driving
cycle. The duration of the occurrence of the fault can be used to distinguish between
permanent/persistent faults and transient faults [63]. Transient faults are short-term faults
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that occur for a certain duration and disappear again after a short time. In contrast,
permanent faults occur over a longer period of time and remain until fault correction
is accomplished.

On the other hand, the fault location indicates the place where the fault is to be injected,
e.g., the fault within an element, function or communication between components and the
subsystem. The primary potential points of the fault in the vehicle have been explored
in [64]. The authors classified the potential fault locations in an in-vehicle network into
function specifications, network, sensors, actuators, control devices, gateways, a power
supply, vehicle subsystems and a data acquisition system. In this study, the scope of fault
location will cover the potential location of fault occurrence in the closed loop system, i.e.,
sensors, the control signal and the communication between them.

3.1.4. HiL System

Since the HiL simulation enables an efficient, fast, realistic and highly accurate simu-
lation with repeatability, it is widely used for the verification and validation of real-time
embedded systems in various domains, such as automotive, railway and aerospace indus-
tries. The two major constituents of the HiL simulation platform are a real-time simulator
and a real ECU. The HiL simulator is connected to the physical ECU via the CAN bus
so that the embedded real-time control system interacts with the mathematical models
simulated and deployed in the HiL simulator (see Figure 5).

Figure 5. HiL real-time simulation with real ECU.

In some cases, real vehicle components, such as sensors, actuators, the steering wheel
and pedals, can also be connected to the HiL simulator via electrical interfaces. The control
model and plant model are developed in the simulation level using the model-based
development methodology. The well-known tools Simulink and SCADE are common
tools for the design, simulation and verification of software systems in the early stage of
the development process. Utilizing the real sensors connected to the HiL simulator or
simulated sensor model, the real controller takes sensor data from various sources and
sends the actuation command to the simulated actuator in the HiL simulator so that the
action is performed according to the control logic. Software tools on a host PC connected to
the HiL simulator via the Ethernet bus are used to set up the HiL test bench.

Real-time FI has been proposed by us to simulate various anomalies or faults in the
overall system and to analyze their effects at the vehicle level, taking into account the real-
time constraints. In this way, not only sensor faults but also control and communication
faults can be simulated. Besides, the robustness of the safety mechanism can also be
evaluated in real time. The behavior of the system under test SUT in the presence of
faults can be accurately analyzed by considering vehicle dynamics and incorporating
models of the environment. To be specific, the controller model is deployed and executed
in the real ECU, and the dynamic models of the engine, transmission, environment and
vehicle dynamics are executed on real-time processor hardware. Moreover, by enabling
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and selecting different driving and fault scenarios, a comprehensive validation of the SUT
with a controlled simulated system under abnormal conditions can be achieved.

4. Case Study and Implementation: ASM Gasoline Engine
4.1. System Architecture and Implementation

To demonstrate the applicability of the proposed framework, the ASM gasoline engine
model from dSPACE [65] is used as a case study. Figure 6 shows the system architecture of
the gasoline engine designed in the MATLAB/Simulink environment. It consists of several
systems and subsystems, i.e., SoftECU, gasoline engine, powertrain, vehicle dynamics and
environment. In addition, there are I/O blocks for simulation and management of signals
to the real hardware ECU. SoftECU provides the simulation of controller algorithms. Thus,
the plant model can either contact the real target ECU (online mode) or receive controller
commands from SoftECU at the simulation level (offline mode). The gasoline engine has
been modeled in detail to include all physical characteristics of the engine. Air path system,
fuel system, piston engine system, exhaust system and cooler system are the main parts.

Figure 6. System architecture of the gasoline engine.

To define driving maneuvers and set environmental conditions for the vehicle, the
vehicle environment and driver model are used to complement the virtual powertrain. More
specifically, both the powertrain and vehicle dynamics are modeled to provide longitudinal
driving characteristics, including vehicle resistances, transmission model, vehicle resistances
and driver characteristics. More detailed information can be found in [65]

The connection between the ECU and HiL real-time simulation system is shown in
Figure 7. The ECU is used to control fuel metering and pressure control for the common
rail, fuel injection quantity, injection timing, injection angles and various other control
signals. In this study, dSPACE MicroAutoBox II is employed to act as a real ECU and is
connected via the CAN bus to dSPACE SCALEXIO, which transmits corresponding sensor
and actuator signals.

The implementation of the real-time FI framework in the HiL system is carried out in
three phases, namely, the modeling, configuration and control phases, as shown in Figure 8.
To this end, software tools are used in each phase: Simulink and dSPACE ModelDesk in
phase 1, dSPACE ConfigurationDesk in phase 2 and dSPACE ControlDesk in phase 3. The
implementation workflow starts with MATLAB/Simulink, where the modeling of fault
modes is implemented in the real-time interface CAN multimessage blockset (RTICANMM).
This allows CAN communication network signals to be accessed and configured during the
control phase. By doing so, the list of all sensors and control actuator signals can be explored
with the bus navigator, and then, based on the configuration of the fault injector, the signals
of the selected system model can be manipulated in real time with the ControlDesk tool. On
the other hand, ModelDesk is used to parameterize the selected system with its components.
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Thanks to ConfigurationDesk, the variable description file containing the configurations
of the ASM gasoline engine is created in phase 2. Once the variable description file has
been created, the software code is automatically generated from the models. Subsequently,
the generated code of both the controlled system and the controller is deployed into the
target hardware, i.e., the HiL simulator and the MicroAutoBox II, respectively. Finally,
the control station in Phase 3 is the place where the user can configure the experiments,
including instrumentation, online parameterization with access to simulation platforms and
connected bus systems, controller calibration and diagnostics and measurement execution.
In addition, the faults implemented in the RTICANMM model can be accessed in the
control panel via the variable control bar and manipulated in real time according to the
fault configuration.

Figure 7. Scheme of the complete HiL simulation system.

Figure 8. Implementation workflow of the FI framework.

4.2. Setup

In the case study, several sensor signals are available, such as the crank angle sensor,
battery voltage, accelerator pedal position, ignition and starter demand, EGR mass flow,
engine speed, intake and exhaust manifold pressure, fuel pressure, coolant temperature
and railbar. The selected actuator control signals, on the other hand, are the control of the
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fuel metering unit per cylinder, the injection angle per cylinder, the injection time for direct
injection and the control switches. Total information about the selected location of fault
occurrence is shown in Table 3

Table 3. Selected location of fault occurrence.

Name Type Unit

Acceleration Pedal Position Sensor [%]
Engine RPM Sensor [rpm]
Mass Flow Through Throttle Sensor [kg/h]
Fuel Meter Unit Control Signal for Actuator [mA]
Pressure Value Control Signal for Actuator [mA]
Ignition Angle Control Signal for Actuator [rad]
Crank Angle Control Signal for Actuator [aTDC]

To configure the driving scenario, the driving cycle is selected from the list provided
by dSPACE in controlDesk. The driving mode is set to automatic with the predefined
vehicle speed. Figure 9 shows the selected drive cycles in dSPACE ControlDesk. The red
dot represents the starting point and the blue dot the current location. The cycles can be
changed according to the tester’s requirements. Key specifications for the HiL experiments
in order to perform the aforementioned driving scenario are given in Table 4.

Table 4. Case study parameters.

Parameter Name Unit Value

Vehicle mass [kg] 1250
Dynamic tire radius [m] 0.35

Maximum brake force [N] 28,000
Air density [kg/m3] 1.1842

Rolling resistance coefficient [-] 0.01
Exhaust manifold volume [m3] 0.002

Number of engine cylinders [-] 8
Intake manifold volume [m3] 0.008

Intake manifold area [m2] 0.5
Maximum flow area for throttle valve [m2] 0.0020399

Turbocharger upper limit of compressor pressure [Pa] 200000
Maximum air mass in cylinder [kg] 0.00343486

Injection type switch Direct/Port Direct
Fuel tank volume [l] 60

Bulk modulus of gasoline fuel [bar] 13800
Gasoline fuel density [kg|m3] 725

Gas constant of air [J|(kgK)] 287
Gas constant of exhaust [J|(kgK)] 285

Gas constant of fuel [J|(kgK)] 75.5861
Piston area [m2] 0.0029274

Compression ratio [-] 10.3
Water temperature [degC] 25

Gain for air cooling with fan [W|K] 50.2655

In this study, the effects of permanent and transient faults are demonstrated. In the
context of a permanent fault, single and multiple faults are injected based on a predefined
configuration. The configuration of the permanent single and multiple fault injector,
including the main FI attributes, i.e., the fault location, fault type and fault time, are shown
in Tables 5 and 6, respectively. On the other hand, Table 7 lists the configuration of the
transient faults.
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Figure 9. Driving cycle in dSPACE ControlDesk.

Table 5. Configuration of permanent single fault injector.

Fault Type Fault Location Fault Time Fault Value

Gain Acceleration Pedal Position Sensor 5 10
Offset Engine RPM Sensor 24 1800
Noise Acceleration Pedal Position Sensor 5 0–100

Packet Loss Rail Bar Sensor 120 0
Stuck-at Engine RPM Sensor 5 0
Stuck-at Ignition Angle Control Signal 131 0

Drift Acceleration Pedal Position Sensor 30 1
Hard-Over Acceleration Pedal Position Sensor 36 127

Spike Mass Flow Through Throttle Sensor 0 1–510
Delay Engine RPM Sensor 120 5

Table 6. Configuration of permanent simultaneous fault injector.

Fault Type Fault Location Fault Time Fault Value

Noise Acceleration Pedal Position Sensor 25 0–100
Stuck-at Engine RPM Sensor 35 0

Table 7. Configuration of transient fault injector.

Fault Type Fault Location Inject Time Eject Time Fault Value

Stuck-at Engine RPM Sensor 40 160 0

5. Results and Discussion

This section discusses the results for employing the real-time FI framework proposed
in this paper. The selected faults are injected based on the duration of their occurrence as
permanent (a single and simultaneous/concurrent faults) and transient faults in different
modes so that the effects of the faults on the system behavior can be analyzed in a real-
time simulation.

5.1. Real-Time Permanent Fault Injection

Due to several causes, faults can occur permanently, and, in most cases, they still exist
until recovery is carried out. In this paper, single and multiple permanent faults have been
injected in real time using a developed FI framework.

5.1.1. Single Fault Injection

A single fault denotes that only a single variable is manipulated and forced to its
extreme value. For the purpose of observing the reaction of the system in the presence
of faults in the sensors and control signals of the actuators, all of the faults defined in
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Table 5 are injected in the corresponding location at the specified time. To this end, an
acceleration pedal position sensor is selected as a fault location. There are various types of
faults that are injected on this sensor at different times of the driving scenario. The gain
fault is injected on this sensor at 5 s with dv a value of 10 in Equation (1). The results are
recorded at system level, where the engine RPM (Figure 10a) and vehicle speed (Figure 11a)
are observed. Whenever the driver tries to maintain the speed of the vehicle by making
a small fluctuation in the position of the acceleration pedal, this small fluctuation results
in noise in the vehicle speed and engine RPM. This noise can be seen at a time of 135 s
to 145 s, and many more similar situations can be observed in Figures 10a and 11a. The
noise fault is also injected at 5 s of the driving scenario, when the vehicle speed is 0 and
the gear knob is in a neutral position. As soon as the fault is injected, the engine RPM
values on the system level fluctuate between 2200 and 2500 rpm, whereas, in a normal
case (fault-free), it fluctuates between 700 and 800 rpm. This results in a higher energy
consumption. Moreover, when the driver tries to maintain the speed of the vehicle, some
erratic noise is observed in the engine RPM. Figure 10c shows the effect of the noise fault
on the engine RPM. On the other hand, there is a very small effect observed on the vehicle
speed after the injection of the noise fault. The drift fault is injected at the starting point of
the driving scenario. The effects of this fault is observed on the system level values of the
engine RPM (Figure 10f) from 30 s, and when the gear knob of the engine is at a neutral
position. As shown in Figure 10f, the engine RPM values slowly start to increase. Moreover,
there is a slight increase in the vehicle speed also observed at 85 s to 90 s and between 130 s
and 150 s, as shown in Figure 11d. The hard-over fault (Figure 10g) is injected at 36 s, and
the effects of this fault are immediately observed on the system level values of the engine
RPM. The values immediately jump from 700–800 rpm to 2200–2500 rpm. The system
values of the hard-over fault are very similar to the noise and drift fault at a time of 90 s to
120 s; however, there is a small difference. The engine RPM values after the drift fault are
between 2200 and 2400 rpm, whereas they reach up to 2500 rpm in the hard-over and noise
faults. Moreover, there is more noise in the engine rpm values with the hard-over fault
when compared to noise fault. Up to a certain period of time, it is difficult to differentiate
between these faults, e.g., after 290 s, it is difficult to determine the nature of the fault by
observing the engine speed values.

To analyze the effect of the potential fault in the engine RPM sensor on the system
behavior, offset and stuck-at faults are injected at 24 s and 5 s of the driving scenario,
respectively. When the vehicle gear knob is at neutral position and the vehicle speed is 0, an
offset fault is injected with a ov value of 1800 in Equation (1). As can be seen in Figure 10b,
within one second of fault occurrence, the engine immediately stops and the value of the
engine RPM becomes 0. In the same context, the stuck-at fault is also injected with dv and
ov values of 0 in Equation (1). At the time of injection, the engine is running with a vehicle
speed of approx 10 km/h. The effect of this fault is not observed at that moment, but once
the engine comes into the neutral position, the engine RPM value increases to 2400 rpm at
the system level. Additionally, when the vehicle starts to accelerate at 50 s, a delay in the
behavior of both signals RPM and speed can be observed, as shown in Figures 10e and 11c.

The delay and packet loss fault are also considered in this study as a type of communi-
cation fault category. Therefore, the delay fault is injected into the engine RPM sensor at
120 s. A very small effect can be observed on both system level values of the engine RPM
and vehicle speed. As shown in Figure 10i, between 210 s and 240 s, there is a slight noise
observed in the engine RPM, and its effect can be seen in the vehicle speed (Figure 11f) as
well. The packet loss fault is injected into the rail bar sensor at the time of acceleration,
i.e., 120 s. Figures 10d and 11b demonstrate significant fluctuations and jerks in the engine
speed or vehicle speed signals. Due to the fact that the time taken in the loss of packets is
not more than 2 s for the whole driving scenario, the packets were lost for 3 s, which results
in complete failure where the engine stopped working immediately. At the mass flow
through the throttle, the sensor spike fault is injected at the starting point of the driving
scenario. Once the vehicle starts to accelerate at 55–60 s, a slight downfall in the engine
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RPM (Figure 10h) can be observed, whereas no significant effect in vehicle speed can be
observed, except for a sharp increase at 58 s and 62 s (Figure 11e). From 90 s to 120 s, there
is no change in the engine RPM, but as soon as the vehicle accelerates, the engine stops
immediately. At 121 s, the system level values of the engine RPM and speed are both 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. System output: engine RPM with single permanent fault injection. (a) Acceleration pedal
with gain fault. (b) Engine RPM sensor with offset fault. (c) Acceleration pedal with noise fault.
(d) Rail bar sensor with packet loss fault. (e) Engine RPM sensor with stuck-at fault. (f) Acceleration
pedal with drift fault. (g) Acceleration pedal with hard-over fault. (h) Mass flow through throttle
with spike fault. (i) Engine RPM sensor with delay fault.

5.1.2. Simultaneous/Concurrent Faults Injection

The FI framework also allows for multiple faults to be injected into the sensor signals
and the actuator control signals. In order to do so, more than one variable is manipulated
and assigned with extreme values in such a way that the effect of the combination of several
independent faults can be analyzed. In this study, two different types of faults are injected
into the sensor signals at different locations and times. The noise fault is injected into the
acceleration pedal sensor at 25 s and the stuck-at fault with dv and ov values of 0 (1) is
injected into the engine RPM sensor at 35 s. The effect of the noise fault is observed in the
first 10 s between 25–35 s of the driving scenario. Right after, the effect of both faults in the
engine RPM is observed, as can be seen in Figure 12a. Looking at the speed of the vehicle



Sensors 2022, 22, 1360 19 of 24

in Figure 12b, it is clear that the effects of injected faults are exactly the same as the effects
of a stuck fault in the engine RPM sensor.

On the other hand, it is worth noting that there is no significant impact on the engine
speed and vehicle speed caused by the injection of multiple faults in actuator control signals
compared to the healthy signals. However, when the stuck-at fault with dv and ov values of
0 (1) is injected into the ignition angle control signal for all of the cylinders at 131 s of the
driving scenario, a slight difference is observed in the intake manifold between 155 s to
190 s, as can be seen in Figure 13, where the effect of the stuck-at fault on the pressure in
intake manifold signal can be illustrated.

(a) (b) (c)

(d) (e) (f)

Figure 11. System output: vehicle speed under single permanent fault injection. (a) Acceleration
pedal with gain fault. (b) Rail bar sensor packet with loss fault. (c) Engine RPM sensor with stuck-at
fault. (d) Acceleration pedal with drift fault. (e) Mass flow through throttle with spike fault. (f) Engine
RPM sensor with delay fault.

(a) (b)

Figure 12. System output: engine RPM and vehicle speed under multiple permanent faults injection.
(a) Engine RPM with stuck-at fault and noise fault. (b) Vehicle speed with stuck-at fault and noise fault.
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Figure 13. Intake manifold with ignition angle control signal stuck-at fault injection.

5.2. Real-Time Transient Fault Injection

Since transient faults occur much more frequently than permanent faults, with more
difficulty in detection, this study highlights the effect of this type of fault on the dynamic
behavior of the complex automobile system. To this end, the stuck-at fault with dv and ov
values of 0 as a transient fault is injected into the engine speed sensor for a period of 160 s
at 40 s. Figure 14 shows the effect of the fault on the system behavior, where the stuck-at
fault with dv and ov values of 0 (1) as a transient fault is injected into the engine RPM sensor.
The time period of the transient fault is from 40 to 160 s. The result shows that the effect
is similar to the effect of a permanent fault. However, when the fault is revoked, a sharp
increase in both the engine RPM (Figure 14b) and vehicle speed (Figure 14a) at a time of
160 s is observed. Once the fault is deactivated, the system behavior returns to a normal
state and continues with the fault-free mode.

(a) (b)

Figure 14. System output: vehicle speed and engine RPM under transient faults injection. (a) Vehicle
speed sensor with transient stuck-at fault. (b) Engine RPM sensor with transient stuck-at fault.

6. Conclusions

In this study, a novel real-time FI framework based on a HiL simulation system is
proposed. The objective of the framework is to conduct an analysis of the dynamic behavior
of complex automotive software systems under abnormal conditions during the V-cycle
development process, i.e., system integration phase, taking into account the real-time
constraints. The key strength of the framework is its ability to analyze the effect of single
and multiple faults on the system behavior in real time for the closed-loop automotive
control system. Thanks to these features, the validation of the real/soft ECU performance
can be carried out with complex test scenarios under nominal and faulty conditions.

The advantages of the framework presented in this paper are illustrated using a gaso-
line engine as a case study from the automotive domain. The effects of different types
of faults on the output variables of the gasoline engine system, i.e., engine RPM, vehicle
speed and intake manifold variables, have been illustrated. From a novelty standpoint, the
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entire vehicle system models, including the vehicle dynamics model, the engine model,
the powertrain model and the environment model, are considered. Additionally, nine
different types of faults are included in the proposed work to cover the most common
potential faults in automotive software signals, such as gain, offset/bias, noise, hard-over,
spike, stuck-at, packet loss, delay and drift faults. Besides, the selected fault types are
implemented programmatically in the HiL system without altering the original system
model. The applicability of the presented framework is demonstrated by injecting perma-
nent and transient faults into the system during the real-time driving scenario. The results
exhibit the capabilities of the proposed framework in analyzing the behavior of complex
automotive systems, allowing for all types of faults defined in Table 2 to be injected into
the corresponding signals in real time. Moreover, the results also show its ability to enable
FI in different locations and at different times individually or simultaneously.

In the future, this work can be extended in two different research directions. On
the one hand, artificial intelligence technology, e.g., machine learning, can be used to
automatically generate and execute fault test cases based on functional safety requirements.
By doing so, instead of a manual random selection of fault configurations, a systematic
evaluation of fault effects can be achieved, enabling higher fault coverage and accelerating
the prediction of catastrophic fault parameters. On the other hand, the proposed work
can be integrated in the process of safety analysis, i.e., in the HARA activities, so that its
useful usability in industrial applications can be broadened, especially for the goal of a
safety assessment of the SUT in compliance with the ISO 26262 standard. Furthermore,
with respect to robustness testing, it can be further developed into a powerful tool for the
benchmark validation of fault tolerance mechanisms in autonomous systems. In addition
to the aforementioned future directions, the results of sensor and control actuator FI can be
used as a dataset for developing an intelligent multi-class fault detection and diagnosis
model. To be specific, by collecting accurate faulty and healthy datasets from the vehicle
system models as a result of FI, the limitation of the lack of datasets for training and testing
fault detection and the diagnosis model can be overcome.
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