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Abstract: This paper proposes a novel unsupervised learning framework for depth recovery and
camera ego-motion estimation from monocular video. The framework exploits the optical flow (OF)
property to jointly train the depth and the ego-motion models. Unlike the existing unsupervised
methods, our method extracts the features from the optical flow rather than from the raw RGB images,
thereby enhancing unsupervised learning. In addition, we exploit the forward-backward consistency
check of the optical flow to generate a mask of the invalid region in the image, and accordingly,
eliminate the outlier regions such as occlusion regions and moving objects for the learning. Further-
more, in addition to using view synthesis as a supervised signal, we impose additional loss functions,
including optical flow consistency loss and depth consistency loss, as additional supervision signals
on the valid image region to further enhance the training of the models. Substantial experiments on
multiple benchmark datasets demonstrate that our method outperforms other unsupervised methods.

Keywords: unsupervised learning; depth recovery; ego-motion estimation; optical flow

1. Introduction

Depth recovery and camera ego-motion estimation from monocular video are fun-
damental topics in computer vision with numerous applications in industry, including
robotics, driverless vehicles, and navigation systems. Traditional solutions to these tasks
rely on binocular stereo techniques or structure-from-motion methods, which reconstruct
2D images into the 3D world by analyzing the geometric difference between left–right
or/and consecutive images [1]. Camera ego-motion, also known as visual odometry (VO),
is the process of calculating an agent’s pose solely based on images captured by a single
or multiple cameras mounted to it. The basic VO framework follows a standard pipeline,
which typically includes feature detection, feature tracking, outlier rejection, motion esti-
mation and optimization [2–4]. Although these methods are accurate and robust under
favorable conditions, they are sensitive to camera parameters and are more unstable in
extreme environments, such as textureless areas and lighting changes.

Recently, convolutional neural networks (CNNs) have become increasingly popular
in computer vision tasks, providing researchers with a new solution to depth recovery
and ego-motion estimation. Learning-based methods can be classified into two groups
including supervised and unsupervised methods in terms of whether they rely on ground
truth for training. Supervised methods learn the functions to map the depth and ego-
motion to the image by minimizing the differences between the estimated values and the
related ground truth [5–15]. However, supervised methods need a massive quantity of
ground truth data to train the model, which is both costly and difficult to get in reality.
Moreover, the dependency on ground truth data leads to unsatisfactory performance in
new environments or some unlearned scenarios.
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Instead of using expensive ground truth data, unsupervised methods train CNN mod-
els directly using unlabeled data, thereby saving human effort on data-labeling, allowing
the use of a larger amount of data for training, and achieving better generalization. A com-
mon principle of the existing unsupervised methods [16–23] is to train the CNN models by
using a synthesized view as a supervisory signal. We call it the view synthesis technique,
where one view (source) is synthesized into another (target) based on the estimated camera
ego-motion and the predicted depth of the target view. The unsupervised framework is
subsequently trained by decreasing the photometric difference between the synthesized
and original target views. Three issues exist in regard to the existing unsupervised methods:
(1) The synthesized view is subject to error because these works do not apply optical flow
(OF) to estimate camera ego-motion but directly use RGB images, which contain complex
and redundant information. In fact, the OF field implies geometric motion between consec-
utive images and is a key factor for accurate view synthesis and ego-motion estimation.
Our previous work [14] and the authors of [13,15] have demonstrated that OF is highly
effective for learning VO. (2) These methods conduct the learning on the whole area of the
synthesized image containing substantial outliers such as occluded regions and moving
objects, which can inhibit the training of the network and cause a significant error in the
results. (3) These methods design loss function by considering the photometric consistency
between the synthesized and original target views, which provides a weak constraint for
unsupervised learning and thus may generate inaccurate training results.

To overcome these disadvantages, this paper proposes a new unsupervised framework
for improving unsupervised learning and the performance of depth recovery and camera
ego-motion estimation. The framework learns the depth and VO models from the accurate
OF field rather than from the raw RGB images. Moreover, we exploit the forward-backward
consistency check of the optical flow to generate a mask of the invalid region in the image,
and accordingly, eliminate outlier regions such as occlusion regions and moving objects
for the learning. Furthermore, we adopt several constraints for defining the multiple loss
functions to further enhance the unsupervised learning. In brief, the following are our
main contributions:

1. We propose a novel unsupervised learning framework for estimating the depth and
camera ego-motion. By virtue of the optical flow property, the framework extracts
the features from the optical flow rather than from the raw RGB images, thereby
enhancing unsupervised learning;

2. We eliminate the outlier regions such as occlusion regions and moving objects for
the learning by generating a mask of the invalid region in the scene according to the
forward-backward consistency of the optical flow, thereby preventing the training
from being inhibited and improving the performance;

3. We propose optical flow consistency loss and depth consistency loss as additional
supervision signals to further enhance the training of the models;

4. We conduct extensive experiments on multiple benchmark datasets, and the results
demonstrate that our method outperforms the existing unsupervised algorithms.

2. Related Work

We primarily discuss related works that use machine learning methods for separate or
joint learning of depth and ego-motion. As mentioned above, learning-based methods can
be divided into two groups, including supervised and unsupervised methods in terms of
whether they rely on ground truth for training.

2.1. Supervised Learning of Monocular Depth and Ego-Motion

Existing supervised learning-based works normally treat depth recovery and ego-
motion as two separate tasks and conduct learning for each goal by minimizing the differ-
ences between the estimated values and the related ground truth.

The authors of [5] were the first to predict depth from a single image via supervised
learning. They accomplished this work by combining two deep network stacks: one that
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generates a rough global prediction based on the full image and another that rectifies this
prediction locally. Different from [5], which employs an extra network to improve the
results, Liu et al. [6] presented an approach based on the hierarchical conditional random
fields (CRFs) to enhance the depth map. Meanwhile, they proposed a super-pixel pooling
method to accelerate convolutional networks. Recently, several works [7–9] have used
adversarial learning to estimate depth and have proven to be beneficial.

DeepVO [10] is a typical supervised learning method to estimate camera motion.
CNN was utilized to learn effective feature representation, while an RNN was employed to
describe sequential dynamics and connections. DeepVO completed an end-to-end pose
estimation and obtained competitive accuracy and generalization ability. Based on this
typical model, several studies expanded on this strategy to increase model performance.
In [11], the authors considered the curriculum learning (CL) technique (training a model
by gradually increasing the complexity of the training data) to increase the generalization
capacity of supervised VO. In [12], knowledge distillation (transferring the knowledge of a
huge teacher model to a small student model) was used in the supervised VO framework
to drastically decrease the amount of network parameters, making it more suitable for
real-time operation on portable devices. Since the OF field implies geometric motion,
learning optical flow for VO is a common technique for learning-based VO methods such as
in [13–15]. In [13], the authors proposed to use an auto-encoder network to find a nonlinear
representation of the OF field for ego-motion estimation. Our previous work [14] further
proved that learning the latent space of the OF field is effective for ego-motion estimation.
We conducted sequential learning by using the RCNN network to regress the OF latent
space into the 6-DOF camera ego-motion. In [15], Zhao et al. not only used OF field to
estimate the camera ego-motion, but also investigated the capacity of deep neural networks
for state estimation to filter the 6-DOF trajectory given a sequence of measurements.

Since the supervised approaches are guided by the ground truth, they can effectively
train the functions to map the depth and ego-motion to the image and have produced
outstanding results. However, these supervised algorithms are constrained by labeled
datasets, which are difficult and expensive to obtain and may be short of generalization.

2.2. Unsupervised Learning of Monocular Depth and Ego-Motion

Existing unsupervised learning-based works normally conduct joint learning on depth
and ego-motion simultaneously by using true constraints as supervisory signals for training.
Since the depth recovery and camera pose estimation are closely connected in terms of
their internal geometric relationship, the main supervisory signal can be obtained by jointly
training these tasks in the lack of ground truth and stereo frames. The existing unsupervised
methods [16–23] adopt the synthesized view as a supervisory signal to train the models.

A typical unsupervised method was proposed by Zhou et al. [16] that utilizes view syn-
thesis as a supervised signal to jointly learn depth and camera pose from image sequences.
Specifically, this framework is made up of two networks: a depth network for estimating
depth and a pose network for calculating camera ego-motion. Based on the predicted depth
and the estimated camera ego-motion, one view (source) can be synthesized into another
(target). The CNN models are then trained by minimizing the photometric differences
between the synthesized and original target views. Motivated by this basic model, several
studies [17–23] have been done to improve on it and achieved good results. Aiming at the
scale problem, Zhan et al. [17] recovered the absolute scale using stereo image pairs. Mean-
while, they introduced a feature reconstruction loss to increase depth and pose estimation
accuracy. In [18], Mahjourian et al. introduced an ICP loss to ensure the consistency of
the calculated 3D point clouds between the consecutive frames. They trained the network
using a combination of 3D and 2D losses and achieved good results. In [19], Yang et al.
introduced edge estimation, which improves the performance of the model by jointly
estimating the edge and the 3D scene. In [20], Jiang et al. introduced an outlier masking
strategy that treats occluded or dynamic pixels as statistical outliers, hence avoiding the
negative impacts of occlusion and dynamics on learning in realistic environments.
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Recently, several studies have taken advantage of the inherent geometric connection
between depth, ego-motion, and optical flow to jointly train the models of these subtasks.
In [21], the authors introduced GeoNet, a collaborative learning framework for estimating
depth, ego-motion, and optical flow. They used an additional network to learn the residual
optical flow for the scene’s dynamic objects. As a result of segregating rigid and non-
rigid scenes, the accuracy of all three estimations was enhanced. Instead of estimating
residual optical flow, Zhang et al. [22] added an extra network to predict the optical flow.
They also introduced multi-view consistency losses to constrain the framework for better
performance. Ranjan et al. [23] enhanced the multi-task framework by incorporating
a motion segmentation task based on the results of other tasks (depth recovery, pose
estimation and optical flow estimation). The increase in the number of tasks makes the
training more complicated, so they introduced competitive collaboration, a framework for
coordinating the training of various specialized neural networks to address complicated
tasks. In these multi-task-based methods, OF estimation is added as a subtask network and
trained alongside the depth and pose networks. The errors caused by the depth and pose
calculation will inevitably be transmitted to the optical flow, and optical flow with poor
accuracy will in turn affect the learning of the depth and pose.

3. Methods

The framework of the proposed method is shown in Figure 1. It is composed of three
CNN networks: DepthNet, PoseNet and FlowNet (Section 3.1). An off-the-shelf optical
flow estimation network was used as the FlowNet to generate accurate OF fields. Our goal
was to jointly train the DepthNet and the PoseNet by using unlabeled monocular image
sequences so that the two networks can estimate single-view depth and camera motion
separately during testing. Given the consecutive images (It, It+1), we first estimated
the depth of frame It and It+1, and the forward-backward OF fields between frame It
and It+1. Then we used the forward OF field to estimate the camera pose between the
consecutive images (It, It+1). With the predicted depth map and the estimated 6-DOF
camera ego-motion, frame It+1 can be synthesized into frame It. The synthesized frame
It and the original frame It should be consistent in terms of photometry (Section 3.2).
With the estimated forward-backward OF fields, we could generate a mask of the invalid
regions in the image, and then eliminate the outliers such as occlusions and moving objects
according to the forward-backward consistency of the optical flow (Section 3.3). In addition,
the predicted depth map and the estimated camera pose can be used to calculate the OF
field, which should be consistent with the generated OF field from FlowNet in the rigid
area of the image (Section 3.4). Based on the generated forward OF field, the depth map
(Dt+1) can be synthesized into depth map (Dt); the synthesized depth map

(
Dt
)

should
be consistent with the target depth map (Dt) (Section 3.4). The objective function is defined
by considering four constraints including photometric consistency, smoothness, optical
flow consistency and depth consistency, and is formulated as

L = ∑
l
(Ll

pho + λsLl
smo + λ f Ll

f lo + λdLl
dep) (1)

where l indicates different image scales, Ll
pho, Ll

smo, Ll
f lo and Ll

dep indicate photometric
consistency loss, smoothness loss, optical flow consistency loss and depth consistency loss,
respectively, and λs, λ f and λd represent their corresponding weights.

3.1. The Networks

The framework in Figure 1 contains three subnetworks: DepthNet, PoseNet and
FlowNet. The FlowNet is an off-the-shelf optical flow estimation network to generate
accurate OF fields. We used a fixed-weight MaskFlownet [24] as the FlowNet. We adopted
the DispResNet [23], an encoder-decoder network with skip connections and multi-scale
side predictions, as the DepthNet. For the PoseNet, we used the network proposed in [16].



Sensors 2022, 22, 1383 5 of 14

The difference is that we used the optical flow of adjacent images as input to estimate the
6-DOF camera pose instead of directly using adjacent images.
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Figure 1. Overview of our method. During training, we use the unlabeled image sequences as the
input of the network. FlowNet is an off-the-shelf optical flow estimation network to generate accurate
OF fields. DepthNet and PoseNet are jointly trained for the prediction of the depth and pose. We
exploit the forward-backward consistency check of the optical flow to mark the invalid region in
the scene, so as to avoid the adverse effects of the outlier regions, such as occlusion regions and
moving objects on training. Finally, we use multiple constraints as loss functions to train DepthNet
and PoseNet. In the test stage, DepthNet and PoseNet are used to estimate the single-view depth and
the 6-DOF camera pose separately.

3.2. Photometric Consistency Loss and Smoothness Loss

We used the view synthesis as the main supervision signal to jointly learn depth and
camera motion from unlabeled video sequences. Given the consecutive images (It, It+1),
the estimated depth map (Dt) at time t and the estimated relative camera pose (Tt→t+1),
we can establish the dense pixel correspondence between the consecutive images (It, It+1).
When pt denotes the coordinate of a pixel in frame It, the corresponding point of pt in
frame It+1 can be computed via:

pt+1 ∼ KTt→t+1Dt(pt)K−1 pt (2)

where K indicates the camera’s intrinsic matrix. According to this geometric correspon-
dence, we can synthesize a new image

(
It
)

with the inverse warping from frame (It+1).
When the scene is static, there is no occlusion between the consecutive frames and the
surface is Lambertian, the synthesized image

(
It
)

should be consistent with the target
image (It). The photometric discrepancy between the synthesized image and the origi-
nal image can be used as an unsupervised loss function for training CNNs. Specifically,
the photometric consistency loss function can be formulated as:

Lpho = ∑
pt

ρ
(

It(pt)− It(pt)
)

(3)
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where ρ(x) =
(

x2 + ε2)γ is the robust generalized Charbonnier penalty function with
γ = 0.45 and ε = 10−3 [25]. In previous works [16–18], the loss function mostly used the
combination of an L1 norm and a structural similarity (SSIM) to measure the photometric
discrepancy, which is not suitable for realistic situations where illumination changes.
This loss function [25] is used to compensate for additive and multiplicative illumination
changes, thus providing us with a more reliable constancy assumption for realistic imagery.

Since the photometric consistency loss is not informative in the low-texture or homo-
geneous region of the scene, we adopted the edge-aware smoothness loss used in [21] to
keep sharp details, which is formulated as:

Lsmo = ∑
pt

|∇D(pt)|·
(

e−|∇I(pt)|
)T

(4)

where |·| indicates element-wise absolute value, ∇ represents the vector differential opera-
tor, and T denotes the transpose of image gradient weighting.

3.3. Outlier Region Elimination

Under the premise of photometric consistency, the synthesized image should be
photometrically compatible with the target image. However, this assumption does not hold
for the outlier regions such as occlusion regions and moving objects. Therefore, we need to
eliminate the outlier region in the scene and only impose the photometric consistency loss
on the valid region.

The forward flow at a non-occluded pixel should equal the inverse of the backward
flow at the same pixel in the second frame. Based on this forward-backward consistency
assumption, we used the accurate forward-backward OF fields generated by MaskFlownet
to eliminate the outlier region in the scene. Specifically, when the condition is not satisfied,
we flag pixels as potentially outliers. The constraint is formulated as:∣∣∣F f (pt) + Fb

(
pt + F f (pt)

)∣∣∣2 < α1

(∣∣∣F f (pt)
∣∣∣2 + ∣∣∣Fb

(
pt + F f (pt)

)∣∣∣2)+ α2 (5)

where F f (pt) denotes the forward flow of the pixel at pt, Fb(pt) denotes the backward flow
of the pixel at pt. α1 and α2 were set to 0.01 and 0.5 in our experiment, respectively [26].
An example is shown in Figure 2, the generated mask effectively marks the invalid regions
such as occlusion regions (yellow), moving objects (red) and boundaries (blue). In the
boundary region, the backward OF cannot be calculated due to the camera’s moving,
which results in inconsistent forward and backward OF. Then we impose the photometric
consistency loss on the valid region, which is formulated as:

Lpho = ∑
pt∈V

ρ
(

It(pt)− It(pt)
)

(6)

where V denotes the valid region.

3.4. Optical Flow Consistency Loss

The optical flow can be calculated from the scene depth (Dt) and the relative cam-
era pose (Tt→t+1) using 3D scene geometry. The calculated optical flow

(
Fcal

)
can be

represented by
Fcal(pt) = KTt→t+1Dt(pt)K−1 pt − pt (7)

Therefore, we can estimate the scene depth (Dt) and the relative camera pose (Tt→t+1)
to obtain the calculated optical flow through DepthNet and PoseNet, respectively. For non-
occluded regions, the computed optical flow should be consistent with the generated
forward optical flow (produced by MaskFlownet). Therefore, minimizing the difference
between the two optical flow fields can be used as another loss function for jointly training
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DepthNet and PoseNet. Using the generated mask, our optical flow consistency loss is
formulated as:

L f lo = ∑
pt∈V
||Fcal(pt)− F f (pt)||1 (8)
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Figure 2. An example of a scene with the outlier region eliminated. The (top) scene is the original
image while the (bottom) scene is the combination of the mask and image. According to the forward-
backward consistency of the optical flow, all outlier regions are marked including occlusion regions
(yellow), moving objects (red), boundaries and potential outliers (blue).

3.5. Depth Consistency Loss

According to the generated forward optical flow, the pixel mapping relationship of
the consecutive images can be determined. Then, the relationship between the depth maps
of the consecutive images can also be established. Therefore, we can synthesize a new
depth map

(
Dt
)

with the inverse warping from depth map (Dt+1) by using the generated
forward optical flow. The synthesized depth map

(
Dt
)

and the target depth map (Dt)
should be consistent in the valid region. Consequently, we propose a depth consistency
loss to train the DepthNet by penalizing the inconsistency between the synthesized depth
map

(
Dt
)

and the target depth map (Dt). The depth consistency loss is formulated as:

Ldep = ∑
pt∈V
||Dt(pt)− Dt(pt)||1 (9)

4. Experiment and Results

We implemented our approach in the PyTorch platform and conducted all the ex-
periments on a single NVIDIA GeForce GTX 1080Ti GPU with 11 GB memory. During
training, the initial learning rate was set to 0.0002, the mini-batch was set to 4, and the
loss weights were λs = 0.5, λ f = 0.2 and λd = 0.2. We used the Adam optimizer with
β1 = 0.9 and β2 = 0.99. The images from the datasets were resized to 128 × 416 as the input
of the network. Like other works [21–23], we applied several types of data augmentation
methods to improve performance and prevent potential overfitting, including image color
augmentation, rotational data augmentation and left–right pose estimation augmentation.
Our model has approximately 25.28 million trainable parameters. The training typically
converges after about 20 epochs. It took about 44.4 h to train the network. At testing,
our model estimates depth and ego-motion with an average runtime of 14 ms and 63 ms
per example.
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4.1. Datasets and Metrics

Like the work in [16], we used the KITTI dataset [27] as our main training dataset,
which is the largest and most commonly used dataset for autonomous driving applications
such as VO, depth and optical flow, etc. The KITTI dataset provides 56 scenes of car
driving and can be classified into “city”, “residential” and “road”. In addition, we used
the Cityscapes dataset [28] to pre-train our model, which contains more than 50 cities’
stereo data without depth annotation. In order to evaluate the generalization ability of the
network on a different dataset, we also used the Make3D dataset [29] in the testing phase.
It only contains monocular images as well as corresponding depth maps and does not have
monocular sequences and stereo image pairs.

Similar to other works such as [16–23], we used the absolute trajectory error (ATE) as
the metric for pose estimation and we used the synthetic policy [30] as the metric for depth
estimation. The ATE is defined as:

Fi = Q−1
i SPi, (10)

ATE =

√√√√ 1
N

N

∑
i=1
||trans(Fi)||2, (11)

where Pi, Qi indicate the estimated pose value and its related ground truth. S denotes the
similarity transformation matrix, and trans denotes fetching the translation part. The met-
rics used for depth estimation include the absolute relative error (Abs. Rel), the square
relative error (Sq. Rel), the root mean squared error (RMSE), the log root mean squared error
(RMSE log), and the prediction accuracy (δ). The definitions of these evaluation criteria are
as follows:

Abs.Rel =
1
N ∑N

i=1

∣∣Di − D∗i
∣∣

D∗i
, (12)

Sq.Rel =
1
N ∑N

i=1

∣∣Di − D∗i
∣∣2

D∗i
, (13)

RMSE =

√
1
N ∑N

i=1
∣∣Di − D∗i

∣∣2, (14)

RMSE(log) =

√
1
N ∑N

i=1
∣∣lgDi − lgD∗i

∣∣2, (15)

δ = max
(

Di
D∗i

,
D∗i
Di

)
< T, (16)

where Di and D∗i represent the estimated depth value and its related ground truth. For T,
1.25, 1.252, and 1.253 were used. The lower the value of the error metrics (Abs. Rel, Sq.
Rel, RMSE, RMSE log) and the higher the value of the accuracy metric (δ), the better
the performance.

4.2. Ablation Study

We conducted an ablation study on different versions of the framework to investigate
the effect of different components in our network. The baseline version was the model
without outlier elimination, optical flow consistency loss and depth consistency loss. Since
the DepthNet and the PoseNet are jointly trained, their accuracy is interdependent during
training. Therefore, we only need to evaluate the effect on one of the two models. We
conducted the experiments on KITTI odometry data, with 00–08 sequences used for training
and 09–10 sequences utilized for testing. The results of the ego-motion evaluation are shown
in Table 1. As indicated in the table, adding the outlier elimination, optical flow consistency
loss and depth consistency loss can greatly enhance the model’s performance.
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Table 1. Comparison of ATE of different versions of the framework on KITTI odometry. L f lo and Ldep
indicate optical flow consistency loss and depth consistency loss, respectively.

Method ATE of Seq.09 ATE of Seq.10

Baseline 0.017 ± 0.009 0.015 ± 0.010
Baseline + outlier elimination 0.012 ± 0.007 0.013 ± 0.007

Baseline + outlier elimination + L f lo 0.011 ± 0.007 0.010 ± 0.006
Baseline + outlier elimination + L f lo + Ldep 0.010 ± 0.005 0.009 ± 0.006

4.3. Evaluation of Ego-Motion Estimation

Although depth and pose are jointly trained, they are tested separately and their
accuracy is interdependent. We evaluated the performance of PoseNet on the official
KITTI visual odometry split, which includes 11 sequences with ground truth. We utilized
00–08 sequences for training and 09–10 sequences for testing to compare with other ap-
proaches. A row of each of the five images was truncated as a sequence of images as the
input of the network during training. We compared our model to the other unsupervised
methods [16,18,21,23] and the classical SLAM framework (ORB-SLAM). ORB-SLAM (full)
allows for closed loop and re-localization, while ORB-SLAM (short) has no closed loop
and re-localization. For the problem of scale ambiguity in monocular VO, we aligned the
per-frame scale to the ground truth. The quantitative evaluation results for pose estimation
on the KITTI dataset are shown in Table 2. The trajectories of sequence 09 and 10 produced
by different methods are plotted in Figure 3. It is obvious that our method outperforms all
of the others.

Table 2. Comparison of ATE with different methods on KITTI VO dataset.

Method ATE of Seq.09 ATE of Seq.10

ORB-SLAM (full) [2] 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130

Zhou et al. [16] 0.016 ± 0.009 0.013 ± 0.009
Mahjourian et al. [18] 0.013 ± 0.010 0.012 ± 0.011

Yin et al. [21] 0.012 ± 0.007 0.012 ± 0.009
Ranjan et al. [23] 0.012 ± 0.007 0.012 ± 0.008

Ours 0.010 ± 0.005 0.009 ± 0.006

4.4. Evaluation of Depth Estimation

We used the KITTI dataset to evaluate the depth estimation. For better comparison
with other works, we followed the dataset segmentation suggested by Eigen et al. [5] and
Zhou et al. [16] for training and testing because the segmentation is commonly accepted
by the research community for depth benchmark purposes. A total of 44,540 raw KITTI
images were used for the training and validation, of which 40,109 images were used for
training and 4431 for validation. The other 697 images were selected for testing. A row of
each of the three images was truncated as a sequence of images as the input of the network
during training. The ground truth was achieved by projecting the Velodyne laser scanned
points onto the image plane for error and accuracy metrics evaluation. For the problem of
scale ambiguity, we calculated a scale factor to match the estimated depth with the ground
truth in the following form: s = median

(
Dgt
)
/median(Dpred).

Table 3 shows the comparison between different studies. In the table, the second
column defines the supervision signals used in the network. “Depth” means ground truth
of depth and is used for supervised learning in the method, “Stereo” denotes that in the
training, stereo sequences with known stereo camera pose are employed, and “Mono”
means monocular sequences are used in the training. The third column defines the dataset
used for training. K means trained only on KITTI dataset and CS + K denotes fine-tuning
on the KITTI dataset following pre-training on the Cityscapes dataset. Our algorithm
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outperformed both the supervised and unsupervised methods, as demonstrated in Table 3.
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Furthermore, we used the Cityscapes dataset [28] to pre-train our model and used
the KITTI dataset for fine-tuning. The results (in the bottom part of Table 3) show some
improvement in depth prediction, indicating that expanding the training data can enhance
the models’ performance.
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Table 3. Comparisons of different methods.

Method
Supervision

Signal
Training
Dataset

Error Metric Accuracy Metric

Abs.Rel Sq.Rel RMSE RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [5] Coarse Depth K 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [5] Fine Depth K 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [6] Depth K 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Zhan et al. [17] Stereo K 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Godard et al. [30] Stereo K 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [16] Mono K 0.208 1.768 6.856 0.283 0.678 0.885 0.957
Zhou et al. [16] updated Mono K 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Mahjourian et al. [18] Mono K 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yang et al. [19] Mono K 0.162 1.352 6.276 0.252 - - -
Yin et al. [21] Mono K 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Ranjan et al. [23] Mono K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Godard et al. [30] Mono K 0.154 1.218 5.699 0.231 0.798 0.932 0.973

Ours Mono K 0.138 1.065 5.289 0.215 0.827 0.943 0.979

Zhou et al. [16] Mono CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [18] Mono CS + K 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Yang et al. [19] Mono CS + K 0.159 1.345 6.254 0.247 - - -
Yin et al. [21] Mono CS + K 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ranjan et al. [23] Mono CS + K 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Ours Mono CS + K 0.136 1.031 5.186 0.209 0.831 0.947 0.981

The depth maps in Figure 4 were estimated by our model and in [16,21]. When com-
pared to the other methods, our method produces sharper and more accurate depth maps.
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4.5. Generalization to Other Datasets

We tested the models on a new dataset, the Make3D without utilizing it for training to
assess their generalization ability. In our experiment, we used the KITTI and Cityscapes
datasets for training and used the Make3D for testing. The quantitative and qualitative
evaluation results are shown in Table 4 and Figure 5. The results show that our method can
perform well, even in unknown datasets and is superior to other methods.
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Table 4. Results of different methods on the Make3D dataset [29].

Method
Error Metric

Abs. Rel Sq. Rel RMSE RMSE (log)

Liu et al. [6] 0.481 6.761 10.55 0.169
Zhou et al. [16] 0.396 5.731 10.869 0.513

Godard et al. [30] 0.579 11.235 11.892 0.201
Ours 0.301 3.367 8.142 0.261

5. Conclusions

We present a novel unsupervised learning pipeline for estimating depth and camera
ego-motion in this study. We introduced a trained optical flow estimation network and
made full use of it, including learning optical flow to estimate the camera motion, generat-
ing a mask that eliminates outlier regions, and adding additional geometric constraints.
The results of the ablation experiments demonstrate their importance in improving the
performance of the framework. Experiments on the KITTI dataset indicate that our algo-
rithm outperforms other unsupervised methods. In the future, we want to enhance our
framework to include a visual SLAM system to decrease drift.
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