
����������
�������

Citation: Kareem, S.S.; Mostafa, R.R.;

Hashim, F.A.; El-Bakry, H.M. An

Effective Feature Selection Model

Using Hybrid Metaheuristic

Algorithms for IoT Intrusion

Detection. Sensors 2022, 22, 1396.

https://doi.org/10.3390/s22041396

Academic Editor: Raffaele Gravina

Received: 27 December 2021

Accepted: 7 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Effective Feature Selection Model Using Hybrid
Metaheuristic Algorithms for IoT Intrusion Detection
Saif S. Kareem 1, Reham R. Mostafa 1,* , Fatma A. Hashim 2 and Hazem M. El-Bakry 1

1 Department of Information Systems, Faculty of Computers and Information Sciences, Mansoura University,
Mansoura 35516, Egypt; saif.salah.k@gmail.com (S.S.K.); elbakry@mans.edu.eg (H.M.E.-B.)

2 Faculty of Engineering, Helwan University, Cairo 11795, Egypt; fatma_hashim@h-eng.helwan.edu.eg
* Correspondence: reham_2006@mans.edu.eg

Abstract: The increasing use of Internet of Things (IoT) applications in various aspects of our lives has
created a huge amount of data. IoT applications often require the presence of many technologies such
as cloud computing and fog computing, which have led to serious challenges to security. As a result
of the use of these technologies, cyberattacks are also on the rise because current security methods
are ineffective. Several artificial intelligence (AI)-based security solutions have been presented in
recent years, including intrusion detection systems (IDS). Feature selection (FS) approaches are
required for the development of intelligent analytic tools that need data pretreatment and machine-
learning algorithm-performance enhancement. By reducing the number of selected features, FS
aims to improve classification accuracy. This article presents a new FS method through boosting the
performance of Gorilla Troops Optimizer (GTO) based on the algorithm for bird swarms (BSA). This
BSA is used to boost performance exploitation of GTO in the newly developed GTO-BSA because
it has a strong ability to find feasible regions with optimal solutions. As a result, the quality of the
final output will increase, improving convergence. GTO-BSA’s performance was evaluated using a
variety of performance measures on four IoT-IDS datasets: NSL-KDD, CICIDS-2017, UNSW-NB15
and BoT-IoT. The results were compared to those of the original GTO, BSA, and several state-of-the-art
techniques in the literature. According to the findings of the experiments, GTO-BSA had a better
convergence rate and higher-quality solutions.

Keywords: Internet of Things (IoT); Gorilla troops optimizer; Bird Swarm Algorithm; intrusion
detection system; machine learning; feature selection

1. Introduction

The Internet of Things (IoT) has emerged in the modern era, pushing the development
of new business process technologies through a network of computers and devices capable
of communicating and engaging with one another [1]. As the number of cybersecurity
attacks on IoT systems rapidly and widely increases, individuals and businesses face a
wide range of challenges related to credibility, financing, and business operations [2]. It
is possible to characterize cloud computing as a model in which a variety of services and
resources are made available to customers on demand, with little involvement from either
the service provider or the customer [3]. Most IoT applications in different fields depend
on cloud computing to store and process data. Security is a major concern with cloud
computing, owing to the massive amounts of data that are stored there. Cyberattacks
on cloud computing have increased for several reasons, including the availability and
accessibility of hacking tools, which led to the hacker not needing extensive knowledge or
exceptional skills to carry out an attack [4].

Consequently, businesses and academia around the world have been paying close
attention to the growing need for cybersecurity development. Cyberattacks continue to
strike organizations and enterprises despite adopting a variety of security tools such as

Sensors 2022, 22, 1396. https://doi.org/10.3390/s22041396 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6917-7873
https://doi.org/10.3390/s22041396
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041396?type=check_update&version=1

Sensors 2022, 22, 1396 2 of 23

firewalls, antivirus software, encryption of sensitive data, and biometric verification of end-
users [5]. Attackers rely heavily on exploiting system vulnerabilities to gain access to the
system and launch various attacks, which may lead to the release of sensitive information.
These attacks threaten the confidentiality, integrity, and availability of IoT systems all the time.

Intrusion detection systems (IDS) are among the most effective techniques to protect
IoT systems from a wide range of attacks [6,7]. There are several distributed systems that
use IDS to detect malicious intrusions and quickly counteract the spread of infection by
taking rapid countermeasures [8–10]. According to the detection mechanisms, whether
anomaly detection or misuse, IDS are classified into two types. Anomaly detection is based
on analyzing deviations from usual profile behavior in order to detect harmful actions.
A high percentage of false positives (FPs) is the main problem with these IDS, but they
are better at detecting innovative sorts of attacks. Misuse detection, on the other hand,
can successfully separate genuine from malicious instances based on previously observed
patterns [11]. Even though these IDS can reliably detect known attacks, they are unable to
detect unknown attacks or variations of known ones.

Machine learning (ML) techniques have been used extensively to improve the per-
formance of IDS [12–14], but they have not yet been able to achieve the desired level
of accuracy. For IDS to be effective, they must not only be able to distinguish between
legitimate and malicious traffic during the process of analyzing network traffic, but they
must also be able to determine what type of attack is taking place in the protected system.
Another hurdle for ML is the wide range of attack types and network traffic attributes,
which widen the problem search area and increase computational and time complexity [15].

Feature selection (FS) is an approach for removing irrelevant and redundant features
and picking the best subset of features to improve the definition of patterns belonging
to various classes. Based on the use of learning algorithms in the selection process, FS
approaches are separated into two categories: wrappers and filters. Filter algorithms
evaluate the relationship between a set of features using an independent criterion (such as
information measures, distance measures or consistency measures). Wrapper algorithms,
on the other hand, use specific learning algorithms to assess the value of a subset of features.
In terms of classification accuracy, wrapper techniques outperform filter approaches since
the suggested subset of features is directly evaluated using feedback from the learning
algorithm [16]. But their performance is highly dependent on the learning process, and
therefore they are computationally more expensive than filters.

Another important concern while constructing an FS algorithm is the search for the
nearly optimal subset of features. When selecting the best subset of attributes in huge
datasets, traditional comprehensive methods such as breadth searches, depth searches,
and others are infeasible. Wrapper-based approaches such as neural networks require 2N
subsets of a dataset with N features to be produced and assessed [17], which is a computa-
tionally intensive operation, especially when evaluating subsets individually. Accordingly,
FS is viewed as an NP-hard optimization problem. Its objective function is mainly based
on two factors: selecting the minimum number of features while preserving maximum
classification accuracy. To deal with this issue, FS is designed either as (1) a multi-objective
optimization problem to achieve trade-off solutions between the two contrasting objectives
or as (2) a single-objective optimization problem by combining these two objectives, which
is often the case in the feature selection literature [18].

Recently, Meta-heuristics (MH) algorithms have shown an excellent performance in a
variety of optimization scenarios due to their dynamic search behavior and global search ca-
pabilities [19]. It has been widely used in the literature to provide acceptable solutions to FS
problems, for example, genetic algorithm [20–22], particle swarm optimization (PSO) [23],
grey wolf optimizer (GWO) [24,25], harmony search (HS) [26], and the seagull optimization
algorithm (SOA) [27]. All MH algorithms, on the other hand, need to balance the explo-
ration and exploitation stages in order to avoid getting stuck in local optima or failing to
converge [28]. The solution-seeking process in MH algorithms is plagued with randomness,
which is to blame for these issues. This situation necessitates the hybridization of notions

Sensors 2022, 22, 1396 3 of 23

from several scientific disciplines. An algorithm with improved performance and accuracy
can be created through hybridization, which combines the best characteristics of different
algorithms into a single improved method.

Through the investigation of pieces of literature, hybrid algorithms gave better per-
formance than solo algorithms. Still, according to the No Free Lunch (NFL) theorem [29],
no algorithm is better than all others in all feature selection problems. Accordingly, in
order to deal with feature selection problems more effectively, new algorithms must be
proposed or old algorithms must be improved by making some changes to their operators.
Therefore, we proposed a novel FS technique based on enhancing the performance of a new
metaheuristic algorithm called Gorilla Troops Optimizer (GTO) [30] by utilizing the Bird
swarm algorithm (BSA) [31]. This proposed hybridization is called the GTO-BSA method,
in which BSA is applied to change the search operators of GTO to enhance its performance.

Abdollahzadeh et al. [30] have proposed the GTO as a new optimization method
inspired by the social intelligence of gorilla troops in nature. The original GTO authors
indicated that GTO is a very competitive algorithm when compared to the other well-known
metaheuristic algorithms. However, like other meta-heuristic algorithms, GTO suffers from
local optima problem stagnation and premature convergence. Because of this, numerous
authors have combined GTO with other methods to increase its performance. For example,
Gehad and AboulElla [32] introduced a new version of GTO based on Chaotic Maps (CGTO).
This work made a significant contribution by optimizing the convergence performance
of the original GTO method using chaos-theory principles. The proposed strategy was
evaluated on two different optimization problems: global optimization and multilayer
thresholding optimization. The proposal can detect prominent regions compared to the
original GTO. In another related work involving GTO, Ahmet Cevahir in [33] demonstrated
the outcomes of solving high-dimensional optimization issues using a novel hybrid method
called the artificial differential evolution gorilla troops optimizer (ADEGTO). ADEGTO
combines the exploratory capabilities of differential evolution (DE) with the GTO algorithm.
The performance of ADEGTO was tested on high-dimensional optimization problems, and
results revealed that ADEGTO outperformed all other competitive algorithms in terms of
solution quality and robustness.

The BSA is a famous metaheuristic algorithm created by Meng et al. [31], and it is
inspired by the social behaviors and interactions of bird swarms. In recent years, it has
been widely used in various applications, including time-series forecasting [34], regression
and clustering [35–37], global optimization [38–41], image processing [42–44], and cloud-
computing scheduling [45].

In general, the proposed GTO-BSA’s idea is to employ the BSA’s operators as a local
search for the GTO, with the main objective of increasing the regular GTO’s performance.
GTO-BSA was tested utilizing four IoT-IDS datasets. More importantly, for this study, we
compared the GTO-BSA against numerous current metaheuristic algorithms, including the
original GTO and BSA, HGS, MVO, HHO, and PSO

Briefly, the following are the study’s key contributions:

• Propose a novel feature selection strategy based on a modified GTO.
• Improve the GTO’s exploitation phase using the BSA algorithm to enhance its convergence.
• Evaluate and compare the proposed GTO-BSA using four IoT-IDS datasets with other

current metaheuristic approaches.

The sections of this article’s structure are as follows: Section 2 focuses on earlier studies
and related works. Section 3 covers the background. The proposed model is presented
in Section 4. Section 5 contains the experimental results as well as a discussion. Finally,
Section 6 has the conclusion.

2. Related Work
2.1. Hybrid Metaheuristics for Feature Selection

This section summarizes recent studies on the subject of feature selection using hybrid
metaheuristic (MH) algorithms.

Sensors 2022, 22, 1396 4 of 23

In 1995, Eberhart and Kennedy introduced particle Swarm Optimization (PSO), a
swarm intelligence-based evolutionary algorithm [46]. Since then, the PSO algorithm has
been employed in numerous studies to solve the feature selection (FS) problem, which
was inspired by bird and fish social behavior. The PSO method has various advantages,
including its simplicity and high convergence speed. However, this approach has a few
drawbacks, such as local optima and population diversity. As a result, a number of articles
have combined PSO with other algorithms to increase its performance and use it for FS is-
sues. For example, Moradi and Gholampour [47] suggested a PSO-based hybrid FS method
based on a local search strategy. The suggested method, named HPSO-LS, selects the less
correlated and salient feature subset using a local search strategy incorporated in particle
swarm optimization. The goal of the local search strategy is to use correlation information
to assist the particle swarm optimization search process to choose distinctive features. It
was compared to 5 current methods for selecting features, and it was truly tested on 13
different benchmark classification datasets. PSO was also used in another work by Mistry
et al. [48]. The authors proposed a micro-GA integrated PSO feature selection approach for
intelligent face expression detection challenges. A micro-GA was introduced to prevent
premature convergence in the original PSO method by using Gaussian mutation in the
equation of updating the particle’s velocity. Furthermore, the mechanism for updating
velocity depends on the average user’s experience in order to achieve a successful global
and local search. Results show that the proposed method outperforms classic GAs and
PSO-based feature selection algorithms in identifying face emotions. Zhou et al. [49] used a
PSO and a spiral-shaped mechanism (HPSO-SSM) to develop a wrapper-based technique
for finding the most relevant and optimum features. The HPSO-SSM made three improve-
ments. First, a series of logistic maps improved the variety-searching process. Second, the
original position update algorithm included two new parameters that effectively improved
the position quality of the next generation. Finally, a spiral-shaped mechanism was applied
as a local search operator in the recognized optimal solution zone. The proposed HPSO-
SSM was tested with a kNN classifier, compared with wrapper and filter-based approaches,
and evaluated with 20 well-known benchmark datasets.

The Grasshopper Optimization System (GOA) is a new swarm intelligence algorithm
inspired by grasshoppers’ natural foraging and swarming behavior. According to a critical
study by Mafarja et al. [50], the GOA algorithm and the mutation operator of GA were
used to create a new binary hybrid algorithm. The authors used the transfer functions to
convert continuous GOA into its binary form. Furthermore, a mutation operator with a
reasonable mutation rate was utilized to provide diversified solutions. For 25 benchmark
datasets, k-NN analyzed the chosen subset of the features. The categorization accuracy was
around 92%, which was higher than that of previous comparison methodologies. GOA and
evolutionary operators were combined in the same way by Mafarja et al. [51] to develop
the GOA-EPD, which is an upgraded GOA with new evolutionary-based operators for
developing an efficient wrapper FS technique. The proposed methods were tested on
22 datasets from UCI. The results showed that the EPD significantly impacted the GOA’s
efficacy. Applying the selection mechanism improved the proposed approach’s ability to
outperform other optimizers and find the best solutions with superior convergence trends.

Mirjalili et al. [52] developed the Salp Swarm Algorithm (SSA), a modern metaheuristic
algorithm that simulates the behavior of salps in deep waters. SSA has been applied as a
search strategy in several FS methods [53,54]. This trend of opportunistic search behavior
improvement also was seen by Idris et al. [55], who took care of the SSA algorithm’s
problems. Using the local search (LS) technique, the researchers enhanced the SSA’s
capacity for exploitation. In addition, the study used a chaotic map in conjunction with a
novel equation variable to find the best location update strategy for followers. Regarding
the feature selection problem, the recommended technique’s efficacy was evaluated on
20 benchmark categorization datasets and 3 Hadith data. Compared to alternative solutions,
a dynamic SSA proved to be effective.

Sensors 2022, 22, 1396 5 of 23

Mirjalili [56] proposed the Sine Cosine Algorithm (SCA) for global optimization
problems, which uses the features of sine and cosine functions. Neggaz et al. [57] devised
a hybrid of SSA and SCA with an extra population diversification mechanism, called
a disruption operator. Additional diversity was included to prevent stagnation in the
quality of solutions when SSA and SCA were used in conjunction to develop a combined
population of potential solution candidates. The results were promising when applied to
feature selection problems for datasets with feature sizes ranging from 13 to over 11000.
Bharti and Kumar came up with a new SCA-based hybridization [58]. Kumar and Bharti
used large-scale datasets to convert conventional PSO to binary variants, then incorporated
SCA to better exploration. The researchers used 10 standard benchmark test functions for
preliminary testing, then used the k-means technique to solve the clustering problem for
seven high- and low-dimensional datasets with from 9 to more than 11,000 features. The
proposed method changed the PSO’s velocity equation and embedded the SCA’s position
update equation. The PSO’s weighting factor was also adjusted, which was changed in
every iteration based on the iteration count. To boost the ability to search long-distance
sites, a subset of iterations was chosen to inject the highest inertia weight. The research
claimed a considerable enhancement at clustering accuracy comparison with numerous
other natural-inspired optimization methods based on statistical t-tests. Hans and Kaur [59]
presented a new hybrid composition of SCA and Antlion Optimization (ALO). SCA was
used to update half of the population, while ALO was used to update the other half. In
addition, many random factors were introduced into the position update equations to
increase population variety. The authors turned the proposed technique into a binary
variation using V- and S-shaped transport functions in feature selection. Experiments were
carried out on a total of 18 classification data with a lowest of 9 and a highest of 60 features.

The Mayfly Algorithm (MA) is a newly developed algorithm inspired by mayflies’
flight and mating behavior [60]. For the feature selection challenge, Bhattacharyya et al. [61]
proposed combining the Mayfly Algorithm (MA) with a harmony search (HS). The MA
acquired many solutions from various search regions and passed them to the HS for further
development in this method. As a result, the only purpose of combining HS and MA was
to improve the search intensification method. The suggested MASA algorithm was tested
on 18 classification datasets, proving that the solution quality improved.

2.2. Metaheuristic Algorithms for Intrusion Detection

In this section, we highlight several studies that applied metaheuristic algorithms
for intrusion detection. Kannan et al. [62] introduced a new intrusion detection model
that used a GA-based feature selection approach with an existing fuzzy SVM for effective
classification. The method was evaluated on the KDD-Cup 99 database, and it increased
detection accuracy while reducing false alarms. The detection accuracy rate for this tech-
nique was 98.51%. Murugan et al. [26] suggested a system for enhanced intrusion detection
that obtained the best features by using the random harmony search (RHS) optimization
method. Restricted Boltzmann Machines were used as classifiers to detect distributed
denial of service (DDoS) attacks. Using the 23 best features from the KDD-Cup 99 dataset,
the system had an accuracy of 99.92% and a false negative rate (FNR) of 0.11.

Priya et al. [25] suggested the DNN (Deep Neural Network) for IoMT (Internet of
Medical Things) networks to recognize and forecast unforeseen cyberattacks to construct
a dependable and productive IDS. The suggested DNN framework improved accuracy
while reducing computation time by 32%, enabling faster identification of post-intrusion
impacts in essential cloud computing. The advancement of networks has always been
linked to advances in information technology, but the internet economy is growing due to
the Internet of Things. SaiSindhuTheja et al. [27] proposed a denial-of-service detection
system that combined the Crow Search Algorithm and opposition-based learning methods
into the Oppositional Crow Search Algorithm. The suggested algorithm is used in the
feature selection process to detect cyberattacks in the cloud environment. The Recurrent
Neural Network (RNN) was used to classify features. The precision, F-measure, accuracy,

Sensors 2022, 22, 1396 6 of 23

and recall parameters were used to evaluate the method using the KD-cup 99 dataset. The
suggested detection technique exceeded the results of current studies in all four parameters,
with a high accuracy of 94.12%, 98.18% precision, 95.13% recall, and an F-measure of 93.56%.

Anjum Nazir et al. [63] introduced Tabu Search–Random Forest (TS–RF), a novel
feature selection approach. The TS algorithm executes the attribute search, while the
RF approach is used as the learning mechanism in the TS–RF wrapper-based feature
extraction technique. The authors used the UNSW-NB15 dataset to test the performance
of their model. The accuracy and false positive rate (FPR) were the two most important
performance indicators. According to the data, the TS–RF, in conjunction with the RF
classifier, achieved an accuracy of 83.12% and an FPR of 3.7%. Although the findings are
promising, the authors admitted that they did not consider the UNSW-NB15 dataset’s class
imbalance problem.

3. Background
3.1. FS Problem Formulation

The mathematical modeling of FS is presented in this section. Generally, the classifica-
tion (i.e., supervised learning) of a dataset has NS × NF dimensions, where NS represents
the total number of samples and NF denotes the number of features. The primary goal of
the FS algorithm is to select a subset S from the total number of features (NF), where the
dimension of S is less than NF. The following objective function can be utilized to achieve
the subset of features:

Fit = λ× γS + (1− λ)×
(
|S|
NF

)
(1)

where γS denotes the classification error using S, the selected features are represented by

|S|, and λ is applied to maintain the balance between
(
|S|
NF

)
and γS.

3.2. Gorilla Troop Optimization

Gorilla Troop Optimization (GTO) is a new metaheuristic technique inspired by goril-
las’ group behavior, in which five methods are simulated. Here, a specific mathematical
mechanism is presented, with a full description of both the exploration and exploitation
phases. In the exploration phase, three techniques are applied. The first is transmigration
to an unknown place to increase the exploration of the GTO algorithm, the second tech-
nique involves transferring to another gorilla, and the GTO algorithm’s third technique is
efficient transmigration across a known location to expand exploration. Two techniques are
utilized in the exploitation procedure: observing the silverback and competing for mature
females [30].

Phase 1: Exploration
In GTO, all gorillas are considered as possible solutions. During each optimizing

operation, the best solution is identified as a silverback gorilla. In the exploration phase,
three main strategies are used: initialization at an unknown location to increase GTO
exploration, migration towards a well-known position to improve the GTO’s ability to
search for a range of optimization spaces, and transmigration towards other gorillas. These
three strategies work as follows: when rand is less than parameter (p), transmigration
to an unknown position is chosen. Moreover, if rand ≥ 0.5, the moving towards other
gorillas’ strategy is picked, whereas migration to a known place is activated if rand is less
than 0.5. All strategies utilized in the exploration process are mathematically described in
Equation (2).

XY(t + 1) =

(UB− LB)× r1 + LB, rand < p

(r2 − C)×Yr(t) + L× H, rand ≥ 0.5

Y(i)− L× (L× (y(t)− XYr(t)) + r3 × (Y(t)− XYr(t))), rand < 0.5

(2)

Sensors 2022, 22, 1396 7 of 23

where Y(t) denotes the gorilla’s current position vector and XY(t + 1) is the position vector
of candidate gorilla for the next t iterations. Furthermore, each iteration updates the values
of r1, r2, r3, and rand. The random values are selected between 0 and 1. For optimization,
the parameter (p) must be supplied in the range (0, 1) to show the probability of selecting
the migration to an unknown position strategy. The parameter s Yr and XYr represent
one gorilla from the entire population and the vector of the candidate gorilla’s solution
that can be assigned at random, respectively. The upper bound and lower bound of the
variables are represented by UB and LB, respectively. One of the candidate gorilla’s position
vectors is chosen at random and contains the positions updated in each phase. Finally,
Equations (3), (5) and (6) are used to derive C, L, and H, respectively.

C = F×
(

1− It
MaxIt

)
(3)

F = cos(2× r4) + 1 (4)

L = C× l (5)

H = Z×Y(t) (6)

Z = [−C, C] (7)

where MaxIt represents the total number of iterations needed to achieve the optimized
solution, and Equation (4) is used to calculate F. The symbol cos defines the cosine operation
and r4 represents a random number in the range (0, 1). Equation (5) is used to calculate
L, where the random value I selects values between −1 and 1. To simulate silverback
leadership, we apply Equation (5). Equation (6) is used to determine H, while Equation (7)
is used to calculate Z, where Z denotes a random number in the problem in the range
(−C, C). In the final stage of the exploration phase, the cost of all XY solutions is computed,
and if the cost of XY(t) is lower than the cost of Y(t), the XY(t) solution will return the
solution Y(t) as the best option (silverback).

Phase 2: Exploitation
In GTO, the exploitation phase utilizes two strategies: observing the silverback and

competing for adult females. The silverback gorilla is the troop leader, making all the
decisions, directing the troop’s activities, and directing the gorillas to food sources. The
W parameter is used in the exploitation phase and must be specified before starting the
optimization process. If C ≥W is selected, the silverback procedure is used in Equation (3);
however, if C < W is selected, competition for mature females is used.

Case 1: If C > W is chosen, the first strategy is used. Equation (8) can be used to
represent this behavior mathematically.

XY(t + 1) = L×M× (Y(t)−Ysilverback) + Y(t) (8)

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

XYi(t)

∣∣∣∣∣
g) 1

8

(9)

g = 2L (10)

In Equation (8), Y(t) represents the position vector of a gorilla, while the silverback
gorilla’s position vector is represented by Ysilverback . L is also computed using Equation (5).
In Equation (9), the position vector of each candidate gorilla in t iterations is represented by
XYi(t). The total number of gorillas is denoted by N. Additionally, g and L are calculated
by using Equation (10).

Sensors 2022, 22, 1396 8 of 23

Case 2: If C < W, the phase will be reversed. When baby gorillas reach adulthood, they
compete ferociously with other males for mature females. Equation (11) can be used to
represent this behavior mathematically.

XY(i) = Ysilverback − (Ysilverback ×Q−Y(t)×Q)× A (11)

Q = 2× r5 − 1 (12)

A = β× E (13)

E =

{
N1, rand ≥ 0.5

N2, rand < 0.5
(14)

In Equation (11), the best solution is Ysilverback, while the gorilla’s present position
vector is Y(t). Q denotes the force of impact and is computed using Equation (12). In
Equation (12), r5 represents a range of random numbers between 0 and 1. In Equation (13),
the level of violence is determined in a conflict by calculating a coefficient vector. β
represents a parameter in Equation (13) that must be set before starting the optimization
process. E is calculated by Equation (14) and is utilized to mimic the consequence of
violence on the dimensions of the solutions. The random value between the range 0 and
1 is represented by rand. In the final stage of the exploitation phase, the complexity of
all XY solutions is evaluated, and if the cost of XY(t) is less than the cost of Y(t), the
XY(t) solution will update the solution Y(t) and give the best option (silverback). The
pseudocode for the GTO algorithm is presented in Algorithm 1, which shows how it works.

Algorithm 1: GTO Pseudocode.

Inputs: Maximum number of iterations T, population size N, and parameters p and β

Outputs: Gorilla’s location and the objective value
Initializing the population of random size Yi (i = 1, 2, . . . , N)
Determine the suitable parameters of the gorilla
while (terminating condition is not achieved) do

Use Equation (3) for updating the value of C
Use Equation (5) for updating the value of L
for (all gorillas (Yi)) do

By using Equation (1) update the location of the gorilla
end for
The objective values of gorillas are determined
if XY produces better results than Y, update them
Set Ysilverback as the best position of the silverback
for (each gorilla (Yi)) do

if (C ≥W) then
Update the gorilla’s location using Equation (8)

Else
Update the gorilla’s location using Equation (11)

End if
end for
The objective values of the gorilla are determined
If New solutions provide better results than previous ones, update those solutions

Set Ysilverback as the best location of the gorilla (silverback)
end while
Return YBestGorilla, bestFitness

3.3. The Bird Swarm Algorithm

The Bird Swarm Algorithm (BSA) [29], inspired by the social interactions and behav-
ior of swarms of birds, solves optimization problems by simulating feeding, flight, and
vigilance compartments. The social behaviors of birds can be boiled down to five simple
rules, which are described below:

Sensors 2022, 22, 1396 9 of 23

• Rule 1: There are two possible states for each bird: vigilance and foraging.
• Rule 2: In the foraging mode, each bird keeps track of and remembers its own best

experience as well as the best experience within the swarm in terms of food positions.
This information will have an impact on its mobility and food search path.

• Rule 3: Each bird competes to move closer to the flock’s center in the vigilance state,
assuming that birds with large reserves are closer to the flock’s center. Predators are
less likely to attack birds near the center.

• Rule 4: Birds travel from one location to the next, and they alternate between producing
and foraging. The algorithm considers that the birds with the most reserves are
producers and those with the least are foragers. On the other hand, other birds are
randomly labeled as producers or foragers.

• Rule 5: Producers are always on the lookout for new sources of food. The scroungers
chase a producer at random in search of food.

The following are the mathematical expressions for the aforementioned rules.

3.3.1. Foraging Behavior

Individuals and groups of birds explore for food according to their own experiences
and the collective experience of other birds in the swarm. The following is a mathematical
representation of Rule 2:

xt+1
i,j = xt

i,j + (pi,j − xt
i,j)× C× rand(0, 1) + (gj − xt

i,j)× S× rand(0, 1) (15)

where j represents a set of uniformly distributed independent numbers in the range (0, 1).
The two positive numbers S and C stand for social and cognitive accelerated coefficients,
respectively. Pi,j is the ith bird’s best previous location, and gj is the previous best shared
position of the swarm.

3.3.2. Vigilance Behavior

Given Rule 3, each bird will attempt to proceed to the middle of the swarm and engage
in surveillance behavior; as a result, each bird will not accelerate to the middle of the swarm
immediately. This can be stated as follows:

xt+1
i,j = xt

i,j + A1(meanj − xt
i,j)× rand(0, 1) + A2(pk,j − xt

i,j)× rand(−1, 1) (16)

A1 = a1× exp
(
−pFiti

sumFit + ε
× N

)
(17)

A2 = a2× exp
((

pFiti − pFitk
|pFitk − pFiti|+ ε

)
N × pFitk
sumFit + ε

)
(18)

where k denotes a positive number between 1 and N that is chosen at random. The best
fitness value at the ith position is pFiti and sumFit is the total of the swarms’ best objective
values. ε is utilized to ignore the zero-division error. The place of the jth average element of
the entire swarm is the mean j In this expression, a1 and a2 represent the positive constant
values (0, 2). Given that all birds desire to be in the middle of the swarm, the outcome of
rand (0, 1) and A1 should not exceed 1. When a bird travels towards the swarm’s center,
A2 is utilized to imitate the immediate effect caused by a specified interference.

3.3.3. Flight Behavior

Given Rule 4, birds can fly to a different location in reaction to predation risks, for
foraging or for any other purpose. The birds will resume their search for food at the new
location. The scroungers try to consume food found by the producers, while the producers
hunt for food patches. The following are examples of producers’ and scroungers’ behavior:

xt+1
i,j = xt

i,j + randn(0, 1)× xt
i,j (19)

Sensors 2022, 22, 1396 10 of 23

xt+1
i,j = xt

i,j + (xt
k,j − xt

i,j)× FL× rand(0, 1) (20)

To simplify, we suppose that each bird moves towards another position in the unit
interval FQ. Here, FQ denotes a positive number. Algorithm 2 presents the pseudocode for
the BSA algorithm and demonstrates how it works.

Algorithm 2: Bird Swarm Algorithm (BSA) Pseudocode.

Input: N: number of birds (individuals) in the given population
M: maximum iterations of the algorithm
FQ: the frequency of flight behavior by individuals
P: the foraging probability of finding food
Define five constant values: S, C, FL, a1, a2
t = 0 for initializing the population size and determining the relevant variables
Approximate the fitness value of N individuals or birds, and obtain a robust solution
While (t < M)

If (t % FQ 6= 0)
For i = 1:N

If rand ≤ P
Use Equation (15) for birds foraging for food

Else
Use Equation (16) for birds undertaking surveillance

End if
End for

Else
Producers and scroungers: The swarm is divided into two sections:
For i = 1 : N

If i = producer
Equation (19) determines “producing”

Else
Equation (20) determines “scrounging”

End if
End for

End if
Determine new solutions
If better results are obtained using new solutions than the previous ones, replace them
Obtain the ongoing best solution
t = t + 1

End while
Output: A bird or individual from the given population with the best fitness function

4. Proposed Hybrid GTO-BSO for Feature Selection

This section explains the structure of the proposed GTO-BSA method, which combines
both the GTO and BSA algorithms. Like any metaheuristic, GTO suffers from a balance
between exploitation and exploration, which leads to it being trapped in a local optimum.
This section describes our proposed hybrid GTO-BSA to tackle this weakness. To enhance
the global searching and local searching abilities, we propose a novel improvement of
the GTO algorithm using four strategies: (1) the control randomization (CR) parameter
and (2) an advanced nonlinear transfer function to balance exploration and exploitation,
(3) different settings in the GTO exploration phase, and (4) a novel local updating position
strategy based on the BSA algorithm.

• Strategy 1: Control randomization (CR) parameter.

Fine-tuning of randomization parameters ensures the search algorithm’s good behav-
ior and plays a vital role in achieving the balance between the exploration and exploitation
phases. The GTO and BSA algorithms are missing this randomization control. In this study,
a control randomization (CR) parameter is presented that generates a variable number

Sensors 2022, 22, 1396 11 of 23

between positive and negative values. This allows a good scan of the given search space
and avoids stagnation in the sub-local optimal solution. CR is given by:

CR = 2× rand− 1 (21)

• Strategy 2: Advanced nonlinear transfer function

The transfer function plays a major role in transferring the search algorithm between
the exploration and exploitation phases; the success of balancing between them is affected
by the behavior of the transfer function. The linear transfer function fails in achieving
this balance in many problems because it controls the behavior of the algorithm during
iterations as follows: (a) first half of the iterations for the exploration phase and (b) second
half of iterations for the exploitation phase only. Therefore, it is a good idea to switch
between both phases during iterations so that the algorithm can get out of suboptimal areas
if they get stuck in it during iterations.

In the proposed GTO-BSA method, the linear transfer function was replaced by a new
one that prevents it from struggling into a local optima since the old transfer one may be
trapped in the local region during the last half of iteration (as it totally used exploitation
equations). Therefore, an advanced nonlinear transfer function (NF) is proposed that
transfers between the exploration and exploitation phases properly. NF is given by:

NF = sin
(

ϕ− it
MaxIt

)
(22)

where ϕ is a constant (≥ 1), while it and MaxIt are the current iteration and total number
of iterations, respectively.

• Strategy 3: Different settings of the GTO exploration phase.

The exploration phase of the GTO algorithm depends on visiting random locations to
explore the given region. As demonstrated in Equation (2), the GTO algorithm has three
strategies in the exploration phase. Here, we simplify the exploration phase by using only
one strategy of the GTO exploration phase to decrease the time demand and, at the same
time, to enhance it to satisfy the requirements of good exploration behavior. The original
GTO’s third exploration strategy is calculated by Equation (2).

In the proposed GTO-BSA method, this equation is modified by (1) control random-
ization using CR in Equation (2), (2) removing the random parameter r3, and (3) NF is
added in Equation (22) is added to achieve the balance as described above. Accordingly,
the proposed exploration phase is as follows:

XY(t + 1) = Y(t)− CR× NF× L× [L× (Y(t)− XYr(t)) + (Y(t)−YXr(t))] (23)

• Strategy 4: Propose a new exploitation phase based on the BSA algorithm. The GTO
exploitation phase consists of two strategies: observing the silverback and competing
for mature females.

The first strategy is demonstrated in Equation (8), in which the silverback
guides the agents without any deviation, which is good exploitation behavior.
However, this equation does not contain a randomization control parameter,
which is important in all phases of the metaheuristic algorithm. Accordingly,
this equation is enhanced as follows:

XY(t + 1) = Y(t) + CR× NF× L× |Y(t)−Ysilverback(t)| (24)

where NF is a nonlinear transfer function that is used to gradually move the
agents toward the global optimum location. The parameter (M) is removed
from the original equation, as it may deviate the agent from the best location;
also in addition, the absolute value is taken so as not to affect the control
randomization and NF parameter.

Sensors 2022, 22, 1396 12 of 23

The second strategy is illustrated in Equation (11). This equation simulates
competition between adult gorillas for mature females. It is obvious from
this equation that the agents are guided by any unknown location that results
from multiplying the best position by the variable Q, which can affect the
convergence speed. To avoid this issue, we introduce a new local strategy to
the GTO to improve the exploitation performance of the GTO through the BSA
algorithm. This improvement combines the updating technique of the BSA
(Equation (16)) into the structure of the GTA. The aim of this step is to add
more flexibility to the GTA algorithm when exploring the search domain and
improving its diversity, which helps in quickly reaching the optimal value.

The flowchart and pseudocode of the proposed GTO-BSA method were illustrated in
Figure 1 and Algorithm 3, respectively.

Algorithm 3: Proposed GTO-BSA Pseudocode.

Inputs: Maximum number of iterations T, population size N
Outputs: Gorilla’s location and the objective value
% Initialization%
Initialize the population of random size Yi (i = 1, 2, . . . , N)
Determine the suitable parameters of the gorilla
%Main Loop%
while (terminating condition is not achieved) do

Use Equation (3) for updating the value of C
Use Equation (5) for updating the value of L
% Exploration Procedure%
for (all gorillas (Yi)) do

By using Equation (23), update the location of the gorilla
end for
The objective values of gorillas are determined
if XY produces better results than Y, update them
Set Ysilverback as the best position of the silverback
% Exploitation Procedure%
for (each gorilla (Yi)) do

if (C ≥W) then
Use Equation (24) to update the gorilla’s location

Else
Use Equation (16) to update the gorilla’s location (BSA algorithm)

End if
end for
The objective values of the gorilla are determined
if new solutions provide better results than previous ones, update those solutions

Set Ysilverback as the best location of the gorilla (silverback)
end while
Return YBestGorilla, bestFitness

Computational Complexity of GTO-BSA Method

Computational complexity is one of the most important aspects to consider when
evaluating the performance of an algorithm. The computational cost of the proposed
approach can be gleaned from a variety of factors, including the size of the population,
the maximum number of iterations, problem dimensions, and the updating mechanism.
GTOBSA is a hybrid algorithm that combines both GTO and BSA. Therefore, computational
complexity is O(GTOBSA) = O(GTO) + O(BSA).

O(GTOBSA) = O(initialization) + T × (O(evaluation) + O(Updating)

• The computational complexity of initialization: O(N × D)
• The computational complexity of evaluation of an individual: O(N)

Sensors 2022, 22, 1396 13 of 23

• Updating process can be calculation as follows O(T × N × D)

Accordingly, the computational complexity of the proposed GTO-BSA algorithm can
be expressed as follow:

O(GTOBSA) = O(ND) + T × (O(N) + O(ND)) = O(T × N × D)

where T is the maximum number of iterations, N is the population size, and D is the
problem dimension.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 24

is important in all phases of the metaheuristic algorithm. Accordingly, this equa-
tion is enhanced as follows: 𝑋𝑌(𝑡 + 1) = 𝑌(𝑡) + 𝐶𝑅 × 𝑁𝐹 × 𝐿 × |𝑌(𝑡) − 𝑌௦௩(𝑡)| (24)

where 𝑁𝐹 is a nonlinear transfer function that is used to gradually move the
agents toward the global optimum location. The parameter (𝑀) is removed from
the original equation, as it may deviate the agent from the best location; also in
addition, the absolute value is taken so as not to affect the control randomization
and 𝑁𝐹 parameter.

o The second strategy is illustrated in Equation (11). This equation simulates com-
petition between adult gorillas for mature females. It is obvious from this equa-
tion that the agents are guided by any unknown location that results from mul-
tiplying the best position by the variable 𝑄, which can affect the convergence
speed. To avoid this issue, we introduce a new local strategy to the GTO to im-
prove the exploitation performance of the GTO through the BSA algorithm. This
improvement combines the updating technique of the BSA (Equation (16)) into
the structure of the GTA. The aim of this step is to add more flexibility to the
GTA algorithm when exploring the search domain and improving its diversity,
which helps in quickly reaching the optimal value.

The flowchart and pseudocode of the proposed GTO-BSA method were illustrated
in Figure 1 and Algorithm 3, respectively.

Figure 1. Flow chart of the proposed Gorilla Troops Optimizer (GTO)-Bird Swarm algorithm
(BSA).

Figure 1. Flow chart of the proposed Gorilla Troops Optimizer (GTO)-Bird Swarm algorithm (BSA).

5. Experimental Results and Discussion

In this section, the quality of the proposed GTO-BSA method to determine the optimal
subset of features is assessed by comparing it with other metaheuristic feature selection
algorithms, including the original GTO [30], BSA [31], HGS [64], MVO [65], HHO [66],
and PSO [23]. All these algorithms are applied to four IoT intrusion datasets. These
algorithms have the same parameter setting as defined in Table 1. Moreover, the K-nearest
neighborhood (K-NN) is used as a classifier. The experiment was performed on an Intel(R)
Core (TM) i7-6700HQ CPU (2.60 GHz; 2.59 GHz with 64 GB). In the Windows 10 operating
system, the programming environment is MATLAB R2021b.

Sensors 2022, 22, 1396 14 of 23

Table 1. Parameter settings.

Algorithms Parameter Values

PSO
Cognitive component (c1) 2

Social component (c2) 2
Inertia weight 0.2–0.9

BSA

Cognitive coefficient (C) 1.5
Social accelerated coefficient (S) 1.5

Positive constants a1 and a2 1
Constant value (P) [0.8, 1]
Flowing factor (FL) [0.5, 0.9]

Flight behaviors (FQ) 3

MVO
Wormhole existence probability (WEP) [0.2, 1]

Traveling distance rate (TDR) [0.6, 1]

HHO Beta (β) 1.5

GTO
β 3
W 0.8
p 0.03

HGS – –

Common settings

Population size (N) 30
Maximum number of iterations 100
Number of independent runs 25

Problem dimensions Number of features

5.1. Description of the Datasets

The proposed model was tested using four datasets: NSL-KDD, CICIDS-2017, UNSW-
NB 15, and Bot-IoT Dataset. Most researchers use these datasets to evaluate the performance
of proposed systems.

5.1.1. NSL-KDD Dataset

The NSL-KDD dataset was proposed as a solution to some of the KDDCUP’99 dataset’s
fundamental issues. The NSL-KDD has the following advantages over the original KDD
dataset: It removes redundant data from the train set, ensuring that classifiers are not
skewed toward more common records. The NSL-KDD dataset contains 41 features and
5 classes (normal and 4 forms of attack: Dos, Probe, R2L, and U2R) (Table 2) [67,68].

Table 2. NSL-KDD dataset attack types.

Attack Type Train Test

Normal 67,343 9710
DOS 45,927 7458
PRP 11,656 2422
R2L 995 2887
U2R 52 67
Total 125,973 22,544

5.1.2. CICIDS-2017 Dataset

The Canadian Institute for Cybersecurity (CIC) released the CICIDS-2017 dataset,
covering common benign and up-to-date attacks. It also includes the results of a network
traffic analysis performed by CICFlowMeter, which included flows labeled on the basis of
the date, the source and destination IPs, the source and destination ports, protocols, and
assaults. It is one of the most recent intrusion-detection datasets, and it includes current
attacks, including DDoS, brute force, XSS, and SQL injection attacks (Table 3). This dataset
has 2,830,743 records on 8 files, with each record including 78 distinct features with their
label [69].

Sensors 2022, 22, 1396 15 of 23

Table 3. CIC-IDS2017 dataset attack types.

Attack Type Train Test

Benign 727,397 163,572
DDOS 112,901 25,388

FTP-Patator 6997 1574
PortScan 140,043 31,492

SSH-Patator 5201 1169
Web Attack Brute Force 1329 299

Web Attack XSS 575 129
Web Attack Sql Injection 19 4

Total 904,056 223,627

5.1.3. UNSW-NB15 Dataset

The UNSW-NB15 dataset has been created by extracting a combination of everyday
normal and contemporary network traffic attack activities using an IXIA PerfectStorm tool.
Using the tcpdump utility (pcap files), 100 GB of raw network traffic was captured. Each
pcap file is 1000 MB in size to make packet analysis easier. In a parallel implementation, the
Argus and Bro-IDS methodologies and 12 procedures were used to create 49 features with
the class label. There are 2,540,044 records in this dataset, which are housed in 4 CSV files.
A portion of this dataset was also separated into a training and testing set. The training
set consisted of 175,341 records, whereas the testing set included 82,332 records from all
attack kinds and standard records. The UNSW-NB15 dataset’s associated attacks were
divided into nine categories as follows: Fuzzers, Analysis, Backdoor, DOS, Exploit, Generic,
Reconnaissance, Shellcode, and Worm [70].

5.1.4. BoT-IoT Dataset

The Bot-IoT [71], dataset was created in the Cyber Range Lab of UNSW Canberra
Cyber using Industry IoT (IIoT) smart-home equipment to collect IIoT traffic samples.
Thermostats, motion-activated lighting, garage door openers, refrigerators and freezers,
and weather-monitoring systems are examples of smart IIoT products. The data are
available in two formats: the complete version, which comprises over 72 million entries,
and the 10% version, which contains over 3.6 million records (Table 4).

Table 4. BoT-IoT dataset attack types.

Attack Type Train Test

DDOS 112,901 25,388
DOS 1,320,148 330,112

Reconnaissance 72,919 18,163
Normal 370 107

Theft 65 14
Total 2,934,817 733,705

Note: The proposed GTO-BSA method will be tested on 5% of the full dataset in our
experiments.

5.2. Performance Measures

To test the proposed GTO-BSA approach, we used a variety of evaluation methods.
Here, the confusion matrix is explained in detail, where TP and TN stand for true positive
and true negative, respectively; the abbreviations FP and FN stand for false positive and
false negative, respectively. These are metrics used to evaluate a classifier’s accuracy,
specificity, and sensitivity [29].

Accuracy =
TP + TN

TP + FP + FN + TN
(25)

Sensors 2022, 22, 1396 16 of 23

Sensitivity{recall} =
TP

TP + FN
(26)

Specificity =
TN

TN + FP
(27)

• Average accuracy (AVGAcc): This metric is used to calculate the rate at which data are
classified correctly.

• Because each procedure is repeated 30 times (Nr = 30), the AVGAcc is calculated
as follows:

AVGAcc =
1

Nr
∑Nr

k=1 Acck
Best (28)

• The average fitness value (AVGFit) is used to evaluate the performance of an applied
method, and it is calculated using the following equation to calculate the classification
error rate and reduce the selection ratio.

AVGFit =
1

Nr
∑Nr

k=1 Fitk
Best (29)

• The average number of features chosen (AVG| f sBest |): This measure is used to deter-
mine the ability of a method to minimize the number of features in an overall number
of runs, and it is calculated as follows:

AVG| f sBest| =
1

Nr
∑Nr

k=1

∣∣∣ f sk
Best

∣∣∣ (30)

• Average computation time (AVGTime): This metric is used to find the average CPU
time(s), as shown in the equation below.

AVGTime =
1

Nr
∑Nr

k=1 Timek
Best (31)

• Standard deviation (STD): STD is used to evaluate each method’s quality and analyze
the data obtained in multiple runs. It is calculated as follows:

STDY =

√
1

Nr
∑Nr

k=1

(
Yk

Best − AVGY
)2 (32)

Note: STDY is calculated for each of the following metrics: accuracy, fitness, time,
number of selected features, sensitivity, and specificity.

5.3. Results and Discussion

The experimental results are presented and discussed in this section. The proposed
GTO-BSA was evaluated on four well-known IoT-IDS datasets. The performance of the
proposed GTO-BSA was compared with six algorithms: GTO, BSA, HGS, MVO, HHO,
and PSO.

Table 5 illustrates the outcomes of the comparison methods based on the fitness
function’s mean and standard deviation. In comparison to other published methods, the
proposed GTO-BSA got better results. On three datasets, it achieved the mean best results
(NSL-KDD, CICID2017, and UNSW-NB15). The second significant indicator is that the
HHO algorithm outperforms other algorithms in the BoT-IoT dataset of mean fitness
function values. The proposed GTO-BSA algorithm is the second-best algorithm for this
dataset. Another important aspect for evaluating algorithms’ performance is done by
inspecting the STD value. Another important aspect of assessing algorithms’ performance
is examining the STD value. A low STD value indicates that the algorithm achieved close
values across multiple runs with a low distribution. GTO-BSA achieved the best STD value
in three out of four datasets, indicating that GTO-BSA is a robust method for most datasets.

Sensors 2022, 22, 1396 17 of 23

Table 5. The performance of the GTO-BSA against other competitors in terms of fitness in intrusion
detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 0.047193 0.049763 0.06053 0.056116 0.050386 0.049931 0.053031
STD 0.000862 0.002386 0.009632 0.005113 0.001606 0.001654 0.005204

CICIDS-2017
Mean 0.013246 0.016835 0.025962 0.025408 0.019148 0.016953 0.020728
STD 0.002095 0.005059 0.005019 0.006644 0.002374 0.003776 0.002628

UNSW-NB15
Mean 0.290922 0.292833 0.34572 0.368174 0.302974 0.293527 0.331793
STD 0.010444 0.018691 0.031901 0.050562 0.023094 0.013572 0.034335

BoT-IoT
Mean 0.053071 0.053622 0.069689 0.067243 0.062369 0.048044 0.065001
STD 0.009179 0.009984 0.007162 0.009116 0.009805 0.004672 0.007722

In terms of accuracy, a comparison of accuracy results between GTO-BSA and other
algorithms that are assessed in the same conditions are depicted in Table 6. The exper-
imental results reveal that the GTO-BSA is superior in three out of four datasets, while
HHO provided the best results on only the BoT-IoT dataset. It is important to highlight
that GTO-BSA produced the second-best result on the BoT-IoT dataset. In comparison with
the conventional GTO and BSA algorithms, the GTO-BSA also gave increased performance.
The experimental results demonstrated that the proposed GTO-BSA method obtained the
most informative features with higher accuracy values. The same conclusion was reached
for sensitivity and specificity measures from Tables 7 and 8, respectively.

Table 6. The performance of the GTO-BSA against other competitors in terms of accuracy in intrusion
detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 0.955964 0.954293 0.944063 0.947906 0.95317 0.954399 0.950098
STD 0.000777 0.00233 0.00952 0.005163 0.001516 0.001287 0.005462

CICIDS-2017
Mean 0.987915 0.985261 0.976738 0.978577 0.983993 0.985158 0.982494
STD 0.001997 0.004112 0.004844 0.005967 0.002079 0.002972 0.002462

UNSW-NB15
Mean 0.710138 0.707246 0.654365 0.632616 0.697934 0.706394 0.669214
STD 0.010759 0.018133 0.032073 0.050747 0.023381 0.012971 0.034122

BoT-IoT
Mean 0.948525 0.947912 0.932469 0.935108 0.939358 0.953266 0.937036
STD 0.008635 0.009517 0.00701 0.00871 0.009511 0.004285 0.007442

Table 7. The performance of the GTO-BSA against other competitors in terms of sensitivity in
intrusion detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 0.914219 0.903207 0.900309 0.894513 0.898184 0.905912 0.88949
STD 0.006015 0.015608 0.011713 0.021994 0.017995 0.012041 0.017191

CICIDS-2017
Mean 0.972644 0.961626 0.943389 0.955547 0.967705 0.967705 0.965805
STD 0.004299 0.00974 0.014617 0.020866 0.005613 0.005613 0.009009

UNSW-NB15
Mean 0.815385 0.778846 0.751923 0.682692 0.780769 0.786538 0.773077
STD 0.052656 0.041881 0.079914 0.08583 0.089989 0.020865 0.090738

BoT-IoT
Mean 0.992832 0.98853 0.951254 0.962007 0.967025 0.999283 0.964875
STD 0.015024 0.019264 0.019005 0.02434 0.026485 0.002776 0.023511

Sensors 2022, 22, 1396 18 of 23

Table 8. The performance of the GTO-BSA against other competitors in terms of specificity in
intrusion detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 0.97365 0.973865 0.970727 0.974295 0.974897 0.973306 0.975585
STD 0.001684 0.003236 0.004379 0.004325 0.00297 0.001927 0.002112

CICIDS-2017
Mean 0.996798 0.965948 0.994022 0.994236 0.996798 0.996798 0.99605
STD 0.001977 0.056202 0.003565 0.001977 0.001095 0.00135 0.001014

UNSW-NB15
Mean 0.877049 0.802766 0.867572 0.840164 0.87833 0.822234 0.866291
STD 0.019192 0.118543 0.024195 0.050314 0.018843 0.102639 0.018255

BoT-IoT
Mean 0.962278 0.650047 0.65042 0.927731 0.85845 0.511111 0.928478
STD 0.134499 0.2545 0.255047 0.183337 0.238603 0.135247 0.183633

Table 9 shows the numbers of selected features by the GTO-BSA and the competitor
algorithms that treat the same datasets in terms of the average number of selected features.
By examining the results of Table 9, we conclude that GTO-BSA achieved the best average
number of selected features compared to other optimizers in two datasets out of four
datasets used in this study. The HHO method obtained the best results in two datasets
(UNSW-NB15 and BoT-IoT). By inspecting standard deviation, GTO-BSA is a robust method
for most of the datasets relative to other methods.

Table 9. The performance of the GTO-BSA against other competitors in terms of the number of
selected features in intrusion detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 14.75 18.5 21.125 18.625 16.5 19.625 14.875
STD 1.752549 3.162278 4.290771 2.263846 2.725541 3.583195 2.799872

CICIDS-2017
Mean 10 17.5 22.875 32.75 25.75 17.625 26.5
STD 2.390457 8.124038 7.337526 6.670832 4.832923 7.386039 3.422614

UNSW-NB15
Mean 16.625 12.625 14.875 18.75 16.5 12 18.125
STD 2.445842 4.274091 4.48609 3.654743 2.203893 5.606119 4.015595

BoT-IoT
Mean 2.533333 2.466667 3.4 3.6 2.8 2.133333 3.2
STD 0.833809 0.743223 1.055597 1.121224 0.560612 0.516398 0.676123

The computational time of the comparing methods is shown in Table 10. The HGS
method has the lowest computational time and is the fastest compared to the other methods.
Because of its combined structure, the proposed GTO-BSA takes some time to discover the
best solution; however, this type of problem does not require real-time execution.

Table 10. The performance of the GTO-BSA against other competitors in terms of computational
time in intrusion detection datasets.

Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 10,205.83 9719.664 6515.84 661.7222 5441.159 12,476.16 4604.313
STD 1531.406 2136.192 1670.182 325.9167 1879.629 2498.787 1889.04

CICIDS-2017
Mean 2270.918 6988.469 5067.099 545.4723 6531.616 8062.423 6678.273
STD 221.0268 3199.149 1998.733 132.8222 1380.878 3804.885 1025.475

UNSW-NB15
Mean 161.2396 113.3642 74.8803 12.57722 77.87134 146.2428 80.89471
STD 4.890585 9.515462 8.096915 10.47935 3.576578 18.83938 4.238727

BoT-IoT
Mean 145.7462 108.6355 68.978 10.74187 70.17324 144.7192 71.09266
STD 4.535463 5.233262 6.166675 8.576165 2.955785 5.982527 3.687295

Sensors 2022, 22, 1396 19 of 23

Figure 2 depicts the convergence curve of the proposed GTO-BSA and its competitor
algorithms using the four IoT-IDS datasets. The average value of objective functions
acquired across 30 different trials of algorithms is used to plot these convergence curves.
The x-axis shows the increase in iterations, while the y-axis displays the mean values of the
goal function. It can be observed that the developed GTO-BSA method, which integrates
the GTO and BSA, increases the rate of convergence towards optimal solutions.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 24

The computational time of the comparing methods is shown in Table 10. The HGS
method has the lowest computational time and is the fastest compared to the other meth-
ods. Because of its combined structure, the proposed GTO-BSA takes some time to dis-
cover the best solution; however, this type of problem does not require real-time execu-
tion.

Table 10. The performance of the GTO-BSA against other competitors in terms of computational
time in intrusion detection datasets.

 Measures
Algorithms

GTO-BSA GTO BSA HGS MVO HHO PSO

NSL-KDD
Mean 10,205.83 9719.664 6515.84 661.7222 5441.159 12,476.16 4604.313
STD 1531.406 2136.192 1670.182 325.9167 1879.629 2498.787 1889.04

CICIDS-2017
Mean 2270.918 6988.469 5067.099 545.4723 6531.616 8062.423 6678.273
STD 221.0268 3199.149 1998.733 132.8222 1380.878 3804.885 1025.475

UNSW-NB15
Mean 161.2396 113.3642 74.8803 12.57722 77.87134 146.2428 80.89471
STD 4.890585 9.515462 8.096915 10.47935 3.576578 18.83938 4.238727

BoT-IoT
Mean 145.7462 108.6355 68.978 10.74187 70.17324 144.7192 71.09266
STD 4.535463 5.233262 6.166675 8.576165 2.955785 5.982527 3.687295

Figure 2 depicts the convergence curve of the proposed GTO-BSA and its competitor
algorithms using the four IoT-IDS datasets. The average value of objective functions ac-
quired across 30 different trials of algorithms is used to plot these convergence curves.
The x-axis shows the increase in iterations, while the y-axis displays the mean values of
the goal function. It can be observed that the developed GTO-BSA method, which inte-
grates the GTO and BSA, increases the rate of convergence towards optimal solutions.

The boxplot analysis can show the data distribution properties. Boxplots are graph-
ical representations of data distributions in three quartiles: upper, lower, and middle. The
algorithm’s minimum and maximum data points, which constitute the whisker’s edges,
are the lowest and highest data points reached by the method. The ends of the rectangles
define the lower and upper quartiles. There is a strong correlation between the data points
if the boxplot is narrow. The boxplot of the competitive algorithms over four datasets is
shown in Figure 3. In most of the datasets, the proposed GTO-BSA algorithm’s boxplots
are highly narrow. They have the lowest values compared to the other techniques’ distri-
butions.

(a) (b)

Sensors 2022, 22, x FOR PEER REVIEW 20 of 24

(c) (d)

Figure 2. The convergence curves for the proposed algorithm and the other methods. (a) NSL-
KDD; (b) CICID2017; (c) UNSW-NB15; (d) BoT-IoT.

(a) (b)

(c) (d)

Figure 3. The boxplot for the proposed algorithm and the other methods. (a) NSL-KDD; (b) CICIDS-
2017; (c) UNSE-NB15; (d) BoT-IoT.

Overall, it is clear from the results that the proposed GTO-BSA method performs
much better than the original GTO algorithm in most of the used datasets. Through ex-
periments, the GTO-BSA method proved its efficiency in solving feature selection prob-
lems.

Figure 2. The convergence curves for the proposed algorithm and the other methods. (a) NSL-KDD;
(b) CICID2017; (c) UNSW-NB15; (d) BoT-IoT.

The boxplot analysis can show the data distribution properties. Boxplots are graphical
representations of data distributions in three quartiles: upper, lower, and middle. The
algorithm’s minimum and maximum data points, which constitute the whisker’s edges, are
the lowest and highest data points reached by the method. The ends of the rectangles define
the lower and upper quartiles. There is a strong correlation between the data points if the
boxplot is narrow. The boxplot of the competitive algorithms over four datasets is shown
in Figure 3. In most of the datasets, the proposed GTO-BSA algorithm’s boxplots are highly
narrow. They have the lowest values compared to the other techniques’ distributions.

Overall, it is clear from the results that the proposed GTO-BSA method performs much
better than the original GTO algorithm in most of the used datasets. Through experiments,
the GTO-BSA method proved its efficiency in solving feature selection problems.

Sensors 2022, 22, 1396 20 of 23

Sensors 2022, 22, x FOR PEER REVIEW 20 of 24

(c) (d)

Figure 2. The convergence curves for the proposed algorithm and the other methods. (a) NSL-
KDD; (b) CICID2017; (c) UNSW-NB15; (d) BoT-IoT.

(a) (b)

(c) (d)

Figure 3. The boxplot for the proposed algorithm and the other methods. (a) NSL-KDD; (b) CICIDS-
2017; (c) UNSE-NB15; (d) BoT-IoT.

Overall, it is clear from the results that the proposed GTO-BSA method performs
much better than the original GTO algorithm in most of the used datasets. Through ex-
periments, the GTO-BSA method proved its efficiency in solving feature selection prob-
lems.

Figure 3. The boxplot for the proposed algorithm and the other methods. (a) NSL-KDD; (b) CICIDS-
2017; (c) UNSE-NB15; (d) BoT-IoT.

6. Conclusions and Future Work

The specific nature of the Internet of Things (IoT) applications, which consist of
millions of sensors, leads to generating a massive amount of data. Moreover, from these
applications a critical issue arises in regard to guaranteeing the security and privacy of
these data. In recent years, a number of security solutions based on machine learning
(ML) have been presented, including intrusion detection systems (IDS). The presence of
redundant or irrelevant data affects the performance of ML algorithms. This research
aimed to present a novel feature selection (FS) approach by improving the performance
of Gorilla Troops Optimizer (GTO) using the algorithm for bird swarms (BSA), which is
named the GTO-BSA method. The performance of GTO was enhanced by adopting BSA,
which has a strong ability to find the feasible regions that provide the best solution. The
proposed GTO-BSA method’s performance was examined using four IoT-IDS datasets:
NSL-KDD, CICIDS-2017, UNSW-NB15, and BoT-IoT, and compared with other competitive
algorithms. Results from the experiments showed that the proposed GTO-BSA method
produced superior outcomes against numerous current metaheuristic algorithms, including
the original GTO and BSA, HGS, MVO, HHO, and PSO. It has achieved an accuracy of
95.5%, 98.7%, 81.5%, and 81.5% in the NSL-KDD, CICID2017, UNSW-NB, and BoT-IoT
datasets, respectively. In future work, the efficiency of the proposed GTO-BSA method can
be evaluated in different problems such as solving different multi-objective problems, ML
hyperparameters optimization, and multilevel threshold segmentation.

Sensors 2022, 22, 1396 21 of 23

Author Contributions: Conceptualization, R.R.M. and H.M.E.-B.; data curation, S.S.K.; formal
analysis, S.S.K., R.R.M. and F.A.H.; investigation, R.R.M. and H.M.E.-B.; methodology, S.S.K., R.R.M.
and F.A.H.; project administration, H.M.E.-B.; software, S.S.K., R.R.M. and F.A.H.; supervision, R.R.M.
and H.M.E.-B.; validation, R.R.M. and F.A.H.; visualization, S.S.K.; writing—original draft, S.S.K.;
writing—review and editing, S.S.K., R.R.M. and H.M.E.-B. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available online.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Hasnony, I.M.; Mostafa, R.R.; Elhoseny, M.; Barakat, S.I. Leveraging Mist and Fog for Big Data Analytics in IoT Environment.

Trans. Emerg. Telecommun. Technol. 2021, 32, e4057. [CrossRef]
2. Lee, I. Internet of Things (IoT) Cybersecurity: Literature Review and Iot Cyber Risk Management. Future Internet 2020, 12, 157.

[CrossRef]
3. Kushwah, G.S.; Ranga, V. Voting Extreme Learning Machine Based Distributed Denial of Service Attack Detection in Cloud

Computing. J. Inf. Secur. Appl. 2020, 53, 102532. [CrossRef]
4. Louvieris, P.; Clewley, N.; Liu, X. Effects-Based Feature Identification for Network Intrusion Detection. Neurocomputing 2013, 121,

265–273. [CrossRef]
5. Al-Jarrah, O.Y.; Alhussein, O.; Yoo, P.D.; Muhaidat, S.; Taha, K.; Kim, K. Data Randomization and Cluster-Based Partitioning for

Botnet Intrusion Detection. IEEE Trans. Cybern. 2016, 46, 1796–1806. [CrossRef]
6. Ashraf, J.; Keshk, M.; Moustafa, N.; Abdel-Basset, M.; Khurshid, H.; Bakhshi, A.D.; Mostafa, R.R. IoTBoT-IDS: A Novel Statistical

Learning-Enabled Botnet Detection Framework for Protecting Networks of Smart Cities. Sustain. Cities Soc. 2021, 72, 103041.
[CrossRef]

7. Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an Efficient Intrusion Detection System Based on Feature Selection and Ensemble
Classifier. Comput. Netw. 2020, 174, 107247. [CrossRef]

8. Wang, K.; Du, M.; Maharjan, S.; Sun, Y. Strategic Honeypot Game Model for Distributed Denial of Service Attacks in the Smart
Grid. IEEE Trans. Smart Grid 2017, 8, 2474–2482. [CrossRef]

9. Wang, K.; Du, M.; Sun, Y.; Vinel, A.; Zhang, Y. Attack Detection and Distributed Forensics in Machine-to-Machine Networks.
IEEE Netw. 2016, 30, 49–55. [CrossRef]

10. Wang, K.; Du, M.; Yang, D.; Zhu, C.; Shen, J.; Zhang, Y. Game-Theory-Based Active Defense for Intrusion Detection in Cyber-
Physical Embedded Systems. ACM Trans. Embed. Comput. Syst. 2016, 16, 1–21. [CrossRef]

11. De la Hoz, E.; de la Hoz, E.; Ortiz, A.; Ortega, J.; Prieto, B. PCA Filtering and Probabilistic SOM for Network Intrusion Detection.
Neurocomputing 2015, 164, 71–81. [CrossRef]

12. Du, M.; Wang, K.; Chen, Y.; Wang, X.; Sun, Y. Big Data Privacy Preserving in Multi-Access Edge Computing for Heterogeneous
Internet of Things. IEEE Commun. Mag. 2018, 56, 62–67. [CrossRef]

13. Du, M.; Wang, K.; Xia, Z.; Zhang, Y. Differential Privacy Preserving of Training Model in Wireless Big Data with Edge Computing.
IEEE Trans. Big Data 2018, 6, 283–295. [CrossRef]

14. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of Using Machine Learning Techniques
for Intrusion Detection. IEEE Commun. Surv. Tutor. 2019, 21, 686–728. [CrossRef]

15. Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-Based Intrusion Detection System through Feature Selection Analysis and
Building Hybrid Efficient Model. J. Comput. Sci. 2018, 25, 152–160. [CrossRef]

16. Ambusaidi, M.A.; He, X.; Nanda, P.; Tan, Z. Building an Intrusion Detection System Using a Filter-Based Feature Selection
Algorithm. IEEE Trans. Comput. 2016, 65, 2986–2998. [CrossRef]

17. Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
18. Xue, B.; Zhang, M.; Browne, W.N.; Yao, X. A Survey on Evolutionary Computation Approaches to Feature Selection. IEEE Trans.

Evol. Comput. 2016, 20, 606–626. [CrossRef]
19. El-Hasnony, I.M.; Barakat, S.I.; Elhoseny, M.; Mostafa, R.R. Improved Feature Selection Model for Big Data Analytics. IEEE Access

2020, 8, 66989–67004. [CrossRef]
20. Nguyen, M.T.; Kim, K. Genetic Convolutional Neural Network for Intrusion Detection Systems. Future Gener. Comput. Syst. 2020,

113, 418–427. [CrossRef]
21. Gauthama Raman, M.R.; Somu, N.; Kirthivasan, K.; Liscano, R.; Shankar Sriram, V.S. An Efficient Intrusion Detection System

Based on Hypergraph—Genetic Algorithm for Parameter Optimization and Feature Selection in Support Vector Machine. Knowl.
Based Syst. 2017, 134, 1–12. [CrossRef]

http://doi.org/10.1002/ett.4057
http://doi.org/10.3390/fi12090157
http://doi.org/10.1016/j.jisa.2020.102532
http://doi.org/10.1016/j.neucom.2013.04.038
http://doi.org/10.1109/TCYB.2015.2490802
http://doi.org/10.1016/j.scs.2021.103041
http://doi.org/10.1016/j.comnet.2020.107247
http://doi.org/10.1109/TSG.2017.2670144
http://doi.org/10.1109/MNET.2016.1600113NM
http://doi.org/10.1145/2886100
http://doi.org/10.1016/j.neucom.2014.09.083
http://doi.org/10.1109/MCOM.2018.1701148
http://doi.org/10.1109/TBDATA.2018.2829886
http://doi.org/10.1109/COMST.2018.2847722
http://doi.org/10.1016/j.jocs.2017.03.006
http://doi.org/10.1109/TC.2016.2519914
http://doi.org/10.1109/TEVC.2015.2504420
http://doi.org/10.1109/ACCESS.2020.2986232
http://doi.org/10.1016/j.future.2020.07.042
http://doi.org/10.1016/j.knosys.2017.07.005

Sensors 2022, 22, 1396 22 of 23

22. Malhotra, S.; Bali, V.; Paliwal, K.K. Genetic programming and K-Nearest neighbour classifier based intrusion detection model.
In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida,
India, 12–13 January 2017; IEEE: New York, NY, USA, 2017; pp. 42–46.

23. Ghosh, P.; Karmakar, A.; Sharma, J.; Phadikar, S. CS-PSO based intrusion detection system in cloud environment. In Emerging
Technologies in Data Mining and Information Security; Springer: New York, NY, USA, 2019; pp. 261–269.

24. Seth, J.K.; Chandra, S. MIDS: Metaheuristic based intrusion detection system for cloud using k-NN and MGWO. In Proceedings
of the International Conference on Advances in Computing and Data Sciences, Dehradun, India, 20–21 April 2018; Springer: New
York, NY, USA, 2018; pp. 411–420.

25. RM, S.P.; Maddikunta, P.K.R.; Parimala, M.; Koppu, S.; Gadekallu, T.R.; Chowdhary, C.L.; Alazab, M. An Effective Feature
Engineering for DNN Using Hybrid PCA-GWO for Intrusion Detection in IoMT Architecture. Comput. Commun. 2020, 160,
139–149.

26. Mayuranathan, M.; Murugan, M.; Dhanakoti, V. Best Features Based Intrusion Detection System by RBM Model for Detecting
DDoS in Cloud Environment. J. Ambient Intell. Humaniz. Comput. 2021, 12, 3609–3619. [CrossRef]

27. Ewees, A.A.; Mostafa, R.R.; Ghoniem, R.M.; Gaheen, M.A. Improved seagull optimization algorithm using Lévy flight and
mutation operator for feature selection. Neural Comput. Appl. 2022, 1–36. [CrossRef]

28. Del Ser, J.; Osaba, E.; Molina, D.; Yang, X.S.; Salcedo-Sanz, S.; Camacho, D.; Das, S.; Suganthan, P.N.; Coello Coello, C.A.; Herrera,
F. Bio-Inspired Computation: Where We Stand and What’s Next. Swarm Evol. Comput. 2019, 48, 220–250. [CrossRef]

29. Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
30. Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S. Artificial Gorilla Troops Optimizer: A New Nature-Inspired

Metaheuristic Algorithm for Global Optimization Problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [CrossRef]
31. Meng, X.B.; Gao, X.Z.; Lu, L.; Liu, Y.; Zhang, H. A New Bio-Inspired Optimisation Algorithm: Bird Swarm Algorithm. J. Exp.

Theor. Artif. Intell. 2016, 28, 673–687. [CrossRef]
32. Sayed, G.I.; Hassanien, A.E. A novel chaotic artificial gorilla troops optimizer and its application for fundus images segmentation.

In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 11–13 December
2021; Springer: New York, NY, USA, 2021; pp. 318–329.

33. Cinar, C. A Hybrid artificial differential evolution gorilla troops optimizer for high-dimensional optimization problems. In
Differential Evolution: From Theory to Practice; Springer: New York, NY, USA, 2022; pp. 315–339.

34. Xiang, L.; Deng, Z.; Hu, A. Forecasting Short-Term Wind Speed Based on IEWT-LSSVM Model Optimized by Bird Swarm
Algorithm. IEEE Access 2019, 7, 59333–59345. [CrossRef]

35. Aljarah, I.; Faris, H.; Mirjalili, S.; Al-Madi, N.; Sheta, A.; Mafarja, M. Evolving Neural Networks Using Bird Swarm Algorithm for
Data Classification and Regression Applications. Clust. Comput. 2019, 22, 1317–1345. [CrossRef]

36. Miramontes, I.; Guzman, J.C.; Melin, P.; Prado-Arechiga, G. Optimal Design of Interval Type-2 Fuzzy Heart Rate Level Classifica-
tion Systems Using the Bird Swarm Algorithm. Algorithms 2018, 11, 206. [CrossRef]

37. Wang, S.; Liu, S.; Che, X.; Wang, Z.; Zhang, J.; Kong, D. Recognition of Polycyclic Aromatic Hydrocarbons Using Fluorescence
Spectrometry Combined with Bird Swarm Algorithm Optimization Support Vector Machine. Spectrochim. Acta Part A: Mol.
Biomol. Spectrosc. 2020, 224, 117404. [CrossRef]

38. Parashar, M.; Rajput, S.; Dubey, H.M.; Pandit, M. Optimization of benchmark functions using a nature inspired bird swarm
algorithm. In Proceedings of the 2017 3rd International Conference on Computational Intelligence & Communication Technology
(CICT), Ghaziabad, India, 9–10 February 2017; IEEE: New York, NY, USA, 2017; pp. 1–7.

39. Ismail, F.H.; Houssein, E.H.; Hassanien, A.E. Chaotic bird swarm optimization algorithm. In Proceedings of the International
Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 1–3 September 2018; Springer: New York, NY, USA,
2018; pp. 294–303.

40. Wu, D.; Gao, H. Multi-objective bird swarm algorithm. In Proceedings of the International Symposium on Artificial Intelligence
and Robotics, Nanjing, China, 17–19 November 2018; Springer: New York, NY, USA, 2018; pp. 109–119.

41. Houssein, E.H.; Ahmed, M.M.; Abd Elaziz, M.; Ewees, A.A.; Ghoniem, R.M. Solving Multi-Objective Problems Using Bird Swarm
Algorithm. IEEE Access 2021, 9, 36382–36398. [CrossRef]

42. Pruthi, J.; Arora, S.; Khanna, K. Modified Bird Swarm Algorithm for Edge Detection in Noisy Images Using Fuzzy Reasoning.
Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2018, 7, 450–463. [CrossRef]

43. Bhardwaj, J.; Nayak, A. Medical image fusion using lifting wavelet and fractional bird swarm optimization. In Proceedings of the
International e-Conference on Intelligent Systems and Signal Processing, Gujarat, India, 28–30 December 2020; Springer: New
York, NY, USA, 2022; pp. 277–290.

44. Pruthi, J.; Arora, S.; Khanna, K. Segmentation of blood vessels from retinal fundus images using bird swarm algorithm and
river formation dynamics algorithm. In Proceedings of the International Conference on Intelligent Computing and Smart
Communication 2019, Tehri, India, 20–21 April 2019; Springer: New York, NY, USA, 2020; pp. 995–1007.

45. Mishra, K.; Majhi, S.K. A Binary Bird Swarm Optimization Based Load Balancing Algorithm for Cloud Computing Environment.
Open Comput. Sci. 2021, 11, 146–160. [CrossRef]

46. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November 1995.

http://doi.org/10.1007/s12652-019-01611-9
http://doi.org/10.1007/s00521-021-06751-8
http://doi.org/10.1016/j.swevo.2019.04.008
http://doi.org/10.1109/4235.585893
http://doi.org/10.1002/int.22535
http://doi.org/10.1080/0952813X.2015.1042530
http://doi.org/10.1109/ACCESS.2019.2914251
http://doi.org/10.1007/s10586-019-02913-5
http://doi.org/10.3390/a11120206
http://doi.org/10.1016/j.saa.2019.117404
http://doi.org/10.1109/ACCESS.2021.3063218
http://doi.org/10.1080/21681163.2018.1523751
http://doi.org/10.1515/comp-2020-0215

Sensors 2022, 22, 1396 23 of 23

47. Moradi, P.; Gholampour, M. A Hybrid Particle Swarm Optimization for Feature Subset Selection by Integrating a Novel Local
Search Strategy. Appl. Soft Comput. J. 2016, 43, 117–130. [CrossRef]

48. Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B. A Micro-GA Embedded PSO Feature Selection Approach to Intelligent
Facial Emotion Recognition. IEEE Trans. Cybern. 2017, 47, 1496–1509. [CrossRef]

49. Chen, K.; Zhou, F.Y.; Yuan, X.F. Hybrid Particle Swarm Optimization with Spiral-Shaped Mechanism for Feature Selection. Expert
Syst. Appl. 2019, 128, 140–156. [CrossRef]

50. Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; Al-Zoubi, A.M.; Mirjalili, S. Binary Grasshopper Optimisation Algorithm
Approaches for Feature Selection Problems. Expert Syst. Appl. 2019, 117, 267–286. [CrossRef]

51. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; Al-Zoubi, A.M.; Mirjalili, S. Evolutionary Population Dynamics
and Grasshopper Optimization Approaches for Feature Selection Problems. Knowl.-Based Syst. 2018, 145, 25–45. [CrossRef]

52. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A Bio-Inspired Optimizer
for Engineering Design Problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]

53. Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; Al-Zoubi, A.M.; Mirjalili, S.; Fujita, H. An Efficient Binary Salp Swarm
Algorithm with Crossover Scheme for Feature Selection Problems. Knowl.-Based Syst. 2018, 154, 43–67. [CrossRef]

54. Aljarah, I.; Habib, M.; Faris, H.; Al-Madi, N.; Heidari, A.A.; Mafarja, M.; Elaziz, M.A.; Mirjalili, S. A Dynamic Locality Multi-
Objective Salp Swarm Algorithm for Feature Selection. Comput. Ind. Eng. 2020, 147, 106628. [CrossRef]

55. Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.M.; Mirjalili, S. Improved Salp Swarm Algorithm Based on Opposition Based
Learning and Novel Local Search Algorithm for Feature Selection. Expert Syst. Appl. 2020, 145, 113122. [CrossRef]

56. Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
57. Neggaz, N.; Ewees, A.A.; Elaziz, M.A.; Mafarja, M. Boosting Salp Swarm Algorithm by Sine Cosine Algorithm and Disrupt

Operator for Feature Selection. Expert Syst. Appl. 2020, 145, 113103. [CrossRef]
58. Kumar, L.; Bharti, K.K. A Novel Hybrid BPSO–SCA Approach for Feature Selection. Nat. Comput. 2021, 20, 39–61. [CrossRef]
59. Hans, R.; Kaur, H. Hybrid Binary Sine Cosine Algorithm and Ant Lion Optimization (SCALO) Approaches for Feature Selection

Problem. Int. J. Comput. Mater. Sci. Eng. 2020, 9, 1950021. [CrossRef]
60. Zervoudakis, K.; Tsafarakis, S. A Mayfly Optimization Algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
61. Bhattacharyya, T.; Chatterjee, B.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. Mayfly in Harmony: A New Hybrid Meta-Heuristic

Feature Selection Algorithm. IEEE Access 2020, 8, 195929–195945. [CrossRef]
62. Kannan, A.; Maguire, G.Q.; Sharma, A.; Schoo, P. Genetic algorithm based feature selection algorithm for effective intrusion

detection in cloud networks. In Proceedings of the 12th IEEE International Conference on Data Mining Workshops (ICDMW
2012), Brussels, Belgium, 10–12 December 2012; pp. 416–423.

63. Nazir, A.; Khan, R.A. A Novel Combinatorial Optimization Based Feature Selection Method for Network Intrusion Detection.
Comput. Secur. 2021, 102, 102164. [CrossRef]

64. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,
perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]

65. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural
Comput. 2016, 27, 495–513. [CrossRef]

66. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

67. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009
IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
IEEE: New York, NY, USA, 2009; pp. 1–6.

68. Rosset, S.; Inger, A. KDD-cup 99: Knowledge discovery in a charitable organization’s donor database. ACM SIGKDD Explor.
Newsl. 2000, 1, 85–90. [CrossRef]

69. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

70. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, ACT,
Australia, 10–12 November 2015; IEEE: New York, NY, USA, 2015; pp. 1–6.

71. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

http://doi.org/10.1016/j.asoc.2016.01.044
http://doi.org/10.1109/TCYB.2016.2549639
http://doi.org/10.1016/j.eswa.2019.03.039
http://doi.org/10.1016/j.eswa.2018.09.015
http://doi.org/10.1016/j.knosys.2017.12.037
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.knosys.2018.05.009
http://doi.org/10.1016/j.cie.2020.106628
http://doi.org/10.1016/j.eswa.2019.113122
http://doi.org/10.1016/j.knosys.2015.12.022
http://doi.org/10.1016/j.eswa.2019.113103
http://doi.org/10.1007/s11047-019-09769-z
http://doi.org/10.1142/S2047684119500210
http://doi.org/10.1016/j.cie.2020.106559
http://doi.org/10.1109/ACCESS.2020.3031718
http://doi.org/10.1016/j.cose.2020.102164
http://doi.org/10.1016/j.eswa.2021.114864
http://doi.org/10.1007/s00521-015-1870-7
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1145/846183.846204
http://doi.org/10.1016/j.future.2019.05.041

	Introduction
	Related Work
	Hybrid Metaheuristics for Feature Selection
	Metaheuristic Algorithms for Intrusion Detection

	Background
	FS Problem Formulation
	Gorilla Troop Optimization
	The Bird Swarm Algorithm
	Foraging Behavior
	Vigilance Behavior
	Flight Behavior

	Proposed Hybrid GTO-BSO for Feature Selection
	Experimental Results and Discussion
	Description of the Datasets
	NSL-KDD Dataset
	CICIDS-2017 Dataset
	UNSW-NB15 Dataset
	BoT-IoT Dataset

	Performance Measures
	Results and Discussion

	Conclusions and Future Work
	References

