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Abstract: Complex hand gesture interactions among dynamic sign words may lead to misclassifica-
tion, which affects the recognition accuracy of the ubiquitous sign language recognition system. This
paper proposes to augment the feature vector of dynamic sign words with knowledge of hand dynam-
ics as a proxy and classify dynamic sign words using motion patterns based on the extracted feature
vector. In this method, some double-hand dynamic sign words have ambiguous or similar features
across a hand motion trajectory, which leads to classification errors. Thus, the similar/ambiguous
hand motion trajectory is determined based on the approximation of a probability density function
over a time frame. Then, the extracted features are enhanced by transformation using maximal
information correlation. These enhanced features of 3D skeletal videos captured by a leap motion
controller are fed as a state transition pattern to a classifier for sign word classification. To evaluate the
performance of the proposed method, an experiment is performed with 10 participants on 40 double
hands dynamic ASL words, which reveals 97.98% accuracy. The method is further developed on
challenging ASL, SHREC, and LMDHG data sets and outperforms conventional methods by 1.47%,
1.56%, and 0.37%, respectively.

Keywords: American sign language words; bidirectional long short-term memory; computer vision;
deep learning; dynamic hand gestures; leap motion controller sensor; sign language recognition,
ubiquitous system; video processing

1. Introduction

Among sign languages, which are normally used in deaf communication, American
sign language (ASL) is one of the standard [1–3] and popularly used sign language across
the world. ASL words are performed using single and double hands in the deaf communi-
cation, and majority of ASL words are performed using double hands, which are dominant
and non-dominant hands [4,5]. Several single-handed words have now added a second
hand in an identical or reciprocal rotation, to increase redundancy. Such redundancy is a
significant parameter in sign to discriminate similarity and to predict other parameters [6].
These double-hand sign words share some similar features, which usually occur at the
beginning and ending of sign trajectory, which leads to misunderstandings. Most double
hand sign words are dynamic words. Classification of dynamic sign words using single and
double hands is the basic function for automatic sign language recognition applications;
especially, the recognition of similar double hand sign words is an important and useful
research problem in terms of accuracy.

It is observed from available existing works that sign words recognition has been
performed using single or double hands and can be classified into deep learning and
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feature-based systems, as illustrated in Table 1. The deep learning approach recently
emerged and can deal excellently with problems related to big data [7–11]. However, some
problems may not be convenient for collecting a huge number of samples such as big data;
thus, a feature-based system is introduced, in which users consider features in advance,
and it performs well in some cases. The feature based-system for sign word recognition can
be categorized into two groups: static and dynamic sign word groups. Research works in
static sign words recognition [12,13] can recognize sign words to a high degree of accuracy
but may not work well with dynamic sign words since the majority of dynamic sign words
express their meaning in motion. Research works in dynamic sign word recognition are
grouped into single- and double-hand dynamic sign words. Works in single-hand [5,14–17]
dynamic sign words are limited due to the fact most of the sign letters or alphabets are
less complex. Double-hand sign words are commonly used in daily communications,
but complex hand motion interactions are major challenge. Recognition of double-hand
both static and dynamic Indian gestures is proposed in [18]. The authors developed a
system of utilizing feature points engineered from a minimum Eigen value algorithm
to recognize double-hand, which was later converted using COM server in MATLAB
as both text and speech. The method is limited to only statistical features. Demrcioglu
et al. [19] designed a double-hand sign words recognition system from hand shapes, using
three machine learning classifiers, among which the heuristics classifier outperformed
others with good recognition accuracy, but the method suffers from insufficient features
representation since the majority of double-hand actions are characterized by hand shape,
motion and orientation. The work in Deriche [20] proposed the CyberGlove with the SVM
model for double-hand dynamic word recognition. This method achieved good recognition;
however, Cyberglove for sign words recognition is expensive, intrusive, and has imprecise
calibrations. Haque et al. [21] designed a Two-Handed Bangla Sign Language Recognition
system that recognizes 26 sign gestures, from a three-structured flow. Their method extracts
images using Principal Component Analysis (PCA) and K-Nearest Neighbors (k-NN),
which are used as classification algorithms. This method achieved a success rate of 77.8846%
by testing 104 images. The major disadvantage of this method is low accuracy because of a
complex camera background, as well as a limited number of considered features, while
Raghuveera et al. [22] proposed ensemble learning using SVM from SURF, HOG and LBP
hand features, to control complex camera background. This method achieved low accuracy
because of non-scalable features, similarity, and complex segmentation. Karaci et al. [23]
presented ASL letters using LR, k-NN, RF, DNN, and ANN classifiers for double-hand sign
language recognition. The overall result of these experiments using cascade voting achieved
an accuracy of 98.97%. The system can be useful for finger-spelling/letter signs only. The
ASL recognizer system cannot be considered as a complete SLR system because we have to
include dynamic sign words. Meanwhile, ref. [24] developed a system for Turkish dynamic
sign word recognition based on multi-layer kernel-based extreme learning machine (ML-
ELM) algorithm. The proposed method was capable of successfully recognizing sign words
in the dictionary with an accuracy of 98%. The primary disadvantage of using ML-KELM
is the problem of obtaining a least square optimal solution of ELM. A double-hand SLR
application system using LMC with a Windows platform is proposed as an expert system
in [25]. Hisham and Hamouda [26] built double and single-hand sign words recognition
inside Latte Panda with an Ada-Boosting strategy. The method achieved good recognition
but cannot learn sequential data and may fail with complex sign words. Researchers
identified the potential of using recurrent neural network and its variants to effectively
learn long-term dependencies for sign language recognition [27–29]. However, single LSTM
has weak learning ability [30,31], and it falls easily into over-fitting, in contrast to multi-
LSTM network [29]. A similarity problem of double-hand dynamic sign words is addressed
by Avola et al. [32] using multi-stacked LSTM learning; they utilized 3D hand internal
angles, position displacements of the palm, and the fingertips Equation (5) to recognize
dynamic ASL words [32]. The work in [32] is good at recognizing some dynamic ASL
words, but the major disadvantage of achieving large abstraction (deeper network) via the
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multi-stacked LSTM method is that learning ability is marginal when the sample feature is
increased, and, consequently, the recognition rate does not significantly improve. However,
ref. [32] considers a limited number of ASL dynamic words, and their handcrafted features
are not sufficient to recognize most available dynamic ASL words, especially sign words
from similar class. Thus, these models/algorithms are insensitive to human hand dynamics
and cannot use various classes of features, which leads to bad extensibility. These two
problems may lead to misclassification of double-hand dynamic ASL words. We observed
that the existing methods failed to utilize about 7% of the first few video frames during
segmentation. These discarded frames contain a hand pause feature, which is not properly
processed by the existing recognition methods.

For this reason, we propose to utilize the 3D extended kalman filter (EKF) covariance
matrix feature representation of double-hand motion trajectories and to add a hand pause
feature, as our feature vector for double-hand dynamic sign words recognition. Skeletal
videos from LMC are affected by noise, and we deploy a robust weighted least square
(WLS) algorithm where each sequence is allocated with effective weights to obtain the
best confidence score with the fewest residuals. The corrected video sequences are fed
into the EKF to track 3D double-hand motion trajectories across video frames through
estimating anonymous features by approximating a probability density function over the
entire video sequence. Basic hand features (hand shape, orientation, position and motion)
are automatically extracted from skeletal hand-joint videos using bi-directional recurrent
neural network (BiRNN). The extracted features are transforms using maximal information
correlation (MIC) and rows concatenation for best feature representation. Finally, the
selected features are computed using video frames correction to control initial frame
coordinates and positions. To this end, we design a consolidated feature vector to achieve
flexible and effective learning of double-hand complex gesture recognition. Moreover, none
of the existing literature has tried to use the performance of networks to optimize loss
function. This paper intended to bridge this gap. In addition to the mentioned research
focus, dynamic hand gesture recording and recognition was applied in various consumer
applications [33–35]. We made the following contributions:

(a) Acquisition and processing of skeletal video images acquired by means of a portable
leap motion controller (LMC) sensor.

(b) The development of an EKF-tracking to address hand motion tracking errors and
uncertainties across each frame in obtaining hand motion trajectories.

(c) The development of an innovative algorithm based on WLS to control noise across
video frames.

(d) The design of a BiRNN network that is able to extract the proposed features from raw
skeletal video frames.

(e) The development of an MIC scheme to select the most significant features from raw
video images. These are used as input to the multi-stacked deep BiLSTM recognition
network to discriminate among similar double-hand dynamic ASL words.

(f) Intensive evaluation using Jaccard, Mathew correlation and Fowlkes–Mallows indices
is carried out to analyze the reliability of recognition results. These indices estimate
the confusion matrix via known parameters for assessing the probability that the
performance would be achieved by chance, due to the assumption of randomness of
the k-fold and LOSO cross-validation protocol.

(f) Investigation of the best recognition network by comparing the performance of Adam,
AdaGrad and Stochastic gradient descent on loss function, for ubiquitous applications.

The remainder of our article is structured as follows: Section 1 provides relevant
works; Section 2 provides basic feature definitions, skeletal video preprocessing, WLS,
hand tracking using EKF, MIC, features-scaling, skeletal-video-frames correction, ASL
words recognition from skeletal video feature, BiRNN features extraction, LSTM, model
parameters, evaluation metrics, experiments, and data set design; Section 3 provides results
and details of a performance comparison with baseline methods; Section 4 discusses the
implemented approach; and Section 5 concludes the entire work.
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Table 1. Table of Related works.

Algorithm Name Methodology Results (%) Limitations

1. DEEP LEARNING-BASED SYSTEM

Konstantinidis et al. [8] Meta-learner + stacked LSTMs 99.84 and 69.33 Computational complexity
Ye et al. [10] 3DRCNN + FC-RNN 69.2 for 27 ASL words annotation and labeling is required
Parelli et al. [36] Attention-based CNN 94.56 and 91.38 large-scale data set required
Asl-3dcnn [11] cascaded 3-D CNN 96.0, 97.1, 96.4 spatial transformation
B3D ResNet [7] 3D-ResConVNet + BLSTM 89.8 and 86.9 Misclassification + large data require
Rastgoo et al. [9] SSD + 2DCNN + 3DCNN + LSTM 99.80 and 91.12 complex background + large data

2. FEATURE-BASED SYSTEM

2.1 Static sign words

Mohandes et al. [12] MLP + Naïve Bayes 98 and 99 Not very useful for daily interact
Nguyen and Do [13] HOG + LBP + SVM 98.36 Not very useful for daily interact

2.2 Dynamic Sign words

2.2.1 single-hand dynamic sign words recognition

Naglot and Kulkarni [14] LMC + MLP 96.15 Misclassification
Chopuk et al. [16] LMC + polygon region + Decision tree 96.1 Misclassfication
Chong and Lee [15] LMC + SVM + DNN 80.30 and 93.81 Occlusion and similarity

Shin et al. [17] SVM + GBM
Massey 99.39,

error in estimated 3D coordinatesASL alphabet 87.60
FingerspellingA 98.45.

Vaitkevicius et al. [37] SOAP + MS SQL + HMC 86.1 ± 8.2 Misclassfication
Lee et al. [5] LSTM + k-NN 99.44, at 5-fold 91.82 limited extensibility due to tracking
Chophuk and Kosin [31] BiLSTM 96.07 limited extensibility to double hand

2.2.2 double-hand dynamic sign words recognition

Igari and Fukumura [38]
minimum jerk trajectory +

98
Cumbersome + limited number

DP-matching + Via-points + CC of features

Dutta and GS [18] Minimum EigenValue + COM Text + Speech Poor extensibility to wordServer
Demrcioglu et al. [19] Heuristics + RF + MLP 99.03, 93.59, and 96.67 insufficient hand features
Deriche [20] CyberGlove + SVM 99.6 Cumbersome + intrusive

DLMC-based ArSLRs [39] LDA + GMM bayes classifier 94.63 sensor fusion complexity
separate feature learning

Deriche et al. [40] Dempster-Shaper + LDA + GMM 92 Misclassification and not mobile
Haque et al. [21] Eigenmage + PCA + k-NN 77.8846 complex segmentation + few feature
Raghuveera et al. [22] SURF + HOG + LBP +SVM 71.85 non-scalable features + segmentaton
Mittal et al. [30] CNN + LSTM Word 89.5 low accuracy due to weak learning

Katilmis and Karakuzu [41] LDA + SVM + RF 93, 95 and 98 letters are not very useful for daily
communication

Karaci et al. [23] LR + k-NN + RF + DNN + ANN cascade voting achieve letters are not very useful for daily
98.97 Fails to track double hands

Kam and Kose [25] Expert systems + LMC + WinApp SLR App Mobility is not actualized

Katilmis and Karakuzu [24] ELM + ML-KELM 96 and 99 complex feature extension may
fall into over-fitting

Hisham and Hamouda [26] Latte Panda + Ada-Boosting double hand accuracy 93 similarity due to tracking issues
Avola et al. [32] Multi-stacked LSTM 96 insufficient hand features

2. Materials and Methods

This section enumerates double-hand dynamic ASL words sign language recognition
processes of the proposed method. We introduce our method in four subsections as follows:
Section 2.2 skeletal video preprocessing, which encompasses the following: (a) weighted
least square (WLS) algorithm for minimizing noise of 3D skeletal video sequence, (b) hand
tracking using EKF method for tracking deep hand motion trajectories across video frames,
(c) MIC for robust features selection, (d) features scaling to control hand dynamics and allow
new signer, and (e) skeletal video frames correction to control initial frame coordinates
and position of all consecutive frames. Section 2.3 ASL words recognition from skeletal
video features encompasses the following stages: (a) bidirectional RNN (BiRNN) features
extraction, (b) long short-term memory, and (c) multi-stacked deep BiLSTM training from
transfer learning to learn temporal continuity of dynamic words. Section 2.4 encompasses
model parameters. Section 2.5 encompasses evaluation metrics to calculate the overlap and
similarity among the original dynamic ASL words and the predicted category videos for
the recorded ASL words. Overall procedures of the adopted method are shown in Figure 1.
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Figure 1. Procedures of the proposed method.

2.1. Basic Definition of Multi-Stacked Deep BiLSTM Feature

Sign language basic features (phonemes) [42] include hand shape, motion, orientation
and location. (1) 3D dynamic hand shape characterizes double-hand dynamic ASL words,
which can be obtained from the twenty-two skeletal hand joint primes L per each hand,
thus, making a total of 44 primes for the double-hand L44, along seventy angular features
ω70 for the complete double-hand as described in Figure 2 and put in Equation (2). (2) 3D
hand orientation provides angle coordinates at which the double-hands meet each other.
The hand orientation angle is computed from seventy angle primes of seven major double-
hand vertices, as described in Figure 2. However, hand location/position is obtained from
direct measurement using LMC. Deep features are defined differently, but for the purpose
of this article we have considered the following deep features. (1) Double-hand motion
trajectories (MT), while performing ASL word, are defined as the action of two-hands in
the LMC sensor’s field of view. This action is visualized as trajectory across video frames
Equation (3) and can be tracked based on EKF algorithm. MT encodes correlation among
hand movement and gesture dynamics. MT allow one to learn each dynamic across frames
and to observe points where two gestures share similar characteristics, as mathematically
established in Equation (3). Hand motion usually determines the frame speed of the video,
which is coined in Equation (4). 3D dynamic hand motion is composed of velocity, which is
comprises of action at beginning of gesture performance (preparation), peak acceleration
(nucleus), and ending of gesture performance (retraction). Beginning and ending of gesture
trajectory are known as preparation and retraction (that is, pause). (2) Hand Pause provides
another potential information to discriminate similarity between dynamic gesture at the
beginning or end of gesture characteristics. Thus, hand pause P is mathematically formu-
lated within the leap motion Euclidean space in Equation (1). Significance of the proposed
features to recognize double-hand ASL words is investigated using maximal information
criterion (MIC) and cumulative match characteristics (CMC) curve.

||P(t)|| =
√

P(2)
p (t) + P(2)

q (t) + P(2)
r (t) (1)
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where P(t) = (p, q, r) ∈ R3.
η(p, q, r) = (L44 + ω70). (2)

Figure 2. Skeletal palm joints with angle and joint length primes captured by LMC [43].

However, for each dominant hand in video frame f at time t, while moving towards
non-dominant hand (that is, the hands lined up to their orientation), hand motion trajecto-
ries across the consecutive frames at time T, can be expressed as [M( f )

t ]t=1,··· ,T , where M f
t

is defined as:

M( f )
t (p, q, r) = (p( f )

t + sin ϕ
( f )
t , q( f )

t + cos ϕ
( f )
t , r( f )

t + tan ϕ
( f )
t ) ∈ R3. (3)

ASL word motion speed trajectory Kt can be obtained at each fingertip. The fingertips
provide hand motion in Equation (3), which can be formulated as follows:

Kt(p, q, r) = ||k f − k f−1|| (4)

where motion variation from f th to frame f th + 1 denotes speed difference and its corre-
lation. With the addition of (P f

t ), (ηt) and (Kt) features, the functional Equation (6) can
improve accuracy and reduce misclassification from double hand similar ASL words.
Finally, the proposed features vector (β) of model [32] is defined by:

βt(p, q, r) = [ω
f
t , Nt] (5)

To improve recognition accuracy and minimize misclassification of a set of double-hand
dynamic ASL word feature vector, new features (P f

t ), (ηt) and (Kt), called basic and deep
features, are added in Equation (5), and their functions are discussed in Equations (1)–(4),
which can be uniformly written as:

βt(p, q, r) = (P f
t + ω

f
t + ηt + Nt + Kt + ϕt) (6)

where (P f
t ), (ω f

t ), (ηt), (Nt), (Kt) and (ϕt) denote pause, angles, shapes, positions (palm
position displacement and fingertip position displacements), motion, and relative trajectory
features in frame f th, at time t, respectively. Relative trajectory includes hand motion
trajectories, speed, and relationship between dominant and non-dominant hand.

2.2. Skeletal Video Preprocessing

Noise such as large video frame sizes (due to large recording time) and human
hand dynamics affects recognition performance of double-hand dynamic skeletal video
information. The following sections employ robust tools to preserve the original video
information free from noise.
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2.2.1. Weighted Least Square (WLS)

Skeletal video sequences are affected by noise (missing values), which has detrimental
effect during recognition. This noise information is manifested among different video
sequences, which influence the estimated original video sequence. To address this problem,
WLS algorithm is chosen. WLS overcomes traditional drawback of linear regression, mov-
ing average and median filter problem of filtering only data sets with constant variance.
WLS is a good choice of filter for many researchers in video processing [44–48]. There-
fore, each sequence is allocated with suitable and effective weights to achieve significant
confidence level with least residuals. The minimization of the errors in WLS is iteratively
learned until weights of outliers are minuscule. The weights are obtained using Huber’s
weighting scheme [44]. A given (A), (AT), (O) and (D), which denote weight matrix, matrix
transpose, response vector and diagonal matrix, contains weights associated with video
samples; then, β̃ returns the estimate, as explained in Algorithm 1. WLS can be formulated
as follows:

(AT DA(w))λ = AT ∗ D ∗O (7)

where w, c, β(w), w f , d(f) and l f denote prediction time, order of prediction, raw video
information, video progressing time, filter input and linear function. λ denotes wave-
length parameter.

Algorithm 1: (WLS).
Input. Set l f (w) = [100 · · · 0]c, d(w)
Output. WLS estimate β̃ = (AT DA(w))λ
Step 1. Compute β(w) = lc

f (w− 1)d(w)

Step 2. Compute l f (w)
Step 3. Compute A(w f ) in Equation (7)
Step 4. Update A(w f ) then
Step 5. Finally we set w := w + 1 and return to step 1.

2.2.2. Hand Tracking Using Kalman Extended Filter (EKF)

The EKF is computationally efficient to our proposed data set, and the brief process is
illustrated in flow chart Figure 1 and Algorithm 2. In each video frame, the two skeletal
hands are learned from their registered starting point (Pt) to the hand resting point (Pt+1)
while recording, as illustrated in Figure 3. The EKF involves estimating the process state
with the aid of the equation of partial derivative and observation, using equation of partial
derivative of process and observation, as shown in Equations (13) and (14). In Equation (13),
s ∈ Rι, ϑ, sc and ζc denote nonlinear function, state variable, and process noise (feed back
from LMC sensor). The nonlinear function evaluates the state according to the current
moment c. The function parameters will extrapolate gc−1 and ζc. In Equation (14), d ∈ Rτ ,
dc, φ and Ωc denote observed variable, nonlinear function and observation noise (feed
back from LMC sensor). Therefore, to incorporate the process of a nonlinear difference
and observation noise for real-life usage, modified Equations (13) and (14) are adopted
from [49]:

sc ≈ s̃c + I(sc−1 − ŝc−1) + ζζc−1 (8)

where sc, I, s̃c and ŝc−1 denote original information of the state vector, Jacobian matrix of
the partial derivative of ϑ with respect to s, observation information of the state vector, and
state vector posteriori probability of moment c.

dc ≈ d̃c + U(sc − s̃c) + ΩΩc (9)

where dc, U and d̃c denote original information of the observation vector, Jacobian matrix
of the partial derivative of φ with respect to Ω, and observation information of the state
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vector. The Jacobian cannot be estimated mathematically with noise term; therefore, it is
assumed as zero. Thus, the Jacobian matrices can be obtained as follows:

In, f =
∂ϑn

∂s f
{ŝc−1, gc−1, 0} (10)

Un, f =
∂Ωn

∂s f
{s̃c, 0}. (11)

However, the residuals of the observed variables and prediction error can be obtained
from the covariance matrix in Equation (19).

The covariance matrix is independent from random variables that provide an approxi-
mation using Equations (13) and (14). From this approximation, the EKF can be extended
to estimate the equation, thus

ŝc = s̃c + Cc r̃dc = s̃c + Cc(dc − d̃c). (12)

Finally, Equation (12) is utilized to adopt the observation variables of EKF. ŝc and d̃c can
be obtained from Equations (13) and (14), respectively. From the results in Figure 3, we have
the following observations. (1) Blue plot indicates the original 3D hand motion trajectory
along with its corresponding mean square error (MSE). Red plot indicates the estimated 3D
hand motion trajectory along with its corresponding MSE. Individual axis performance of
EKF algorithm is demonstrated by the left plots. EKF algorithm achieves very competitive
tracking across the 3-axis by observing the MSE, which validates the stability of EKF
algorithm for complete hand motion trajectory. (2) As the ambiguity/uncertainty rate
increases, the performance degradation (high MSE) of the compared original measurements
is much larger than that of EKF tracking.

Figure 3. 3D Hand motion trajectories across video frames using EKF.
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Algorithm 2: (EKF).
Input. Choose any arbitrary actual initial conditions w, initial observations m, assumed

initial conditions j, covariance of estimation initial value h, the sampling time t, indx = 0,
and n = 1:170.

Initial setting. Let dc, sc, h and S be covariance matrix of process noise, measurement
noise, estimation error and original information.
Output. 3D EKF estimate M̃n.
Step 1. Determine process and observation along X, Y, and Z coordinates, from

sc = ϑ{sc−1, gc−1, ζc−1} (13)

dc ∈ φ{sc, Ωc} (14)
Step 2. Compute prediction function

j(n), h(n) := predict(S, j(n), h(n), dc). (15)

Step 3. Compute Jacobian matrices in Equations (10) and (11).
Step 4. Computes Kalman gain

EKF(n + 1) = Gain(H(n + 1), P(n + 1), M) (16)

Step 5. Compute overall estimate

j(n + 1) = j(n + 1) + EKF(n + 1) ∗ G (17)

where
Step 6. G is the filter specialty, estimates from

G = G(m(n + 1), j(n + 1), indx) (18)

Step 7. Compute covariance estimation error

ŝc = s̃c + r̂c (19)

Step 8. Compute MSE along X, Y, and Z. as shown in Figure 3
Step 9. Finally, we set n := n + 1 and return to step 1.

2.2.3. Maximal Information Correlation (MIC)

We introduced a feature selection method derived from correlation analysis known
as MIC to reduce the complexity of the deep learning algorithms. MIC utilizes 3D video
features between zero and one. The significance of adopting MIC was the capacity to treat
nonlinear and linear unions among video data sets. It makes no assumptions about the
distribution of the recorded video. However, MIC has simple computing formula, and it
applies to sample sizes t ≥ 2. MIC of 3D vectors p, q and r is defined as follows [50,51], and
the results are displays in Table 2:

MIC = max{ I(p, q, r)
log2min(tp, tq, tr)

} (20)

where

I(p, q, r) = H(p) + H(q) + H(r)− H(p, q, r) =
tp

∑
u=1

p(pu)log2
1

p(pu)
+

tq

∑
v=1

p(qv)log2
1

p(qv)

+
tr

∑
w=1

p(rw)log2
1

p(rw)
−

tp

∑
u=1

tq

∑
v=1

tr

∑
w=1

p(pu, qv, rw)log2
1

p(pu, qv, rw)

(21)

where p, q and r denote feature vectors along 3D axis. H; I; B; and pu, qv and rw de-
note entropy, information, bins and number of bins of the partition along 3D axis. Note:
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pu.qv.rw < B(t) and B(t) = t(0.6). The MIC analysis demonstrates the effectiveness of the
proposed features as shown in Table 2. In Table 2, the diagonal values indicate correlation of
each feature with itself, while all other values inside the table indicate the correlation of each
feature against it neighbor. Positions having values ranges 0.9 to 1 are regarded as having
strong correlation, whereas values less than 0.9 are still significant and are conserved during
model design. All other features less than 0.8 were disregarded in this paper. Furthermore,
we investigated the significance of the selected features according to the cumulative match
characteristics curve (CMC), as illustrated in Figure 4. The CMC plot is generally used to
quantify the correlation between detection rate and the rank score from the given features.
We evaluated different feature combinations across all the features, but the following were
found to be effective according to CMC ranking: 1st (shape + position + motion), 2nd
(shape + position + angle), 3rd (shape + position + motion + angle), 4th (shape + angle), 5th
(shape + position + motion + angle + pause + relative trajectory) and 6th (shape + position).
In this plot, each features combination exempted the knowledge of hand dynamics (pause
and relative trajectory), while the remaining features were evaluated so that measure of the
contribution of our added feature per each combinations was obtained. Thus, best feature
combinations were achieved with least score at 5th rank (shape + positions + motion +
angles + pause + relative trajectory features), whereas less significant features combination
was achieved with high score from the 6th rank (shape + position features), as shown in
Figure 4. Therefore, it is difficult to achieve best recognition with features combination, due
to absence of hand dynamics knowledge.

Table 2. Results of correlational analysis.

Shape Motion Position Angles Pause Relative Trajectories

Shape 1
Motion 0.9444 1
Position 0.8781 0.9351 1
Angles 0.86728 0.93985 0.84453 1
Pause 0.87361 0.71931 0.90719 0.89857 1
Relative trajectories 0.95351 0.94203 0.89075 0.90681 0.81375 1

Figure 4. Cumulative match characteristics curve of the features from MIC.

2.2.4. Features Scaling

Z-score transformation is applied to scale independent features at each video frames
at some threshold range. Feature scaling is carried out due to learning network employed
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gradient descent, which converges faster than non-scaled features. Z-score transforms each
feature information from zero to its unit variance. Thus, Z-score is given by

Z− trans f orm =
(β−mean(β))

s.t.d(β)
(22)

2.2.5. Skeletal Video Frames Correction

We use the video frame manipulation (correction) strategy to control initial frame
coordinates and position. This is because of the different hand speeds and variations
(intuitive interaction) during dynamic word performance. We address this is to highlight
the subsequent frame in the sequence, when two or more gestures exhibit different hand
trajectories [52]. In what follows, we exploit information of all the frames in the sequence.
From each sequence, we calculate the average distance among the frames at FP, FQ and FR.
The average distance is considered for each feature value, which can be utilized to correct
the video frames. The technique is mathematically coined as follows:

FP =
∑170

t=1(ValidationSetβt,Q − TrainingSetβt,P)

170
(23)

FQ =
∑170

t=1(ValidationSetβt,Q − TrainingSetβt,Q)

170
(24)

FR =
∑170

t=1(ValidationSetβt,R − TrainingSetβt,R)

170
(25)

where validationSet, TrainingSet, βt and t denote testing information (along P, Q and
R), training information (along P, Q and R), feature vector, and amount of video frames
(t = 1, · · · , 170), respectively. This is done by subtracting the first thirty sequences in the
feature vector. The three equations make the initial position of each trajectory per frame
similar to the frame coordinates. This allows us to compute each dynamic across frames.

2.3. ASL Word Recognition from Skeletal Video Features

The double-hand dynamic ASL word-recognition system is illustrated in Figure 5,
which is comprised of the two modules: BiRNN and multi-stacked bidirectional-LSTM.

2.3.1. BiRNN Features Extraction

Skeletal joints are automatically extracted using bidirectional recurrent neural network
(BiRNN). Empowering the RNN architecture with two BiRNN layers improves the learning
behavior with symmetrical, previous and subsequent frame for each information in the
video sequence [53] and no re-positioning of the input videos from the ground truth or
intended sequence. Nonlinear operations and architecture with hidden layers of BiRNN
allow one to find patterns in video sequence. BiRNN is designed and trained using multi-
stacked layers in two fashions to extract hand features from skeletal video. We recorded
hand gesture video information vn from input video frame Q f with sequence length Ω.
This input video sequence was fed to BiRNN layer. vn is defined as (v ∈ Q f ) where 1 ≤ n
≤ Ω. BiRNN layers received input video sequence Q f , and th function in Equation (26)
was evaluated to update its n-hidden states, according to the input units [h1, h2, · · · , Qt],
until it learned the last hand gesture video information in the last video frames vn = 0.
The information in the present layer is automatically opposite to the hidden units (layers),
so the output layer will not update till the hidden units have processed the whole video
information. For the backward direction, the total output layer units are computed, and fed
back into the hidden layers in opposite directions. The second phase of the BiRNN layers
is trained to learn output of the previous layers to be initial state of first layers and yields
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output vector βt = [t1, · · · , tΩ], and it is defined as: tΩ ∈ βt, where 1 ≤ n ≤ Ω. Finally,
BiRNN extraction layers can be written uniformly as [43]:

ht = σ[V−→
hq

, Q f ,n + V←−
hq

, Q f ,n + V−→
hh

, Q f−1,n + V←−
hh

, Q f−1,n + dh]. (26)

where dominant and non-dominant hand index is denoted as n, and (
−→
hq ) and

←−
hq denote

forward and backward pass hidden state vectors, respectively. In Equation (26), the
extraction layers of BiRNN not only give the relationship of video input features vector but
also correlate to state of prior sequence.

Figure 5. Proposed Architecture of Multi-stack Deep BiLSTM.

Moreover, after extracting the matrices of the six selected features, we transformed
the matrices into a feature vector. However, many techniques are available for feature
transformation such as columns concatenation, rows concatenation and zigzag scheme. As
reported in the literature rows, concatenation demonstrates best concatenation. Thus, we
convert matrix into feature vector to obtain features in Equation (6). Equation (6) provides
training input sequence (six proposed extracted features). The 3D skeletal hand joints are
extracted and represented as input features vector, as illustrated in Table 3.
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Table 3. Extracted features.

Features Point of Interest Description

Angle points Pitch, yaw and roll Hand orientation; 44 skeletal hand joints

Relative trajectories Motion Hand motion trajectories, frame speed and velocity.

Positions Direction
Arm, palm, wrist and five fingers;
(thumb, index, middle, ringy and pinky)

Finger joints Coordinates
Coordinate of five fingers’ tip, metacarpal,
proximal, distal and interdistal.

Hand pause Motion Hand preparation and retraction.

2.3.2. Long-Short Term Memory (LSTM)

LSTM is a family of RNN to handle gradient vanishing, by substituting an extended
bidirectional LSTM (BiLSTM) neurons [27,54,55]. BiLSTM neuron learn long-term depen-
dencies between sequences [5,31,56]. Single BiLSTM unit return low accuracy especially
when learning complex sequences. Deep BiLSTM is introduced to enhance accuracy of
single LSTM unit. Multiple long short-term memory (known as deep BiLSTM) architecture
is the strategy of concatenating number of BiLSTM hidden units in fashionable manner.
This is to achieve high-level sequential representations from sequential video information.
In deep BiLSTM, output of former layer l-1 serves as sequence input to present layer l.
Results demonstrated that deeper networks improve recognition performance [36].

Deep BiLSTM network is illustrated in Figure 5, which is realized by concatenating
three-additional BiLSTM layers with output mode “sequence” before each BiLSTM layer.
Dropout layer is connected after each BiLSTM layer to control overfitting and alter funda-
mental network architecture, which is defined in Equation (27) [57]. The final output of
all sequences is concatenated to construct one output layer known as softmax layer. The
output mode of last BiLSTM layer is now coined as “last”. Therefore, ASL words class
prediction is conducted by equipping the last layer of BiLSTM network with classification
layer. Classification layer is configured with cross entropy loss function [58]. The fully
connected layer multiplies sequential input by weight α and then adds ρ. However, fully
connected layer merges all features in βt to classify word gesture. In our case, information
from fully connected layer of deep multi-stack BiLSTM network is exactly the same as the
number of word classes of sequential features. This procedure is known as multi-stacking,
and the architecture is referred to as multi-stack deep BiLSTM.

rand(size(di) < probability (27)

where di denotes drop layer input.

2.3.3. Multi-Stacked Deep BiLSTM Training from Transfer Learning

The major limitation of training multi-stacked deep BiLSTM network is the high
demand for large input video set. The number of our input video sets is moderate. However,
training a new BiLSTM network is a complex and costly process. Multi-BiLSTM network
from the existing method has large number of abstractions, and this makes learning difficult.
This can lead to misclassification. To overcome this problem, transfer learning (TL) via
deep neural network is extended to SLR. TL is a methodology of utilizing a pretrained
deep network that has proven successful as initial step (newly designed network) to
learn feature from unknown signer. A methodology of fine-tuning network brings simple
and fast learning network, compared to conventional network initialized from the grass-
root. Researchers identified the potential of neural-network-based TL [59,60]. In this
paper, TL approach based on multi-stack deep BiLSTM network as shown in Figure 6 is
implemented to recognize dynamic double-hand ASL words. Extracted input feature vector
in Equation (6) is built into multi-stacked BiLSTM layers for double-hand dynamic ASL
words recognition. Multi-stacked BiLSTM is trained to obtain output probability vectors
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for all of its corresponding input vectors, predicted word classes, and confusion matrices.
Multi-stacked layers are initialized with weight of extracted features, as follows [43]:

Ot,n = [V−→
h o

−→
h f , P f

t,n + V←−
h o

←−
h f , P f

t,n + V−→
h o

−→
h f , ω

f
t,n+

+ V←−
h o

←−
h f , ω

f
t,n + V−→

h o

−→
h f , ηt,n+

+ V←−
h o

←−
h f , ηt,n + V−→

h o

−→
h f , Nt,n + V←−

h o

←−
h f , Nt,n+

+ V−→
h o

−→
h f , Kt,n + V←−

h o

←−
h f , Kt,n+

+ V−→
h o

−→
h f , ϕt,n+

+ V←−
h o

←−
h f , ϕt,n + do].

(28)

The final classification layer is formulated as follows:

O =
Ω−1

∑
Ω=0

Ot
Ω,n (29)

Ot = p(EL|β) =
eOL

∑L−1
i=0 eOi

, L = 1, · · · , L (30)

where L and Ot
Ω denote ASL word classes and predicted probability class EL when ASL

word features β is given, respectively. However, softmax function transforms the output
value into [0, 1] and transforms the weight of L values into 1. The ground truth is given as

OL ∈ [0, 1], as well as prediction probabilities as
−→
OL. The network parameters can be given

as in Equation (31), as follows:

θ[u + 1] = θ[u] + r(− ∂O
∂θ[u]

), θ[0] ≈ U[0, 1]. (31)

From Equation (31), θ[u], u and r denote parameters set, parameter update times, and
learning rate. This equation consists of all weights and biases in the Deep BiLSTM network.

Figure 6. Diagram of transfer deep LSTM network.

Let an initial class Ci = βi have a learning period pi; thus, the intended class Cd = βd
has a learning period pd. Thus, the aim is to aid learning the prediction function of the
intended class by utilizing knowledge gained by pi from initial class. However, transfer
learning has a rule: that the initial class should be different from the intended class, as
well as their learning periods. For the intended class, we have recorded 40 ASL words
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from 10 signers, which are repeated 10 times, making a total of 4000 samples, whereas
for the initial class, we have recorded 10 signers different from the ones in the intended
class; however, each signer performs 58 ASL words, 10 times, which makes a total of
58,000 sequences. For details of the experimental set up and data recording process, see
Section 2.6.1.

The feature learning phase of the network has five layers, as illustrated in Figure 5. In
Figure 6, the features of a successful network can be reused in a newly adopted network.
The weight matrices among input and the hidden layers αh,l , recurrent weight matrices
in the hidden layers αr, and connection weight matrices among hidden layers and output
layer αh,o were trained in the initial class (trained in advance with sufficient features).
The successful network is illustrated in Figure 5. Thus, the weight matrices among input
layers and hidden layers are transferred to intended class features as weight initial value.
This new approach of weight initialization is superior to random initialization. However,
training features of intended class were used to adjust the BiLSTM weights on small data
set. Thus, recurrent weight matrices in the hidden layers, and connection weight matrices
among hidden layers and output layer, were initialized at random.

2.4. Model Parameters

The selected method is experimentally validated with careful selection of parameters
in Table 4. These parameters were achieved through cross-validation. Our experiments
are designed from personal computer (PC) on Windows 10 operating system equipped
with CPU Core i7 9th Gen, 8 GB RAM, details of the execution environment is provided
in Table 5. Serial communication from LMC to PC is enabled via written C# codes on
Microsoft visual studio environment, and LabView library.

Table 4. Network parameter selection.

Network Layers Parameter Options Selection

Input layer

Sequence length Longest

Batch size 27

Input per sequence 170

Feature vector 1 dimension

Hidden layer
3 Bi-LSTM layers Longest

Hidden state 200

Activation function Softmax

Output layer
LSTM model Many to one

Number of classes 40

Table 5. Execution environment.

Deployment Descriptions

PC

Dell
CPU: Intel Core i7-9th Gen
Memory Size: 8 GB DDR4

SSD: 500 GB

LMC sensor

Frame rate: 64 fps
Weight: 32 g

Infrared camera: 2 × 640 × 240
Range: 80 cm

150× 120◦

Participants Ten

Selections
40 ASL words

10 times number of occurrence

2.5. Evaluation Metrics

Confusion matrix contains columns and rows, where each column denotes possibility
of predicted word gestures, whereas each row denotes original word gesture probability.
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However, main diagonal of confusion matrix denotes scores of correct classified word
gestures with blue colors, whereas entries below diagonal denote false positives (gestures
classified incorrect from our concerned class) with gold color, and entries above diagonal
denote false negatives (gestures classified incorrect from non-concerned class) with dark
orange color. From confusion matrix, set of word pairs inside similar cell and in similar
class is denoted as true positive,τ1; set of word pairs inside similar cell and in different
class is denoted as true negative, τ2; set of word pairs inside different cell and in different
class is denoted false positive, ψ1; and set of word pairs in different cells and in different
classes is denoted false negative, ψ2. Each word pair is computed based on its frequency of
occurrences. However, it is demonstrated that τ1 and ψ2 should be maximized and τ2 and
ψ1 minimized to better explore performance of selected features and to determine optimal
multi-stacked deep BiLSTM recognition. The following metrics are most popular for deep
neural network and provide the results of comparison [5].

2.5.1. Accuracy Metrics

Accuracy is described as measure of correct predictions. Accuracy is given by:

Accuracy =
τ1 + τ2

τ1 + τ2 + ψ1 + ψ2
(32)

Furthermore, accuracy index is not resourceful when two word classes are of varied
sizes; this leads one to obtain high measure of correct predictions. To overcome this
daunting problem, the following indices are augmented as best choices [61]:

2.5.2. Fowlkes–Mallows (FI) Index

Fowlkes–Mallows index is adopted to evaluate level of similarity between trained and
predicted word classes.

FI =
√

τ1

τ1 + τ2
∗ τ1

τ1 + ψ1
(33)

2.5.3. Matthew Correlation Coefficient (MC)

Matthew correlation coefficient determines trained and predicted binary classifica-
tion [62], which is defined as:

MC =
(τ1 ∗ τ2)− (ψ1 ∗ ψ2)√

(τ1 + ψ1)(τ1 + ψ2)(τ2 + ψ1)(τ2 + ψ2)
(34)

2.5.4. Sensitivity (Sv)

Sensitivity is defined as:

Sv =
τ1

(τ1 + ψ2)
(35)

2.5.5. Specificity (S f )

Specificity is defined as:

S f =
τ2

(τ2 + ψ1)
(36)

2.5.6. Bookmaker Informedness (BI)

Bookmaker informedness determines probability estimate of informed decision; it is
defined as:

BI = (Sv + S f )− 1 (37)

2.5.7. Jaccard Similarity Index (JI)

JI metrics describes portion of overlap between two words: word 1 (trained word)
and word 2 (generalized word), where they share similar features. These features are
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considered 0 or 1. Each feature per particular class must fall into one of τ1, ψ2, τ2 and ψ1
entries, respectively. JI is given as [63]:

J I =
τ1

(τ1 + τ2 + ψ1)
(38)

Moreover, the developed models from the proposed method are evaluated using
the accuracy, sensitivity, and specificity metrics. However, the best model is subject to
further evaluation using K-fold and LOSO cross-validation to observe the influence of
majority over the minority classes (class imbalance). The shortcomings of these recognition
metrics include displaying misguiding results on imbalanced features due to failure to
accommodate the relationship between the positive and negative entries in the confusion
matrix. In addition, these metrics were not good enough to evaluate the matrix overlap.
Therefore, to monitor the exact classification accuracy of our best model and to overcome
the limitations of the mentioned metrics, we extend the evaluation of MC, JI, BI and FI
indices. These metrics were reported in some studies to demonstrate good performance.

2.6. Experiment

In this section, we present the experimental procedures of the implemented system.
The system is implemented using best hardware selection details on Table 5, which are
assembled to provide the experimental set up of Figure 7. In the simulation task, several
Matlab packages were used to validates the network performance.

2.6.1. Dataset Design

Available public hand skeletal ASL datasets with resourceful 3D skeletal hand informa-
tion while signer is on the move, as in our proposal, are scanty, thus making it necessary to
construct our data sets. In this approach, we selected 40 dynamic double-hand ASL words
from first 200 available ASL words vocabulary. All signs were captured from 10 right-
handed (right hand as dominant hand) double-hand signers. We extended strategy for
in-the-field data design in [27]. All signers were trained from web ASL video information
tutors. Age range of signers was 25–40 years . Each signer repeated double-hand ASL word
10 times, making a total of 4000 samples. LMC is suspended on signer’s chest, as shown in
Figure 7, to actualize ubiquitous sign language recognition system. LMC is a vision-based
capturing devices that employs infrared image sensing analogy at 30 frame per second,
with 2× 640× 240 range to extract 3D hand-joint skeletal video information. LMC SDK
software is configured via API (application programming interface) to synchronize with
MS visual studio and LabView frameworks for data recording and visualization. Brief
description of our designed data set is details in Table 6. We recorded 170 frames per
each 131 skeletal video sequence length. However, some video frames contained sequence
length less than 131. Then, we applied padding procedures in [32] to obtain equal number
of sequence length. Our adopted network was further validated on the three challenging
public-hand skeletal dynamic gestures from LMC data bases as follows. These data sets
were evaluated according to the leave-one-subject-out experimental protocol:

• Avola et al. [32] data set: the data set is comprised of static and dynamic skeletal
hand gestures captured from 20 signers, and it is repeated twice. Due to the nature of
our approach, we selected dynamic gestures, including bathroom, blue, finish, green,
hungry, milk, past, pig, store and where.

• LMDHG [64] data set: comprised of dynamic skeletal hand gestures collected from
21 signers, each signer performed at least one sign, resulting in 13 ± 1 words.

• Shape Retrieval Contest (SHREC) [65] data set: Comprised of 14 and 28 challenging
dynamic skeletal hand gestures, respectively. The gestures were performed using one
finger and the entire hand.
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Table 6. Dataset description.

Classes Amount

Frames 524,000
Samples 4000

Duration (sec) 8200

Figure 7. Experimental set up.

3. Results

In this section, we present simulation results of the adopted multi-stacked deep
BiLSTM networks. Two type of deep networks were designed and simulated to demonstrate
accuracy of our selected features, as shown in Table 7.

Table 7. Proposed models combination.

Models
Epochs Execution Time (s)

Features Combination Model Depth

Shape + Motion + Position + Angles + 3-BiLSTM layers 300 1.05Pause + Relative trajectory
Shape + Motion + Position + Angles 3-BiLSTM layers 300 1.01

The first network combined hand shape, motion, position, pause, angle and relative
trajectory. After several trial and error parameter selections, it was found that best model for
different input feature combinations settled at Model-1 with 3 multi-stacked deep BiLSTM
layers. Model-1 was trained at 300 epochs, where each class pair had inferences at 1.05 s, as
illustrated in Figure 8 and Table 7. The second network was made through combination
of shape, motion, position, and angle features. After several trials of network training for
different feature combinations, best model was settled at Model-2 with 3 multi-stacked
deep BiLSTM units, inferences at 1.01 s via 300 epochs, as illustrated in Figure 9 and
Table 7. Since Model-1 achieved best recognition, we subjected it to further analysis using
Leave-One-Subject-Out (LOSO) protocol because of its robustness, where 9 signers out
of 10 were trained and the remaining signer was used during validation (generalization).
This procedure was repeated 10 times, and the results are reported in Table 8. We achieved
best LOSO validation due to reduced cost from the TL. Good discrimination performance
was noticed by the developed multi-stacked deep BiLSTM when knowledge of hand
dynamics were used in the input vector, achieving average sensitivity of 97.494%, specificity
of 96.765%, average FI of 72.347%, MC of 94.937%, BI of 94.259%, JI of 54.476% and
accuracy rate up to 97.983%. Therefore, the two models were set to inference with Top-K
validation [66]. The data set was partitioned into 80% and 20% for training and validation,
respectively. In this trial, K took values of 1, 2 and 3. Results of Top-3 validation are
demonstrated in Table 9. It is demonstrated that model-1 achieved best accuracy of the
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three classes (k = 1, 2, 3). This indicates that additional feature from pause and relative
trajectory (knowledge of hand dynamics with motion speed) contributed to 4% accuracy
when compared to second model with only four input features. Table 10 summarizes the
computing cost required to test our best model. An ablation investigation of our designed
data set revealed the influence of stacking multiple BiLSTM layers. The multi-stacked
BiLSTM network was trained using the three network performance schemes to optimize
the loss function. Figures 10–12 demonstrate the recognition performance of multi-stacked
deep BiLSTM network with optimization from Adam, stochastic gradient descent and
adaptive gradient schemes, respectively. Their performance comparison of computed mean
of standard evaluation metrics is displayed in Table 11, which is obtained by condensing
the entire confusion matrix for the average results. The best optimization scheme for
multi-stacked deep BiLSTM with Model-1 input feature vector is Adam.

Table 12 provides performance comparison between average recognition accuracy
of Model-1 and proposed method in [32]. The work [32] has similar shape with our ap-
proach because this method utilized gestures from ASL dictionary. Their method employed
20 signers, and each signer was directed to perform 12 dynamic double- and single-hand
ASL words, 30 times each. Our multi-stack deep BiLSTM network was outperformed [32]
on ASL data set with accuracy, precision, recall and F1-Score of 1.48%, 1.597%, 1.469%,
and 1.626%, respectively. These results are consistent with the skeletal dynamic hand
gesture recognition. When our method was validated on LMDHG data set, it was out-
performed [32] with mild recognition accuracy of 0.37%. In addition, our method was
validated on SHREC data set, and work in [32] was superior to our technique by 0.63% for
experiment with 14 hand gestures, while we outperformed [32] by 1.56% for experiment
with 28 hand gestures.

Figure 8. Training performance of Deep BiLSTM network on Model-1.
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Figure 9. Training performance of Deep BiLSTM network on Model-2.

Table 8. Performance evaluation of multi-stack deep BiLSTM network using leave-one-subject-out
cross-validation.

Word Classes Accuracy FI MC Sv S f BI JI

Again 0.98 0.7 1 0.98 0.992361 0.972361 0.494949
Angry 0.92 0.707721 0.842701 0.888889 0.956522 0.845411 0.510638

Available 0.986486 0.582301 0.970193 0.970874 0.994819 0.965692 0.341297
Bad 0.99 0.703562 0.959462 0.99 0.985622 0.975622 0.497487

Bicycle 0.993197 0.579324 0.984886 0.98 0.972569 0.952569 0.335616
Big 0.984772 0.707251 0.969581 0.99 0.979381 0.969381 0.505102
But 0.980198 0.989899 0.489899 0.989899 0.5 0.489899 0.98
Car 1 1 0.899994 1 0.989457 0.989457 1

Cheap 0.975 0.701793 0.943489 0.970297 0.999673 0.96997 0.497462
Clothes 0.97 0.703599 1 0.960784 0.986117 0.946902 0.5

Cold 0.994898 0.716115 0.989841 0.990099 1 0.990099 0.512821
Come 1 1 0.959284 1 0.98884 0.98884 1
Dance 0.975 0.701793 0.963497 0.970297 0.989916 0.960213 0.497462

Embarrassed 0.955 0.709103 0.976592 0.933333 0.979465 0.912798 0.507772
Empty 0.98 0.7 0.965484 0.98 0.969476 0.949476 0.494949
Excuse 0.98 0.7 1 0.98 0.981238 0.961238 0.494949

Expensive 0.98 0.7 0.974596 0.98 0.961296 0.941296 0.494949
Finish 1 1 0.958249 1 0.952948 0.952948 1
Fork 0.975 0.701793 0.976222 0.970297 0.983176 0.953473 0.497462

Friendly 0.993103 0.571305 0.984467 0.979167 1 0.979167 0.326389
Funeral 0.985 0.698221 0.965785 0.989899 0.976355 0.966254 0.492462

Go 1 1 1 1 0.954389 0.954389 1
Good 1 1 0.969829 1 0.965481 0.965481 1

Happy 0.975 0.701793 0.949985 0.970297 0.968367 0.938664 0.497462
Help 0.98 0.7 0.947892 0.98 0.983923 0.963923 0.494949
Jump 0.975 0.701793 0.928965 0.970297 0.976583 0.94688 0.497462
March 0.994898 0.716115 0.989841 0.990099 1 0.990099 0.512821
Money 0.975 0.701793 0.939785 0.970297 0.954873 0.92517 0.497462
Please 0.912458 0.485965 0.801818 0.930233 0.905213 0.835446 0.274914
Pray 0.984694 0.705419 0.969432 0.989899 0.979381 0.96928 0.502564
Read 0.98 0.7 0.985672 0.98 0.972345 0.952345 0.494949

Request 0.98 0.7 0.925498 0.98 0.991438 0.971438 0.494949
Sad 0.979899 0.712525 0.960582 0.961165 1 0.961165 0.507692

Small 0.989712 0.444416 0.968427 0.95 1 0.95 0.197505
Soup 0.935 0.694709 0.977349 0.92233 0.965481 0.887811 0.494792

Spoon 0.979452 0.573573 0.954375 0.97 0.984375 0.954375 0.33564
Time 0.98 0.7 0.982396 0.98 0.974928 0.954928 0.494949
Want 0.994819 0.714435 0.989686 0.989899 1 0.989899 0.510417
What 0.994819 0.714435 0.989686 0.989899 1 0.989899 0.510417
With 0.984694 0.697926 0.969432 0.979381 0.989899 0.96928 0.489691

AVERAGE 0.979827 0.723467 0.949372 0.974941 0.967648 0.942588 0.54476
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Table 9. Performance accuracy of the developed models.

Network Models Top-1 Top-2 Top-3 Features Combination Model Depth

Deep BiLSTM 0.954 0.971 0.989 Shape + Motion + Position + 3-BiLSTM layersAngles + Pause + Relative trajectory
Deep BiLSTM 0.912 0.929 0.945 Shape + Motion + Position + Angles 3-BiLSTM layers

Table 10. Comparison of adopted Deep Bi-LSTM with a state-of-the-art method.

Methods Type of Deep Learning No. of Epochs Depth of LSTM Convergence Rate Execution Time

Avola et al. [32] Deep Bi-LSTM 800 4 units 100,000 iter not reported
Our proposal Deep Bi-LSTM 300 3 units 10,000 iter GPU 1002

Figure 10. Confusion matrix of the recognition performance of double-hand dynamic ASL words
with Adam optimization.

Figure 11. Confusion matrix of the recognition performance of double-hand dynamic ASL words
with SGD optimization.
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Figure 12. Confusion matrix of the recognition performance of double-hand dynamic ASL words
with Adagrad optimization.

Table 11. Performance validation of Multi-stack deep BiLSTM from adopted optimization scheme.

Optimization Scheme Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AdaGrad 94.701 94.006 94.869 94.003
SGD 95.011 94.998 95.01 94.786

Adam 97.983 96.765 97.494 96.968

Table 12. Performance comparison of the multi-stacked BiLSTM network with method in [32].

ASL Data Set

Approach Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Avola et al. [32] 96.4102 96.6434 96.4102 96.3717
Ours 97.881 98.007 97.879 97.998

LMDHG Data Set

Avola et al. [32] 97.62
Ours 97.99

SHREC Data Set

Accuracy (%)

14 Hand Gestures 28 Hand Gestures

Avola et al. [32] 97.62 91.43
Ours 96.99 92.99

Performance Comparison with Baseline Methods

Validation is carried out with various baselines on the LMDHG and SHREC’17
databases, respectively. Different results are illustrated and analyzed.

In Table 13, evaluation results of SHREC’17 dataset from standard protocol are illus-
trated. Methods Avola et al. [32] and Li et al. [67] are in similar shape with our approach,
and their results are obtained from [65,68]. In particular, our method obtains 96.99% on
the 14-gesture protocol and 92.99% on the 28-gesture protocol. It outperforms the most
recent works [67,68] by 0.48% and 0.68% for experiment with 14 hand gestures and by
1.5% in [68] for experiments with 28 hand gestures, respectively, though [67] is superior to
our technique by 0.34% for experiment with 28 gestures. However, our method demon-
strates state-of-the-art performance on recent approaches. Table 14 illustrates evaluation
results of LMDHG data set. The comparison results are obtained from works in [32,64].
Our method outperforms the two recent approaches in [26,35] on LMDHG data set with
average recognition accuracies of 6.79% and 5.99%.
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Table 13. Performance of the multi-stacked BiLSTM network initialized with data-driven optimization
applied to SHREC data set.

Approach Algorithms
Accuracy (%)

14 Hand Gestures 28 Hand Gestures

De Smedt et al. [65] SVM 88.62 81.9
Boulahia et al [69] SVM 90.5 80.5

Ohn-Bar and Trivedi [70] SVM 83.85 76.53
HON4D [71] SVM 78.53 74.03

Devanne et al. [72] KNN 79.61 62
Hou et al. [73] Attention-Res-CNN 93.6 90.7
MFA-Net [74] MFA-Net, LSTM 91.31 86.55

Caputo et al. [75] NN 89.52 -
DeepGRU [76] DeepGRU 94.5 91.4
Liu et al. [68] CNN 94.88 92.26
Li et al. [67] 2D-CNN 96.31 93.33

Ours Multi-stack deep BiLSTM 96.99 92.99

Table 14. Performance of the multi-stacked BiLSTM network initialized with data-driven optimization
applied to LMDHG data set.

Approach Algorithms Accuracy (%)

Boulahia et al. [64] SVM 84.78
Devanne et al. [72] KNN 79.61
Lupinetti et al. [35] CNN-ResNet50 92

Hisham and Hamouda [26] Ada-boosting 91.2

Ours Multi-stack deep BiLSTM 97.99

4. Discussion

We combined two set of models from two different input feature set combination to
improve hand feature recognition and examine sensitivity per features against recognition
accuracy. Sometimes, true and false negatives revealed zero values (with best true positive),
and evaluating these values using standard metrics produced a misleading conclusion.
Therefore, for better explanation of confusion matrix, true positives and false negatives
should be maximized, whereas true negatives and false positives should be minimized, so
that sensitivity of adopted algorithms will be effective on the tested features. Accuracy is not
enough to describe performance of model-1; however, we evaluated model-1 according to
other metrics. We address this problem using the evaluation metrics in Equations (33), (34),
(37) and (38), respectively. Figure 10 displays confusion matrix of model-1, which illustrated
that true positives and false negatives were the largest entries in the matrix, whereas
true negatives and false positives were the lowest entries, respectively. Nevertheless, to
conform that the results are statistically significant, the JI is computed using Equation (38)
by counting the number of accuracy of similar classes ≥ 54.476%. Simulation results
demonstrated that JI is up to 0.5. Thus, the similarity index was rejected, leading to the
conclusion that the adopted system was statistically significant. Moreover, in order to assess
the imbalanced samples (overoptimistic estimation of the classifier ability on the majority
class to be dominant) of the adopted multi-stacked deep BiLSTM network, we evaluated
MC index from Equation (34). MC generated a high score only if the multi-stacked BiLSTM
recognizer was able to correctly predict the majority of positive feature instances and the
majority of negative feature instances. MC ranges in the interval with extreme values {–1
and +1} were obtained in case of perfect misclassification and classification, respectively.
The MC in this case achieved an average score of 0.949. MC computed results show that the
adopted network was able to successfully classify the new input features without minority
or majority class bias, reporting only four false negatives (But, Angry, Car and Please),
whereas four ASL words (Again, Clothes, Excuse and Go) in the feature vector were all
correctly classified (for ϕ1 = 0 or ϕ2 = 0), in this case, MC = 1. In FI computation, if each
class in training feature perfectly matches with class in testing feature, then FI is 1, while if
each class in training feature is equally shared over the entire classes in testing feature, then
FI is 0. Therefore, FI index achieved good matrix overlap of 0.723 in Table 8. Furthermore,
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model-1 was evaluated using BI Formula (37), where the average gauge of the likelihood
of the informed decision reveald a score of 0.943. The obtained results are acceptable.

Furthermore, in Figure 13 we displayed words with least accuracy: Please, Angry,
Friendly, Embarrassed and Soup. ASL word Angry was performed by clawing double
hands and inserting fingertips against stomach. Then, hands were forcefully pulled up and
outward. ASL word Please or Pleasure was performed by placing both hands on chest, with
both palms facing outwards. Then, hands moved in circular motion. ASL word Friendly
was performed by raising double hands a few inches in front of head. Then, fingers were
wiggled using double hands backward movement. The low accuracy was due to word
Please being misclassified as Angry and vice versa. Recognition of these words is thorny,
because they share similar considerable parameters.

In addition, CMC curve is designed to illustrate recognition rate versus rank score.
In this plot, each learning set exempted the knowledge of hand dynamics to measure the
similarity contribution of each word combinations. Thus, best recognition was achieved
at lower rank, whereas low recognition was achieved from the high rank, as shown in
Figure 14. The double-hand ASL words with least ranks were Car (10th), Come (35th), Fin-
ish (14th), Go (29th) and Good (2nd). These gestures can achieve best recognition without
knowledge of hand dynamics, whereas ranks 8th, 12th, 18th, 23rd and the remaining ranks
are difficult to recognize without knowledge of hand dynamics. This demonstrates that
not all gestures are unique; each gesture needs different number of discriminating features
during recognition. It is worth noting that manual hand features are promising to address
misclassification. However, it is difficult to design network suitable for all the dynamic
hand gestures. To overcome this challenge, there is need to design network that has a series
of concatenated classifiers, so that each group of gestures could have a suitable classifier, as
well as features.

Figure 13. Misclassified words.
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Figure 14. CMC evaluation.

5. Conclusions

In this work, we addressed the misclassification problem of double-hand dynamic sim-
ilar and non-similar ASL words. The method achieved an average a recognition accuracy
of 97.983% when aiding an effective and automatic recognition of complex double-hand
dynamic ASL words from 3D skeletal hand-joint video features of hand motion trajectories
and pause, which were developed inside a multi-stacked deep BiLSTM enhanced with
machine learning tools. The proposed method designed a consolidated input feature vector.
Our method outperformed the existing state-of-the-art methods. Although we experi-
enced misclassification of a few words, it is worth emphasizing that multi-stacked deep
BiLSTM initialized from transfer learning with multi-features is promising with regard to
challenging, small and large vocabularies of static and dynamic sign words. In a nutshell,
misclassification of double-hand dynamic gestures and general gestures could be addressed
by extending the vocabulary to accommodate more gestures with various complexities.
In addition, if we are to consider the real application of sign-language recognition, then
the recognition network should be trained on a relatively small number of gestures, and
recognition could be treated as a multi-feature problem. This work can be applied to
ubiquitous SLR systems, mobile games, and robotics. Further research should investigate
spatial information from skeletal hand-joint video frames to address the misclassification
of dynamic sign words.
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