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Abstract: The ability of artificial intelligence to drive toward an intended destination is a key compo-
nent of an autonomous vehicle. Different paradigms are now being employed to address artificial
intelligence advancement. On the one hand, modular pipelines break down the driving model into
submodels, such as perception, maneuver planning and control. On the other hand, we used the end-
to-end driving method to assign raw sensor data directly to vehicle control signals. The latter is less
well-studied but is becoming more popular since it is easier to use. This article focuses on end-to-end
autonomous driving, using RGB pictures as the primary sensor input data. The autonomous vehicle
is equipped with a camera and active sensors, such as LiDAR and Radar, for safe navigation. Active
sensors (e.g., LiDAR) provide more accurate depth information than passive sensors. As a result, this
paper examines whether combining the RGB from the camera and active depth information from
LiDAR has better results in end-to-end artificial driving than using only a single modality. This paper
focuses on the early fusion of multi-modality and demonstrates how it outperforms a single modality
using the CARLA simulator.

Keywords: artificial intelligent; end-to-end autonomous driving; safely navigation; conditional imita-
tion learning (CIL); conditional early fusion (CEF); situation understanding; object detection; CARLA

1. Introduction

Autonomous vehicles are essential to the future of the transportation industry. As a
result, developing deep learning for autonomous vehicles is essential. No one should deny
that recently, deep learning and computer vision have significantly impacted the automotive
industry. Deep learning is used extensively in autonomous driving and augmented reality.
Only a few of the complex and specialized functions needed for autonomous driving are
automatic, for example, lane-keeping assistance, emergency braking (AEB) [1], active cruise
control [2], forward collision warning (FCW) [3] and crash avoidance [4]. FCW and AEB
are two of the first accident-avoidance features to be tested. The vehicle can only warn
the driver of an impediment in front of them in FCW mode, and the driver must then
determine whether to act. In AEB, however, as the vehicle approaches the front object,
the vehicle begins to act by braking. As a result of integrating intelligent sensors such as
Camera, LiDAR and Radar, ego-vehicles can make these decisions; however, low-quality
sensors lead to many collisions and congestion. Modular pipelines (MPs) methods and
end-to-end (E2E) learning methods are two common approaches for enabling self-driving
to overcome these accident and alert the driver if some obstacle is found on the driving
lane line.

MPs are used in the majority of autonomous vehicles [5,6]. Perception, route planning
and control are three subproblems of the autonomous driving issue, that MPs divide into
smaller, simpler subproblems. The method often depends on various sensors perfectly
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depicting the surrounding environment. Clear perception, tracking, mapping/localization,
planning and control are the foundations of the MPs methods. This representation is then
used to make a driving decision. While MPs are relatively easy to understand due to their
modularity, they rely on complex intermediate representations that must be manually cho-
sen (e.g., optical flow) and are often difficult to estimate with sufficient accuracy. Therefore,
these methods may not be the best option for solving the sensorimotor control task. MPs
also need significant quantities of labeled data, which may be difficult to come by, such as
pixel-wise semantic segmentation [7,8] for neural network training, or high-definition maps
for localization. Traffic sign recognition [9], obstacle detection [10–13], lane line recogni-
tion [14–17], monocular depth estimation [18–20], SLAM and positions recognition [21–23],
and other sub-tasks, also become challenges for MPs methods.

In E2E approaches, deep neural networks are trained to directly produce the control
outputs from raw sensor inputs. Imitation learning is the most popular approach [24];
it is a supervised learning approach based on human demonstrations. Using imitation
learning to drive end-to-end has recently resurfaced as a topic of interest among academics.
Imitation learning, like human learning, utilizes an image as an input and then predicts
steering wheel angle, acceleration and deceleration values as outputs. End-to-end driving
refers to the process of a model learning to drive from an expert demonstration, and it
has been effectively used in lane-following [24,25] and obstacle avoidance off-road [26].
The article [27] argued that utilizing just an image as input is insufficient for determining
whether the vehicle should turn left or right, or continue straight while approaching an
intersection, and suggested a technique based on conditional imitation learning (CIL) and
navigation commands to address this problem.

It is helpful to consider what factors an end-to-end driving system should include.
We look at the issue from a variety of angles. The end-to-end driving system must start
with a navigation command before following the selected route [27]. Besides this, we know
it is helpful for human drivers to figure out what things are in front of the ego-vehicle.
Xu et al. [28] have shown that combining a fully convolutional network (FCN) [29] with
privilege learning may improve the driving model performance. Furthermore, human
drivers pay close attention to the road. When a human driver sees that the traffic light has
turned red, he will come to a stop, even if there are no other motorists or pedestrians in front
of the ego-vehicle. Xu et al. [28] also show how segmentation information may help the
model focus on the correct items. However, when the vehicle approaches an intersection,
segmentation information may not be sufficient to allow the car to concentrate on valid
objects, since the model cannot determine where to look and move at this moment without
navigation commands. Intuitively, a branching design with a navigation command, in
which various model portions handle distinct navigation circumstances, may be beneficial.
In addition, human drivers can drive a vehicle safely since they can make out what class
an object belongs to and its distance from the vehicle. We utilize an input RGB image
and active depth information (D) from LiDAR to improve end-to-end artificial driving,
rather than using only a single modality. Moreover, self-driving cars should be able to
follow other vehicles. Using sequential images as input, instead of a single image, seems
to have this impact. Long short-term memory (LSTM) [30] has been shown to improve
driving performance in previous studies [28,31,32]. Finally, additional data, such as speed,
are required in an end-to-end driving system, particularly when the speed restriction
is considered.

Compared to the task in [27], our task parameters in this paper are slightly different.
The traffic signal, other vehicles and pedestrians are all considered, but the speed limit is
not. The model outputs include the vehicle steering angle and throttle, but the brake is
not included. The brake is treated as a binary classification issue, with the vehicle either
stopping or allowing driving at a steady speed. Our contributions to this study are to see
whether utilizing multi-modality sensor data instead of depending on a single modality
may improve the ability of an E2E driving model to assess and predict driving behavior.
Color images (RGB) and depth (D) are considered single modalities; however, RGB-D is
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considered multi-modal. This work is built on the conditional imitation learning (CIL) [27]
CNN architecture, which can take high-level commands. We explore RGB-D via early
fusion of the single model, such as RGB image and depth (D). In addition, we use the
CARLA simulator [33], as do many recent studies on E2E driving [34–39]. The remainder
of the research paper is structured as follows:

• Section 2—Reviews the related work carried out and developed in the past few years.
• Section 3—Presents the CEF architecture for our proposed model using the CIL.
• Sections 4 and 5—Summarize the experimental settings and the obtained results.
• Section 6—Discusses our conclusions and future work.

2. Related Work

Most research initiatives use MPs, which are the most common method of autonomous
driving [40,41]. The perception stack must identify all elements of the traffic scene that
are likely to be important for the driving choice, to construct the environmental model.
Object detection [10,42], image segmentation [43,44] and motion estimation [45,46] are
often trained and solved independently [47], with deep neural networks being used more
recently for these tasks. This data may be compiled into an environment model [48,49], and
a planning module creates an obstacle-free path for the control module to follow [50].

ALVINN [24] was the first imitation learning application of autonomous driving,
predicting the steering angle from data from active and passive sensors. Deep learning
advances have reignited interest in conditional imitation learning for autonomous driv-
ing [51]. ALVINN utilized a conditional order to display an E2E network for lanes following
vacant highways, which monitored the steering angle from a single camera [52]. It learned
longitudinal and transverse control through CIL, using a remote-control vehicle to execute
route commands in a static environment [53]. Using numerous cameras and a 2D map for
localization, it learned to navigate a road network. However, it relied on localization and
route map generation and used drastically cropped images.

Pomerleau [20] and LeCun et al. [22] utilized ground vehicles and qualified deep
networks to predict driver behavior using camera input. Bojarski et al. [25] show excellent
results on real-world tasks, including highway following and flat-course driving. These
studies focused on reactive tasks, like obstacle avoidance and lane following. However,
the throttle and brake are not controlled, and lane and road changes are not considered,
neither are go straight or slow down/stop maneuvers. In contrast, we propose a command-
conditional formulation for more dynamic urban driving applications. Another difference
is that the model is taught to control the steering angle as well as the throttle and brake,
allowing it to drive itself. The decomposition of complex functions into simpler subtasks
has been investigated from several perspectives.

Multiple layers of temporally extended subpolicies have been attempted using hier-
archical methods to reinforce learning [54]. This kind of hierarchical breakdown is well
exemplified by the choices framework [55]. This setting teaches fundamental motor abilities
that may be used for various tasks [56]. For raw sensory input, hierarchical techniques were
coupled with deep learning and utilized [57]. The main goal of these works was to simply
profit from previous experience, and allow the hierarchical structure to uncover itself
independently. This is a complicated and frequent issue, especially regarding sensorimotor
skills. In addition, movement primitives have been used as building blocks in robotics
to create complex motor skills [58,59]. A parameterized dynamical structure describes a
simple motion, such as a strike or a throw, using movement primitives. On the contrary,
the strategy we considered has more parameters and can solve more complex sensorimotor
tasks, which combine perception and control. We focus on finding the next intersection or
traffic light to reduce a vehicle’s speed and then making a left turn while avoiding dynamic
obstacles, pedestrians, or other vehicles.

On the other hand, we use the CIL model to focus on early fusion and offer extra
information about the expert objectives throughout the presentation. This article highlights
the difficulty of learning and proposes a human policy that may be controlled. Hierarchical
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methods are like the concept of researching multi-functional and parameterized controllers.
Parameterized targets are employed in the area of robotics [60–62]. A generalized reinforce-
ment learning system with parameterized values transferred between states and goals, was
proposed by Schaul et al. [63]. Koltun et al. [64] investigated families of parameterized
objectives in the context of navigation in a 3D environment. Javdani et al. [65] looked at a
scenario in which a robot assists a human and modifies his actions based on his evaluation.
Although our study uses the same technique for training a conditional controller, the model
architecture and application domain are different. Our method is on the E2E spectrum, but
the controller comes with commands determining the driver intention and sensory input.
That eliminates any uncertainty in mapping the perceptuomotor and provides a medium
for communication that can guide the autonomous vehicle like a chauffeur.

Due to safety issues, driving simulators are primarily used in training and testing tasks.
Open-source applications, such as TORCS [66–68] and Grand Theft Auto V (GTA V) [69,70],
are popular driving simulators used for research. However, TORCS is not photorealistic
or dynamic enough, since it lacks the essential elements of the scene, such as cross-roads,
oncoming traffic, pedestrians, etc. GTA V is photorealistic, yet it is a closed source with
limited customization and control over the environment. We utilize the recently released
open-source simulator CARLA [33], which provides better customization of realism and
flexibility, addressing some of the earlier simulators’ problems.

3. Methodology

We first outline the fundamental conditional imitation learning (CIL) network archi-
tecture, and then demonstrate how we integrate it with network information to exploit
multi-modal perception data for early fusion.

3.1. Basic Conditional Imitation Learning Network Architecture

Consider each observation o = 〈i; m〉 as containing an image i and a low-dimensional
vector m which we refer to as measurements, following Dosovitskiy and Koltun [64]. A
deep network represents controller F. The network receives the image i, the measurements
m, the command c, and outputs the action a. There are many ways to specify action spaces,
such as discrete, continuous, or hybrid. Our driving experiments use 2D action spaces:
steering angle and acceleration. In this case, the acceleration is negative, which represents
braking or driving backward. The command c represents a category variable using a
one-hot vector.

Figure 1 illustrates a basic conditional imitation learning architecture. The network
takes the image, the measurements and the command as inputs. Each of these inputs
is processed by its module: an image module I(i), a measurement module M(m) and a
command module C(c). Convolutional networks are used for the image module, and
fully connected networks are used for the measurement module. The command module
assumes a discrete set of C =

{
c0, . . . , cK} (including a default command c0 corresponding

to no specific command) and introduces a specialist branch Ai for each of the commands ci.
The command c is a switch that selects which branch will be used at any given time. The
network output is specified in Equation (1):

F
(

i, m, ci
)
= Ai(J(i, m)) (1)

This type of architecture is known as branched. It is required that branches Ai learn
subpolicies that correspond to different commands. In a driving scenario, one module
might focus on lane following, another on the right turns, and another on left turns. All
modules are linked by their perception stream.
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3.2. Early Fusion Multi-Model Network Architecture

Our proposed architecture follows the conditional imitation learning model suggested
in [27]. Figure 2 depicts how we fuse the input RGB image and active depth (D) information
from the LiDAR in the early fusion method. Ii,t consists of an RGB image of 200 × 88 pixels
and 8 bits at each color channel, and the active depth (D) information from the LiDAR, si,t,
signifies the current vehicle speed. The command ci,t, and the output action ai,t, defines
three real-value signals that determine the next maneuver, such as steering angle, throttle
and brake. The control command ci,t is introduced to handle complex scenarios, especially
intersections, i.e., turn left, turn right, go straight, continue at the next intersection [27].
There are three continuous actions included in the action ai,t, namely, the steering angle

for the driving wheel
(

astr
i,t

)
, the throttle setting

(
aacc

i,t

)
, and the braking action

(
abrk

i,t

)
.

In order to clone human drivers’ driving behavior, we can learn a deterministic policy
network F via conditional imitation learning. A set of four policy branches is specifically
learned to encode the hidden knowledge for each case, which is then selected for use in
action prediction. Controllable imitation learning aims to determine the parameters θ when
the loss is optimal, and is defined as in Equation (2):

min
θ

N

∑
i

Ti

∑
t

L(F(Ii,t, ci,t, si,t), ai,t) (2)

The loss function L is defined as the absolute error between the three predicted actions
âi,t and the ground truth ai,t with the same command:

L(âi,t, ai,t) =
∣∣âstr

i,t − astr
i,t
∣∣2 + ∣∣âacc

i,t − aacc
i,t

∣∣2 + ∣∣∣âbrk
i,t − abrk

i,t

∣∣∣2 (3)

Figure 2 depicts the network structure diagram, while Table 1 lists the specific pa-
rameters of the network structure. The network is composed of three parts. The first part
consists of the eight convolutional layers, and two fully connected layers make up the
feature extraction from the RGB-D. In the convolutional layer, the kernel size is five in
the first layer and three in the following layers. The first, third and fifth convolutional
layers have a two-step stride. In the first layer, the number of channels is 32, increasing
to 256 at the eighth layer in a convolutional neural network. The fully connected layers
contain 512 units in each layer; this convolutional neural network layer is elaborated in
Table 1. In the second part, the speed input is processed. It consists of two layers that are
fully connected. The third part consists of four identical structures, each with three fully
connected layers, in which the Conv2D layer contains a convolutional layer and a dropout
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layer, while the fully connected layer does not contain a dropout layer. The dropout layer
randomly sets input units to zero with a frequency of rate at each step during training time,
which helps prevent overfitting. A good value for dropout in a hidden layer is between 0.5
and 0.8. Here, the role of the hidden layers is to identify features from the input data and
use these to correlate between a given input and the correct output. The neural networks
have two main hyperparameters that control the architecture or topology of the network:
the number of layers, and the number of nodes in each hidden layer. Thus, this proposed
network will converge faster because it has fewer parameters to train.
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Table 1. Network Details.

Layer Output Shape Layer Output Shape

Input Image 88× 200× 3 Input Speed 1
Conv2d_1 42× 98× 32

FC 128

Conv2d_2 40× 96× 32
Conv2d_3 19× 47× 64
Conv2d_4 17× 45× 64
Conv2d_5 8× 22× 128
Conv2d_6 6× 20× 128
Conv2d_7 4× 18× 256

FC 128
Conv2d_8 2× 16× 256

Flatten 8192
FC 512
FC 256
FC 256
FC 256

Total 4 branches for all 4 commandsFC 256
Output 1

3.3. A Pipeline of the Early Fusion of the Multi-Model Network

The whole pipeline is visually depicted in Figure 3. Our proposed algorithm follows
the conditional imitation learning model suggested in [26]. Input Ii,t consists of the fusion
of the RGB image and the active depth (D) information from the LiDAR, si,t signifies the
current vehicle speed and the command ci,t. In contrast to a single input mode, these
multiple inputs are used for better end-to-end autonomous safety driving. In Figure 3, we
can see that the convolution neural network block discussed in Section 3.2 is used to fuse
RGB images with active depth (D) information from the LiDAR. Its help us to extract the
most important information and associate that information with the measurement value,
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such as vehicle speed, si,t, by concatenating. This concatenating information is inserted
into the decision part and the control command values. The control command ci,t helps
in the complex scenarios, especially intersections, i.e., follow the lane, drive straight, turn
left or turn right at the next intersection. The output action ai,t contains three continuous

actions: the steering angle for the driving wheel
(

astr
i,t

)
, throttle setting

(
aacc

i,t

)
and braking

action
(

abrk
i,t

)
.
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4. Experiments

The training, validation and testing of the model proposed in this paper were per-
formed using the TensorFlow [71] framework and cuDNN [72] kernel. The hardware
equipment included a workstation with Intel@CoreTM i7-6800K CPU@3.40GHz and a GTX
1080Ti graphic card.

4.1. CARLA Simulator

Our end-to-end model was trained and tested in an open-source simulation envi-
ronment for ease of use and safety. The simulation environment was chosen mainly to
save data collection and labeling time. CARLA [33] is a state-of-the-art vehicle controller
simulator that lets users develop their own vehicle controllers with RGB and depth cameras,
and LiDAR sensors. The data about the car, such as speed, steering angle, throttle positions
and brake positions, are available in simulations and the data about the environment
include lane lines and traffic signs. CARLA offers more information about urban towns
with different layouts. Other simulators, such as Udacity and TORCS [73], are not designed
for urban area driving. Intersections, lane rules and other complexities are lacking, such as
differentiating between urban driving and highway driving.

It is important to collect appropriate data to achieve imitation learning. The simulation
environment is based on CARLA, with Logitech G29 Driving Force Racing Wheel for driver
input, and FFB Checker for force feedback. As shown in Figure 4, CARLA provides maps
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and sample views of Town 1, used for training and Town 2, used exclusively for testing.
Town 1 has 2.9 km of road and 11 intersections, while Town 2 has 1.4 km of road and eight
intersections. It provides a professionally designed environment with buildings, vegetation
and traffic signs, as well as vehicular and pedestrian traffic. Before data collection, we
redefined the scope of the steering angle. The Logitech G29 Driving Force Racing Wheel
supports a rotation angle of [−900,900], the same as a real car, but in the CARLA simulator,
the steering wheel angle is set to −1 or 1.
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We gathered the driving behavior data of a human driver under Left, Right, Follow,
and Straight instructions (in the acquisition, the front car was a Lincoln MKZ 2017, made
available by CARLA). During this time, the vehicle’s speed at the time, the RGB camera
frame data from the front-view camera, and the active depth information from the LiDAR,
were also collected. We set the camera at the same position and parameters (such as FoV,
resolution and type) as [27]. In all commands except the Follow command, autonomous
vehicles had to avoid obstacles. Therefore, we collected data to reduce the risk of collision
with vehicles and pedestrians in front of Right, Left and Straight.

4.2. Data Collection

The collected data set is the same as [74], since the driving time was 25 h in Town 1,
by balancing different weather environments. In short, this dataset was generated by a
hard-coded self-pilot with full access to all CARLA-sensitive driving data. When traveling
on a straight road, the autopilot maintained a steady speed of 31.8 km per hour, slowing
down or stopping at the next intersection before turning. The raw data that we processed
and synchronized at 10 fps includes the following input details:

1. The center front camera and the two side cameras at 30◦ left and right. The only
camera utilized for autonomous driving is the one in the center. In a self-driving
vehicle, the images from the side cameras are solely used during training to mimic the
driving error recovery graph [25]. The collection includes 2.5 million RGB pictures
with a resolution of 800 × 600 pixels and relevant ground truth. The RGB input image
is cropped to eliminate the sky and extremely near region, then scaled to provide a
channel resolution of 200 × 88 pixels in our early fusion model. Data augmentation is
essential for good generalization in our initial experiments. During network training,
we conduct augmentation online. We add a random subset of transformations of
random sampling magnitudes to each image to be presented to the network. Changes
in brightness, contrast, lighting and Gaussian noise are all part of the transformation.
Gaussian blur, salt and pepper noise, and area dropout are some of the effects available.
Geometric improvements, such as translation and rotation, are not performed, since
the control command is not invariant to these transformations.
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2. We develop an upper bound driver using perfect semantic segmentation in this work.
In order to develop this upper bound, the twelve semantic classes of CARLA are
mapped to five, which we consider sufficient. We keep the original road surfaces,
vehicles and pedestrians, while lane markings and sidewalks are given the status
of ‘lane limits’ (Towns 1 and 2 only have roads with one go and one return lane,
separated by continuous double lines), and the remaining seven classes are given the
status of ‘other’.

3. Premebida et al. [75] obtained depth data from the LiDAR point cloud, and we think
RGB images include dense depth data. The CARLA depth of ground truth comes
straight from the Z-buffer used for displaying the simulation, and it is extremely
accurate. The depth value is 24-bit encoded and spans from 0 to 1000 m, implying
a depth precision of around 1/20 mm. An active sensor range coverage and depth
accuracy significantly exceed a passive sensor. The use of depth data has been
post-processed to make it more realistic. The Velodyne information from the KITTI
dataset [76] provides a realistic sensor reference. First, we reduce the depth value only
to examine pixels inside the 1100-m range, i.e., pixels with outside values in the depth
image. On the other hand, this range does not contain any depth information. Second,
we re-quantify the depth value within 4cm of the original. Third, we fix the pixels
that have no data. Finally, we apply a median filter to prevent establishing precise
depth boundaries between objects. New depth images are utilized during training
and testing. Figure 5 shows an example of a CARLA depth image and the equivalent
post-processed version.

4.3. Training

Given the autopilot ground truth values, the networks are trained to minimize the
mean-squared error of the steering angle, throttle and brake values. We follow the multi-
tasking training approach where we have multi-tasks for four corresponding network heads
for left-branch, right-branch, straight-branch, and slow down for the speed/stop-branch.
According to the selected command, the loss is minimized for the current active head when
one head is activated. The network is trained for 200 epochs with a batch size of 16. For
optimization, the ADAM optimizer [77] is used where β1 = 0.9 and β2 = 0.99, and there is
an initial learning rate of α = 0.0002.
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Figure 5. Images utilized in our proposed model. (a) Input RGB image, (b) Semantic Segmentation
Ground Truth, (c) CARLA depth ground truth, (d) Post-processed image of an active depth.

5. Experiment Results
5.1. Success Rate Comparison with Previous Methods

We compared our proposed model to previous single-modality methods discussed in
the related work section, to assess its superiority further. This comparison is entirely based
on the CARLA benchmark results because not all relevant papers offer comprehensive
training techniques or training datasets. The benchmark test included six different driving
activities with increasing complexity, including driving in a straight line, driving through a
single turn, navigating through the town, taking several turns, and navigating through the
town with random obstacles, such as vehicles, obstacles and pedestrians, among others.
The agent starts at a predetermined place in town and completes a task within a certain
amount of time. The time restriction is equivalent to the time it takes to travel 31.8 km per
hour on the best route to the destination. We compared our conditional early fusion (CEF)
method to the listed models in Table 2. These results are reproduced from the following
manuscript listed in Table 2.

Table 2. Result Reproduction Details.

Model Abbreviation Manuscript

Modular Perception MP [33]
Reinforcement Learning RL [33]

Controllable Imitative Reinforcement Learning CIRL [35]
Multi-Task Learning MT [36]

Conditional Affordance Learning CAL [37]

The comparison results are shown in Figure 6, with a reference line for a clear values
analysis. In the face of a complicated traffic situation, the early fusion of the RGB image
and the active depth method had a better success rate on the CARLA benchmark. On the
other hand, this early-fusion technique may be used in combination with the CAL and
CIRL procedures, which are highly compatible. This comparison to prior studies backs
up our assertion that multi-modality may aid E2E driving. As shown by Figure 6, our
proposed model performed better than nearly all the tasks, except for the training town
task under changing weather conditions, where modular perception performed slightly
better. In contrast, we can also see that the results of reinforcement learning can vary greatly.
Reinforcement learning was trained using more data; 12 days of driving, compared with
14 h for imitation learning. A second explanation is that urban driving is more difficult than
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most tasks, especially asynchronous reinforcement learning. Moreover, a driving scenario
is more complex than reinforcement learning maze navigation, for instance, because the
agent needs to deal with vehicle dynamics and visual perception in a cluttered dynamic
environment.
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Figure 6. Success Rate Comparison with Previous Methods.

According to the benchmark, towns and weather conditions are divided into four
models, under each of which the four driving tasks have to be tested in 25 episodes. These
are the four models relating to towns and weather in the benchmark:

â Training conditions: driving (i.e., running the episodes) in the same conditions as the
training set (Town 1, four weather conditions).

â New Town: driving under the four weather conditions of the training set but in
Town 2.

â New Weather: driving in Town 1 but not seen at training time under the two weather
conditions.

â New Town and Weather: driving in conditions not included in the training set (Town 2,
two weather conditions).

5.2. Performance of Single & Multi-Models

The suggested model performance against the original CARLA benchmark is shown
in Table 3. We incorporated a model trained in perfect semantic segmentation (SS) based on
the five classes examined here for autonomous driving, as illustrated in Figure 5. Therefore,
we think of this model as an upper limit. Its average production is≥96%, and it has reached
100% on numerous occasions. Table 2 shows that our suggested multi-model may drive
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correctly in CARLA if we give appropriate input. Indeed, we can observe that active depth
provided complete information for E2E driving, and that its performance in an untrained
context is considerably superior to RGB. In most instances, however, multi-modality (RGB-
D) performs better than utilizing just one model, such as RGB or simply D. The most
apparent scenario is a new town and weather conditions with dynamic objects, i.e., under
challenging circumstances. Single modality of RGB can obtain a success rate of 53.5%, D
alone 71.62%. At the same time, the early fusion of multi-modality achieved a success rate
of 94.3%. The primary issue we aimed to address in this article, is whether the early fusion
of multi-modality may enhance the performance of conditional imitation learning over a
single model.

Table 3. Mean and Standard Deviation of Success Rate on the Original CARLA Benchmark.

Active Estimated Active Estimated

Task SS RGB D EF D EF SS RGB D EF D EF

Training Conditions New Town

Straight 98.0 96.3 98.7 98.3 92.3 97.3 100 84.0 94.3 96.3 78.3 71.6
One Turn 100.0 95.0 92.0 99.0 84.6 96.3 96.6 68.0 74.3 79.0 46.3 47.0

Navigation 96.0 89.0 89.3 92.6 75.3 94.3 96.0 59.6 85.3 90.0 45.6 46.6
Nav. Dynamic 92.0 84.0 82.6 89.3 71.0 90.6 99.3 54.3 70.3 84.3 44.3 46.6

New Weather New Town and Weather

Straight 100.0 84.0 99.3 96.0 92.0 84.6 100 84.6 97.3 97.3 78.0 89.3
One Turn 100.0 76.6 94.6 94.6 93.3 80.6 96.0 66.6 72.7 82.7 62.6 64.0

Navigation 95.3 72.6 89.3 91.3 73.3 80.6 96.0 57.3 84.0 92.7 55.3 60.7
Nav. Dynamic 92.6 68.6 90.0 86.0 76.6 77.3 98.0 46.7 68.3 94.0 54.0 49.3

5.3. Grad-CAM Visualizations

Figure 7 presents a Grad-CAM visualization of different methods using random
samples from training conditions for qualitative analysis [78]. Using Grad-CAM, we can
investigate what aspects of the input significantly affect the output. Our first step was to
visualize the salient parts of the structure that contributed to control output. Figure 7 shows
how Grad-CAM attention maps cover useful regions, such as the center line or the border
between the road and sidewalk. Our proposed method looks at narrow, yet important,
points, such as the center of the road and the leading vehicle, while CIL might highlight
irrelevant information and MT appears to be distracted by large regions. We visualized
attention maps based on traffic light predictions as a second step. MT and CIRL widely
capture the traffic light, including the pole, when it is red, whereas our proposed approach
attentively looks at it, but the red color point is not included.

5.4. Prediction of Steering Wheel Angle

To further analyze our proposed model goodness, we compared it to predicting the
steering wheel angle using single and multi-modality methods. The mean square error
(MSE) loss and forward-facing camera were used to train the first model. The MSE loss
and RGB and depth fusion were utilized in the second model (D). The steering wheel angle
was standardized between −1.0 and +1.0, as illustrated in Figure 8, with positive values
indicating right-side rotation, and negative values indicating left-side rotation. We used
the linear transformation Equation (4) to normalize the value:

θnormalized = −0.5 + max
(

0, min
(

1.0,
θraw − θmin
θmax − θmin

))
(4)

where, θnormalized is the normalized steering angle between −1 and +1; θraw is the actual
steering wheel angle (in radians) measured from the vehicle; θmax and θmin represent the
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maximum and minimum steering wheel angle, respectively. Similarly, we normalized
throttles values between −1 and 1.
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The ground truth steering signal over time is presented in the blue line. Figure 8
shows the predictions of the basic CIL model (Model 1) and the early fusion of the multi-
model (Model 2) in red and green, respectively. The model predictions have a significant
qualitative difference: both often depart from the ground reality.

5.5. Path Planning

Specifically, here are the results include waiting for pedestrian crossings and overtak-
ing a vehicle in front. There is a predefined map with vehicles and pedestrians on it. Cubic
splines describe the road edges. White dashed lines indicate the center lines of these roads.
A zebra crossing is represented by the rectangle box with white and blue lines on the road.
The yellow dash lines show the vehicle path. Figures 9 and 10a,b show path-planning mo-
ments, overall trajectories, and the speed graph of the vehicle, respectively. Here s and v are
the shift and speed. The speed graph in this paper represents total values, which account
for many factors, including decreasing speed, throttling, and air and ground resistance.
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Figure 10b shows the first left turn effect of the road on the second curve. Meanwhile, the
blue car curve effect does not appear on the x-axis because it is also moving, and its curve
does not exit under 120 m once the agent crosses it.
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6. Conclusions

This paper presents a comparison of single- and multi-modal perception data for
end-to-end driving. We focused our analysis on the RGB and depth data, since they are
usually available in autonomous vehicles through cameras and active sensors, such as
LiDAR. In this study, we examined the driving performance of single-modal CIL, MP, RL,
CAL, MT and CIRL models, as well as multi-modal CIL (RGB, depth) models according to
early fusion paradigms using the CARLA simulation environment. The depth information
available in CARLA is post-processed in order to obtain a more realistic range of distances
and depth accuracy. This depth is also used to train a depth estimation model so that the
experiments cover multi-modality, not only from a multisensory perspective (RGB and
active depth), but also from a single-sensory perspective (RGB and estimated depth). Our
results show that the multi-modal CIL models significantly improve performances in all
scenarios, especially in “New Town” and “New Town and New Weather” compared to the
single models.

There are a number of limitations to the method presented here that we believe are
essential to resolve, on order to achieve (and exceed) human-level driving. This means
that the user cannot access long-term dependencies and cannot make sense of the road
scene. In addition, this method lacks a long-term planning model that is important for
safely interacting with occluded dynamic agents. There are many promising directions for
future research. The time and safety measures needed for a closed-loop policy are major
limitations; thus, robustly evaluating a policy offline and quantifying its performance is a
critical research area.

In the future, a video might be used to provide temporal information as well. In this
way, the end-to-end driving model is able to distinguish between dynamic and static objects
more precisely. Furthermore, it would be interesting to see if the proposed method could
be applied to real-world data, such as the BDD100K dataset [79], then to demonstrate how
a real car would behave under our control. We could also try to improve the model’s ability
to avoid collisions by including other useful information. In urban areas, it is possible to
achieve autonomous driving at the L4 level or even at the L5 level with simple navigation
instructions if the generalization abilities of this model are strong enough.
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