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Abstract: A novel low-power distributed Visual Sensor Network (VSN) system is proposed, which
performs real-time collaborative barcode localization, tracking, and robust identification. Due to a
dynamic triggering mechanism and efficient transmission protocols, communication is organized
amongst the nodes themselves rather than being orchestrated by a single sink node, achieving
lower congestion and significantly reducing the vulnerability of the overall system. Specifically,
early detection of the moving barcode is achieved through a dynamic triggering mechanism. A
hierarchical transmission protocol is designed, within which different communication protocols
are used, depending on the type of data exchanged among nodes. Real-Time Transport Protocol
(RTP) is employed for video communication, while the Transmission Control Protocol (TCP) and
Long Range (LoRa) protocol are used for passing messages amongst the nodes in the VSN. Through
an extensive experimental evaluation, we demonstrate that the proposed distributed VSN brings
substantial advantages in terms of accuracy, power savings, and time complexity compared to an
equivalent system performing centralized processing.

Keywords: barcode localization; tracking; object detection; distributed vision network; image sensors

1. Introduction

The increased availability of cheap electronics has enabled the construction of low-cost
Visual Sensor Network (VSN) platforms that are able to capture, process, and disseminate
visual data collectively [1]. A VSN consists of a multitude of small, connected camera
sensor nodes, each with their own computation and communication components and
power source, which aggregate visual data, process it collaboratively, and transmit useful
information to a control center [2]. These platforms provide an excellent solution for many
applications, such as video surveillance, personal care, virtual reality, and logistics [3].

This paper proposes a distributed architecture for the real-time localization and iden-
tification of multiple barcodes with visual sensor networks. Barcode localization can,
for instance, be used for the logistics in big autonomous storage facilities or warehouse
management systems, to keep track of robots, objects and personnel.

In contrast to typical centralized architectures, where all the communication must pass
through a central sink node [4], a distributed VSN provides communication among the
nodes. The distributed VSN paradigm has been proven to be efficient in achieving lower
congestion and reducing the vulnerability of the overall system. On the other hand, in
distributed VSN, the transmission among nodes causes increased consumption in terms
of energy and bandwidth. If only the cameras with informative motion are activated,
the overall consumption will be substantially decreased. The triggering mechanism that
controls how to activate or deactivate the nodes is a critical factor affecting the overall
energy and bandwidth consumption. However, the prior art in distributed VSN failed
to propose an appropriate triggering mechanism. The triggering mechanisms in current
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distributed VSNs are barely designed in a distributed fashion, such as the triggering method
based on clustering informative observation [5]. In [6], the prediction of a node’s state is
performed via the fusion of states passed from multiple nodes to a sink node.

In this work, we propose a dynamic triggering mechanism operating a distributed
fashion, where a wake-up message is sent from neighboring activated cameras to trigger
the activation of the relevant neighboring cameras. In addition, prior work [5,7] tends
to transmit multiple types of data via a single Ethernet protocol. Since the transmitted
packages combine multiple types of data, package loss could cause severe problems for
the target tracking in a distributed VSN. Thus, a hierarchical transmission protocol is also
presented in our work to mitigate the damage of package loss. The fundamental idea is to
schedule the data transmission depending on the type of data exchanged among nodes. This
approach enhances the robustness of the system via the hierarchical transmission protocol.

In our prior work, we proposed a novel approach for robot tracking based on 1D
barcode localization and identification [8]. Due to the lack of appropriate triggering mecha-
nisms and a comprehensive transmission protocol, the method suffered from low frame
rates when the tracker was deployed on low-power embedded devices. To achieve both
robust and real-time barcode tracking in a low-power VSN, we presented a distributed
visual processing system via substantial algorithmic changes in collaborative barcode local-
ization [9]. In this paper, the first comprehensive system of distributed VSN is presented
as an extension of the work in [9]-see Figure 1. The proposed distributed VSN system
is capable of performing real-time multi-target localization, tracking, and robust target
identification based on barcodes. The contributions of the proposed system are listed
as follows:

1. In contrast to the centralized coordination for barcode tracking in [8], we propose
a completely distributed system with collaborative processing among nodes based
on the proposed dynamic triggering mechanism and the hierarchical transmission
protocol. Moreover, the server is only used to display the processed information of
barcode tracking and localization from the VSN.

2. We propose a dynamic triggering mechanism to ensure that the visual sensor nodes
work collaboratively. The information concerning incoming and outgoing barcodes is
transmitted among neighboring nodes to schedule the activation states of nodes in the
network. The dynamic triggering mechanism significantly decreases the consumption
of energy and bandwidth, as well as improving the accuracy of barcode tracking
and localization.

3. Looking at previous work [9], we designed a hierarchical scheme of transmission
protocols to separately transmit the video and message data. In this scheme, multiple
communication protocols are employed by the different components for different
types of data. Specifically, the Real-Time Transport Protocol (RTP) [10] is used for
video communication, while both the Transmission Control Protocol (TCP) and Long-
Range (LoRa) protocol [11] are ultilized for message passing.

Furthermore, we provide a more in-depth analysis of the proposed algorithms, as well
as a more rigorous mathematical formulation that allows for an objective evaluation of the
proposed distributed framework. We demonstrate, through extensive experiments, that the
real-time distributed VSN based barcode tracking and localization brings robustness with
mm-level accuracy on the ground, as well as the rate and the energy savings, compared to
an equivalent system performing centralized processing.
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Figure 1. The proposed distributed VSN system, with 16 raspberry-pi cameras on the ceiling and a
central service on the computer.

2. Related Work

Alternative solutions for indoor localization and asset tracking include radio-based
solutions, based on BLE [12], UWB [13], and WIFI [14]. Those approaches face particularly
difficult challenges in real-world logistics/production environments due to reflections
of radio waves with numerous metallic objects, multi-path propagation, lack of perfect
synchronization between the fixed anchors, and so on. The mean location errors obtained
in real-world environments with radio-based solutions are spatially variable, and so are the
standard deviations of the location errors. The authors are not aware of existing methods
providing systematic location accuracy of less than 10 cm with radio-based solutions.
Even if perfectly calibrated, the inherent changes in the monitored environment (moving
merchandise, people, robots, etc) incur multi-path propagation, which in turn, alters the
location accuracy in an unpredictable manner. In this sense, the proposed method serves
as powerful alternative, providing accurate location of tracked assets irrespective of the
dynamics in the monitored environment.

Robot localization can be achieved using a wide range of sensing hardware, such as in-
frared sensors [15,16], ultrasonic sensors [17], laser rangefinders [18] and RFID readers [19].
The state-of-the-art in real-time, camera-based localization solutions (ARTTrack5, 2017;
Vicon Object Tracker, 2017) have subpixel accuracy while capturing at a frame rate of up
to 420 Hz. However, those systems are exceedingly expensive for the area they cover and
do not scale well [20] (e.g., ARTTrack5 is limited to 50 cameras per system, covering about
100 m). In contrast, this paper proposes a low-cost distributed visual sensor networks for
the real-time localization and identification of multiple barcodes.

Barcode detection and tracking in video has been proposed in [8]. The work in [8]
demonstrated that it provides a potential solution for robot localization and tracking with
distributed VSN. Barcode detection is a well-researched area. Many approaches are proposed
based on blob detector [21], bottom-hat filter [22], and mathematical morphology [23]. In
centralized or distributed VSN, the cooperative information from the neighboring nodes
improves the accuracy of barcode localization and identification. However, it is challenging to
establish a real-time system with low-power cost for barcode localization and identification.

A typical VSN topology consists of a centralized architecture where all sensor nodes
communicate through a central sink node [4]. However, the obvious weakness of such
a centralized architecture is the vulnerability of the system, where the central sink node
orchestrates all communication between the other nodes. Attempts have been made to
alleviate this problem by introducing optimized multi-hop communication schemes [24] or
error-correction schemes [25,26]. The fundamental idea is to reduce the message payload
via reducing the resolution of the images. Even though the vulnerability is mitigated with
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the constraint of transmitted data, the centralized system still suffers from latency induced
by the superfluous routing through the central node [27].

In [1,28], the centralized based routing is replaced with distributed sensor network
systems, achieving more robustness and lower congestion of the overall system. In [1],
a distributed sensor network-based surveillance system is described, which enables in-
teraction between any two neighboring nodes. A variety of distributed VSN have been
proposed for applications such as target detection [16], autonomous parking [17] and robot
localization [15].

In distributed systems, direct communication is performed amongst the neighboring
nodes. However, signal processing and information analysis are still executed indepen-
dently [29]. Distributed analysis methods were proposed, which collaboratively process
information coming from neighboring nodes [30,31] to accomplish object tracking and
localization. A distributed object tracking algorithm is described in [32], where the target’s
position is estimated with high accuracy. In [33], a distributed Kalman–Consensus filter is
presented, which reaches a consensus with neighboring cameras about the status of tracked
targets. A distributed negotiation strategy is described in [34] to achieve the best consensus
state for the network within multiple tracked targets. In [5], a cubature information-filter-
based distributed analysis method is presented for object-tracking in VSN. Inspired by the
distributed analysis method for target tracking, we proposed a distributed barcode tracking
method on Kalman filter in prior work [9]. In this paper, we propose an accomplished
system performing distributed barcode tracking based on a novel dynamic triggering
mechanism and a hierarchical transmission protocol.

The collaborative processing methods significantly improve the accuracy of target
localization and tracking. However, the transmission among the nodes causes increased
energy and bandwidth consumption. In operational conditions requiring limited band-
width and energy consumption, the triggering mechanism has become an efficient way to
address the problem of overload for the distributed system, allowing the selected cameras
which contain informative content to be activated. In [35], an energy-efficient adaptive
sensor scheduling strategy is presented, which selects the tasking nodes. Compared to a
non-adaptive scheduling mechanism, the method enables the optimization to achieve the
best tradeoff between the energy consumption and the predicted accuracy. However, the
adaptive scheduling method has difficulties in predicting accurate states for multiple nodes
and targets. Furthermore, [36] proposes a sleep scheduling mechanism to increase the
energy efficiency with limitations on the tracking accuracy. The distributed object-tracking
method of [5] provides a triggering mechanism to schedule the states of a node, i.e., active
or sleeping, by measuring if a node’s informative content is beyond a threshold. After-
wards, Liu presents a multi-sensor scheduling approach based on the adaptive dynamic
programming algorithm for cooperative target tracking [6]. However, the triggering mech-
anism in prior work [5,6] is often operated in a centralized way, fusing the information of
multiple nodes in a sink node to predict the states. In this paper, we propose a dynamic
triggering method that is deliberately designed to operate in a fully distributed manner.

Since the transmission is carried out in a distributed manner, a hierarchical trans-
mission protocol is presented to deal with the multiple types of data. Our prior work [8]
utilized the LoRa protocol [11] to transmit the data, which has the advantage of long-range
coverage. However, the LoRa protocol is unable to transmit a large amount of video data
within the low power VSN. Thus, the work in [8] is impaired by the extremely low frame
rate, less than one frame per second. In [7], multiple types of data are packed and then
transmitted via a single Ethernet protocol. Since the package combines multiple types of
data, possible package losses could cause severe target tracking problems in the distributed
VSN. Therefore, a hierarchical transmission protocol is first presented to alleviate the dam-
ages incurred by package losses by separately transmitting data depending on type. With
this respect, the syntax elements of multiple types of message are given in the protocol. This
combines the advantages of the RTP and the LoRa to achieve a high transmission efficiency.
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3. Proposed Distributed Visual Sensor Network Architecture

As illustrated in Figure 2, we first present a real-time distributed VSN system to
perform multi-barcode localization, tracking and identification. Specifically, the distributed
barcode localization is operated in a predefined area, which is determined based on the
location information received from neighboring node. Simultaneously, the identification
algorithm decodes the barcodes into digit numbers. The processed information consists of
the monitored video and the barcode’s location labelled as red rectangle. (see in Figure 2’s
red box).

Figure 2. Overview of the distributed VSN system:16 Raspberry-pi cameras connected via LoRa,
cameras and a central server is connected via RTP, TCP, SSH, and NTP.

The system employs low-cost Raspberry-pi cameras as sensors; their state is scheduled
by the proposed dynamic triggering mechanism. The fundamental idea of the proposed
triggering mechanism is that the nodes are activated/deactivated depending on whether
there are barcodes in their field of view. The triggering mechanism consists of an informa-
tion exchange workflow, and the triggering condition, as further detailed in Section 3.2. The
basis of the triggering mechanism is enabled by the information exchange among nodes
provided by the proposed transmission protocol.

Comparing to previous work [9], we propose a hierarchical transmission protocol for
four types of information. The information exchange within the proposed VSN architecture
contains four cases shown in Figure 2: (1) processed information, which includes down-
sampled videos from cameras, barcode localization and identification status, and relay
message among nodes; (2) sensor-monitoring information containing sensor’s CPU usage
and temperature; (3) trigger commands for powering off, rebooting and updating nodes;
(4) synchronization information used to synchronize the system clocks from all the sensors
and the central server over NTP. The transmission among the nodes are via the LoRa proto-
col (see in Figure 2), and the exchange between the server and the nodes is based on RTP,
TCP, SSH, and NTP. Next, we detail the syntax elements for multiple types of messages.

The remainder of the section is organized as follows: The distributed barcodes’ lo-
calization and identification are detailed in Section 3.1. The novel aspects brought in the
proposed distributed platform include the dynamic triggering mechanism presented in
Section 3.2 and the hierarchical transmission protocol described in Section 3.3.

3.1. Distributed Barcode Localization, Tracking and Identification

The proposed method performs multiple robot tracking, with the main algorithms in-
cluding barcode localization and identification in videos. The distributed barcode-tracking
scheme announces incoming barcodes to neighboring nodes. Furthermore, barcode localiza-
tion is operated in a predefined area, which is determined based on the location information
received from neighboring nodes. Afterwards, the barcode extraction algorithm is pre-
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sented to extract the rectified barcode from an image. Moreover, the identification algorithm
decodes the bars in searched barcode into digit numbers according to the width of each bar.
The algorithm performing barcode localization, tracking, and identification is explained in
detail in the following.

3.1.1. Barcode Location Prediction

The prediction process consists of two steps: barcode location prediction and location
correction. First, the locator is used to localize the barcode based on the predicted location,
whereby a predictor is used to estimate the location of each barcode in each node. After
that, the prediction is corrected using the newly acquired location information. In contrast
to the centralized Kalman filter employed in [8], in this work, we propose a distributed
prediction method, which allows each node to employ its own predictor, such as Kalman
filter [37], invariant Kalman filter [38], or Square-root unscented Kalman filter (SRUKF) [39].
Theoretically, the improved versions of Kalman filtering perform better than the original
Kalman filter, but the complexity is also higher. However, to maintain a balance between
accuracy and computational complexity, we leverage the classical Kalman filter as the
predictor employed in the proposed distributed barcode-tracking system. The reason for
this is that the novel dynamic triggering mechanism allows the tracker to search in small
areas instead of searching the entire frame, based on the previous locations of barcodes.
In addition, as shown in the experimental results in Section 4.1, the proposed distributed
prediction method based on Kalman filtering has reached a less than 1 cm location error in
cases of high and low bit costs (covering a relatively-wide QP range from 12 to 37). This
proved to be sufficient to perform real-time barcode tracking with the proposed system.

In principle, further improvements in the location accuracy of the estimated trajectories
and locations are expected to be obtained by improved versions of Kalman filtering [38,39].
These filtering techniques have the potential to provide more stable location predictions at
lower resolutions and higher QPs but will come with additional computational complexity.
Investigating improvements in the proposed method based on improved Kalman filter-
ing techniques and assessing the performance-complexity trade-offs are left as topics of
further investigation.

3.1.2. Barcode Locator

After the barcode’s location is predicted, the barcode localization is continued with
two steps: the barcode detection inspired by the work of [23] and the refinement of the
detection. As depicted in Figure 3, the procedures are listed as follows:

• A black top-hat (i.e., bottom-hat) transform is applied to emphasize the white bars of
the barcode and produce a highly contrasted image.

• Low-intensity pixels are removed to improve performance in the next step.
• A binary image is produced by means of automatic thresholding with Otsu’s method [40].
• The binary image is dilated to expand the barcode regions.
• A final erosion step trims the foreground regions and removes areas that are too small

to actually be part of a barcode.

The result should be an image that delineates the position of the barcode. The refine-
ment step illustrated in Figure 4 consists of the following steps:

• Finding the bounding box of the detected barcode.
• Expanding this bounding box so that it includes the entire barcode.
• Detecting the four corners of the barcode border. We employ Harris corner detection

to locate the barcode corners.
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Figure 3. Barcode detection: (a) grayscale input image, (b) result after black top-hat transform,
(c) result after low-intensity thresholding, (d) result after Otsu thresholding, (e) result after dilation,
(f) result after erosion and final result.

Figure 4. Bounding-box algorithms for refining localization: (a) finding the bounding box, (b) scaling
the bounding box, (c) detecting four strong corners.

3.1.3. Barcode Extraction

Once that the barcodes are successfully located, the extraction algorithm is utilized
to extract the barcode from the located area for identification. The extraction process uses
the points of the four corners (shown in Figure 4c) provided by the locator and applies
a perspective transform on the input images based on those four points. The result of
that process is an image containing only the rectified barcode. From that rectified barcode
image, the barcode extraction algorithm aims to (i) determine whether the input image
contains a barcode, and (ii) extract barcodes from the image. Knowing if an image contains
a barcode is an important aspect. Eliminating potential locations that do not contain a
barcode is essential for ensuring the real-time performance of the tracking algorithm. From
that rectified barcode image, five horizontal and five vertical sample lines are extracted to
determine the barcode orientation, as shown in Figure 5; the combination of horizontal and
vertical sample lines is illustrated in Figure 6.

Figure 5. Diagram showing the sample lines that are extracted from images potentially containing
barcodes. (a) five horizontal sample lines, (b) five vertical sample lines.
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Figure 6. Diagram showing the two combinations of sample lines. (a) two horizontal and three
vertical sample lines, (b) three horizontal and two vertical sample lines.

The first step is to determine the number of black-white/white-black transitions along
the sample lines, formulated in Equation (1):

Ri = Ei/Pi, (1)

where Ri denotes the ratio of transition, Ei is the number of transitions, and Pi the number
of pixels in line i. Secondly, the ratio Ri is used as input to determine the orientation of the
barcode according to the rules, such as:

• The orientation is horizontal if the function returns none for the first combination in
Figure 6a and horizontal for the second combination in Figure 6b.

• The orientation is vertical if the function returns vertical for the first combination in
Figure 6a and none for the second combination in Figure 6b.

Finally, the decoding of the barcode is fulfilled on the extracted barcode including
information on the position, the orientation, and the rectified barcode.

3.1.4. Barcode Identification

The identification algorithm assigns a number for each digit pattern within a barcode.
In Figure 7, the barcode starts with a start pattern, followed by six digit patterns, and a
stop pattern. Out of the six patterns, five patterns are used to encode the actual number.
All numbers are ranged in [00000–77,777], which are equivalent to [0–32,767] in decimal
notation. The sixth digit is used for error detection and is calculated as Equation (2):

D6 = D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ D5, (2)

where Di, i ∈ [1, 6] is the ith digit, and ⊕ is the bitwise XOR operator. A digit pattern is the
combination of four white and black bars, where the width of each bar is different.

Figure 7. Barcode structure and example. Encoded number: 12465.

For instance, in Figure 7, the first digit pattern corresponds to a combination of two
white lines and two black bars, where the width of bars is (white, black, white, black) = (1,
3, 1, 5). According to the designed rule of digit pattern listed in Table 1, the combination of
(white, black, white, black) = (1, 3, 1, 5) corresponds to the number 1.
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Once the 5 digits are decoded, the sixth digit is calculated for error detection using
Equation (2). Additionally, the decoder calculates a confidence about the decoded barcode.
The confidence number can range from 0.0 (not decoded at all) to 1.0 (fully decoded).

Table 1. Barcode’s encoding rule of digit pattern.

Digit Pattern Encoding Length

start 3 5 1 9

0 1 5 1 3 9

1 1 3 1 5 9

2 1 1 5 3 9

3 3 1 3 3 9

4 5 1 3 1 9

5 3 5 1 1 9

6 5 1 1 3 9

7 5 3 1 1 9

stop 3 3 6

3.2. Dynamic Triggering Mechanism Amongst Sensors

The proposed dynamic triggering mechanism schedules the activation states for each
node. During the barcodes’ tracking, the information involving the incoming and outgoing
barcode is transmitted among neighboring nodes. In Figure 8, the rule of scheduling states
that whenever a node detects a barcode, it sends the tracking information to neighboring
nodes. A tracker can receive barcode information at any point in time.

Figure 8. Workflow of barcode tracking instance.

In the diagram (see Figure 8), there are four main components in tracking barcodes.
The first component is the Search Manager, which acts when the tracker is activated. The
Search Manager receives a planned search, which creates multiple search requests for
different regions of a frame. Those search requests are stored in a list and can be either
time-limited or for one-time use only. The next component to start working is the tracker
itself, which takes ns search requests from the Search Manager and creates search jobs for
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them. The value of ns depends on the number of free jobs nfree per frame. Once all jobs
are completed, the tracker will add all newly found barcodes to a list for further tracking.
These tracked barcodes will also become jobs, called track jobs, when the next frame is
being processed. The number of track jobs nt is not limited at all. It only limits ns in the
following way. Let ntot be the advised maximum number of jobs; then, nfree = ntot − nt. In
other words, less important search jobs cannot fill the tracker when it is executing more
useful track jobs, formulated in Equation (3) as:

0 ≤ ns ≤ nfree ≤ ntot. (3)

At the searching component, there are two steps. The first step, the Locator, is re-
sponsible for determining the precise locations of barcodes within images, as detailed in
Section 3.1.2. The second step, the Decoder, is responsible for decoding the barcodes that
were detected during the previous step, as explained in Section 3.1.4.

The last component is the tracking process. The first step of the tracking component
is the predictor. The predictor predicts the future locations of barcodes based on their
previous locations, as detailed in Section 3.1.1. The remaining steps in the tracking process
are the same components as in the searching component.

The main difference between tracking and searching is the way in which new informa-
tion is processed. After searching, only the newly found barcodes can be inserted and the
barcodes that were marked lost can be updated. Barcodes that had already been tracked
are not updated during this step because a track job is already running for those barcodes.
If a search job would update a tracked barcode, it ends up waiting for the track job to finish
due to synchronization. Tracking, however, will never insert newly found barcodes. It is
highly unlikely that a track job will actually find a new barcode.

The functioning of the searching and tracking algorithms is quite complex. Therefore,
in Figure 9, we illustrate the information flow of the barcode tracking performed in the
proposed distributed VSN. The arrowheads indicate the direction in which information
is sent between the different modules of the barcode tracker. The type of arrow indicates
the type of data that are communicated (dashed: frame data; full-line: barcode data). The
numbers next to the arrows indicate the order in which the data are sent.

• In a first step, a frame is captured by the camera and sent to the Tracker module
(arrow 1).

• The Tracker then creates search and track threads depending on the number of already
tracked barcodes and pending search requests (arrow 2).

• These threads execute the track and search algorithms. The search for a barcode is
performed in a predefined area, determined based on the information received from
the barcode trackers running on the neighboring cameras in the VSN. The tracking
algorithm first predicts the location of the tracked barcode.

• Then, it attempts to localize the barcode in an area defined around the predicted
location. When these threads finish executing, they send the processed information
back to the Tracker (arrow 3).

• The tracker then processes that information to see if there are outgoing barcodes. If
so, the information is sent to the Search Manager (arrow 4), which manages incom-
ing and outgoing search requests and wakes up the node that is likely to see the
outgoing barcode.

• Next, the Tracker sends the frame data, together with the processed information for
that frame, to the RTP Streamer (arrow 5). That data are then sent to the central server
for visualization.

• The data from the different nodes are synchronized by the central server using times-
tamps. The system clocks of all nodes are synchronized with the system clock of the
central server so that the maximum difference between any two nodes is 2 ms.
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Figure 9. Workflow of barcode tracking instance.

3.3. Hierarchical Transmission Protocol
3.3.1. Communication between Sensors and Server

The central server consists of four components as shown in Figure 2. The first compo-
nent, the RTP Server, acts as a receiver for the processed information, which is sent from the
VSN using an RTP session. The most important job of the RTP Server is to synchronize all
the incoming data. The RTP Server receives frame data together with barcode information
for that frame.

Syntax element: The RTP message structure is composed of a message header and
content, as illustrated in Figure 10. The message header contains the ID number of the
sender, message type, the timestamp of the message, and message size. The message
content consists of a frame header, frame data, the barcode code, and barcode location.
This information is synchronized and then displayed to the user. The right hand side of
Figure 2 shows a screenshot of the output produced by the RTP Server. The server provides
a live display of the sixteen video streams coming from the cameras and the corresponding
barcode information.

The second component, the Relay Server, relays messages from one node to another
and is built using low-level system calls to optimize performance. The server requires all
nodes to send a simple login message, using TCP, before they can receive messages from
another node. The server requires all nodes to send a simple login message before they can
receive messages from another node.

The third component, the Control Interface, visualizes the VSN. This is a basic Graph-
ical User Interface (GUI) that allows for monitoring and control over the VSN. The first
role of the Control Interface is to display information concerning the status of the nodes in
the VSN. Typical status information consists of the Central Processing Unit (CPU) usage,
CPU temperature, CPU frequency, and main memory usage. Figure 11 shows four different
health states of a node:

• High CPU usage and temperature.
• Very high CPU occupancy and temperature, causing thermal throttling.
• A node that was once powered on but got powered off or is not responding,
• memory leak.
• A node that is not responding due to a large memory leak or very high memory usage.

Without this GUI, these problems would be very difficult to detect. The second role
of the Control Interface is to control the different nodes in the network, deploy updates
of the tracker software and control the tracker software. These different commands are
transmitted from the central server to the sensor nodesthrough SSH.
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The last component inside the central server is an NTP server. The NTP server is
used by all the nodes in the VSN to synchronize their system clocks to the system clock of
the server.

Figure 10. RTP message structure composed of a message header and content.

Figure 11. Control interface: sensor monitoring and trigger command.

3.3.2. Communication among Sensors

The overall efficiency of the distributed VSN relies on the efficient communication
between the sensor nodes. The basic idea behind the proposed distributed tracking system
is that the nodes in the VSN can go into sleep mode if no barcode appears in their field
of view. Neighboring nodes will wake up a node whenever a barcode is likely to enter
that node’s field of view. The distributed network saves energy compared to a VSN with
independently operating cameras, whereby each node searches for barcodes, tracks and
decodes them at all times. Collaborative processing of tracking information is a crucial
component of the proposed distributed VSN.

Communication between the nodes is achieved over LoRaWAN (as depicted in
Figure 12), which represents a low-power, wide-area network protocol deployed on the
VSN. More specifically, the barcode tracker is connected to an Ethernet to LoRa Bridge and
the message is transmitted via LoRaWAN. To enable future extension, the bridge has the
same property as a regular TCP connection.

Syntax element: A typical message is composed of header and content, as shown
in Figure 13. The message header indicates the destination node, source, content size in
bytes, and the number of content sections. The first part of a content section is the header,
which contains the content section size in bytes and the type of content. The other part of
the content section is only content data. Figure 13 also contains an example of a content
section. By allowing for different content types, communication becomes versatile. Efficient
communication is achieved by allowing a message to contain multiple content sections.
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Figure 12. Communication mechanism between sensors over LoRaWAN.

Figure 13. Diagram showing the structure of messages and the content of those messages.

4. Experimental Results

The proposed system is composed of a server with Intel(R) Xeon(R) CPU E5-1650v3
at 3.50 GHz, with 64 GB of RAM, and a low-power VSN with 16 Raspberry Pi 3 (RPI)
nodes, arranged in a four by four grid, as shown in Figure 1. All sensors are equipped
with a full HD 1920× 1080 camera and connected in an Ethernet star-shaped network. The
area covered by one camera is about 3m2. There is slight overlap on the boundary of the
areas. We design the system in an efficient, scalable and flexible way. The RPI nodes use
a micro-SD card as secondary storage, which is limited in size and speed compared to a
regular hard-disk drive or solid state drive. This has the unfortunate side effect that it is
not possible to store the captured frames while tracking. However, it is possible to store
compressed frames when the tracker is not running.

4.1. Barcode Miss Rate and Localization Error

Due to bandwidth constraints and the limited write speed of the SD-card on the nodes,
the input video has to be compressed. Compression artefacts and down-sampling are
two critical factors that affect the accuracy and robustness of the barcode localization and
identification. Thus, we evaluate the impact on the performance of barcode localization
and identification at different compression ratios and downscaling rates. The compression
ratio is is controlled by the quantization parameter (QP) of the video codec.

Sixteen videos are captured and tested in the experiments. The average barcode miss
rate and location errors are listed in Tables 2 and 3 and the corresponding plots are illustated
in Figure 14a,b, respectively.
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The barcode missing rate Ir(s, q) is calculated as the percentage of failed barcode iden-
tifications at the quantization step q and the downscaling factor s, expressed in Equation (4),

Ir(s, q) =
N f (s, q)

NW
, (4)

where N f (s, q) is the number of frames that barcode identification was unsuccessful and
NW is the total number of frames in the video.

The other factor that expresses barcode localization accuracy is the location error h(s, q)
(centimeter, cm), measured by the Euclidean distance between the prediction location via
our system and the real location. To relate real-space coordinates with coordinates in the
captured video, a grid is demarcated on the floor in our experimental scene. We employ
the symbol c to denote the ratio between the real-space coordinate and the coordinate in
the video. The formulation of h(s, q) is expressed in Equation (5),

h(s, q) = Ed(c×V(s, q); R(s, q)), (5)

where Ed(:; :) represents the Euclidean distance between two coordinates, and V(s, q) and
R(s, q) are the predicted coordinate in the video and the real-space coordinate, respectively,
expressed in centimeter (cm).

Table 2. Barcode missing rate Ir (%) against QP and down scaler.

DOWN QP

SCALER 12 17 22 27 32 37 42 47 52

1.8 0.08 0.09 0.1 0.09 0.14 0.12 0.14 0.17 0.7
2.0 0.08 0.09 0.12 0.13 0.16 0.14 0.19 0.34 0.76
2.2 0.11 0.07 0.18 0.17 0.21 0.28 0.17 0.48 0.76
2.4 0.13 0.16 0.18 0.23 0.26 0.23 0.2 0.4 0.8

We can observe from the plots in Figure 14 that the proposed distributed method
performs well for QPs in the range QP ∈ [10, 42]. The barcode missing rate Ir and barcode
localization error Le vary in the range Ir ∈ [0.08, 0.28] and Le ∈ [0.23, 9.4]. Beyond a QP
step of 42, the barcode miss rate and location error significantly increase. The experimental
results demonstrate that the proposed barcode localization and identification algorithms
are robust for appropriate QP settings.

Table 3. Barcode localization error (cm) against QP and down scaler.

DOWN QP

SCALER 12 17 22 27 32 37 42 47 52

1.8 0.23 0.22 0.36 0.46 0.57 0.72 1.1 2.2 16.2
2.0 0.26 0.25 0.42 0.6 0.57 0.74 4.77 5.79 15.9
2.2 0.45 1.48 0.6 0.49 2.67 2.96 3.44 8.72 16.6
2.4 0.54 0.58 2.1 1.23 4.7 4.23 9.4 14.5 26.3

The experiments at different downscaling ratios show that the more the size of the
frame is reduced, the larger the localization error becomes. In the case of a downsampling
ratio of s = 1.8, the miss rate is below 0.1 within the range QP ∈ [10, 42]. For higher down-
scaling factors s ∈ [2.0, 2.4], the miss rate becomes larger than 0.1. A larger downscaling
ratio results in a higher localization error, as can be observed in Figure 14.
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(a) (b)

Figure 14. (a) Barcode’s missing rate (%) and (b) barcode’s location error (cm) against QP and down scaler.

4.2. Bandwidth Consumption

In the proposed VSN architecture for the tracking and identification of multiple
barcodes, the streaming size B(xi, ti) of node i ∈ [1, 16] is proportional to the size of the
message that contains the barcode digits and its location, transmitted via LoRaWAN with a
bitrate of αi, and the video stream to be visualized in the central server with bitrate βi in
Equation (6).We denote the payload of the video stream and message information of node
i ∈ [1, 16] as xi. Then:

B(xi, ti) =
αi × ti

′ + βi × ti
ti

, (6)

where ti
′ is the time spent on transmitting the message with barcode digits and coordinates,

ti is the time period that xi is transmitting and B(xi, ti) is the size in bits of the data stream
transmitted during the time period ti.

We define the bitrate of centralized network R′ in Equation (7),

R′ = 16×
∑

S(N)
i=S(1) B(xi, ti)

∑
S(N)
i=S(1) ti

. (7)

Moreover, the total bitrate R of the distributed network is given by Equation (8),

R =
∑

S(N)
i=S(1) B(xi, ti)

∑
S(N)
i=S(1) ti

. (8)

Since ti
′ � ti, the streaming size can be considered B(xi, ti)=̇βi, leading to a bitrate

saving of Rsaving = (R′ − R).
Bandwidth consumption is proportional to the amount of video streams transmitted

from the visual sensors to the central server and data exchange among nodes. In the dis-
tributed system, the sensors are activated when there are stationary or moving barcodes in
the area covered by the sensor. The corresponding videos of those barcodes are transmitted
to the central server and messages are sent to neighboring nodes accordingly.

As a single object is moving in the covered area, it comes into the field of vision of a
set of cameras R, where the number of activated cameras is N. For instance, if the barcode
goes across cameras i = 1 for t1 seconds, camera i = 2 for t2 seconds, camera i = 3 for t3
seconds, the activated cameras’ set is S = [1, 2, 3] and N = 3.

The videos with a resolution of 1920× 1080 are compressed and then transmitted
from the nodes to the central server with multiple QP values. Table 4 reports the cost of
message transmission via LoRa-based communication within 1 second against modulation
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bandwidth, spreading factor, and code rate. The bitrate comparisons are listed in Table 5
and the corresponding bitrate cost is plotted in Figure 15.

To compare distributed and centralized VSN at the same experimental conditions, we
leverage the real centralized VSN system being implemented in our previous work [9]. In
Table 5, a max bitrate of 35.9 Mbits/s at QP = 12 is obtained for video transmission in the
proposed distributed VSN, while the bitrate in the centralized VSN of [9] is 574.4 Mbits/s,
i.e., 16 times that of distributed VSN. Experimental results indicate that the bitrate decreases
with increasing QP value for both the distributed and centralized VSN.

Table 4. LORA bitrates (code rate = 4/5).

Spreading Chips Modulation Bandwidth (BW)

Factor Symbol 125 KHZ 250 KHZ 500 KHZ

6 64 9375 bps 18,750 bps 37,500 bps
7 128 5468 bps 10,937 bps 21,875 bps
8 256 3125 bps 6250 bps 12,500 bps
9 512 1757 bps 3515 bps 7031 bps
10 1024 976 bps 1953 bps 3906 bps
11 2048 537 bps 1074 bps 2148 bps
12 4096 292 bps 585 bps 1171 bps

Figure 15. Average bitrate cost against QP step.

For the message exchange between the nodes of the network, the bitrate consumption
is 0.015 Mbits/s at 25 f ps per barcode. The message contains a header, the destination
node, the source node and message body, consisting of the barcode number and its location.
Since a message is transmitted when a barcode arrives at the edge area of the field of
view, the bitrate is significantly smaller than the rate needed for video transmission. In
our experiments, the bitrate for the transmitted video is from 2.9 to 4030 times smaller
compared to the bitrate of the transmitted messages.

Table 5. Average video bitrate (Mbits/s) against QP.

Method QP Step

12 17 22 27 32 37 42

Proposed DVSN 35.9 16.7 7.6 2 0.7 0.22 0.1
Centralized VSN [9] 574.4 267.2 121.6 32 11.2 3.5 1.6

4.3. Power Consumption

The power estimate depends on the environment and its requirements. We estimate
the power consumed by applying the proposed distributed VSN to a real-world warehouse
hall, which is about 60 m × 120 m and has about 10 vehicles moving inside. A total
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of 276 sensors are needed to cover the entire warehouse. There are two power states
that a sensor can have: sleeping or tracking. The power consumption of each node is
denoted as Psn and Ptn for sleeping and tracking state respectively, where Psn = 1.4 W
and Ptn = 4.9 W. The worst case for the entire system is that all ten vehicles are scattered
around the warehouse, being seen by Ntn = 40 different sensors. Each vehicle is seen by
four neighboring sensors within their overlapping region.

We define the power of the worst case as Pw in Equation (9),

Pw = Ntn × Ptn + (276− Ntn)× Psn. (9)

Moreover, the power of the best case Pb of the distributed network is given by Equation (10),

Pb = 276× Psn. (10)

The best case is that the vehicles are not inside the field of view of any sensor (e.g.,
outside the warehouse or inside a lorry that is being loaded). We compare the power
consumption between the worst and the best cases for the entire system in Table 6.

Table 6. Comparison of power consumption between the worst and the best case for the entire system.

Power Consumption
of Multiple States Sleeping Tracking Overall Power

power per sensor 1.4 W 4.9 W
Worst case VSN 236 sensors 40 sensors 526.4 W
Best case VSN 276 sensors 0 sensors 386.4 W
No sleep VSN 0 sensors 276 sensors 1352.4 W

4.4. Time Complexity

The significant advantage of distributed tracking is that, when there are no barcodes
in the frame, the distributed tracker does not waste time searching those barcodes. A
centralized tracker has to search for new barcodes in every frame.

Three states can be represented in a sensor node: (i) a new barcode is entering the
area it is responsible for, (ii) an already tracked barcode leaves the area or comes from
a neighboring node, (iii) a decoded barcode is being tracked. The operations of each
of these states are composed of basic processes: localization, decoding, prediction, and
communication. Their duration of the basic processes are labelled Tl(k), Td(k), Tp(k),
and Tc(k), respectively, where k corresponds to one of the three aforementioned states.
Given the number of new barcodes Np and already tracked barcodes Nq, the duration of
localization and decoding of a video frame is formulated in Equation (11):

Tγ(k) =


tγ(k)× Np, k = 1
tγ(k)× Nq, k = 2

tγ(k)×
Np+Nq
τ× f ps , k = 3

, γ ∈ {l, d}, (11)

where tl(k) = tpre(k) + tre f (k), where tpre(k) and tre f (k) are the required times for pre-
processing and refining a barcode, τ describes the waiting time between searches and
f ps is the framerate of the current video. The time required for decoding is defined as
td(k) = text(k) + tdec(k), where text(k) and tdec(k) are the time of extracting and decoding a
barcode, respectively. For the third state, i.e., tracking a barcode, there is a periodic search
of the entire frame. The time complexity for prediction is formulated in Equation (12):

Tp(k) =


tpred(k)× Np, k = 1

0, k = 2
0, k = 3

, (12)
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where tpred(k) is the time required for prediction. Finally, the time complexity for commu-
nication between two nodes is defined in Equation (13):

Tc(k) =


0, k = 1

(tsend(k) + trec(k))× Nq, k = 2
0, k = 3

, (13)

where tsend(k) and trec(k) denote the duration of sending and receiving a message contain-
ing location and barcode digits.

We define the expression for total time complexity as Equation (14):

Mdt =
3

∑
k=1

Tsum(k), (14)

where
Tsum(k) = Tl(k) + Td(k) + Tp(k) + Tc(k), k ∈ [1, 2, 3]. (15)

A comparison of the time complexity between a distributed and a centralized architec-
ture is given in Figure 16. The x-axis represents the number of barcodes in a single camera’s
field of view, while the y-axis corresponds to the execution time of a single barcode tracker
executed on a single thread. The first observation is that there is a certain amount of bar-
codes above which the distributed tracker will be slower than the centralized counterpart,
caused by the overhead per pixel in the distributed architecture. For the lower bound
(performing maximum searching), this lies between fourteen and fifteen barcodes. For the
upper bound, the intersection point lies between seventeen and eighteen barcodes. Clearly,
this gain has an upper and lower bound depending on the number of searched barcodes.
The upper limit will be reached when the number of searched barcodes is minimal. The
lower limit will be reached when the number of searched barcodes is maximal.

Figure 16. Execution time for the proposed and centralized camera tracking systems.

5. Conclusions

This work proposes a low-power distributed visual-processing system to track mul-
tiple barcodes in real-time. A novel distributed tracking architecture was proposed and
extensively evaluated under a practical testing environment in our lab. The architecture
was designed to be efficient and to allow for future extensions. The proposed distributed
VSN architecture incorporates a newly designed dynamic triggering mechanism and a hier-
archical transmission protocol, facilitating efficient communication among neighbouring
nodes. Experiments have shown that the distributed system is robust for barcode-based
robot tracking and highly accurate for the localization, which is less than 1 cm error for an
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area of 3 m2 per camera. The proposed distributed system has the advantages of being
energy-saving, and having scalable installation and low maintenance costs.
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