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Abstract: Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems
suffer from low SSVEP response intensity and visual fatigue, resulting in lower accuracy when
operating the system for continuous commands, such as an electric wheelchair control. This study
proposes two SSVEP improvements to create a practical BCI for communication and control in
disabled people. The first is flicker pattern modification for increasing SSVEP response through
mixing (1) fundamental and first harmonic frequencies, and (2) two fundamental frequencies for an
additional number of commands. The second method utilizes a quick response (QR) code for visual
stimulus patterns to increase the SSVEP response and reduce visual fatigue. Eight different stimulus
patterns from three flickering frequencies (7, 13, and 17 Hz) were presented to twelve participants for
the test and score levels of visual fatigue. Two popular SSVEP methods, i.e., power spectral density
(PSD) with Welch periodogram and canonical correlation analysis (CCA) with overlapping sliding
window, are used to detect SSVEP intensity and response, compared to the checkerboard pattern.
The results suggest that the QR code patterns can yield higher accuracy than checkerboard patterns
for both PSD and CCA methods. Moreover, a QR code pattern with low frequency can reduce visual
fatigue; however, visual fatigue can be easily affected by high flickering frequency. The findings
can be used in the future to implement a real-time, SSVEP-based BCI for verifying user and system
performance in actual environments.

Keywords: brain-computer interface; electroencephalography; steady-state visual evoked potential
(SSVEP); quick response; QR code; visual fatigue

1. Introduction

The cause of disability can be a genetic disorder, congenital illness, accident, or un-
known. Disabilities have different symptoms and levels of severity. One of the major
problems is the inability to move, which results in dependence on mobility equipment for
assistance in everyday life. So far, many assistive devices have been developed. Yet, they
cannot cover all levels of disabilities, especially for severely paralyzed patients who com-
pletely lose movement and communication abilities [1]. As a result, they require advanced
assistive technology, through employing biomedical signals to directly interface with the
machine or device [2].

A brain—computer interface (BCI) is an emerging human-computer interaction (HCI)
technology used to communicate between the human brain and computers [3,4]. A BCI can
create a replacement or alternative pathway connection between the brain and prostheses
or assistive devices for spinal cord injury (SCI), stroke, and amyotrophic lateral sclerosis
(ALS) (also known as neuroprosthetics). Generally, the three main parts of a BCI consist of
(1) brain signals and data acquisition, (2) a feature extraction and classification algorithm,
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and (3) command translation and applications. A non-invasive BCI [5] is a popular tech-
nique for research and development. A practical BCI system is the primary goal of a
non-invasive BCI that requires non-contact and contact sensors for signal acquisition, such
as electroencephalography (EEG) [6] and near-infrared (NIR) machines [6]. An EEG is
a popular brain signal acquisition system for measuring and recording phenomena that
occur rapidly and require high resolution and sensitivity to changes in phase, such as
evoked potentials (EPs), transient responses to sensory stimulation. Additionally, an EEG-
based BCI system [3] can be developed for practical, portable EEG devices that have been
designed to facilitate their use through dry electrodes, without conductive gel or saline
solution. For medical applications, an EEG-based BCl is usually employed for assistive
technology, neurotherapy [7], detection, diagnosis [8], rehabilitation, and restoration [5,9].
Besides, non-medical applications, consisting of entertainment, games [10], industry [11],
and transport [12], have been applied.

Normally, EEG signals are spontaneous brain potentials and event-related potentials
(ERPs) to generate BCI commands. Event-related desynchronization (ERD) or synchro-
nization (ERS) occur from mental imagery paradigms, such as motor and speech imagina-
tion [13,14]. Moreover, time- and phase-lock phenomena happen from an external stimulus
through the sensory nerve and, especially, the visual system that usually applies different
stimulus patterns or paradigms to activate neurons of the visual cortex at the occipital lobe.
EEG signals are measured using visual stimulation as visual evoked potentials (VEPs).
VEPs can be divided into two types, based on different techniques of visual stimulus:
(1) transient VEP or P300 [15] and (2) steady-state visual evoked potential (SSVEP) [16].
The SSVEP is a brain signal, which has steady periodic to visual stimulation, with a specific
frequency. When the optic nerve is stimulated at a frequency in the range of 3.5-75 Hz,
the brain generates an electrical signal of the same frequency or multiple frequencies;
this can be stimulated by a light-emitting diode (LED), image on a liquid crystal display
(LCD), animation, or pattern image [17]. A SSVEP-based BCl is widely used for electric
wheelchairs. Previously, many researchers demonstrated that SSVEP achieves high ac-
curacy, high information transfer rate (ITR), and less time for user training than other
BCI techniques [18]. However, SSVEP-based BCI systems have the following weaknesses:
(1) users can experience visual fatigue from focusing and attending flicker stimulus patterns
over an extended period of time, and (2) the SSVEP response is still unclear for some users
who can perform with low or high visual stimulus pattern flickering frequency. Both
are challenging for practical applications, and many research groups have attempted to
investigate methods for improving SSVEP-based BCls.

Generally, the use of BCI systems can cause mental fatigue [19]. In addition, the VEP-
BCI system induces visual fatigue through the visual stimuli. SSVEP makes visual fatigue
easier than the P300 method, through visual stimulus patterns and paradigms. Visual
fatigue directly affects the user and system performances; it can make users uncomfortable
when focusing on visual stimuli for long periods of time and, consequently, decrease
accuracy [20]. To reduce and prevent visual fatigue, visual stimulators have been improved,
based on human vision and perception conditions, i.e., color, shape, luminance (display
devices), flicker frequency (phase), and pattern (checkerboard and motion onset). The
aim of the improvements is that the user can yield a strong SSVEP response immediately
after the stimulus with less visual fatigue; this can be utilized in continuous BCI command
creation, such as control of an electric wheelchair or prosthetic arm.

Moreover, a combination with other BCI methods has also been demonstrated to
replace SSVEP during visual fatigue [21,22]. However, the other BCI system incurs high
cost and increases the complexity for the user. Therefore, designing a novel visual stimulus
pattern is a popular approach for enhancing and improving the SSVEP technique. Hence,
this study proposes a novel visual stimulus pattern to improve SSVEP-BCI performance.

According to human perception, light is reflected on the object and comes through
the retina, which contains two photoreceptors, i.e., rods and cones. The rod cells are more
sensitive to light and dark changes, shape, and movement. Cones are more sensitive to
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green, red, or blue colors, but less sensitive to light than rod cells because almost all previous
research studies use a black and white checkerboard for visual stimuli. Some researchers
have explored different colors and shades for the SSVEP-BCI system by benchmarking the
maximum amplitude of the power spectrum at the flickering frequency [23-28]. However,
the results cannot validate the SSVEP response or which color or shade is suitable for all
users, and more verification of light intensity and flicker pattern is required, in order to
reduce visual fatigue.

Studies of SSVEP visual stimulation are interesting for developing a conventional
visual stimulus and investigating novel patterns to modulate direct responses in the visual
cortex. For example, Waytowich et al. [25] studied the enhancement of SSVEP stimulation
from nine chessboard patterns. The spatial frequency of 2.4 cycles per degree (32 x 32) can
increase the maximum data transfer rate and reduce eye irritation, compared to the lower
spatial frequency. Furthermore, SSVEP stimulation, with image modification and charac-
teristic detection algorithms, was studied to design the coding frequency and phase, in
order to solve harmonic frequency problems in the SSVEP-BCI system. The results showed
that the classification rate increased by more than 10% [29]. In addition, Keihani et al. [26]
optimized the rate of fatigue when participants were exposed to high-frequency sine wave
stimulation, with LEDs from three frequencies (25, 30, and 35 Hz), to determine the pattern
with the lowest fatigue rate. The sorting of the excitation frequency in the 35-35-35 Hz
sequence has the lowest fatigue rate from the obtained results.

In sequences contrast, the 25-25-25 Hz sequence exhibited the highest rate of fatigue.
Furthermore, the color of the SSVEP pattern was employed to reduce visual fatigue. The
white color gives the best performance, followed by gray, red, green, and blue [23]. More-
over, color-based stimuli were examined by Duart et al. [24]. They carefully verified the use
of white, red, and green colors for SSVEP stimuli, since there were previous studies [23] that
considered their effects at low (5 Hz), middle (12 Hz), and high (30 Hz) frequencies. They
also found that white color has good results, similar to red color, that affect stimulation.
The experiments were conducted at the first and second harmonic frequencies. The results
showed that in the low frequency range, green and red were suitable for low frequencies.
White and red are appropriate for the medium frequencies. For high frequencies, there was
no difference among the three colors.

Furthermore, some researchers demonstrated different flicker patterns through em-
ploying rapid object motion and lower light intensity than the flashing pattern [30]. For
example, the use of object motion or spin patterns [31] was used to activate some phe-
nomena in the visual cortex. This technique can reduce visual fatigue problems but has a
low ITR. A SSVEP-based BCI for controlling an electric wheelchair requires a high ITR. A
summary of the previous research studies on visual stimuli for SSVEP-based BCl is listed
in Table 1, along with some of their proposed methods, visual stimuli, electrode positions,
and results. Therefore, a hybrid BCI [21,22,32-34] is an alternative technique for obtaining
a practical BCI; it is usually developed by combining two BCI modalities, or BCI combined
with other HCI modalities, such as electrooculography (EOG) and electromyogram (EMG)
signals. In addition, we can combine BCI modalities with external intelligent devices.
However, hybrid BCIs can increase the complexity of user command creation.

In this paper, we propose a new visual stimulus pattern for enhancing a SSVEP-based
BCI system. The proposed method consists of utilizing a quick response (QR) code to
reduce visual fatigue and time for staring. In addition, we proved a SSVEP stimulus by
mixing the fundamental frequency and its harmonics for explicit features and mixing two
fundamental frequencies to increase commands. We further demonstrate the use of the
proposed method, in order to implement a real-time SSVEP-BCIL.
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Table 1. Research studies on visual stimuli for SSVEP-based BCI.

Authors

Proposed Method

Visual Stimuli

Electrode Positions

Result(s)

Duart et al., 2020 [24]

Effect of stimuli color and frequency

Red, green, and white color with 5, 12,
and 30 Hz frequencies on the auxiliary
display.

PO3, PO4, Pz, 01, 02, Oz

- Red and white can be used at
medium frequency.

- Green and red can be used at low
frequency.

- No difference between colors at
high frequencies.

Waytowich et al., 2016 [25]

Optimization of checkerboard spatial
frequencies

Solid background to single-pixel
checkerboard pattern with 2.4 cycles
per degree.

Oz, 01, 02, POz, PO3, PO4, PO7, PO8

Spatial frequency can have a dramatic
effect on SSVEP performance that is
consistent across subjects

Keihani et al., 2018 [26]

3-sequence frequency

LED and three-fiber optic sensor with
high frequencies (25, 30, and 35 Hz).

01, Oz, 02

Accuracy rate for PSD was 88.35% and
more than 90% for CCA and Least
Absolute Shrinkage and Selection
Operator Analysis (LASSO).

Choi et al., 2019 [27]

SSVEP in virtual reality (VR)
environments

Pattern-reversal checkerboard stimulus
(PRCS) and

Grow /shrink stimulus (GSS): star
pattern, luminance change and size in
head-mounted displays (HMDs).

Cz, PO3, POz, PO4, 01, Oz, O2

GSS has higher accuracy than PRCS, but
the visual comfort score is the same for
both.

Mu et al., 2021 [28]

Multi-frequency (superimposing with
OR and ADD)

Red LED with two 50% duty cycle
square waves with the OR and ADD
operator with frequencies of 7 and 9 Hz,
7 and 11 Hz, 7 and 13 Hz, 9 and 11 Hz,
9 and 13 Hz, and 11 and 13 Hz.

PO3, POz, PO4, O1, Oz, O2

Average accuracy of 70.83% on
frequency superposition stimulation.

Stawicki and Volosyak, 2021 [30]

Steady State Motion visual evoked
potentials (SSMVEPs)

Full-color circle (SSVEP, (SSMVEP1,
SSMVEP2) and Checkerboard circle
(SSMVEP3-5) with frequencies of 7.06,
7.50, 8.00, and 8.57 Hz.

Pz, P3, P4, P5, P6, PO3, PO4, PO7, POS,
Oz, 01, 02, 09, 010, POO1, POO2

Average accuracy between 97.22% and
100% and an average ITR between 15.42
and 33.92 bits/min.

Rekrut et al., 2021 [31]

Spinning Icons SSVEP

Spinning icons including check, arrow,
box, cross, gear, icon check, icon email,
icon PDF, icon spread, and icon text with
frequencies of 7.5, 10, and 13 Hz.

Oz, P7, P3, Pz, P4, T7,Cz, T8, F3

Highest accuracy is 86% from cross
SSMVEP followed by PDF icon with an
accuracy of 75% (which is a remarkable
result for a three-class classification
problem with a chance level of 33.3%).
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2. Materials and Methods
2.1. EEG Acquisition

Twelve healthy volunteers (seven females and five males, average age of
27.6 & 2.3 years old) participated in the experiments. All participants have the normal
vision acuity for inclusion criteria, without color blindness and neurological disorders (in
the past or present). The exclusion criteria were related to participants that had migraines
that were activated from visual perception. Before signing a consent form, all participants
were informed and read the documentation to participate in the experiment. All signed
consent forms were kept confidential (without personal identification). All protocols in-
volving human participants were approved by the Office of the Human Research Ethics
Committee of Walailak University, which adopted the Ethical Declarations of Helsinki,
Council for International Organizations of Medical Sciences (CIOMS), and the World Health
Organization (WHO) guidelines.

First, we used the 32-channel EPOC Flex™ (shown in Figure 1) from EMOTIV
(https:/ /www.emotiv.com, accessed on 16 October 2021), at a sampling rate of 128 Hz. The
EPOC Flex is a wireless EEG machine with flexible traditional EEG head cap systems that
minimizes the setup time. It measures the electrical brain potentials via saline electrodes
and saline soaked felt pads, while it is flexible and easy to use. We also checked that (and
adjusted) each electrode’s position placed on the right area. EEG signals were collected
using Emotiv Pro [ver. 3.1.3]. We explored the brain response from whole EEG electrodes
using topographic brain mapping, in order to verify the proposed visual stimulus patterns.
Moreover, the specific EEG electrode positions of interest are around the occipital and
parietal areas [18], i.e., PO3, PO4, POZ, O1, O2, and Oz, as shown in Figure 2, for practical
BCI systems with a single or a few electrodes.

Custom position 1 Custom position 2

Figure 2. Electrode placement for 32 channels, based on a 10-20 system.
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2.2. Proposed Visual Stimulation

The main objective of this work, regarding SSVEP-based BCI systems, is the develop-
ment of a visual stimulation method to improve the conventional technique. Two main
approaches were mixing flicker frequencies and a novel visual stimulus pattern, inspired
by the QR code style. Three fundamental frequencies, namely 7, 13, and 17 Hz (Table 2),
were selected, based on the previous study on a real-time, SSVEP-based BCI system [35],
to verify the proposed visual stimulation pattern. The dimensions of the visual stimuli were
4 cm X 5 cm. The distance between the two stimuli, measured from the center, was
10 cm in the horizontal direction and 5 cm in the vertical direction. The fixation point
was located in the middle of the resting state and EEG baseline calibration. Visual stimuli
were displayed on a 21.5-inch LED monitor, with a frequency of 75 Hz and a resolution of
1920 x 1080 pixels.

Table 2. Proposed flickering frequencies and patterns of SSVEP stimulus.

Flicker Pattern Flickering Frequency
Fundamental Sub/Harmonics

1 Single 7Hz -

2 Single 13 Hz -

3 Single 17 Hz

4 Mixture 7Hz 14 Hz

5 Mixture 13 Hz 6.5 Hz

6 Mixture 7,13 Hz -

7 Mixture 7,17 Hz -

8 Mixture 13,17 Hz -

2.2.1. Proposed Mixing of Flicker Frequencies

According to previous research, since a SSVEP response is not solid and transparent
for all users, we cannot summarize the low- or high-frequency flickers that are suitable for
SSVEP stimulation. Hence, we attempt to provide the SSVEP visual stimulation pattern
that cover all users who yield a strong response, with different ranges of flicker frequency.
Mixing of flicker frequencies can be divided into two designs: (1) mixing between fun-
damentals with their harmonic frequencies and (2) mixing between two fundamental
frequencies, as shown in Table 2. In the pilot study presented mixing fundamentals with
their harmonic frequencies was used, and a small number of subjects performed the SSVEP
task [36]. We employed traditional SSVEP feature extraction to verify the proposed visual
stimulus. The results showed that the modified flicker visual stimulus could generate
more than two dominant frequencies at the 7 and 13 Hz stimulus flickering frequencies,
i.e., the sub-harmonic, first harmonic, and second harmonic frequencies, for all subjects.
Moreover, this work proposed an increasing number of commands; we observed mixing
two fundamental frequencies. The three flicker patterns, consisting of 7 and 13 Hz, 7 and
17 Hz, and 13 and 17 Hz, are shown in Table 2 (flicker patterns 6, 7, and 8).

2.2.2. Proposed Visual Stimulation Using QR Code Patterns

According to conventional visual stimuli, using a checkerboard pattern, a square
shape with the same size and position is usually used. We noticed that QR code patterns,
related to the checkerboard, could be employed for visual stimulus patterns. A QR code
is a two-dimensional matrix barcode [37], invented by the Japanese automotive company
Denso Wave. The representation of the QR code pattern was adopted for the visual stimulus
pattern. We attempted to observe a stimulus pattern, consisting of three different squares
with random locations, to induce visual evoked potentials. The proposed patterns were
implemented using the LabVIEW program, as shown in Figure 3. For the SSVEP stimulator,
each proposed pattern was located around the screen border, as shown in Figure 4. Eight
different stimulus patterns and flickering frequencies, as shown in Table 2, were used
to explore the SSVEP response between the proposed and conventional visual stimulus
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patterns, as shown in Figure 5. We expected that the proposed visual stimulus pattern
would produce a more explicit and permanent SSVEP than the checkerboard pattern;
moreover, it may reduce visual fatigue.

(a) (b)

Figure 3. Proposed SSVEP stimulation pattern. (a) Three different sizes of the components inside
stimulation pattern (1:10 mm). (b) Example of stimulation pattern using the QR code style.

Ty -y [
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Figure 4. Screenshot the proposed visual stimuli, using a QR code pattern with three fundamental
flickering frequencies and harmonics for eight different flicker patterns (Table 2), through an LCD
monitor for SSVEP stimulation.
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73 7

Figure 5. Screenshot conventional visual stimuli, using a checkerboard pattern with three fundamen-

tal flickering frequencies and harmonics for eight different flicker patterns (Table 2), through an LCD
monitor for SSVEP stimulation.

2.3. SSVEP Detection Methods

MATLAB (MathWorks) [ver. R2019a] was used to process and analyze the recorded
EEG signals from each participant. A 50 Hz notch filter was used to remove power line
noise, and a 340 Hz bandpass digital filter was used to avoid motion artefacts. For SSVEP
detection, power spectral density (PSD) and canonical correlation analysis (CCA) were
used to analyze the effects of brain signals [38], as described in the following subsections.
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2.3.1. Power Spectral Density (PSD)

The PSD method uses the power distribution of electrical brain signals in the frequency
domain to apply the results to commands or decision-making. It looks at changes in density
in different regions of the brain, focusing on how the stimulus area changes [39,40]. This
study focused on the stimulation of regions in the occipital cortex, activated by visual
perception, to determine the relationship between the target stimuli and brain signal
modulation. The Welch algorithm was used to estimate the PSD by separating signals into
windows of the same size. The Fourier transform is calculated on each segment, resulting
in the squared value. Then, we calculated the average of all periodograms, which was
calculated as a PSD estimation [41]. For implantation, the ‘pwelch’ function was used
to determine the PSD, using a Hamming window with 50% overlapping. It returns an
estimate of the Welch PSD, at the frequency specified, to compare with the baseline from
the resting period for SSVEP response detection.

2.3.2. Canonical Correlation Analysis (CCA)

CCA is a popular statistical method for analyzing brain signals. CCA is widely used in
SSVEP target detection. CCA can assess the relationship between the data to be examined
with the previously defined reference (sinusoidal signals at flickering frequencies), in
order to find the canonical correlation values [42]. The maximum target of the correlation
coefficient was selected to identify the target frequency of brain signals used to generate
commands for the BCI, in order to control devices or make decisions about answer choices. In
this study, CCA was applied to examine brain stimulation from checkerboard patterns and
QR code pattern stimuli, by the SSVEP method, for validity. We expect it to be able to correctly
identify the stimulus signal, since it focuses on brain signals in areas related to vision.

2.4. Experiments

The experiment was conducted in a quiet room with a typical indoor light environment.
Participants sat in front of the LCD monitor, at a distance of 60 cm, as shown in Figure 6.
All flicker patterns on the screen were displayed to the participant simultaneously during
the QR code pattern and checkerboard pattern experiments, as shown in Figures 4 and 5,
respectively. Each participant stared at the flicker by following the sequence in Table 2
(20 times for each pattern) through two visual stimulus patterns, starting with the QR
code pattern (Figure 4). Each time consisted of a resting period of 5 s and stimulus period
of 5 s. After finishing every flicker, the subject rested for 5 min before starting the next
flicker. Before moving to the checkerboard pattern (Figure 5), the participant rested for
10 min. Moreover, participants were scored with levels of 1 to 5, for the visual fatigue
questionnaire, by following the visual analogue scale-based pain measurement to assess
the participant’s feelings of visual comfort to the QR code and checkerboard stimulus
patterns (with different flicker stimuli). All participants received instruction on the visual
fatigue scoring system, which has five levels, as follows: 1 indicates comfortable, 2 indicates
rather comfortable, 3 indicates mildly uncomfortable, 4 indicates rather uncomfortable, and
5 indicates highly uncomfortable.

2.5. Observation of SSVEP Responses from QR Code Flickering Pattern Stimulation

To observe the SSVEP response, the EEGLAB toolbox [43] was used to generate a
topographic brain mapping from the PSD, in order to visualize the SSVEP features between
conventional and proposed visual stimulus patterns. We visually observed each type of
visual stimulus pattern, according to the topographic mapping of the average normalized
power (shown in Figures 7 and 8). The occipital response, i.e., an area of the SSVEP
stimulation response, was observed. The electrode positions of interest in the occipital
region were PO3, PO4, POZ, O1, 02, and Oz.
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21.0 Hz

(b)

Figure 7. Topographic brain mapping of SSVEP responses of participant 3: (a) SSVEP visual stimula-
tion, using the checkerboard pattern and mixing fundamental flicker frequency at 7 Hz and harmonic
frequency at 14 Hz; (b) SSVEP visual stimulation, using the QR code pattern and mixing fundamental
flicker frequency at 7 Hz and harmonic frequency at 14 Hz.

(b)

Figure 8. Topographic brain mapping of SSVEP responses of participant 3: (a) SSVEP visual stim-
ulation, using the checkerboard pattern and mixing fundamental flicker frequency at 13 Hz and
sub-harmonic frequency at 6.5 Hz; (b) SSVEP visual stimulation, using the QR code pattern and
mixing fundamental flicker frequency at 13 Hz and sub-harmonic frequency at 6.5 Hz.

The topographic brain mapping demonstrated a high-intensity PSD in the occipital
area. For the mixing of 7 and 14 Hz stimuli via the QR code pattern (Figure 7b), we observed
that the intensity of PSD in the occipital area exhibited a more significant response at
fundamental and harmonics, at 7, 14, and 21 Hz, from the checkerboard pattern (Figure 7a).
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For the mixing of 13 and 6.5 Hz stimulus via the QR code pattern (Figure 8b), we observed
that the intensity of PSD in the occipital area exhibited more significant responses, at 6.5,
13, and 26 Hz, from the checkerboard pattern (Figure 8a).

Each participant may have a dominant SSVEP frequency at different flickering fre-
quencies, i.e., exactly at the stimulus frequency, first harmonic, second harmonic, or sub-
harmonic. However, after averaging the waveforms from all subjects, we can still ob-
serve the activation of these target frequencies by using a well-known method to detect
a SSVEP response, such as the PSD and CCA methods, based on this experiment. Low
or high frequencies can be used for our proposed stimulus patterns, and they vary for
different users.

3. Results

To verify the stimulus duration for SSVEP detection from two different SSVEP stimulus
patterns, we used four windows, with 50% overlap, to detect the dominant frequencies,
including 2, 3, 4, and 5 s PSD and CCA methods. Less time for visual stimuli can reduce
visual fatigue. Hence, we attempted to observe the time and SSVEP classification accuracy
between the checkerboard and QR code stimulus patterns for efficiency and visual fatigue
evaluation. According to Figure 9, we found that 3 and 4 s, with both stimulus patterns, can
provide a high efficiency of the SSVEP methods. The minimum time for SSVEP stimulation
was approximately 3—4 s, and the average classification accuracy ranged from 90.6% to
93.3%. The QR code yielded a higher efficiency than the checkerboard pattern for 2 to 4 s.
A decrease in classification accuracy at 5 s can occur from a reduced SSVEP intensity at
4-5 s, since an extended period of stimulus can lead to visual fatigue.

128 g5.a 906 915 886 880 925 933 45 0-2s

80 -
70 A
60 -
50 A
40 A
30 A
20 A
10 A
0 A

m0-3s
m0-4s
H0-5s

Average Accuracy (%)

Checkerboard QR code

Visual stimulus patterns

Figure 9. SSVEP stimulus duration of the checkerboard and QR code patterns, using PSD and CCA
classification confidence interval (alpha: 0.01).

3.1. Evaluation of Mixing Flicker Frequencies

According to the results in Table 3, three issues of the proposed SSVEP stimulus are
listed. The first is the efficiency of the proposed visual stimulus, when using the QR code
pattern. The average accuracy of the checkerboard pattern ranged from 83.7% to 90.9%
for all flicker patterns, and the QR code pattern ranged from 87.3% to 94.4%, which was
higher than the checkerboard pattern. The second is an evaluation of mixing flickers
between fundamental and harmonic frequencies (flicker patterns 4 and 5, at 7-14 Hz
and 6.5-13 Hz, respectively) for comparison with the conventional flicker using only
the conventional fundamental frequency (flicker patterns 1 and 2, at 7 Hz and 13 Hz,
respectively) for the SSVEP stimulus. The average classification accuracy of using only
the fundamental frequency ranged from 84.9% to 91.8%. The average accuracy of the
mixing flickers between the fundamental and harmonic frequencies ranged from 83.7% to
94.4%. We found that both flickers provided similar efficiencies. The third issue considers
command increments by mixing two fundamental frequencies, i.e., flicker patterns 6, 7,
and 8. The average classification accuracy of the checkerboard pattern ranged from 84.7%
to 90.5%, and the QR code pattern ranged from 88.0% to 93.0%. PSD methods can provide
a high average accuracy for SSVEP classification by mixing two fundamental frequencies,
and the maximum frequency was 93.2% from pattern six, through the QR code pattern.
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Table 3. Results of the average classification accuracy of all participants, through different flicker patterns.

Average Classification Accuracy (%)

Flicker SSVEP Detection Methods
Patterns PSD CCA
Checkerboard OR Code Checkerboard QR Code
1 90.9 89.3 84.9 87.3
2 88.0 90.6 89.3 91.2
3 85.9 91.8 85.3 89.5
4 83.7 90.2 87.1 90.5
5 84.9 93.4 91.2 94.4
6 A 87.9 90.5 87.3 92.3
7 t 84.7 89.3 89.5 91.8
8 " 87.1 88.0 90.5 93.0
Mean =+ SD. 86.6 + 2.32 904 + 1.66 88.1 =234 91.2 +£2.19

Note: * indicates the mixing of the fundamental and its harmonic frequency; ** indicates the mixing of two
fundamental frequencies.

Furthermore, there is a significant difference between using only the fundamental
(conventional) and mixing fundamental and harmonic frequencies (proposed); the effect
of each pattern was inspected (shown in Figure 10). The paired t-test for the mean was
used to analyze a statistically significant difference between the groups of flicker stimuli
(Table 2) and visual stimulus patterns. First, the paired t-test (n = 24) indicated that there
was a significant difference between the average classification accuracy of using only the
fundamental frequency of the checkerboard and QR code pattern (p = 0.010; p < 0.05).
The paired t-test (n = 24) also indicated a statistically significant difference between the
accuracy of mixing the fundamental and harmonic frequencies of the checkerboard and
QR code patterns (p = 0.001; p < 0.005). Second, the paired t-test (n = 48) indicated a
statistically significant difference between the average classification accuracy of using only
the fundamental and mixing fundamental and harmonic frequencies (p = 0.033; p < 0.05).

p<0.05
120
r A N\ B Checkerboard
1101 p<0.05 p<0.005 B QR code
100 A
3
S - - = | —
g L .
g ==
5 80
Q
<
70
60
50
Fundamental Fundamental + Harmonic

Flicker frequency

Figure 10. Average classification accuracy between using only the fundamental (flicker pattern 1 and 2)
and mixing fundamental and harmonic frequencies (flicker pattern 4 and 5) of the checkerboard and
QR code patterns of SSVEP stimulus (shown in Table 3).

3.2. Evaluation of QR Code Pattern as SSVEP Stimulus

According to Table 4, the average classification accuracy of the checkerboard pattern
ranged from 83.6% to 91.3%, while the average classification accuracy of the QR code
pattern ranged from 85.9% to 94.4%. The maximum classification accuracy of the PSD
method was 93.0%, while the maximum classification accuracy, using the CCA method for
SSVEP detection, was 94.4% for the QR code visual stimulus pattern. The results verified
and supported the proposed visual stimulus pattern. The QR code pattern with the CCA
method can generate the average classification accuracy of all participants. For some
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participants, both stimulus patterns gave similar classification accuracy for each SSVEP
detection method.

Table 4. Results of average classification accuracy of SSVEP detection methods from different flicker
patterns of the checkerboard and QR code patterns for each participant.

Average Classification Accuracy (%)

SSVEP Detection Methods

Participants
PSD CCA
Checkerboard OR Code Checkerboard OR Code
1 89.8 90.5 90.6 90.5
2 84.3 87.5 91.3 94.4
3 85.2 89.8 85.8 88.2
4 85.8 89.1 89.1 89.7
5 89.8 85.9 83.5 90.5
6 83.6 89.7 84.3 94.0
7 84.4 93.0 85.8 925
8 86.6 90.6 85.8 91.3
9 84.4 90.5 89.8 91.7
10 85.9 89.7 87.5 93.8
11 85.9 90.6 86.6 89.8
12 89.1 85.9 88.2 90.9
Mean =+ SD. 86.2 +2.19 89.4 + 2.06 87.4 1+ 243 914 +1.91

According to Figure 11, two main issues were identified. The first issue regards
the SSVEP detection method for visual stimulus patterns. The paired t-test (n = 24) re-
ported a statistically significant difference between the PSD and CCA methods (p = 0.012;
p < 0.05). Additionally, CCA can yield a higher efficiency than the PSD method. The second
issue is the efficiency of each type of visual stimulus pattern. The paired t-test (n = 12)
indicated a significant difference between the QR code and checkerboard patterns, using
the PSD method (p = 0.013; p < 0.05). Furthermore, the paired t-test indicated a signifi-
cant difference between the QR code and checkerboard patterns, using the CCA method
(p =0.001; p < 0.005). Even though the proposed SSVEP visual stimulus via QR code pattern
can achieve a higher average classification accuracy than the checkerboard pattern for
all participants, visual fatigue must be observed between the QR code and checkerboard
patterns, for practical purposes. The visual fatigue issue will be described in Section 3.3.

p<0.05
100 1 A
4 \
p<0.05 p <0.005 M Checkerboard
95 - —— —— M QR code
g [ 1]
; 90 A | e—] | —
[9) 1
: L] ]
g 8 —1
<
80 -
75
PSD CCA
Flickering Frequency

Figure 11. Average classification accuracy between the checkerboard and QR code patterns of SSVEP
stimulus for the PSD and CCA methods.

3.3. Visual Fatigue

After the experiment, participants were asked about their visual fatigue score for each
stimulus (Table 2), affecting their eyes on a scale from 1 to 5, with 1 indicating minimum
visual fatigue and 5 indicating maximum visual fatigue. The median is used as a robust
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measure to conceal higher levels of variability in the visual fatigue score. The results are
presented in Figure 12. Flicker patterns 4 to 8 (mixing of flicker frequency) had a more
significant effect on the eyes (three to four scores), rather than flicker patterns 1 to 3 (only
fundamental frequency), which can provide only one to two scores for both patterns. In
contrast, the proposed mixing flickering frequency can yield higher SSVEP responses than
the conventional method. Moreover, a comparison of visual fatigue between the QR code
and checkerboard patterns showed that the QR code pattern had a median score of 2.5,
while the checkerboard pattern had 3. However, there was no significant difference between
the QR codes and checkerboard patterns, even though nine out of twelve participants (75%)
recommended the QR code pattern for less visual fatigue.

=
g
5

B Checkerboard
B QR code

Flicker Patterns
—_ N w L= ol (=} N [ee]

Median scores of visual fatigue

Figure 12. Visual fatigue scores from all participants, after performing the QR code and checkerboard
stimulus patterns, with different flicker stimuli, with 95% confidence intervals.

4. Discussion

To investigate the proposed SSVEP visual stimuli via a QR code pattern for BClIs,
topographic brain mapping of the QR code stimulus pattern illustrated the SSVEP response
of the occipital area. In addition, we modified the flicker patterns. The experiment revealed
that mixing fundamentals, and their harmonic frequencies (Table 2), provide a better SSVEP
response than the fundamental frequency for stimulus pattern and testing of SSVEP detection
methods alone. Furthermore, both PSD and CCA methods yielded acceptable accuracies.

Moreover, the traditional SSVEP can create three additional commands by utilizing
the proposed mixing fundamental frequencies. The experiment also revealed additional
details of designing the SSVEP visual stimulus pattern through employing a QR code
format, including the size and flickering frequencies of the pattern, to reduce eye fatigue;
the QR code is recommended. The classification accuracy of the QR code pattern may
slightly increase, compared to that of the checkerboard, and visual fatigue of low flickering
frequency will decrease, according to the participants” opinions. However, the proposed
visual stimulation required more than 2 s to achieve a high efficiency of SSVEP detection,
which is similar to the conventional and previous SSVEP systems [27,35].

Finally, some limitations of the modified flicker and QR code patterns for SSVEP
stimulation can be reported. First, after the initial verification of the modified flicker
(mixing frequencies) for the SSVEP stimulus with a small number of frequencies, we aim
to further observe additional fundamental frequencies. Secondly, some subjects reported
visual fatigue when using the QR code pattern with a high flickering frequency. Hence, we
have to further validate the sizes and shapes (circle) of the components inside the QR code
patterns. Lastly, the ITR should be verified for real-time, SSVEP-based BCI systems.

5. Conclusions

This study proposes a new SSVEP visual stimulus, with a QR code pattern for an EEG-
based BCI system. Furthermore, we proposed a mixing of flickering frequency stimulation
patterns with the recommended 7, 13, and 17 Hz flicker frequencies and created eight
commands. The SSVEP responses from the topographic brain mapping of the proposed
visual stimuli were investigated. The mixing of flicker frequencies can be efficiently used to
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enhance the SSVEP response and increase the number of commands from the conventional
SSVEP-based BCI. Furthermore, we conclude that the QR code pattern is an efficient
stimulus pattern that can be used for SSVEP stimulation. Both PSD and CCA methods can
be used for SSVEP detection of the proposed QR code stimulation pattern. The proposed
SSVEP stimulus patterns can be employed to enhance a real-time, SSVEP-based BCI system,
for practical use in people with disabilities. The proposed system can be implemented in
SSVEP-based BCI systems for powered wheelchair control and spellers. We suggest that
the proposed SSVEP stimulus, via QR code pattern, can be further explored to reduce time
and visual fatigue by using random location of the piece of the QR pattern to generate
evoked potentials.
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