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Abstract: Prediction of pedestrian crossing behavior is an important issue faced by the realization of
autonomous driving. The current research on pedestrian crossing behavior prediction is mainly based
on vehicle camera. However, the sight line of vehicle camera may be blocked by other vehicles or
the road environment, making it difficult to obtain key information in the scene. Pedestrian crossing
behavior prediction based on surveillance video can be used in key road sections or accident-prone
areas to provide supplementary information for vehicle decision-making, thereby reducing the risk of
accidents. To this end, we propose a pedestrian crossing behavior prediction network for surveillance
video. The network integrates pedestrian posture, local context and global context features through a
new cross-stacked gated recurrence unit (GRU) structure to achieve accurate prediction of pedestrian
crossing behavior. Applied onto the surveillance video dataset from the University of California,
Berkeley to predict the pedestrian crossing behavior, our model achieves the best results regarding
accuracy, F1 parameter, etc. In addition, we conducted experiments to study the effects of time to
prediction and pedestrian speed on the prediction accuracy. This paper proves the feasibility of
pedestrian crossing behavior prediction based on surveillance video. It provides a reference for the
application of edge computing in the safety guarantee of automatic driving.

Keywords: traffic safety; autonomous driving; surveillance video; behavior prediction; multi-source
feature fusion

1. Introduction

Pedestrians are one of the main participants in the transportation system in urban
environments. They become the most defenseless road users due to the lack of protection
measures and vulnerable to the threats to life from traffic accidents. Therefore, to ensure
the safe operation of autonomous vehicles, automated systems require the ability to predict
pedestrian behaviors, especially at the point of crossing. Knowing as soon as possible
if a detected pedestrian has the intention of intersecting the ego-vehicle path (expecting
the vehicle slowing down or braking) is essential for performing safe and comfortable
maneuvers preventing a crash, as well as having vehicles showing a more respectful
behavior with pedestrians [1].

In the behavioral science literature, the Theory of Planned Behavior (TPB) asserts that
behavior extends from intent, which in turn is a product of social-psychological attitudes,
subjective norms, and perceived behavioral control. The later integrated model simplified
these parts into a path, “attitude/perception-behaviors” [2]. Pedestrian crossing behavior
is affected by multiple factors, including road vehicles, surrounding pedestrians, crossing
intentions, and current movement speed. With the development of computer vision, image-
based pedestrian behavior prediction has been widely studied [3]. Early studies mostly
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used single-frame picture as input into convolutional neural network (CNN) for predic-
tion [4]. This method ignores temporal information, which plays a key role in behavior
prediction. Later studies considered both spatial and temporal features, using recurrent
neural networks (RNN) and three-dimensional convolution neural network (3DCNN) to
extract spatio-temporal information [5–9]. At the same time, different methods are used
to fuse a variety of features to predict pedestrians’ crossing behaviors, such as pedestrian
bounding box, posture, vehicle speed and surrounding environment information [10–14].

The current research on pedestrian crossing behavior prediction is mainly based
on vehicle-mounted videos. Due to the limitation of the line of sight, there are some
hidden dangers in actual scenes. For example, when pedestrians are blocked by other
vehicles or other road elements, it is difficult for the vehicle-mounted camera to observe
the pedestrians who will be crossing the street. Therefore, the vehicle cannot timely detect
the pedestrian crossing behavior. This is also a common cause of pedestrian crashes. With
the development of Cooperative Vehicle Infrastructure System (CVIS), it is possible to use
information obtained from surveillance video for autonomous driving. Internet of vehicles
communication technology (V2X) makes future vehicle driving no longer rely on vehicle
perception alone, but organically connect “people, vehicles, roads, clouds” and other
traffic elements [15]. Connected vehicles combine the technology of Internet of vehicles
and intelligent vehicles and are also a development direction of intelligent transportation
systems in the future [16]. Pedestrian crossing behavior prediction based on surveillance
video can be used on key roads or accident-prone areas to provide auxiliary information
for vehicle decision-making, so as to reduce accident risk.

This paper focuses on the prediction of pedestrian crossing behavior based on surveil-
lance video. The purpose is to predict whether the target pedestrian will cross the road in a
period of time from the monitoring perspective. The dataset used is from a surveillance
video camera installed in the University of California, Berkeley, which records a busy street
on the campus. The dataset labels the pedestrian’s pose feature points. On this basis, we
label the target pedestrian’s crossing behavior to make a dataset for pedestrian crossing
behavior prediction under surveillance video. Meanwhile, a novel spatio-temporal feature
fusion network is proposed to accurately predict pedestrian crossing behavior from the
perspective of monitoring. The network integrates pedestrian posture features, local context
features and global context features. Posture features include pedestrian body posture and
head posture. The local context features are scene features in a certain range around the
target pedestrian, which are extracted from the local scene through a convolutional neural
network. The global context is the whole picture, and the optical flow field image processed
by optical flow method is fused. First, perspective transformation is used to preprocess
the entire image. Then convolutional neural network is used to extract the original image
and optical flow field image features, respectively. In this paper, VGG19 (Visual Geometry
Group 19) [17] network is introduced to extract environmental features, and the GRU [18]
with attention mechanism [19] is introduced to encode pedestrian posture and context
information. Finally, the obtained information is fused and the full connection layer is used
to predict the pedestrian crossing behavior. In addition, this paper also studies the influence
of pedestrian speed and time to prediction (TTP) on the model’s prediction performance.

The research results of this paper prove the effectiveness of pedestrian crossing behav-
ior prediction through surveillance video. Through the acquisition and fusion of pedestrian
posture, local context and global context in the video, satisfactory prediction results are
achieved. This also means that it is feasible to realize the early warning of pedestrians
crossing the street in automatic driving through edge calculation. The main contributions
of this work can be summarized as follows: (1) Based on the surveillance dataset of the
University of California, we have annotated the pedestrian crossing behavior of the target
pedestrian, and produced a dataset for the prediction of pedestrian crossing behavior
based on surveillance video. The dataset contains 300 video clips of pedestrians crossing
the street. (2) A new spatio-temporal feature fusion network is proposed. The algorithm
predicts pedestrian crossing behavior by fusing pedestrian posture, local context and global
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context features. Comparing multiple baseline methods, the model achieves the best re-
sults. (3) Through experiments, the effects of TTP and pedestrian speed on the prediction
accuracy of each model are studied.

2. Related Works

Spatial-temporal features. Since the prediction task needs to consider temporal infor-
mation, most studies use continuous image sequences as the input of the prediction model,
which requires the model to accurately extract temporal and spatial information. Spatio-
temporal modeling can extract the visual features of each frame through 2D CNN [17]
or graph convolutional network (GCN) [20], and then input these features into RNN for
prediction. For example, Liu [21] used the spatio-temporal context of the scene to make
predictions. Firstly, each frame is parsed into pedestrians and objects of interest. Then
a spatio-temporal graph centered on the target pedestrian is constructed, where features
are extracted through graph convolution. Finally, RNN is used to predict the pedestrian
behavior. Ullah [22] proposed a bidirectional approach where features obtained by CNN
are sent in a bidirectional LSTM [23], connecting two hidden layers from opposite direc-
tions to the same output. The output layer can then simultaneously obtain information
on past and future states. Another method to extract spatio-temporal information is to
use the 3DCNN [6], which replaces the convolution kernel and pooling layer in the two-
dimensional convolution network with three-dimensional convolution, so that the network
can accept three-dimensional input and directly extract spatio-temporal features. For ex-
ample, in [7,8], Spatio-Temporal Densenet is used to directly extract the features of picture
sequence through 3DCNN, and then the full connection layer is used for final prediction.

Trajectory prediction. It is a common way to predict pedestrian crossing behavior
through pedestrian trajectory. For example, Lee [21] proposed an RNN codec framework
of deep random inverse optimal control, which predicts the future position of pedestrians
and vehicles through moving targets and scene context. Luong [24] proposed a transferable
pedestrian motion prediction algorithm based on inverse reinforcement learning, which
can infer the pedestrian’s intention and predict the future trajectory according to the
observed trajectory. On this basis, the target collision time can be estimated to remind
the vehicle to avoid. Doellinger [25] used CNN to predict average occupancy maps of
walking humans even in environments where information about trajectory is not available.
However, pedestrian trajectory prediction is a complex task because humans may change
directions suddenly depending on objects, vehicles, human interaction, etc. [26]. In these
cases, it is difficult to make accurate prediction based on the trajectory.

Posture features. Pedestrian posture features are direct expressions of pedestrian
intentions, such as waving, walking, observing road conditions, etc. Therefore, many
researchers use pedestrian posture features to predict pedestrian crossing behavior. For
example, Fang [27] used human bone key points to predict pedestrian crossing intention.
The human skeleton feature points are extracted from the target pedestrian’s bounding box,
and then the feature vector representing the pedestrian’s posture is established. Finally,
SVM (support vector machine) classifier is used to predict pedestrian behavior. Cadena [28]
proposed a model based on two-dimensional human pose estimation and graph convo-
lution network (GCN). The extracted pedestrian posture features are represented in the
form of graph, and then the processed graph sequence is input into GCN for prediction.
Wang [29] proposed a fast shallow neural network classifier to predict pedestrian behavior
according to the two-dimensional posture of pedestrians. Gesnouin [30] proposed SPI-Net
(Skeleton-based Pedestrian Intention network): a representation-focused multi-branch net-
work combining features from 2D pedestrian body poses for the prediction of pedestrians’
discrete intentions. However, these methods rely solely on pedestrian posture features, and
ignore the information affecting pedestrian crossing behavior in the context.

Feature fusion. Some other methods focused on novel fusion architecture. Rasouli [11]
proposed an architecture based on stacked RNN, which integrates five features: local
context, pedestrian appearance, pedestrian posture, bounding box and vehicle speed. The
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features are processed hierarchically and gradually fused at each level. More complex
features are input at the bottom of the model and simpler features are input at the top.
In [10], a multi-modal prediction network is proposed, which uses four feature elements:
global semantic map, local scene, pedestrian motion and vehicle speed. These features
are gradually integrated into the network at different processing levels. In [12], a multi-
task prediction framework is proposed, which takes advantage of feature sharing and
multi task learning. It integrates four feature sources: semantic map, pedestrian trajectory,
grid position and vehicle speed. Kotseruba [13] considered four feature sources: local
environment, pedestrian posture, pedestrian bounding box and vehicle speed. A three-
dimensional volume integral branch is used to encode visual information and a single
RNN branch is used to process other information in parallel. Then, the attention module is
introduced and applied to the hidden state of the RNN branch (temporal attention) and
again to the output of the branch (modal attention). Figure 1 shows a preview of the current
mainstream research on the prediction of pedestrian crossing behavior.

Figure 1. Overview of current mainstream pedestrian crossing behavior prediction methods. Firstly,
the required information is extracted from the observation sequence, including pedestrian posture,
pedestrian trajectory, local environment, vehicle speed and so on. Then input the information into
the spatiotemporal feature processing network for behavior prediction.

Compared with vehicle-mounted videos, surveillance video has a wider perspective
and richer extraction of context information especially pedestrian surrounding context and
vehicles on the road. The full extraction of this information can make the prediction of
pedestrian crossing behavior more accurate.

3. Research Methodology
3.1. Problem Formulation

Referring to the benchmark proposed in [5], we define pedestrian crossing behavior
prediction as a binary classification problem. The goal is to predict the crossing state
of pedestrian i An+t

i ∈ {0, 1} after t frames under the observation time of n frames, as
shown in Figure 2. The prediction of the model depends on three input sources, including
pedestrian posture {Chi, Cbi}, local context around pedestrians Csi =

{
C1

si, C2
si, . . . , Cn

si
}

,
global context

{
Cgi, Coi

}
, where Cbi =

{
C1

bi, C2
bi, . . . , Cn

bi
}

represents pedestrian body pos-

ture, Chi =
{

C1
hi, C2

hi, . . . , Cn
hi
}

represents pedestrian head posture, Cgi =
{

C1
gi, C2

gi, . . . , Cn
gi

}
represents the original global context features and Coi =

{
C1

oi, C2
oi, . . . , Cn

oi
}

represents
global optical flow field features.
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Figure 2. Pedestrian crossing behavior prediction task. N-frame observation is used to predict
whether pedestrians cross the street after t frames.

3.2. Dataset

The dataset used in this article is recorded on a busy street on the campus of University
of California, Berkeley as shown in Figure 3. The camera was mounted on the top of a
building with a top-down view of the street. The field of view of the camera is shown in
Figure 4.

Figure 3. Satellite view of the experimental area. The installation position of the camera is indicated
in the figure. The green area represents the camera field of view. The white speckle area is the selected
area of the target pedestrian, and the target pedestrians marked in the dataset come from this area.

Figure 4. Example of monitoring scene in dataset. The camera was mounted on the top of a building
with a top-down view of the street.
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The dataset contains 300 videos from the monitoring perspective. Each video has a
target pedestrian who will cross the street. Every target pedestrian is marked when it first
appears in the image boundary, and the video ends when the crossing is completed, and
the pedestrian leaves the image. Each video is about 20 s long at 15 frames per second. The
resolution of the video is 1920 × 1080. These videos are collected from different periods of
the day. Table 1 shows the period statistics of the video data.

Table 1. Data time summary.

Time Numbers of Videos

9:00–11:00 17
11:00–13:00 40
13:00–15:00 108
15:00–17:00 104
17:00–19:00 31

Total 300

The dataset annotates the target pedestrian’s head and body posture. The head
posture is represented by two points, which represent the head position and head direction,
respectively. Body posture is represented by 5 body keys. Therefore, as shown in Figure 5,
the posture of each pedestrian is represented by the abscissa and ordinate of 7 points, that
is, a 14D vector. On this basis, we annotate the pedestrian crossing behavior (1 represents
that pedestrians are crossing the street, 0 represents that pedestrians are not crossing the
street) and the number of frames where pedestrians begin to cross the street.

Figure 5. Image feature labeling: (a) 1–5 represent the edge of the right and left shoulders, center of
the waist, right and left heels respectively; (b) the head position and head orientation vector.

3.3. Model Construction

We propose a new multi-source feature fusion model, as shown in Figure 6. The model
integrates pedestrian pose features (body pose feature points, head pose feature points),
local context and global context features. The global context features are obtained by the
combination of original global context features and optical flow field features. For pedes-
trian pose features, we directly input them into RNN for recursive coding. Environment
perception is a critical technical issue for autonomous vehicles [31]. For context features,
we use cross-stacking for fusion coding of local context and global context. Firstly, CNN
is used to extract the features of local scene and global context, respectively, which are
put into RNN for recursion. Then, the recursive results are spliced with the other party’s
features before the recursion, and the RNN is input again to calculate the deep fusion
features of the environment. Finally, after stitching the vectors processed by the RNN, a
2-layer fully connected layer is used for prediction.



Sensors 2022, 22, 1467 7 of 18

Figure 6. Overview of the proposed pedestrian crossing behavior prediction model. The model
combines three feathers of pedestrian posture, local context and global context incorporating optical
flow features. Pedestrian posture is coded by GRU, local context and global context are coded by
cross-stacked GRU. Finally, the obtained features are connected and input to the fully connected layer
for prediction.

We use GRU [19] for recursion. Compared with the long short term memory net-
work [23] (LSTM), GRU has a simpler structure and can achieve performance no less than
LSTM on the basis of less calculation. Recalling the equation of GRU, the variables of jth
level of the stack is calculated as follows.

rt
j = σ

(
Wxr

j xt
j + Whr

j ht−1
j

)
(1)

zt
j = σ

(
Wxz

j xt
j + Whz

j ht−1
j

)
(2)

h̃t
j = tanh

(
Wxh

j xt
j + Whh

j

(
rt

j � ht−1
j

))
(3)

ht
j =

(
1− zt

j

)
� ht−1

j + zt
j � h̃t

j (4)

In the formula: xt
j represents the input at the current moment; Wxr

j , Whr
j , Wxz

j , Whz
j , Wxh

j

and Whh
j are the learnable weight matrices; rt

j and zt
j represent the reset gate and update gate

weights, respectively; ht−1
j and ht

j represent the hidden layer state at the previous moment

and the current moment, respectively; h̃t
j represents new memory at the current moment;
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σ is the sigmoid(·) function, and tanh(·) is the hyperbolic tangent activation function. For
j = 0 (the bottom level of the stack), xt

0 = ct
p and for j > 0, xt

j = ht−1
j + ct

p.
Meanwhile, inspired by [3,13], we introduced the attention mechanism [18] into GRU

to form At-GRU (attention-GRU). The attention module can selectively focus on some
features, so as to better deal with key objects. For sequence input, the attention mechanism
can assign different weights to the sequence, so as to turn the attention of the model
to important features and improve the accuracy of data feature understanding without
increasing the computational cost. Figure 7 shows the structure of At-GRU. Where at and y
are calculated as follows:

at =
exp(

(
tan h(Wwxt + bw))TWA

)
∑n

t=1 exp((tan h(Wwxt + bw))TWA)
(5)

y =
n

∑
t=1

atht (6)

where: Ww and bw are the learnable parameters and bias of tanh(·); WA is the learnable
parameter of At-GRU.

Figure 7. At-GRU structure, where n represents the input sequence length, xt represents the input
of the t-th layer, ht represents the output of layer t, at represents the weight of the timing feature
calculated by the attention mechanism, and y represents the output of At-GRU, which is weighted by
the output of each layer of the GRU.

3.4. Model Input Acquisition
3.4.1. Pedestrian Pose Key Points

Before crossing the road, pedestrians usually walk, wave and wave their hands. In
addition, the pedestrian’s head posture also reflects the pedestrian’s intention to cross
the street [32]. Pedestrian posture sequence is the most direct expression of pedestrian
intention. Therefore, the capture of pedestrian posture information is very important for
the prediction of pedestrian crossing behavior.

The dataset used in this article has already annotated the key points of pedestrian
posture. The extraction of pedestrian posture is not the focus of this article, so we directly
use the ground truth pedestrian posture as the input. Pedestrian posture includes body
posture and head posture. The head pose is a 4D vector, including head coordinate points
and coordinate points representing the direction of the head. The vector composed of
these two points can represent the direction of the head. The body posture is a 10D vector,
including the horizontal and vertical coordinates of the five points of the pedestrian’s left
shoulder, right shoulder, waist center, left heel, and right heel.
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3.4.2. Local Context

Pedestrian crossing behavior is usually affected by the surrounding context, such as ze-
bra crossings, intersection signs, etc. In addition, when pedestrians cross the street together,
the crossing intention will be greatly affected by the crossing behavior of surrounding
pedestrians. Therefore, the understanding of the local context around pedestrians is helpful
to predict pedestrian crossing behavior.

To define the local context, we take the waist center of the target pedestrian as the
center and select the RGB image of 224 × 224 pixels around the center to form the local
scene. Then we apply the pre-trained VGG19 [17] model on the ImageNet dataset [33] to
extract local scene features. The predicted sequence image is input in the form of a 4D
array, and each dimension represents the number of observation frames, image rows, image
columns, and image channels. We extract the output with size (512, 14, 14) from the fourth
maximum pooling layer of VGG19, and then use the average pooling layer with a 14 × 14
kernel for pooling to obtain the 512D feature vector. Finally, the feature vectors of each
frame are connected to obtain the spatio-temporal features of (n, 512), where n represents
the number of observation frames. The network structure is shown in Figure 8.

Figure 8. Feature extraction network based on vgg19. It extract the output from the fourth maximum
pooling layer of VGG19, and then use the average pooling layer with a 14 × 14 kernel for pooling to
obtain the 512D feature vector.

3.4.3. Global Context

The information in the global scene, mainly the traffic information, will have an
important impact on pedestrians crossing behavior. The vehicle information on the road, in-
cluding the distance to the pedestrian, vehicle speed and speed change, must be considered
when pedestrians cross the street.

In order to highlight the target pedestrian in the image, we use two line segments
with a width of 60 pixels to represent the target pedestrian. One indicates the pedestrian’s
body position and the other indicates the pedestrian’s direction. This can not only connect
the road context with the only target pedestrian, but also more directly judge the target
pedestrian’s understanding of the current road environment through the pedestrian head
direction, such as whether the pedestrian pays attention to the approaching vehicle. At
the same time, since the surveillance video camera has an unchanged viewing angle, we
perform a fixed perspective transformation on the input image. In this way, the near end
and the far end of the camera can be at the same scale, avoiding the problem that the size
and speed of the target at the far end of the camera are too small due to the viewing angle.
Figure 5a shows four points used to calculate the perspective transformation matrix, which
are manually marked. The coordinates of the corresponding four points after perspective
transformation are set as (200, 200), (200, 680), (1870, 200), (1870, 680), respectively. The
images before and after transformation are shown in the Figure 9.
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Figure 9. Comparison before and after image preprocessing. (a) is the picture before processing, (b)
is the result of highlighting the target pedestrian and perspective transformation.

In addition, in order to focus on the moving vehicles on the road, we use the dense
optical flow method to obtain the optical flow field of the picture. Since the road background
is basically static in the scene under surveillance video, the information of moving targets
can be easily extracted by optical flow method. The processing results are shown in the
Figure 10. Then, the original road image and optical flow field image are transformed to
(224, 224), which are, respectively, input into the convolution neural network to extract the
original global features and motion features. The network used is the same as the extraction
of local environment features. Finally, the feature vectors of each frame are connected to
obtain two final features of (n, 512), and n represents the number of observation frames.

Figure 10. The result of optical flow method preprocessing picture. The upper picture is the road
scene at different time points, and the lower picture corresponds to the optical flow field calculated
by the upper picture and its previous frame.

4. Experiment and Results
4.1. Benchmark and Metrics

According to the benchmark proposed in [5], the following indicators are used to
evaluate the test results: accuracy, F1 parameter, precision, recall rate and area under the
curve (AUC).

Accuracy represents the proportion of correct data predicted. Precision represents
the correct proportion of those data whose prediction is positive. Recall rate indicates the
correct proportion predicted by positive samples. Their calculation formula is shown in
Equations (7)–(9).

accuracy =
TP + TN

TP + FN + FP + TN
(7)

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)
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where: TP represents the number of samples with positive label and positive prediction
result. TN represents the number of samples with negative label and negative prediction re-
sult. FP represents the number of samples with negative label and positive prediction result.
FN represents the number of samples with positive label and negative prediction result.

Ideally, the higher precision and recall, the better, but the actual situation is that the
two affect each other: the pursuit of high accuracy rate will lead to low recall rate; the
pursuit of high recall rate will usually reduce the accuracy rate. In order to balance the
accuracy and recall rates, the F1 parameter is introduced, and its calculation formula is
shown in Equation (10).

F1 =
2 ∗ precision ∗ recall

precision + recall
(10)

In the case of binary event anticipation, AUC reflects the balanced accuracy of the
algorithms.

AUC =
∑ I
(

Pp, Pn
)

M ∗ N
(11)

where M is the number of positive samples, N is the number of negative samples, Pp
is a score of positive samples, Pn is a score of negative samples, I

(
Pp, Pn

)
= 0(Pp < Pn),

0.5(Pp = Pn) or 1(Pp > Pn).
We compare the proposed algorithm with the following four benchmarks to evaluate

the performance of our algorithm.
Single RNN [34]. First, all input features are connected into a vector. Then it is input

into the recurrent neural network for recursion. Finally, the full connection layer is used
for prediction.

Multi RNN [35]. Each input is input into the recurrent neural network, and then the
hidden features of each RNN output are connected into a vector. Finally, the full connection
layer is used for prediction.

SF RNN [11], a stacked RNN network. Different features are processed in layers and
gradually fused at each layer. The more complex features are fused at the bottom, and the
simpler features are fused at the top.

PCPA [13]. The attention module is used. After GRU calculation for each input, the
attention module is used for time attention. The attention module is applied to the branch
output again to realize modal attention after connecting the output results.

4.2. Quantitative Experiment

According to the summary in [13], in the current research on the prediction of pedes-
trian crossing behavior, most of the observation time is about 0.5 s. The TTP is mostly in
the range of 1 s to 2 s. The experimental data of some studies are taken from the whole
process of crossing the street, while others are taken from the part before crossing the street.
Since the prediction of the time when pedestrians begin to cross the street is the focus
and difficulty in the research. Therefore, we tested each model under 8 frames (0.53 s)
observation time and 24 frames (1.6 s) time to prediction (TTP). The video clips are divided
into training set and test set in the ratio of 3:1. Due to the limitation of our data volume,
we will extract five positive sample sequences from a sample of crossing pedestrian. For
each pedestrian crossing the street, take [tc−31, tc−16], a total of 16 frames of data. tc is the
number of frames at the beginning of pedestrian crossing behavior. Continuously taking se-
quences with a length of 8 frames as positive samples at an interval of 2 frames, and finally
a total of 5 sequences of [tc−31, tc−24], [tc−29, tc−22], [tc−27, tc−20], [tc−24, tc−18] and
[tc−22, tc−16] can be obtained. The negative sample of the model is the sequence of more
than 6 s before tc, which are also collected at an interval of 2 frames. The experimental
sample extraction process is shown in Figure 11. Finally, the data volume of the dataset
is doubled by horizontal mirroring. The final training set is about 3000 samples and the
test set is about 1000 samples, of which the proportion of positive and negative samples is
about 1:1.
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Figure 11. Schematic diagram of experimental sample extraction. Where tc represents the time
when pedestrians begin to cross the street. The red line indicates the time line of pedestrian crossing
behavior. The green and blue lines represent the extracted positive and negative samples, respectively.

The experimental results are shown in Table 2. It can be seen from the results that the
methods proposed in this paper are optimal with respect to all metrics except the recall rate.
Although the recall rate of PCPA model is the highest, its accuracy and precision are 3% and
5% lower than our method. This shows that our model is more sufficient for the fusion of
multi-source inputs. Since our model does not use RNN alone for prediction of each input,
such as PCPA and multi RNN, but combines two complex input features in a cross stacking
way. It also does not make simple connection and fusion such as single RNN, because there
are differences in the dimensions of different features. In addition, this stacking method
enables local and global contex features to have two levels of recursion (1 layer of RNN
and 2 layers of RNN), which can also make the recursion of features more sufficient.

Table 2. The prediction results of each model on pedestrian crossing behavior under 8 frames (0.53 s)
observation time and 24 frames (1.6 s) TTP. The evaluation index of the algorithm consists of accuracy,
area under curve (AUC), F1 parameter, accuracy, recall and average value.

Models Acc AUC F1 Prec Recall Average

Single
RNN 0.74 0.74 0.77 0.67 0.88 0.760

Multi RNN 0.75 0.75 0.76 0.70 0.84 0.760
SF RNN 0.77 0.77 0.78 0.73 0.82 0.774

PCPA 0.77 0..78 0.79 0.70 0.90 0.788
ours 0.80 0.80 0.81 0.75 0.88 0.808

The bold result means the best in the models. Acronyms: Acc (Accuracy), AUC (Area under the ROC Curve), F1
(F1 score), Prec (Precision).

In Table 3, the run time performance of our proposed framework in comparison to
the other approaches is listed. Since all models use the same input, we test the acquisition
of input and the calculation time of prediction model separately. It can be seen from the
table that although our model is not excellent in time, the main time-consuming of the
algorithm comes from the acquisition of model input, that is, the extraction of local and
global context features. Therefore, the time-consuming prediction model does not need too
much attention. All the run-time analysis experiments run on the same PC with an Intel i7
CPU and an Nvidia GTX1080Ti.

4.3. Effect of Pedestrian Speed

We counted the number of crossing samples and not crossing samples correctly pre-
dicted by all models, some models or no models. Correspondingly, the samples are divided
into simple samples, medium samples and difficult samples. At the same time, we divide
pedestrians into three categories according to their moving speed: fast moving, medium
moving and slow moving. The relationship between pedestrian moving speed and sample
difficulty level is studied. The moving speed of pedestrians is calculated according to Equa-
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tion (12) where, n is the length of observation sequence, lxi and lyi are the horizontal and
vertical coordinates of pedestrian waist center in the i-th frame of the sequence, respectively.
Since the interval time of each frame is the same, the speed is not divided by time.

Table 3. Comparison of calculation time of different methods.

Approach Time

Single RNN 0.4 ms
Multi RNN 0.6 ms

SF RNN 0.8 ms
PCPA 0.7 ms
ours 0.7 ms

Extraction of local context 7.6 ms
Extraction of global context 17.4 ms

v =
n

∑
i=2

(lxi − lxi−1)
2
+ (lyi − lyi−1)

2
(12)

The proportion of pedestrian samples at the three speed categories after classification
is about 1:1:1. Then, we count the number of simple, medium and difficult pedestrian
samples at different speeds. The results are shown in the Figure 12. As can be seen from
the figure, for the low-speed pedestrian sample, the simple sample accounted for 39.7%
and the difficult sample reached 12.9%. For the sample of medium speed pedestrians,
the simple sample accounted for 43.9% and the difficult sample accounted for 5.8%. For
the high-speed pedestrian sample, the simple sample accounts for 64%, and the difficult
sample is only 2.4%. The slower the pedestrian speed, the more difficult the model is to
predict the pedestrian, which is particularly obvious in the negative sample. The reason
may be that our positive and negative samples are from pedestrians who are about to cross
the street. Slow negative samples are often pedestrians who slow down or stop on the
street to observe the road conditions. If the current road context is complex, pedestrians
will wait at the roadside for a long time. The prediction will be wrong if the model does
not fully understand the current road context.

Figure 12. Proportion of crossing and not crossing samples in low-speed, medium-speed and high-
speed pedestrians that are correctly classified by all/some/none models.
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4.4. Effect of Time to Prediction

In order to explore the performance of the model under different TTP we carried out
further experiments by changing the TTP. We fixed the observation length to 8 frames
(about 0.53 s), increased the TTP from 0.4 s to 2 s, and the step size was 0.2 s. In each group
of experiments, the last frame of the positive sample observation sequence starts from t
frame and takes 5 consecutive sequences at intervals of 2 frames, that is, the end frames of
each observation sequence are t, t + 2, t + 4, t + 6 and t + 8, respectively. t = tc − tp, where
tc is the number of frames at the beginning of pedestrian crossing behavior, and tp is the
number of frames corresponding to the TTP. Since the dataset does not label the poses of
pedestrians who have not crossed the street, we choose the sequence whose end frame is
more than 6 s before the pedestrian crossing behavior as the negative samples. We divide
the video into training set and test set in the ratio of 3:1. Finally, the total sample data of
each group is about 4000, and the proportion of positive and negative samples is about 1:1.

According to the experimental results, we selected two indicators of accuracy and
F1 parameters to show the prediction performance. As shown in Figure 13, the accuracy
and F1 parameters of our model are the optimal values in most cases. At the same time,
when the TTP is very short, the variation of accuracy between the models is small, because
the pedestrian intention is more obvious. With the increase of TTP, the performance of all
algorithms decreases gradually, but the decline speed of different models is different, and
the gap of prediction results of different models also increases gradually.

Figure 13. When the observation time is 0.53 s, the TTP is increased from 0.2 s to 2 s to test the
performance of the algorithm. (a,b) represent accuracy and F1 parameter, respectively.

4.5. Qualitative Experiment

We also conducted some case studies to analyze the behavior types of the pedestrians’
crossing. The cases are displayed in Figure 14.

In case 1, the pedestrian will cross but the prediction results of all models are wrong.
The reason may be that the pedestrian waited too long on the street, the current situation
of road vehicles is complex, and the road environment changes rapidly. This makes the
model unable to accurately predict the behavior over a long period of time. In case 2, the
pedestrian will not cross but all model’s predictions are wrong. It can be seen from the
observation sequence pictures that this is caused by the sudden change of pedestrian’s
intention and trajectory. This is also a situation that cannot be accurately predicted by
models or even human drivers. In case 3, the pedestrian will cross the street. The prediction
of our model is correct, but the other models are wrong. It can be seen from the picture
sequence that the pedestrian stayed on the roadside for a long time due to the complex road
environment, but he shows behaviors of leg lifting which shows that he is eager to cross
the street. Before the vehicle has completely passed, pedestrians cross the street obliquely
in the vertical direction, which is a common way for pedestrians to cross the street when
they encounter passing vehicles in their daily life. In case 4, the target pedestrian walked
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towards the road, but then his speed suddenly slowed down, resulting in some model
prediction errors. In case 5, the pedestrians will cross the street, and all models predict it
correctly. At that time, the target pedestrian was already standing next to the road and was
ready to cross the street. The companion next to him was also preparing to cross the street.
The pedestrian’s movement was coherent, so all models could predict it correctly.
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Figure 14. Examples of qualitative experimental results of pedestrian crossing behavior prediction.
In each group of experiments, the left three pictures represent the observation frames of frames 1, 4
and 8, respectively, and the rightmost picture represents the real picture at the predicted time point.
Where, C represents crossing the street, NC represents not crossing the street, red indicates wrong
prediction, and green indicates correct prediction.

5. Discussion

This paper presents a pedestrian crossing behavior prediction model based on surveil-
lance video. Compared with traditional vehicle-based video, surveillance video can capture
richer road and vehicle information, which will have a large impact on pedestrian cross-
street behavior. In addition, we propose a new feature fusion method, which improves the
prediction performance of the model, and obtains higher accuracy, F1 parameters, etc. than
the baseline method. When TTP is less than 1.6 s, the accuracy and F1 score of the model
can reach more than 80%. This study can be used in the assistant system of auto-driving to
warn pedestrian crossing behavior through edge calculation, so as to enhance the safety
performance of auto-driving.

However, due to the limited ability and energy, some aspects of the algorithm need to
be further improved:
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(1) The surveillance video does not capture all the information on the road, especially
the information on the right side of the camera. Pedestrians can observe farther road
information than cameras. Therefore, many vehicles that affect pedestrian crossing
behavior do not appear in the video.

(2) The rules of pedestrian-vehicle interaction when pedestrians cross the street are
complex and changeable. The amount of data in the current dataset is difficult to
make the model fully learn these rules. Our positive and negative samples are from
different stages of pedestrians who will cross. There is a lack of samples of pedestrians
who won’t cross. This makes the model less robust and reduces a certain accuracy.
These reasons lead to the rapid reduction of model accuracy with the increase of TTP.

(3) The proposed method relies on the labeling of key points to encode human posture,
which restricts the practical use of the proposed method.

Future research will start from these aspects, consider using multiple cameras to
broaden the observation field of vision, and increase the number and integrity of datasets
to improve the robustness and accuracy of the model. In addition, we will study the
detection of human posture key points in surveillance video to realize an end-to-end
pedestrian crossing behavior prediction model. At the same time, we also believe that the
representation of pedestrian posture is not necessarily the key points of posture. In the
future, we will also try different inputs that can contain pedestrian posture information.

6. Conclusions

This paper focuses on pedestrian crossing behavior prediction based on surveillance
video. A new spatio-temporal feature fusion network based on stacked GRU is proposed.
The algorithm predicts the pedestrian crossing behavior by fusing the features of pedestrian
posture, local context and global context. Quantitative and qualitative experiments are
carried out using the pedestrian crossing behavior prediction dataset under surveillance
video. The results show that our method has the best performance compared with other
baseline methods. Then we counted the proportions of simple, medium, and difficult
samples in pedestrian samples with different speeds. The results show that the slower the
pedestrian movement, the more difficult the sample prediction. We also demonstrated the
performance of each model at different prediction times. Experiments show that when the
prediction time is short, the accuracy of each model is close. With the increase of prediction
time, the performance of all models decreases. However, the performance gap between the
models gradually widens with different decline speeds. The research of this paper proves
the feasibility of pedestrian crossing behavior prediction based on surveillance video. It
can provide a reference for the application of edge computing in the safety guarantee of
automatic driving.
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